JP4381558B2 - Visible light excitable photocatalytic composition, photocatalytic thin film, and production method thereof - Google Patents

Visible light excitable photocatalytic composition, photocatalytic thin film, and production method thereof Download PDF

Info

Publication number
JP4381558B2
JP4381558B2 JP2000104515A JP2000104515A JP4381558B2 JP 4381558 B2 JP4381558 B2 JP 4381558B2 JP 2000104515 A JP2000104515 A JP 2000104515A JP 2000104515 A JP2000104515 A JP 2000104515A JP 4381558 B2 JP4381558 B2 JP 4381558B2
Authority
JP
Japan
Prior art keywords
photocatalytic
visible light
titanium oxide
thin film
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000104515A
Other languages
Japanese (ja)
Other versions
JP2001286755A (en
Inventor
為衆 張
憲次 菅原
▲こう▼ 孫
英毅 千代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Highpolymer Co Ltd
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP2000104515A priority Critical patent/JP4381558B2/en
Publication of JP2001286755A publication Critical patent/JP2001286755A/en
Application granted granted Critical
Publication of JP4381558B2 publication Critical patent/JP4381558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可視光の照射により光触媒活性を発現することができる光触媒性組成物及び光触媒性薄膜並びにそれらの製造方法に関する。
【0002】
【従来の技術】
酸化チタンを用いた光触媒反応は、クリーンな光エネルギーを常温で化学エネルギーに変換する環境調和型プロセスとして注目され、環境浄化や表面高機能化等への応用研究が活発に行われている。例えば、特開平9−71437号公報には、窓ガラスにプレコート層を挟んで酸化チタン層を設けることにより、透明度が高く、親水性で、汚れ防止性等、安定した光触媒機能を有する窓ガラスが得られることが開示されている。
また、特開平11−151406号公報には、より一層光触媒活性を高める目的でパラジウムを複合した酸化チタン光触媒を紙製の基体に漉き込んだフィルタを作製し、臭気成分であるホルムアルデヒドやNOx、更にはCOを共に高い能力で除去できる空気清浄器が得られることが開示されている。
【0003】
更に、特開平11−157966号公報には、アナターゼ型酸化チタン粒子とシリカを含有する光触媒薄膜は、釉薬層の上に固定のため700℃以上で焼成しても高温で安定なルチル型に相転移する割合が少なく、高い光触媒性を維持できることを利用し、抗菌性や汚れにくいタイルや衛生陶器を提供しうることが報告されている。
【0004】
しかしながら、従来の酸化チタンを用いた光触媒は、約380nmよりも短い波長の紫外光領域では作用するが、波長の長い可視光領域での定常的な光触媒反応は不可能とされてきた。このため、太陽光を用いると紫外光領域の光が5%程度しか存在しないため、特に室内では水銀ランプのような高価な紫外光源が別途必要であったし、使用できる用途も相当限定されてしまう。
そのため、可視光領域(約380〜780nm)の光を有効に利用する試みが種々行われている。例えば、可視光を吸収する色素を吸着させ、可視光を吸収して生じた色素の励起状態から酸化チタンの伝導体へ電子注入を起こさせ、この電子を回すことによって電池を形成することが報告されている〔B.O′Regan and M.Gratzel,Nature,353、737(1991)〕。そのため、色素光増感剤としては種々の化合物が合成され、現在最も効果の高いものとしてルテニウム錯体、〔Ru(4,4−ジカルボキシ−2,2−ビピリジン)2(NCS)2〕が知られているが、光増感剤色素の安定性が大きな課題として残されている。
【0005】
一方、金属イオンを半導体にドーピングすることにより半導体の電子状態を改質する技術はよく用いられ、電子デバイス等の半導体電子材料分野等では広く応用されていることから、酸化チタンにクロム等のイオンをドーピングすることが検討されている。しかしながら、ドーピングしたクロムイオンが光照射で生成する電子と正孔との再結合中心として働き、太陽光照射下のみでなく紫外光領域の光照射においてもその活性は、ドーピングしていない元の酸化チタン光触媒に比較して著しく低くなってしまう結果に終わっているのが現状である。
また、その化学的手法と異なり、高エネルギーで高速に加速した金属イオンを注入することにより酸化チタン半導体光触媒の可視光化が取り組まれている。これは酸化チタンの結晶構造にダメージを与えることなく、金属イオンを酸化チタンの内部に注入することが可能で、そのため金属イオンの凝集は起こらず、原子・分子レベルの高分散状態で金属イオンのドープが可能になるとされている。しかしながら、実験室レベルではかなり高い効果を得ているが、実用化にまでは至っていない。
【0006】
更に、特開平11−169726号公報には光触媒活性の向上を図る手段として光触媒活性点またはその近傍にCu、Ag、Ni、Zn、Co、Fe、Pt、Pd等の貴金属やその酸化物等を担持させる方法が開示されている。それによると光触媒の作用は、紫外線等の照射によって、価電子帯にあった電子(e−)が伝導帯に励起され、価電子帯には正孔(h+)が生じ、これら電子(e−)及び正孔(h+)が酸化還元反応等を、貴金属担持により発生した電子と正孔の分離促進で加速すると従来から考えられていたが、活性点以外の箇所における貴金属の担持はかえって光触媒活性を阻害する恐れがあるので、該公報では光触媒の形状によらず、その活性点のみを選定して貴金属等を担持する方法を見出している。しかしながら、この方法では紫外線の照射量(照射時間)を減らすことができたが、波長の長い領域での効果を保持することはできていない。
【0007】
更に、特開平10−237357号公報には、酸化チタンと、塩化タングステンとテトラヒドロフランを含む光触媒性親水性コーティング組成物が開示されているが、基材に光触媒性コーティング液を塗布した後、それを更に焼成する手段を講じている。焼成時に塩化タングステンが空気中の酸素種と反応して酸化タングステンに変わり、それが含有されていると一旦親水化された表面の遮光時の親水維持特性が向上すると報告されているが、その理由としては酸化タングステンが含有されていないと、表面の極性が光の有無にかかわらず大きな状態になるために、疎水性分子よりも極性分子である水分子を選択的に吸着させやすく、そのために安定な物理吸着水層が形成されやすいためと説明されている。
しかしながら、この方法では、焼成固化という厳しい条件によって酸化タングステンを生成させなければならず、また、光励起についても、波長領域が380nm以下の紫外線を照射することが前提となっており、380nm以上の波長領域においての酸化チタンの光励起については全く触れていない。
【0008】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、可視光の照射により光触媒活性を発現することが可能となり、穏和な条件で製造しうる可視光励起可能な光触媒性組成物及び光触媒性薄膜並びにそれらの製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは鋭意研究の結果、タングステンアルコキシドを特定の溶剤に溶解した状態で酸化チタン光触媒溶液に添加することによって、上記目的を達成しうることを見出し、本発明を完成した。
即ち、本発明は、アナターゼ型またはブルッカイト型酸化チタンから成る酸化チタン光触媒とプロトン性溶剤に溶解したタングステンアルコキシドとを複合してなり、380〜450nmの可視光低波長領域の光に応答し得ることを特徴とする可視光励起可能な光触媒性組成物及びタングステンアルコキシドを、予めプロトン性溶剤に溶解してから酸化チタン光触媒溶液に添加することを特徴とする可視光励起可能な光触媒性組成物の製造方法を提供するものである。
【0010】
本発明は、さらに上記のような可視光励起可能な光触媒性組成物から成ることを特徴とする光触媒性薄膜及びこのような光触媒性組成物を基材あるいは成形物上に塗布した後、常温ないし120℃以下の温度で乾燥することを特徴とする可視光励起可能な光触媒性薄膜の製造方法を提供するものである。
【0011】
【発明の実施の形態】
以下、本発明について更に詳細に説明する。
半導体にそのバンドギャップ以上のエネルギーをもつ光を照射すると、伝導帯に電子が、価電子帯に電子の抜け殻(正孔)が生じる。この電子・正孔対を何らかの方法で分離して、電子を外部回路に取り出すと光で電流を得ることができる。これが太陽電池の原理である。外部を流れた電子は仕事をして(ポテンシャルを下げて)正孔と再結合する。
伝導帯の下端が水素発生電位よりもより負で、価電子帯の上端が酸素発生電位よりもより正、すなわち、バンドギャップとして1.23eVあれば熱力学的には水の完全分解は可能である。
例えば、CdSeは非常に理想的なエネルギー構造をもっている。しかしながら、バンドギャップの小さい半導体はいずれも光溶解反応を起こしてしまう。すなわち、水を酸化する代わりに自分自身を酸化してしまうことで、光触媒としては利用できない。
【0012】
光触媒としては、先ずは酸化チタンの強力な酸化力が利用される。光励起の結果、上述の価電子帯の正孔は酸化チタンの表面に存在する水酸基と結合し、生成した水酸ラジカル(・OH)はフッ素分子に匹敵する酸化力を有し、有機分子の常温分解に寄与する。一方、伝導帯の電子は、酸化チタンに吸着した有機分子を還元して有機分子の酸化に寄与する酸素アニオンラジカルを与えるので、O3 やH2 2 よりも強く、殆どの有機物をその構成元素(炭素,水素,硫黄,窒素)から最終的に炭酸ガス,水,硫酸,硝酸にまで分解されると言われる。
実用では、バンドギャップが3.2eVと比較的大きく、かつ伝導帯の位置の高いアナターゼ型、次いでブルッカイト型酸化チタンが、現在安定で高活性な光触媒として注目されている。
しかしながら、これらの酸化チタンは、紫外光領域にのみ光吸収をもつため、可視光領域の光は吸収できず、太陽光の3〜5%しか利用できない。
【0013】
一方、可視光を利用という観点からバンドギャップが小さい方が良いが、量子効率が著しく低いことや生成した準位はバンドギャップ励起により生成した電子・正孔対の再結合センターとしても作用するため、電荷分離効率が低下する。ルチル型酸化チタンはその例である。ルチル型酸化チタンのギャップエネルギーは光の波長に換算すると、その波長領域がわずか可視光側に寄っているにもかかわらず、電子と正孔の再結合が激しいため光触媒としての能力が低い。
【0014】
ところが、本発明によりアナターゼ型またはブルッカイト型酸化チタンとタングステンアルコキシドとを複合すると、光触媒酸化チタンの光吸収が長波長側へシフトし、即ち380〜450nmの波長領域でも光触媒としての機能を発揮することが可能となり、可視光波長領域の光量が多いため活性が高く、またその応用範囲が一気に拡大されることが期待される。
【0015】
タングステンアルコキシドは、380nm以上の波長領域ではそれ程応答性はない。しかし、本発明による酸化チタンとの組合せによってはじめて長波長へのシフトが認められる。その理由については、まだ充分には解明されていないが、光照射で生成した半導体中の電子の還元作用を高め、結果として半導体中での電子と正孔の電荷分離を促進することや、半導体表面上での酸化物の還元や酸化反応における触媒作用や反応物を選択的に吸脱着させる効果等が一因として考えられ、これらの相乗効果によってエネルギーの低い長波長領域の光でも励起されるものと推定される。
一方、アナターゼ型およびブルッカイト型酸化チタンのみならず、ルチル型酸化チタンも電子と正孔との分離促進効果によって両者の再結合を抑制され、活性が高まることにより光触媒効率の向上が図られるものと期待できる。
【0016】
本発明に用いるタングステンアルコキシドは、市販のものでよいが、酸化チタンとの複合のため溶剤に対する溶解性が必要である。溶解しないタングステン化合物は酸化チタンの活性点近傍に均一に存在することが難しく、相乗効果が得られ難い。これは、溶解状態のタングステンが酸化チタンとミクロンオーダーまたはナノスケールでの複合により、電荷の再結合が起こりにくいためと推定される。
【0017】
本発明においては、タングステンアルコキシドを良好に溶解させるため、プロトン性溶剤を用いる。これは酸化チタン光触媒のコーテイング液は殆どアルコール類等の極性が強い溶剤を使用しているため、その溶剤とよく溶け合うように選択する必要がある故である。また、溶剤は、タングステンアルコキシドが良く溶け、かつ沸点が150℃以下のものが好ましい。本発明の光触媒性組成物に使用される溶剤の沸点が150℃を超えると、塗布後の塗膜の乾燥が遅くなったり、乾燥温度も高くなったりするため好ましくないので、タングステンアルコキシド溶解用溶剤は基本的にはこれと性質的に近いものの使用が望まれる。タングステンアルコキシドを溶解するため使用するプロトン性溶剤の具体例としては、水、エタノール,イソプロパノール、エチレングリコール,プロピレングリコール等のアルコール類、酢酸エチル,酢酸ブチル等のエステル類などが挙げられる。このようなプロトン性溶剤を用いることによって、タングステンアルコキシドを良好に溶解させることができ、溶解状態のタングステンが酸化チタンの活性点近傍に均一に存在することができ、酸化チタンとミクロンオーダーまたはナノスケールで複合することができる。
【0018】
複合するためのタングステンアルコキシドの出発物としては、上記のようなプロトン性溶剤に溶解するものであれば、各種のものであってよく、何らかの手段によって変化を起こし最終的に一部でも酸化タングステンの形で光触媒の酸化チタン活性点近傍に存在していれば、本発明の相乗効果が得られ、光触媒酸化チタンの光吸収が長波長側へシフトし、即ち380〜450nmの波長領域でも光触媒としての機能を発揮することが可能となる。
本発明においては、タングステンアルコキシドを予め上記のようなプロトン性溶剤に溶解させる必要があるが、溶解方法は公知の方法に従えばよい。
【0019】
本発明でタングステンアルコキシドを使用する理由の一つは、タングステンアルコキシドが上述のプロトン性溶剤であるアルコール類に可溶であることであるが、タングステンアルコキシドは加水分解を起こすので、光触媒の酸化チタン或いはバインダーに使われる二酸化けい素近傍の水酸基と縮合反応を起こし、結合することによって光触媒の活性点に強繋することができ、タングステンアルコキシド自身は部分的に或いは完全に酸化物となり、酸化チタンとの複合による相乗効果に大きく寄与することが期待されるためである。
【0020】
本発明においてタングステンの電荷は、5価でも6価でも効果に殆ど差異がなく、例えば、5価のタングステンの化合物であるタングスト(V)イソプロピルオキシド〔W(Oipr)5 〕や6価のタングステンの化合物であるタングスト(VI)イソプロピルオキシド〔WO(Oipr)4 〕等が好適に使用できる。タングステンアルコキシドの添加量は酸化チタンに対し0.1〜10重量%とすればよく、1〜5重量%の範囲が好ましい。この添加量が0.1重量%より少なければ複合による相乗効果が得られ難く、一方10重量%を超えてもそれ以上の効果が期待できない。
【0021】
従来では、酸化チタンを用いて光触媒反応を行うためには紫外線を多く発生する水銀ランプ等の光源が必要であったが、本発明のタングステンアルコキシドを複合した酸化チタン光触媒を用いれば、光源としては380nm以上の波長領域の光を出す光源であれば良い。屋外では太陽光をより効率良く使用できるし、室内でもメタルハライドランプ,蛍光灯,白熱灯,陽光灯,ハロゲンランプ,ナトリウムランプ等、通常の照明用ランプの光を効率よく使えることから、光触媒の用途が著しく広がる。
さらに、従来の紫外線の利用では、人体に対する危険性が高く、心配されていた。しかし、本発明の光触媒性組成物を用いれば、可視光で効率よく光触媒の励起を行うことができ、可視光は目に優しく、オゾン発生の危険性も少ないため、光触媒作用を利用する各種機器で効率を上げるためにUV光発生の高いランプの代わりに通常の照明ランプ等が使用可能となる。
【0022】
本発明の光触媒性組成物は、コーティング液として各種基材や成形物に塗布・乾燥することにより光触媒性薄膜を作ることができる。光触媒性薄膜の膜厚は0.1〜5μmの範囲でよく、好ましくは2μm以下である。これにより光干渉による表面層の発色を防止することができる。また、表面層が薄ければ薄い程部材の透明度を確保することができ、膜厚を薄くすれば表面層の耐磨耗性も向上する。
【0023】
塗布する方法としては、コーティング液をスクリーン印刷法,グラビア印刷法,ロールコート法,スプレー吹き付け法,デイップコーティング法,スピンコーティング法などが挙げられる。コーティング液の塗布後、塗膜を室温で乾燥しても良いが、より早く機能を発現するには、ある程度の加温が好ましい。基材や成形物が無機質であれば少々高温でも問題ないが、有機質成形物の場合、温度が高ければ基材や成形物の劣化を生じるので、極力低温で加工するのが好ましい。通常の熱硬化性樹脂を使用した基材や成形物で、短時間での加熱温度は150℃位が限度とされている。
本発明方法における塗膜の乾燥条件としては、温度120℃以下、時間5〜60分で十分性能が得られる。
【0024】
また、基材や成形物が有機質の場合下記のような問題を抱えている。1つは光触媒の強力な酸化力によって有機質の基材や成形物まで分解されてしまう恐れがある。もう1つは光触媒の基材や成形物への接着性である。これを解決するには、基材や成形物と光触媒層との中間に接着保護層を設ける手段がある。本発明では、有機・無機のハイブリッド材を用いその役割を果たすことが可能である。ハイブリッド材の有機部分は下地の有機質基材との接着性を向上し、一方無機部分は表面の光触媒の分解に対する耐性を有することになる。中間層を設けることで有機質である各種プラスチック成形物への応用が可能となる。
【0025】
更に、本発明の光触媒性薄膜は、前述可視光波長領域においても優れた光触媒性を発現するのみならず、高度かつ半永久的親水性となるので、防曇,防滴,防汚,自己洗浄性(セルフクリーニング)等の向上が期待される。これによって、例えば、各種建築外装材料や建造物の環境汚染による汚れ防止に役立つものと考えられる。親水性であれば油性汚染物が付着しにくく、堆積物は降水に伴って雨水により流され、常にきれいな表面を保持することができる。また、本発明の光触媒性薄膜は、大気中のCO2 、NOx及びSOx等の物質を除去する能力を有することから、居住空間の脱臭,抗菌,防カビ等への期待も考えられる。
【0026】
本発明において適用可能な基材としては、金属,アルミ等の合金,ガラス,セラミックス,セメント,コンクリート等の無機質は勿論のこと、低温硬化が可能であるため、プラスチックや繊維,布,紙等の有機質およびそれらの組合せ、それらの積層体、成形体が好適に利用できる。有機無機の複合材料の一例として、樹脂および充填材,ガラス繊維等を混合し、バルク状に1次加工して得られるバルクモールディングコンパウンド(BMC)や、樹脂と充填材,触媒,離型剤等を混合して更にガラスチョップストランドに含浸させ、シート状に1次加工して作られるシートモールディングコンパウンド(SMC)等がある。
上記適用可能な基材を用途で言えば、自動車,鉄道車輌,航空機,船舶,潜水艇,雪上車,スノーモービル,オートバイ,ロープウエイのゴンドラ,遊園地ゴンドラ,宇宙船等の乗り物関係,各種建材,建築外装,内装,構造部材,交通標識,各種表示看板,広告塔,道路用防音壁,鉄道用防音壁,橋梁,ガードレール等建築関係,各種住宅設備,便器,浴槽,洗面台,照明器具,照明カバー,台所用品,食器,食器洗浄器,食器乾燥器,流し台,換気扇等住宅関係及び上記物品表面に貼付させるためのフィルムを含む。
【0027】
【実施例】
以下、実施例および比較例によって本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
【0028】
実施例1
タングステンアルコキシドとして5価のタングステンの化合物であるタングスト(V)イソプロピルオキシド〔W(Oipr)5 〕を、固形分として約5重量%になるようにイソプロピルアルコールに溶解した。この〔W(Oipr)5 〕のイソプロピルアルコール溶液を、光触媒として市販のアナターゼ型酸化チタンであるSTS−K02(商品名、石原テクノ製、固形分濃度10重量%)に1mol%添加し、本発明の光触媒性組成物液を得た。
一方、接着保護層の形成には、SiO2 とバインダーとの組合せによるコルコートP(商品名、石原テクノ製、液の固形分濃度2重量%)を用いた。
基材としては、ビニルエステル樹脂であるリポキシR802(商品名、昭和高分子製)に硬化剤としてt−ブチルパーベンゾエート0.4重量部を配合して硬化させて得られた成形物を使用した。この成形物にまず上記接着保護液を、ディップ法(引き上げ速度20cm/分)でドライ膜厚が約5000Åになるように塗布し、室温で約20分放置後100℃で20分間、加熱乾燥を行い、接着保護層を形成した。
この接着保護層の上に、上記光触媒性組成物液をドライ膜厚で約12000Åになるように同様にディップ法で塗布し、接着保護層と同様な条件で乾燥させ、本発明の光触媒性薄膜を形成した。
【0029】
実施例2
接着保護液としてNDC−100A(商品名、日本曹達製、固形分濃度10重量%)を用い、光触媒としてアナターゼ型酸化チタンであるNDC−100C(商品名、日本曹達製、固形分濃度8重量%)を用いた以外は、すべて実施例1と同様にして本発明の光触媒性薄膜を形成した。
【0030】
実施例3
接着保護液及び光触媒性組成物液として、下記調合のものを用いた以外は、実施例1と同様にして本発明の光触媒性薄膜を形成した。
接着保護液:テトラエトキシシラン120重量部、トリメトキシメチルシラン80重量部、アルコキシシランのKBM−503(商品名、信越化学製)40重量部、酢酸エチル80重量部、35%塩酸0.2重量部及び水40重量部を一括混合し、攪拌しながら70℃で6時間加熱処理する。得られたシリカゾルを、ビニルエステル樹脂であるリポキシVR77(商品名、昭和高分子製)および多官能基モノマーであるトリメチロールプロパントリアクリレートと固形分比率が2/1/1の割合で液の固形分濃度10重量%になるよう調整した後、光硬化剤としてダロキュア−1173を1重量%添加し、接着保護液とした。引き上げ速度20cm/分でディッピングし、室温にて約10分放置後UV照射(1000mJ/cm2 )し、硬化を行う。
光触媒性組成物液:イソプロピルアルコール42.7gにメタノール性シリカゾル(日産化学製)3.3gおよびトリメトキシメチルシラン1gを添加し、均一に混合した後、更に酸化チタンゾルTR−53(商品名、日産化学製)および予め調整しておいたタングステン(V)アルコキシド〔W(Oipr)5 〕のイソプロピルアルコール溶液を添加し、光触媒性組成物液を得た。
【0031】
実施例4
光触媒としてブルッカイト型酸化チタンであるNTB−13(商品名、昭和電工製)を用いた以外は、すべて実施例3と同様にして光触媒性薄膜を形成した。
【0032】
実施例5
タングステンアルコキシドとして、6価のタングステンの化合物であるタングスト(VI)イソプロピルオキシド〔WO(Oipr)4 〕を用いた以外は、すべて実施例1と同様にして光触媒性薄膜を形成した。
【0033】
実施例6
基材として、ポリエステル樹脂であるリゴラックM−531(商品名、昭和高分子製)を硬化させて得られた成形物を用いた以外は、すべて実施例1と同様にして光触媒性薄膜を形成した。
【0034】
実施例7
基材として、樹脂,充填材,ガラス繊維等で構成されるバルクモールディングコンパウンド(BMC)の成形材料であるリゴラックBMC RNC−410(商品名、昭和高分子製)を用いて成形した成形物を用いた以外は、すべて実施例1と同様にして光触媒性薄膜を形成した。
【0035】
実施例8
基材として、ガラスチョップストランドに樹脂と充填材,触媒,離型剤等を含浸させて作られるシートモールデイングコンパウンド(SMC)であるリゴラックSMC MG−100(商品名、昭和高分子製)を用いて成形した成形物を用いた以外は、すべて実施例1と同様にして光触媒性薄膜を形成した。
【0036】
比較例1
タングステンアルコキシドを添加しない以外は、すべて実施例1と同様にして光触媒性薄膜を形成した。
【0037】
比較例2
タングステンアルコキシドを添加しない以外は、すべて実施例2と同様にして光触媒性薄膜を形成した。
【0038】
比較例3
タングステンアルコキシドを添加しない以外は、すべて実施例3と同様にして光触媒性薄膜を形成した。
【0039】
比較例4
タングステンアルコキシドを添加しない以外は、すべて実施例4と同様にして光触媒性薄膜を形成した。
【0040】
比較例5
タングステンアルコキシドに代えて6価のタングステンの酸化物であるWO3 を用いた以外は、すべて実施例1と同様にして光触媒性薄膜を形成した。
WO3 の場合、イソプロピルアルコールに溶けないため極力強力な攪拌にて分散を行った。
【0041】
比較例6
タングステンアルコキシドに代えて6価の塩化タングステン〔WCl6 〕を用いた以外は、すべて実施例1と同様にして光触媒性薄膜を形成した。
【0042】
比較例7
タングステンアルコキシドに代えて12タングスト(VI)りん酸n水和物〔H3 (PW1240)nH2 O〕を用いた以外は、すべて実施例1と同様にして光触媒性薄膜を形成した。
【0043】
比較例8
タングステンアルコキシドに代えて12タングスト(VI)けい酸26水〔SiO2 ・12WO3 ・26H2 O〕を用いた以外は、すべて実施例1と同様にして光触媒性薄膜を形成した。
【0044】
比較例9
光触媒として、酸化チタンの代わりにタングステンアルコキシドを単独使用した。この場合、タングスト(V)イソプロピルオキシド〔W(Oipr)5 〕を3.523g取り、30gのイソプロピルアルコールに溶解し、このイソプロピルアルコール溶液にメタノール性シリカゾル0.7gとトリメトキシメチルシラン0.21gを添加して比較用の光触媒性コーテイング液を得た。その他はすべて実施例1と同様にして光触媒性薄膜を形成した。
【0045】
比較例10
基材と光触媒層の間に接着保護層を設けない例として、コルコートP(商品名、石原テクノ製)を使用しない以外は、すべて実施例1と同様にして光触媒性薄膜を形成した。
【0046】
上記の各実施例及び各比較例で得られた光触媒性薄膜について、下記の試験を行い、結果を第1表及び第2表に示す。
膜厚測定
表面形状測定装置Dektak3(日本真空技術製)を用い、段差による表面塗布膜厚を測定する。
【0047】
表面硬度測定
JIS K5400に準じて光触媒性薄膜表面の鉛筆硬度を測定する。
基材との密着性測定
JIS K5400に準じて碁盤目テープ剥離テストを実施する。
耐水性測定
JIS K5400に準じて100℃の蒸留水に10分間浸漬した後、表面の状態を観察する。
○ 変化無し
△ わずかに変化あり
× ふくれ或いは剥がれが認められる
【0048】
親水性評価
水滴の接触角を目測し、親水性の評価を行う。
○ 親水性高い(水の接触角10°以下)
△ 親水性認められる(水の接触角10〜30°程度)
× 親水性低い(水の接触角30°以上)
オイル分解テスト
光触媒性組成物を施した表面にサラダオイル約1gを載せ、所定波長領域の光を所定照射量で照射し、照射後のサラダオイルの重量減からオイル分解率を算出する。
【0049】
煙草ヤニ分解テスト
煙草の煙で光触媒性組成物を施した表面に煙草ヤニを付着させ、上記オイル分解テストと同様に所定波長領域の光を所定照射量で照射し、照射後の表面状態を観察する。
○ ヤニは完全に消える
△ ヤニは若干残る(薄い黄色)
× ヤニは殆ど残る
【0050】
なお、上記のサラダオイル分解テスト及び煙草ヤニ分解テストは、陽光ランプD125(東芝ライテック製)を使用し、下記の各種フィルター(富士フィルム製)により光の波長領域を制御して行った。得られた結果をそれぞれ第1表及び第2表にまとめて示す。
▲1▼ カットフィルターを使用しない:陽光ランプの全波長領域
▲2▼ SC38フィルター使用:380nm以下の波長領域カット
▲3▼ SC42フィルター使用:420nm以下の波長領域カット
【0051】
【表1】

Figure 0004381558
【0052】
【表2】
Figure 0004381558
【0053】
【発明の効果】
以上のように、本発明の光触媒性組成物及び光触媒性薄膜は、アナターゼ型またはブルッカイト型酸化チタンから成る光触媒とタングステンアルコキシドとを穏和な条件で複合することによって容易に製造され、380〜450nmの可視光低波長領域の光に応答することができる。これによって、用途が屋外の場合、吸収波長が長波長領域へシフトするため太陽光による照射光量が増え、光触媒活性が向上する。一方、屋内使用の場合に従来必要とされていた水銀灯等、紫外線を多く発生する光源がなくても、通常照明用ランプの光を効率良く使用でき、応用範囲が一躍拡大する。
また、人体に対する危険性の高い紫外線利用を避けることによる意味も大きい。可視光では目に優しく、オゾン発生の危険性も少ないことから環境保全に大いに役に立つものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalytic composition and a photocatalytic thin film that can exhibit photocatalytic activity by irradiation with visible light, and methods for producing the same.
[0002]
[Prior art]
The photocatalytic reaction using titanium oxide is attracting attention as an environmentally conscious process that converts clean light energy into chemical energy at room temperature, and active research is being conducted on environmental purification and surface enhancement. For example, JP-A-9-71437 discloses a window glass having a stable photocatalytic function such as high transparency, hydrophilicity, antifouling property, etc. by providing a titanium oxide layer with a precoat layer sandwiched between the window glass. It is disclosed that it can be obtained.
JP-A-11-151406 discloses a filter in which a titanium oxide photocatalyst compounded with palladium is put into a paper substrate for the purpose of further enhancing the photocatalytic activity, and formaldehyde and NOx as odor components, Discloses that an air purifier capable of removing both CO with high capacity can be obtained.
[0003]
Further, JP-A-11-157966 discloses that a photocatalytic thin film containing anatase-type titanium oxide particles and silica has a rutile type that is stable at high temperatures even when baked at 700 ° C. or higher for fixing on the glaze layer. It has been reported that it is possible to provide antibacterial and dirt-resistant tiles and sanitary wares by utilizing the fact that the rate of transfer is small and that high photocatalytic properties can be maintained.
[0004]
However, although the conventional photocatalyst using titanium oxide acts in the ultraviolet light region having a wavelength shorter than about 380 nm, it has been impossible to perform a steady photocatalytic reaction in the visible light region having a long wavelength. For this reason, when sunlight is used, there is only about 5% of light in the ultraviolet light region, so that an expensive ultraviolet light source such as a mercury lamp is separately required particularly indoors, and the usable applications are considerably limited. End up.
For this reason, various attempts have been made to effectively use light in the visible light region (about 380 to 780 nm). For example, it is reported that a dye that absorbs visible light is adsorbed, electrons are injected from the excited state of the dye generated by absorbing visible light into a titanium oxide conductor, and a battery is formed by turning these electrons. [B. O'Regan and M.M. Gratzel, Nature, 353, 737 (1991)]. For this reason, various compounds have been synthesized as dye photosensitizers, and ruthenium complexes, [Ru (4,4-dicarboxy-2,2-bipyridine), which are most effective at present. 2 (NCS) 2 However, the stability of the photosensitizer dye remains as a major problem.
[0005]
On the other hand, a technique for modifying the electronic state of a semiconductor by doping a semiconductor with metal ions is often used, and is widely applied in the field of semiconductor electronic materials such as electronic devices. Doping is being considered. However, doped chromium ions act as recombination centers between electrons and holes generated by light irradiation, and their activity is not only under sunlight irradiation but also in light irradiation in the ultraviolet region. The current situation is that the result is significantly lower than that of the titanium photocatalyst.
In addition, unlike the chemical method, visible light of a titanium oxide semiconductor photocatalyst is being worked on by implanting metal ions accelerated at high speed with high energy. This makes it possible to inject metal ions into the titanium oxide without damaging the crystal structure of the titanium oxide, so that the metal ions do not agglomerate and the metal ions are dispersed in a highly dispersed state at the atomic and molecular level. It is said that doping is possible. However, although it is quite effective at the laboratory level, it has not yet been put into practical use.
[0006]
Further, JP-A-11-169726 discloses a noble metal such as Cu, Ag, Ni, Zn, Co, Fe, Pt, and Pd or an oxide thereof at or near the photocatalytic active point as means for improving the photocatalytic activity. A method of carrying is disclosed. According to this, the action of the photocatalyst is such that, by irradiation with ultraviolet rays or the like, electrons (e−) in the valence band are excited to the conduction band, and holes (h +) are generated in the valence band, and these electrons (e− ) And holes (h +) have been thought to accelerate oxidation / reduction reactions, etc., by promoting the separation of electrons and holes generated by supporting noble metals. However, supporting noble metals in places other than the active sites is rather photocatalytic activity. Therefore, in this publication, a method for supporting a noble metal or the like by selecting only the active point regardless of the shape of the photocatalyst has been found. However, this method can reduce the amount of irradiation (irradiation time) of ultraviolet rays, but cannot maintain the effect in a long wavelength region.
[0007]
Furthermore, JP-A-10-237357 discloses a photocatalytic hydrophilic coating composition containing titanium oxide, tungsten chloride, and tetrahydrofuran. Furthermore, a means for firing is taken. It has been reported that tungsten chloride reacts with oxygen species in the air during firing to turn into tungsten oxide, and if it is contained, the hydrophilic maintenance characteristics at the time of shading of the surface once hydrophilicized are improved. If tungsten oxide is not contained, the polarity of the surface becomes large regardless of the presence or absence of light, so it is easier to selectively adsorb water molecules that are polar molecules than hydrophobic molecules, and therefore stable. It is explained that a simple physical adsorption water layer is easily formed.
However, in this method, tungsten oxide must be generated under severe conditions such as calcination and solidification. Also, for photoexcitation, it is assumed that the wavelength region is irradiated with ultraviolet rays having a wavelength region of 380 nm or less. No mention is made of the photoexcitation of titanium oxide in the region.
[0008]
[Problems to be solved by the invention]
In view of the above situation, the present invention provides a photocatalytic composition capable of exhibiting photocatalytic activity by irradiation with visible light and capable of producing visible light under mild conditions, a photocatalytic thin film, and a production method thereof. The purpose is to do.
[0009]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the above object can be achieved by adding tungsten alkoxide to a titanium oxide photocatalyst solution in a state dissolved in a specific solvent, and have completed the present invention.
That is, the present invention is a composite of a titanium oxide photocatalyst comprising anatase type or brookite type titanium oxide and a tungsten alkoxide dissolved in a protic solvent, and can respond to light in the visible light low wavelength region of 380 to 450 nm. A visible light excitable photocatalytic composition and a tungsten alkoxide are dissolved in a protic solvent in advance and then added to the titanium oxide photocatalyst solution. It is to provide.
[0010]
The present invention further comprises a photocatalytic thin film characterized by comprising a photocatalytic composition capable of exciting visible light as described above, and after coating such a photocatalytic composition on a substrate or a molded article, The present invention provides a method for producing a photocatalytic thin film capable of exciting visible light, which is characterized by drying at a temperature of 0 ° C. or lower.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
When a semiconductor is irradiated with light having energy greater than its band gap, electrons are generated in the conduction band and electron shells (holes) are generated in the valence band. When this electron-hole pair is separated by some method and electrons are taken out to an external circuit, a current can be obtained by light. This is the principle of solar cells. The electrons flowing outside work (lower the potential) and recombine with holes.
If the lower end of the conduction band is more negative than the hydrogen generation potential and the upper end of the valence band is more positive than the oxygen generation potential, that is, if the band gap is 1.23 eV, complete decomposition of water is possible thermodynamically. is there.
For example, CdSe has a very ideal energy structure. However, any semiconductor with a small band gap causes a photodissolution reaction. That is, it cannot be used as a photocatalyst by oxidizing itself instead of oxidizing water.
[0012]
As a photocatalyst, first, the strong oxidizing power of titanium oxide is used. As a result of photoexcitation, holes in the above valence band are bonded to hydroxyl groups present on the surface of titanium oxide, and the generated hydroxyl radical (.OH) has an oxidizing power comparable to that of fluorine molecules. Contributes to decomposition. On the other hand, the electrons in the conduction band reduce the organic molecules adsorbed on the titanium oxide to give oxygen anion radicals that contribute to the oxidation of the organic molecules. Three And H 2 O 2 It is said that most organic substances are decomposed from its constituent elements (carbon, hydrogen, sulfur, nitrogen) to carbon dioxide, water, sulfuric acid, nitric acid.
In practical use, anatase-type titanium oxide having a relatively large band gap of 3.2 eV and a high conduction band, and then brookite-type titanium oxide are currently attracting attention as stable and highly active photocatalysts.
However, since these titanium oxides have light absorption only in the ultraviolet light region, they cannot absorb light in the visible light region and can use only 3 to 5% of sunlight.
[0013]
On the other hand, from the viewpoint of using visible light, it is better to have a small band gap, but the quantum efficiency is extremely low and the generated level also acts as a recombination center for electron-hole pairs generated by band gap excitation. The charge separation efficiency is reduced. An example is rutile titanium oxide. When converted to the wavelength of light, the rutile-type titanium oxide has a low ability as a photocatalyst due to intense recombination of electrons and holes even though the wavelength region is slightly closer to the visible light side.
[0014]
However, when anatase type or brookite type titanium oxide and tungsten alkoxide are combined according to the present invention, the photoabsorption of photocatalytic titanium oxide shifts to the longer wavelength side, that is, it functions as a photocatalyst even in the wavelength region of 380 to 450 nm. Therefore, the activity is high because the amount of light in the visible light wavelength region is large, and the application range is expected to be expanded at once.
[0015]
Tungsten alkoxide is not very responsive in the wavelength region of 380 nm or more. However, a shift to a long wavelength is recognized only by the combination with titanium oxide according to the present invention. The reason for this has not been fully elucidated, but it enhances the reduction action of electrons in semiconductors generated by light irradiation, and as a result, promotes charge separation between electrons and holes in semiconductors. This may be due to the reduction of oxides on the surface, the catalytic action in the oxidation reaction, the effect of selectively adsorbing and desorbing the reactants, etc., and these synergistic effects can excite even light in the long wavelength region with low energy. Estimated.
On the other hand, not only anatase-type and brookite-type titanium oxides, but also rutile-type titanium oxides can suppress the recombination of both due to the effect of promoting the separation of electrons and holes, and the activity can be enhanced to improve the photocatalytic efficiency. I can expect.
[0016]
The tungsten alkoxide used in the present invention may be a commercially available one, but it must be soluble in a solvent because of its combination with titanium oxide. It is difficult for a tungsten compound that does not dissolve to exist uniformly in the vicinity of the active point of titanium oxide, and it is difficult to obtain a synergistic effect. This is presumed to be because the recombination of the tungsten in the dissolved state hardly occurs due to the composite of titanium oxide with the micron order or nanoscale.
[0017]
In the present invention, a protic solvent is used in order to dissolve tungsten alkoxide well. This is because the coating liquid of the titanium oxide photocatalyst uses a solvent having a strong polarity such as alcohols, and therefore it is necessary to select it so as to be well dissolved in the solvent. The solvent is preferably a solvent in which tungsten alkoxide is well dissolved and has a boiling point of 150 ° C. or lower. When the boiling point of the solvent used in the photocatalytic composition of the present invention exceeds 150 ° C., it is not preferable because drying of the coated film after coating becomes slow or the drying temperature becomes high, so the solvent for dissolving tungsten alkoxide. Basically, it is desirable to use a material close in nature. Specific examples of the protic solvent used for dissolving the tungsten alkoxide include water, alcohols such as ethanol, isopropanol, ethylene glycol and propylene glycol, and esters such as ethyl acetate and butyl acetate. By using such a protic solvent, tungsten alkoxide can be dissolved satisfactorily, and dissolved tungsten can be uniformly present in the vicinity of the active point of titanium oxide. Can be combined.
[0018]
The tungsten alkoxide to be compounded may be various starting materials as long as it can be dissolved in the protic solvent as described above. If present in the vicinity of the titanium oxide active site of the photocatalyst, the synergistic effect of the present invention is obtained, and the photoabsorption of the photocatalytic titanium oxide shifts to the long wavelength side, that is, as a photocatalyst even in the wavelength region of 380 to 450 nm. It becomes possible to demonstrate the function.
In the present invention, it is necessary to previously dissolve the tungsten alkoxide in the protic solvent as described above, and the dissolution method may be a known method.
[0019]
One of the reasons for using tungsten alkoxide in the present invention is that tungsten alkoxide is soluble in the alcohols which are the above-mentioned protic solvents. However, since tungsten alkoxide causes hydrolysis, photocatalyst titanium oxide or It causes a condensation reaction with the hydroxyl group in the vicinity of silicon dioxide used as a binder, and can be strongly linked to the active site of the photocatalyst by bonding. Tungsten alkoxide itself is partially or completely oxidized to form a titanium oxide. This is because it is expected to greatly contribute to the synergistic effect of the composite.
[0020]
In the present invention, there is almost no difference in the effect of tungsten charge regardless of whether it is pentavalent or hexavalent. For example, tungsten (V) isopropyl oxide [W (Oipr)], which is a pentavalent tungsten compound. Five ] Or tungsten (VI) isopropyl oxide [WO (Oipr)] Four Etc. can be preferably used. The addition amount of tungsten alkoxide may be 0.1 to 10% by weight with respect to titanium oxide, and is preferably in the range of 1 to 5% by weight. If this addition amount is less than 0.1% by weight, it is difficult to obtain a synergistic effect due to the composite, while if it exceeds 10% by weight, no further effect can be expected.
[0021]
Conventionally, in order to perform photocatalytic reaction using titanium oxide, a light source such as a mercury lamp that generates a large amount of ultraviolet rays is required. However, if the titanium oxide photocatalyst combined with tungsten alkoxide of the present invention is used, the light source is Any light source that emits light in a wavelength region of 380 nm or more may be used. Photocatalysts can be used outdoors because sunlight can be used more efficiently, and the light from ordinary lighting lamps such as metal halide lamps, fluorescent lamps, incandescent lamps, sunlight lamps, halogen lamps, and sodium lamps can be used efficiently. Will spread significantly.
Furthermore, the use of conventional ultraviolet rays has been a concern because of the high danger to the human body. However, if the photocatalytic composition of the present invention is used, the photocatalyst can be excited efficiently with visible light, visible light is easy on the eyes, and there is little risk of ozone generation. In order to increase the efficiency, a normal illumination lamp or the like can be used instead of a lamp with high UV light generation.
[0022]
The photocatalytic composition of the present invention can produce a photocatalytic thin film by applying and drying as a coating liquid on various substrates and molded articles. The film thickness of the photocatalytic thin film may be in the range of 0.1 to 5 μm, preferably 2 μm or less. As a result, color development of the surface layer due to light interference can be prevented. Further, the thinner the surface layer, the more transparent the member can be secured, and the thinner the film thickness, the better the wear resistance of the surface layer.
[0023]
Examples of the coating method include a screen printing method, a gravure printing method, a roll coating method, a spray spraying method, a dip coating method, and a spin coating method. After applying the coating solution, the coating film may be dried at room temperature, but a certain amount of heating is preferable in order to develop the function more quickly. If the base material or the molded product is inorganic, there is no problem even at a slightly high temperature. However, in the case of an organic molded product, the base material or the molded product is deteriorated if the temperature is high. In a base material or molded product using a normal thermosetting resin, the heating temperature in a short time is limited to about 150 ° C.
As the drying conditions of the coating film in the method of the present invention, sufficient performance can be obtained at a temperature of 120 ° C. or less and a time of 5 to 60 minutes.
[0024]
Further, when the base material or the molded product is organic, it has the following problems. One is that the organic base material and molded product may be decomposed by the strong oxidizing power of the photocatalyst. The other is the adhesion of the photocatalyst to the base material or the molded product. In order to solve this, there is a means for providing an adhesive protective layer in the middle of the base material or molded product and the photocatalyst layer. In the present invention, an organic / inorganic hybrid material can be used to fulfill this role. The organic portion of the hybrid material improves adhesion to the underlying organic substrate, while the inorganic portion has resistance to surface photocatalytic degradation. By providing the intermediate layer, it is possible to apply it to various plastic moldings that are organic.
[0025]
Furthermore, the photocatalytic thin film of the present invention not only exhibits excellent photocatalytic properties even in the visible light wavelength region described above, but also becomes highly and semi-permanently hydrophilic, so that it is antifogging, dripproof, antifouling, and self-cleaning. Improvements such as (self-cleaning) are expected. Thus, for example, it is considered useful for preventing contamination due to environmental contamination of various building exterior materials and buildings. If it is hydrophilic, oily contaminants hardly adhere to it, and the deposits are washed away by rainwater along with precipitation, and can always maintain a clean surface. In addition, the photocatalytic thin film of the present invention can be used for CO in the atmosphere. 2 Since it has the ability to remove substances such as NOx and SOx, expectation for deodorization, antibacterial, antifungal and the like of the living space is also conceivable.
[0026]
As a base material applicable in the present invention, since it can be cured at low temperature as well as inorganic materials such as metals, alloys such as aluminum, glass, ceramics, cement, concrete, etc., such as plastic, fiber, cloth, paper, etc. Organic materials and combinations thereof, laminates thereof, and molded products can be suitably used. As an example of organic-inorganic composite materials, bulk molding compound (BMC) obtained by mixing resin and filler, glass fiber, etc. and primary processing into bulk, resin and filler, catalyst, release agent, etc. There is a sheet molding compound (SMC) or the like which is made by further mixing and further impregnating into glass chop strands and performing primary processing into a sheet.
Speaking of the above-mentioned applicable base materials, automobiles, railway vehicles, aircraft, ships, submersibles, snow vehicles, snowmobiles, motorcycles, ropeway gondola, amusement park gondola, spaceships, various building materials, Architectural exteriors, interiors, structural members, traffic signs, various display signs, advertising towers, road noise barriers, railway noise barriers, bridges, guardrails, and other building related facilities, toilets, bathtubs, washstands, lighting fixtures, lighting Covers, kitchen utensils, tableware, dishwashers, tableware dryers, sinks, ventilation fans, etc., including housing-related films and films to be affixed to the surface of the above items.
[0027]
【Example】
Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these.
[0028]
Example 1
Tungsto (V) isopropyl oxide [W (Oipr), a compound of pentavalent tungsten as tungsten alkoxide Five Was dissolved in isopropyl alcohol so that the solid content was about 5% by weight. This [W (Oipr) Five Is added as a photocatalyst to a commercially available anatase-type titanium oxide STS-K02 (trade name, manufactured by Ishihara Techno Co., Ltd., solid content concentration: 10% by weight), and the photocatalytic composition liquid of the present invention is added. Obtained.
On the other hand, for the formation of the adhesion protective layer, SiO 2 Colcoat P (trade name, manufactured by Ishihara Techno Co., Ltd., solid content concentration of 2% by weight) was used.
The base material used was a molded product obtained by blending 0.4 parts by weight of t-butyl perbenzoate as a curing agent with Lipoxy R802 (trade name, manufactured by Showa Polymer Co., Ltd.), which is a vinyl ester resin, and curing. . First, the above-mentioned adhesive protective solution is applied to the molded product by a dipping method (pulling speed 20 cm / min) so that the dry film thickness is about 5000 mm, left at room temperature for about 20 minutes, and then heated and dried at 100 ° C. for 20 minutes. And an adhesive protective layer was formed.
On this adhesion protective layer, the above-mentioned photocatalytic composition liquid is similarly applied by a dip method so as to have a dry film thickness of about 12000 mm, dried under the same conditions as the adhesion protective layer, and the photocatalytic thin film of the present invention. Formed.
[0029]
Example 2
NDC-100A (trade name, manufactured by Nippon Soda Co., Ltd., solid content concentration: 10% by weight) is used as an adhesion protective solution, and NDC-100C (trade name, manufactured by Nippon Soda Co., Ltd., solid content concentration: 8% by weight) as a photocatalyst. The photocatalytic thin film of the present invention was formed in the same manner as in Example 1 except that
[0030]
Example 3
A photocatalytic thin film of the present invention was formed in the same manner as in Example 1 except that the following preparation was used as the adhesion protective liquid and the photocatalytic composition liquid.
Adhesive protective solution: tetraethoxysilane 120 parts by weight, trimethoxymethylsilane 80 parts by weight, alkoxysilane KBM-503 (trade name, manufactured by Shin-Etsu Chemical) 40 parts by weight, ethyl acetate 80 parts by weight, 35% hydrochloric acid 0.2 parts by weight Parts and 40 parts by weight of water are mixed together and heated at 70 ° C. for 6 hours with stirring. The obtained silica sol was mixed with lipoxy VR77 (trade name, manufactured by Showa Polymer Co., Ltd.), which is a vinyl ester resin, and trimethylolpropane triacrylate, which is a polyfunctional group monomer, at a solid content ratio of 2/1/1. After adjusting the partial concentration to 10% by weight, 1% by weight of Darocur-1173 was added as a photocuring agent to obtain an adhesion protective solution. Dipping at a pulling rate of 20 cm / min, and standing at room temperature for about 10 minutes, followed by UV irradiation (1000 mJ / cm 2 ) And cure.
Photocatalytic composition liquid: 3.3 g of methanolic silica sol (Nissan Chemical) and 1 g of trimethoxymethylsilane were added to 42.7 g of isopropyl alcohol, mixed uniformly, and further titanium oxide sol TR-53 (trade name, Nissan) Chemical) and tungsten (V) alkoxide prepared in advance [W (Oipr) Five An isopropyl alcohol solution was added to obtain a photocatalytic composition solution.
[0031]
Example 4
A photocatalytic thin film was formed in the same manner as in Example 3 except that NTB-13 (trade name, manufactured by Showa Denko), which is brookite-type titanium oxide, was used as the photocatalyst.
[0032]
Example 5
As tungsten alkoxide, tungsten (VI) isopropyl oxide [WO (Oipr), which is a compound of hexavalent tungsten. Four A photocatalytic thin film was formed in the same manner as in Example 1 except that
[0033]
Example 6
A photocatalytic thin film was formed in the same manner as in Example 1 except that a molded product obtained by curing Rigolac M-531 (trade name, manufactured by Showa Polymer), which is a polyester resin, was used as a base material. .
[0034]
Example 7
As a base material, a molded product molded using Rigolac BMC RNC-410 (trade name, manufactured by Showa Polymer Co., Ltd.), which is a molding material of bulk molding compound (BMC) composed of resin, filler, glass fiber, etc., is used. Except for the above, a photocatalytic thin film was formed in the same manner as in Example 1.
[0035]
Example 8
As a base material, Rigolac SMC MG-100 (trade name, manufactured by Showa Polymer Co., Ltd.), which is a sheet molding compound (SMC) made by impregnating glass chop strands with resin, filler, catalyst, release agent, etc. A photocatalytic thin film was formed in the same manner as in Example 1 except that the molded product thus formed was used.
[0036]
Comparative Example 1
A photocatalytic thin film was formed in the same manner as in Example 1 except that no tungsten alkoxide was added.
[0037]
Comparative Example 2
A photocatalytic thin film was formed in the same manner as in Example 2 except that no tungsten alkoxide was added.
[0038]
Comparative Example 3
A photocatalytic thin film was formed in the same manner as in Example 3 except that no tungsten alkoxide was added.
[0039]
Comparative Example 4
A photocatalytic thin film was formed in the same manner as Example 4 except that no tungsten alkoxide was added.
[0040]
Comparative Example 5
WO which is an oxide of hexavalent tungsten instead of tungsten alkoxide Three A photocatalytic thin film was formed in the same manner as in Example 1 except that was used.
WO Three In this case, since it was not soluble in isopropyl alcohol, it was dispersed with as much stirring as possible.
[0041]
Comparative Example 6
Instead of tungsten alkoxide, hexavalent tungsten chloride [WCl 6 A photocatalytic thin film was formed in the same manner as in Example 1 except that
[0042]
Comparative Example 7
Instead of tungsten alkoxide, 12 tungsto (VI) phosphoric acid n hydrate [H Three (PW 12 O 40 NH 2 A photocatalytic thin film was formed in the same manner as in Example 1 except that O] was used.
[0043]
Comparative Example 8
Instead of tungsten alkoxide, 12 tungsto (VI) silicic acid 26 water [SiO 2 ・ 12 WO Three ・ 26H 2 A photocatalytic thin film was formed in the same manner as in Example 1 except that O] was used.
[0044]
Comparative Example 9
As a photocatalyst, tungsten alkoxide was used alone instead of titanium oxide. In this case, Tungsto (V) isopropyl oxide [W (Oipr) Five ] Was dissolved in 30 g of isopropyl alcohol, and 0.7 g of methanolic silica sol and 0.21 g of trimethoxymethylsilane were added to this isopropyl alcohol solution to obtain a photocatalytic coating solution for comparison. In all other respects, a photocatalytic thin film was formed in the same manner as in Example 1.
[0045]
Comparative Example 10
As an example in which an adhesive protective layer was not provided between the substrate and the photocatalyst layer, a photocatalytic thin film was formed in the same manner as in Example 1 except that Colcoat P (trade name, manufactured by Ishihara Techno) was not used.
[0046]
The following tests were performed on the photocatalytic thin films obtained in the above Examples and Comparative Examples, and the results are shown in Tables 1 and 2.
Film thickness measurement
Using a surface shape measuring device Dektak 3 (manufactured by Nippon Vacuum Technology), the surface coating film thickness due to steps is measured.
[0047]
Surface hardness measurement
The pencil hardness of the photocatalytic thin film surface is measured according to JIS K5400.
Adhesion measurement with substrate
A cross-cut tape peeling test is performed according to JIS K5400.
Water resistance measurement
After immersing in distilled water at 100 ° C. for 10 minutes according to JIS K5400, the surface state is observed.
○ No change
△ Slightly changed
× Blistering or peeling is observed
[0048]
Hydrophilic evaluation
Measure the water contact angle and evaluate the hydrophilicity.
○ Highly hydrophilic (water contact angle of 10 ° or less)
△ Hydrophilic property recognized (contact angle of water about 10-30 °)
× Low hydrophilicity (water contact angle 30 ° or more)
Oil decomposition test
About 1 g of salad oil is placed on the surface to which the photocatalytic composition is applied, light in a predetermined wavelength region is irradiated with a predetermined irradiation amount, and the oil decomposition rate is calculated from the weight loss of the salad oil after irradiation.
[0049]
Tobacco crab decomposition test
Tobacco spider is attached to the surface of the cigarette smoke coated with the photocatalytic composition, and light in a predetermined wavelength region is irradiated with a predetermined irradiation amount in the same manner as in the oil decomposition test, and the surface state after irradiation is observed.
○ Yani disappears completely
△ Slightly remains (light yellow)
× Yani remains almost
[0050]
The salad oil decomposition test and the cigarette dust decomposition test were performed using a sunlight lamp D125 (manufactured by Toshiba Lighting & Technology) and controlling the wavelength region of light with the following various filters (manufactured by Fuji Film). The obtained results are summarized in Tables 1 and 2, respectively.
(1) Do not use a cut filter: All wavelength range of positive lamp
▲ 2 ▼ Use SC38 filter: Cut wavelength region below 380nm
(3) Using SC42 filter: Cuts the wavelength region below 420 nm
[0051]
[Table 1]
Figure 0004381558
[0052]
[Table 2]
Figure 0004381558
[0053]
【The invention's effect】
As described above, the photocatalytic composition and the photocatalytic thin film of the present invention are easily produced by combining a photocatalyst composed of anatase-type or brookite-type titanium oxide and tungsten alkoxide under mild conditions. It can respond to light in the visible light low wavelength region. As a result, when the application is outdoors, the absorption wavelength shifts to the long wavelength region, so that the amount of light irradiated by sunlight increases and the photocatalytic activity improves. On the other hand, even if there is no light source that generates a large amount of ultraviolet rays, such as a mercury lamp, which has been conventionally required for indoor use, the light of a normal illumination lamp can be used efficiently, and the application range is greatly expanded.
In addition, the significance of avoiding the use of ultraviolet rays, which is highly dangerous to the human body, is significant. Visible light is gentle on the eyes and has little risk of ozone generation, so it is very useful for environmental conservation.

Claims (7)

アナターゼ型またはブルッカイト型酸化チタンから成る酸化チタン光触媒とプロトン性溶剤に溶解したタングステンアルコキシドとを複合してなり、380〜450nmの可視光低波長領域の光に応答し得ることを特徴とする可視光励起可能な光触媒性組成物。Visible light excitation characterized by combining a titanium oxide photocatalyst composed of anatase type or brookite type titanium oxide and tungsten alkoxide dissolved in a protic solvent and capable of responding to light in the low wavelength region of 380 to 450 nm. Possible photocatalytic composition. プロトン性溶剤がアルコールまたはエステルである請求項1に記載の可視光励起可能な光触媒性組成物。The photocatalytic composition capable of exciting visible light according to claim 1, wherein the protic solvent is an alcohol or an ester. タングステンアルコキシドの添加量が、酸化チタン光触媒に対して固形分換算で0.1〜15重量%の範囲である請求項1又は2に記載の可視光励起可能な光触媒性組成物。The photocatalytic composition capable of exciting visible light according to claim 1 or 2, wherein the addition amount of tungsten alkoxide is in the range of 0.1 to 15% by weight in terms of solid content with respect to the titanium oxide photocatalyst. タングステンアルコキシドを、予めプロトン性溶剤に溶解してから酸化チタン光触媒溶液に添加することを特徴とする可視光励起可能な光触媒性組成物の製造方法。A method for producing a photocatalytic composition capable of exciting visible light, wherein tungsten alkoxide is dissolved in a protic solvent in advance and then added to the titanium oxide photocatalyst solution. 請求項1〜3のいずれか1項に記載の可視光励起可能な光触媒性組成物から成ることを特徴とする光触媒性薄膜。A photocatalytic thin film comprising the photocatalytic composition capable of exciting visible light according to any one of claims 1 to 3. 請求項1〜3のいずれか1項に記載の可視光励起可能な光触媒性組成物を基材あるいは成形物上に塗布した後、常温ないし120℃以下の温度で乾燥することを特徴とする可視光励起可能な光触媒性薄膜の製造方法。Visible light excitation, wherein the visible light excitable photocatalytic composition according to any one of claims 1 to 3 is applied onto a substrate or a molded article, and then dried at a temperature of room temperature to 120 ° C. A method for producing a possible photocatalytic thin film. 基材あるいは成形物の表面に予め接着保護層を形成する請求項6に記載の可視光励起可能な光触媒薄膜の製造方法。The method for producing a photocatalytic thin film capable of exciting visible light according to claim 6, wherein an adhesive protective layer is formed in advance on the surface of the substrate or the molded product.
JP2000104515A 2000-04-06 2000-04-06 Visible light excitable photocatalytic composition, photocatalytic thin film, and production method thereof Expired - Lifetime JP4381558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000104515A JP4381558B2 (en) 2000-04-06 2000-04-06 Visible light excitable photocatalytic composition, photocatalytic thin film, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000104515A JP4381558B2 (en) 2000-04-06 2000-04-06 Visible light excitable photocatalytic composition, photocatalytic thin film, and production method thereof

Publications (2)

Publication Number Publication Date
JP2001286755A JP2001286755A (en) 2001-10-16
JP4381558B2 true JP4381558B2 (en) 2009-12-09

Family

ID=18618043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000104515A Expired - Lifetime JP4381558B2 (en) 2000-04-06 2000-04-06 Visible light excitable photocatalytic composition, photocatalytic thin film, and production method thereof

Country Status (1)

Country Link
JP (1) JP4381558B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004329916A (en) * 2003-04-14 2004-11-25 Showa Denko Kk Photocatalyst apparatus using light emitting diode, and application method of light emitting diode
KR100948803B1 (en) 2005-12-13 2010-03-24 아사히 가세이 케미칼즈 가부시키가이샤 Aqueous organic-inorganic hybrid composition
FR3004968B1 (en) * 2013-04-30 2016-02-05 IFP Energies Nouvelles PROCESS FOR THE PREPARATION OF A TUNGSTEN CATALYST FOR USE IN HYDROTREATMENT OR HYDROCRACKING
CN113683910A (en) * 2020-05-18 2021-11-23 金百利科技(深圳)有限公司 Photocatalytic coating with efficient photocatalytic function and preparation method thereof
CN113831017B (en) * 2021-07-28 2022-12-30 景德镇陶瓷大学 Application to improving anatase TiO 2 Super-hydrophilic self-cleaning ceramic glaze coating and application method thereof

Also Published As

Publication number Publication date
JP2001286755A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
JP4092714B1 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP5784481B2 (en) Coating composition and use thereof
EP2719456A1 (en) Photocatalytic coating film and method for producing same
JP6352527B2 (en) Photocatalytic functional film and method for producing the same
JP3797037B2 (en) Photocatalytic hydrophilic coating composition
TW201127489A (en) Visible light-responsive photocatalyst coating material, coated article, allergen inactivation method
WO2011118780A1 (en) Photocatalyst-coated body and photocatalyst coating liquid
JP6352526B2 (en) Photocatalytic functional film and method for producing the same
JP2012250134A (en) Photocatalyst-coated object, and photocatalyst coating liquid therefor
JP2010099647A (en) Photocatalyst-coated body and photocatalytic coating liquid for the same
JP4933568B2 (en) Photocatalyst-coated body and photocatalyst coating liquid therefor
JP4381558B2 (en) Visible light excitable photocatalytic composition, photocatalytic thin film, and production method thereof
JP2006131917A (en) Photocatalytic hydrophilic coating composition
JP2001038219A (en) Aqueous photocatalyst hydrophilic composition, aqueous primer for photocatalyst and photocatalytic hydrophilic composite material using them
JP2001096168A (en) Photocatalyst coating and article having coating thereon
JP2009119462A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
JPH10167727A (en) Modified titanium oxide sol, photocatalyst composition and its forming agent
JP6593108B2 (en) Photocatalyst body
JP6551164B2 (en) Photocatalyst coating body
JP2006136758A (en) Photocatalyst composition and photocatalyst member
JP2005125756A (en) Photocatalyst layer transfer body
JP2005066481A (en) Photocatalyst for attachment
JP2006136782A (en) Photocatalyst aluminum member
JPH09225385A (en) Railway car and coating method therefor
JPH11100526A (en) Photocatalytic hydrophilic member and photocatalytic hydrophilic coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350