JP4380970B2 - Thin sealed battery and manufacturing method thereof - Google Patents

Thin sealed battery and manufacturing method thereof Download PDF

Info

Publication number
JP4380970B2
JP4380970B2 JP2002248391A JP2002248391A JP4380970B2 JP 4380970 B2 JP4380970 B2 JP 4380970B2 JP 2002248391 A JP2002248391 A JP 2002248391A JP 2002248391 A JP2002248391 A JP 2002248391A JP 4380970 B2 JP4380970 B2 JP 4380970B2
Authority
JP
Japan
Prior art keywords
region
current collecting
tab
electrode
collecting tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002248391A
Other languages
Japanese (ja)
Other versions
JP2004087364A (en
Inventor
康伸 児玉
和博 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002248391A priority Critical patent/JP4380970B2/en
Publication of JP2004087364A publication Critical patent/JP2004087364A/en
Application granted granted Critical
Publication of JP4380970B2 publication Critical patent/JP4380970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄型密閉電池の改良に関し、より詳しくは、薄型密閉電池の体積エネルギー密度の向上と密閉性の向上に関する。
【0002】
【従来の技術】
電池の外装体としては、従来、ステンレス等の硬い金属から成るものが用いられていた。しかし、このような外装体は強度に優れているものの、電池の薄型化を図りにくい。このため、薄く柔軟なラミネートフィルムで外装体を構成し、これを使用することにより、電池の薄型化を図る技術が開発されている。この技術を適用した薄型密閉電池は、図3に示すように、アルミニウムから成る金属層11の両面に接着剤層12を介してポリオレフィン製の樹脂層13が形成してなるアルミラミネートフィルム同士を熱融着して袋状のアルミラミネートフィルム外装体となし、このアルミラミネートフィルム外装体の収納空間に、図4に示すような、正極と負極とセパレータ(図4においては図示せず)とを有する電極体を収納するとともに、封止部から正負両集電タブを取り出す構造である。このような構造の電池であれば、電池の一層の小型化を実現でき、しかも電池の体積エネルギー密度をも向上させることができる。
【0003】
しかし、ラミネートフィルム外装体を用いた電池において、図4に示すような電極体を形成するためには、まず円形に巻回した電極体をプレスする必要がある。そして、正負両極に取り付けられた正負両集電タブには、角張った部分(バリ)が存在しており、電極体をプレスした際に、このバリによって、セパレータを突き破り他極と接触してショートが発生する。そこで、このようなショートを防止するため、上記バリ部分に保護テープ等の保護部材を配置することが行われている。
【0004】
他方、ラミネートフィルム外装体は、ラミネートフィルムの内側の樹脂層同士を加圧溶着して封止されるが、ラミネートフィルム同士の接合の場合には、樹脂層と樹脂層とが向き合っており、それぞれの金属層同士は二枚分の樹脂層で十分に離間されている。しかし、集電タブが突出した封止部(タブ突出封止部)では、金属層が一枚分の樹脂層を介して集電タブと向き合っており、しかも加圧溶着によりこの樹脂層が薄くなっている。このため、ラミネートフィルムの金属層と集電タブとがショートし易い。
【0005】
そこで、特開2000−173562号公報では、図11に示すように電極タブの形状に対応させた凹部を有する金型を用いることにより集電タブ部分に過度な圧力が加わって樹脂層が薄くなるのを防止しつつ、タブ突出封止部を封止する技術が提案されている。
【0006】
しかし、最近では体積エネルギー密度を更に高めるために、電極体とタブ突出封止部との距離を短くすることが行われており、この場合には上記技術によっても十分にショートを防げない。この理由は、電極体とタブ突出封止部との距離を短くすると、タブ突出封止部に保護テープがかみ込まれて、当該部分の厚みが厚くなり、その結果、加圧溶着後の樹脂層(絶縁層)の厚みが薄くなるためである。他方、保護テープのかみ込みを避けるため、封止部の幅を狭くすると、封止部の幅が狭くなる分、密閉性が不十分になるという問題がある。
【0007】
【発明が解決しようとする課題】
本発明は上記に鑑みなされたものであり、その目的は、体積エネルギー密度が高く、密閉性に優れ、且つ内部短絡の生じない安全な電池を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、次のように構成されている。集電タブを備えた正極と集電タブを備えた負極とを有する電極体が、金属と樹脂とが積層されたフィルムからなる外装体に収納された薄型密閉電池において、前記外装体は、正負集電タブの先端側が外装体外に突出したタブ突出封止部を有し、前記集電タブの前記正負極と重なる部分には保護部材が配置されており、前記タブ突出封止部は、集電タブの電極体近傍領域である第一領域(41)と、前記第一領域以外で且つ保護部材が配置されていない集電タブ部分を含んだ状態で封止された第二領域(42)と、他部材を含むことなく前記フィルム同士のみで封止された第三領域(43)とを有し、前記第一領域(41)における外装体全厚は、前記第二領域(42)における外装体全厚、及び前記第三領域(43)における外装体全厚のいずれよりも厚く、前記第一領域(41)における前記フィルムの実厚は、前記第二領域(42)におけるフィルムの実厚よりも厚いことを特徴とする。
【0009】
ここで、上記構成における集電タブの電極体近傍領域とは、図4に示す電極体の図において、電極体から突出した集電タブと電極体との境界部近傍のことを指す。また、外装体全厚とは外装体、電極タブ、保護部材等全てを含んだ全体としての厚みであり、フィルムの実厚とはその場所におけるフィルム単体の厚みのことである。また、他部材とは、集電タブ、保護部材等のことを意味する。
【0010】
この構成においては、タブ突出封止部の集電タブ部分の電極体近傍領域には第一領域(41)が形成されており、第一領域(41)における外装体全厚が、前記第二領域(42)における外装体全厚、及び前記第三領域(43)における外装体全厚のいずれよりも厚く、第一領域(41)における前記フィルムの実厚が、前記第二領域(42)におけるフィルムの実厚よりも厚く形成されている。したがって、この第一領域(41)に保護部材が配置されている場合においても、内部圧力が過大にならないので、ラミネートフィルムの樹脂層が圧力で破損し金属層が露出するといったことがない。この結果、電極体近傍領域における内部短絡が防止できる。
また、上記構成においては、電極と重なる集電タブ部分に保護部材が配置されており、この保護部材が、集電タブのエッジによるセパレータの破損を防止するように作用する。よって、上記構成であると、安全性、信頼性に優れた薄型密閉型電池が提供できる。
【0011】
請求項2記載の発明は、次のように構成されている。集電タブを備えた正極と集電タブを備えた負極とを有する電極体が、金属と樹脂とが積層されたフィルムからなる外装体に収納された薄型密閉電池の製造方法において、前記製造方法は、前記集電タブの正負極と重なる部分に保護部材を配置する保護部材配置工程と、前記保護部材配置工程の後、少なくとも正負極を有してなる電極体を作製する電極体作製工程と、前記電極体を、開口を有する外装体内に、正負集電タブの先端側を外装体外に突出した状態で収納する電極体収納工程と、前記電極体収納工程の後、前記開口を加圧して、タブ突出封止部を形成する加圧工程と、を有し、前記加圧工程が、集電タブの電極体近傍領域である第一領域(41)と、前記第一領域以外で且つ保護部材が配置されていない集電タブ部分を含んだ状態で封止される第二領域(42)と、他部材を含むことなく前記フィルム同士のみで封止される第三領域(43)と、を下記数2の条件で同時または順次加圧することにより形成する工程である、ことを特徴とする。
【0012】
【数2】

Figure 0004380970
【0013】
上記の構成では、第一領域への加圧力を第二、第三の領域よりも小さくするので、内部短絡が生じやすい第一領域における樹脂層厚みが適正に保たれ、集電タブと、フィルム状外装体の金属層との短絡を防止することができる。また、電極体とタブ突出封止部の距離が短い場合においても封止性を損なうことなく、内部短絡を防止することができる。
【0014】
また、前記加圧工程における加圧方法が、前記第三領域(43)を加圧するための平坦部と、前記第一領域(41)の形状に対応させた、第一領域(41)を加圧するための第一凹部と、前記第二領域(42)の形状に対応させた、第二領域(42)を加圧するための第二凹部と、を有する加圧部材を用いて同時に加圧封止する方法である、とすることができる。
【0015】
上記のような加圧部材を用いると、一度の加圧操作で上記数2を満たした条件でタブ突出封止部を封止することができるので、生産効率が高い。したがってこの構成によると、安全性、保存性に優れた薄型密閉電池を作製することができる。
【0016】
【発明の実施の形態】
本発明の内容を説明すると共に、好ましい実施の形態を記述する。
【0017】
図1はラミネートフィルム外装体を用いた本発明の実施の形態に係る薄型密閉電池の正面図、図2は図1のA−A線矢視断面図、図3は薄型密閉電池に用いるラミネート外装体の断面図、図4は薄型密閉電池に用いる電極体の斜視図である。尚、同一の効果が得られる部材には、同一の符号を付している。
【0018】
図2に示すように、本発明による薄型密閉電池は電極体1を有しており、この電極体1は収納空間2内に配置されている。この収納空間2は、図1に示すように、ラミネート外装体3の上下端と中央部とをそれぞれ封止部4a・4b・4cで封口することにより形成される。また、収納空間2には、非水溶媒に、電解質塩としてLiPF6が1M(モル/リットル)の割合で溶解された電解液が注入されている。
【0019】
上記薄型密閉電池は、前記封止部4aにおいて、集電タブの電極体近傍領域である第一領域41と、前記第一領域以外で且つ保護部材が配置されていない集電タブ部分を含んだ状態で封止された第二領域42と、他部材を挟むことなくフィルム同士のみで封止された第三領域43とを有し、前記第一領域41における外装体全厚は、前記第二領域42における外装体全厚、及び前記第三領域43における外装体全厚のいずれよりも厚く、前記第一領域41における前記フィルムの実厚は、前記第二領域42における前記フィルムの実厚よりも厚く構成されている。
【0020】
また、図1に示す前記第一領域の幅L1と、タブ突出封止部の幅Lとの比L1/Lは、0.01以上0.7以下であることが好ましい。前記比L1/Lが0.7より大きいと、第一領域は他の領域と比べフィルムの樹脂層の実厚が厚いため十分に封止されておらず、電池の密閉性の低下を招く一方、0.01より小さいと前記第二領域には保護部材が配置されてしまう可能性があり、内部短絡の危険性が生じる。また、前記比L1/Lが0.05以上0.5以下であることがさらに好ましい。
【0021】
また、図4に示すように、上記電極体1は、正極5と、負極6と、これら両電極を離間するセパレータ(図4においては図示せず)とを偏平渦巻状に巻回することにより作製される。前記セパレータは、有機溶媒との反応性が低く、安価なオレフィン系樹脂からなる微多孔膜(厚み:0.025mm)が用いられている。
【0022】
更に、上記正極5はアルミニウムから成る正極タブ7に、また上記負極6はニッケルから成る負極タブ8にそれぞれ接続され、電池内部で生じた化学エネルギーを電気エネルギーとして外部へ取り出し得るようになっている。また、図4には示していないが、それぞれの集電タブと正負極と重なる部分には、ポリフェニレンサルファイド製の保護テープが貼り付けられている。
【0023】
尚、図3に示すように、上記ラミネート外装体3の具体的な構造は、アルミニウム層11(厚み:30μm)の両面に、各々、変性ポリプロピレンから成る接着剤層12・12(厚み:5μm)を介してポリプロピレンから成る樹脂層13・13(厚み:30μm)が接着される構造である。但し、接着剤層は図5、図9では図示していない。
【0024】
正極材料としては、例えばリチウム含有遷移金属複合酸化物が単独で、あるいは二種以上混合して用いられる。具体例として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、鉄酸リチウム、またはこれらの酸化物に含まれる遷移金属の一部を他の元素で置換した酸化物等が用いられる。
【0025】
負極材料としては、例えば天然黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、あるいはこれらの焼成体等の炭素質物、または該炭素質物と、リチウム、リチウム合金、およびリチウムを吸蔵・放出できる金属酸化物からなる群から選ばれる1種以上との混合物が用いられる。
【0026】
また、電解液に用いる非水溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等のリチウム塩の溶解度が高い高誘電率溶媒と、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、4−メチル−2−ペンタノン、シクロヘキサノン、アセトニトリル、プロピオニトリル、ジメチルホルムアミド、スルホラン、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸エチル等の低粘性溶媒とを混合して用いられる。尚、高誘電率溶媒、低粘性溶媒が、それぞれ二種以上の混合溶媒であってもよい。
【0027】
また、電解質塩としては、例えばLiN(C25SO22、LiN(CF3SO22、LiClO4、LiPF6、LiBF4等が単独で、あるいは2種以上混合して用いられる。また、前記非水溶媒に対する溶解量としては、例えば0.5〜2.0モル/リットルとする。
【0028】
(実施例1)
本発明に係る薄型密閉電池を以下のようにして作製した。
コバルト酸リチウム(LiCoO2)からなる正極活物質と、アセチレンブラックからなる炭素系導電剤と、ポリビニリデンフルオライド(PVdF)からなる結着剤と、N−メチル−2−ピロリドン(NMP)とを混合して活物質スラリーとした。
【0029】
この活物質スラリーを、ドクターブレードにより厚み20μmのアルミニウム箔からなる正極芯体の両面に均一に塗布した後、乾燥機中を通過させて乾燥することにより、スラリー作製時に必要であった有機溶媒を除去した。次いで、この極板を厚みが0.17mmになるようにロールプレス機により圧延して正極5を作製した。
【0030】
黒鉛からなる負極活物質95質量部と、ポリビニリデンフルオライド(PVdF)からなる結着剤5質量部と、N−メチル−2−ピロリドン(NMP)とを混合して活物質スラリーとした。この活物質スラリーを、ドクターブレードにより厚み20μmの銅箔からなる負極芯体の両面に均一に塗布した後、乾燥機中を通過させて乾燥することにより、スラリー作製時に必要であった有機溶媒を除去した。次いで、この極板を厚みが0.14mmになるようにロールプレス機により圧延して負極6を作製した。
【0031】
上記のように作成した正極5と負極6に、それぞれ正極タブ7あるいは負極タブ8を取り付け、ポリフェニルサルファイド製の保護テープ9(図4では図示せず)を貼り付けた後、両極をオレフィン系樹脂からなる微多孔膜(厚み:0.025mm)からなるセパレータを間にし、かつ各極板の幅方向の中心線を一致させて重ね合わせた。この後、巻き取り機により巻回し、最外周をテープ止めすることにより偏平渦巻状電極体1を作製した。
【0032】
樹脂層(ポリプロピレン)/接着剤層/アルミニウム合金層/接着剤層/樹脂層(ポリプロピレン)の5層構造から成るシート状のラミネート材を用意した後、アルミラミネート材における端部近傍同士の樹脂層を重ね合わせ、重ね合わせ部を溶着して封止部4cを形成した。次に、この筒状アルミラミネート材の収納空間2内に電極体1を挿入した。この際、筒状アルミラミネート材の一方の開口部から両集電タブ7,8が突出するように電極体1を配置した。
【0033】
この後、両集電タブを変性ポリオレフィン製の樹脂からなるフィルム(図示せず)を介して外装体で狭持し、図7に示すように、ラミネートフィルム同士のみで封止される第三領域を加圧するための平坦部143と、集電タブの電極体近傍領域である第一領域の形状に対応させた第一凹部141と、前記第一領域以外且つ保護部材が配置されていない集電タブ部分を含んだ状態で封止された第二領域の形状に対応させた第二凹部142とを有する加圧部材を用いて上記開口部を加圧溶着して封止して、封止部4aを形成した。
【0034】
次に、エチレンカーボネートとジエチルカーボネートからなる混合溶媒に電解質塩としてLiPF6を1M(モル/リットル)となるように混合した電解液と、ポリエチレングリコールジアクリレートと、重合開始剤と、からなるプレゲルを、上記封止部とは反対側のアルミラミネート材の開口部から注入した後、前記開口部を機密に封口し、封止部4bを形成した。最後に、アルミラミネート外装体3を60℃で3時間加熱して、アルミラミネート外装体内部のプレゲルをゲル化させ、実施例1に係る本発明電池Aを作製した。尚、この電池のサイズは60×60×厚み3.8(mm)であった。
【0035】
このようにして製造された電池は、集電タブの電極体近傍領域である第一領域に加えられる圧力は、前記第一領域以外で且つ保護部材が配置されていない集電タブ部分を含んだ状態で封止された第二領域に加えられる圧力よりも小さくなっており、図6に示すように、第一領域41における外装体全厚は、第二領域42における外装体全厚、及び第三領域43における外装体全厚のいずれよりも厚くなっている。さらに、第一領域41におけるラミネートフィルムの実厚は、前記第二領域42におけるラミネートフィルムの実厚よりも厚くなっている。
【0036】
(比較例1)
図11に示すように、第三領域を加圧するための平坦部143と、集電タブの形状に対応させた凹部142のみを有する加圧部材を用いたこと以外は、上記実施例と同様にして、比較例1にかかる電池Xを作製した。このようにして製造された電池は、第一領域及び第二領域に加えられる圧力が等しいため、図8及び図10に示すように外観からは第一領域の突出が見られない。
【0037】
(比較例2)
比較例1の加圧部材よりも加圧面の幅が狭いこと以外は、上記比較例1と同様にして、比較例2にかかる電池Yを作製した。このようにして製造された電池は、第一領域には全く圧力が加えられないため、図12、図13に示すように比較電池Xよりも幅の狭い封止部となる。
【0038】
尚、電池はそれぞれ50個作製した。
【0039】
〈ショートの検出〉
製造工程において、集電タブと外装体の金属層との導通を、テスターによって検出し、導通が確認されたものをショート発生としてカウントした。導通が確認された電池は、以下の試験には用いなかった。
【0040】
〈封止性能試験〉
40%充電された電池を、80℃、湿度90%の条件で30日保存し、その電池厚みを計測した。ショートの発生と、封止性能試験結果を下記表1に示す。
【0041】
【表1】
Figure 0004380970
【0042】
上記表1から、本発明電池A1は、ショートが発生せず、保存後の電池膨れも比較電池Xとほぼ同じ程度と良好な封止性能が確認されたのに対し、比較電池Xではその28%がショートし、また、比較電池Yでは保存後の電池厚みの増加量が、保存後の本発明電池Aの電池厚みの増加量に比べ0.38mm大きくなっていることがわかる。
【0043】
ここで、比較電池Xでは、図11に示すように、集電タブの形状に対応させた凹部142のみを有し、第一領域の形状に対応させた第一凹部を有さない加圧部材を用いているので、第一領域に加えられる圧力は第二領域と等しくなる。このため、図9に示すように封止部に保護テープがかみ込まれて、当該部分の樹脂層の厚みが薄くなり、集電タブとラミネート材の金属層とがショートし易くなる。
【0044】
また、比較電池Yでは比較例1の加圧部材よりも幅が狭く、第一領域には全く圧力がかからない加圧部材を用いているので、封止部の幅が狭くなる。この結果、密閉性が低下して、この封止部から水分等が浸入しやすくなり、混入した水分により、保存後の電池厚みが大きくなる。
【0045】
他方、本発明電池Aでは、図7に示すように第一領域の形状に対応させた第一凹部141と、第二領域の形状に対応させた第2凹部142と、第三領域を加圧する平坦部143が形成された加圧部材を用いて加圧溶着しているので、第一領域に加えられる圧力が、第二領域に加えられる圧力よりも小さくなり、当該部分の樹脂層が非封止部分の厚みと同じ程度に保たれるため、ショートを防止することができ、しかも密閉性を低下させない。それゆえ、上記表1に示す結果になったものと考えられる。
【0046】
尚、上記実施の形態では第一凹部、第二凹部の形状が、図7に示すようにそれぞれ直方体状に切り抜かれている金型からなる加圧部材を用いたが、本発明はこの形状に限定されるものではなく、本発明の要旨をそこなわない範囲において自由に変形が可能である。例えば、第一凹部、第二凹部の形状が円柱状、台形柱状、楕円体状等に切り抜かれた金型を用いても同様の効果が得られる。また、第一領域、第二領域の形状も、円柱状、台形柱状、楕円体状等であってもよい。
【0047】
また、ラミネート外装体の樹脂層としては上記ポリプロピレンに限定されるものではなく、例えば、ポリエチレン等のポリオレフィン系高分子、ポリエチレンテレフタレート等のポリエステル系高分子、ポリフッ化ビニリデン、ポリ塩化ビニリデン等のポリビニリデン系高分子、ナイロン6、ナイロン66、ナイロン7等のポリアミド系高分子等を使用できる。更に、ラミネート外装体の構造は、上記の5層構造に限定されるものではない。
【0048】
また、上記実施の形態では、集電タブと外装体との接着性を高めるために、別部材としてのフィルムを用いたが、このようなフィルム等を用いなくてもよい。
【0049】
また、上記実施例ではポリフェニルサルファイド製の保護テープを用いたが、これに限定されるものではなく、例えばポリオレフィン、ポリイミド等からなる保護部材であってもよい。
【0050】
【発明の効果】
以上で説明したように、本発明では、集電タブの電極体近傍領域のフィルム状外装体の実厚を非封止部分の実厚とをほぼ等しくすることにより、タブ突出封止部と電極体との距離を小さくした電池においても、密閉性を損なうことなく集電タブとフィルムの金属層とのショートを防止し得た、安全性と保存性に優れた薄型密閉電池を安価に提供することができる。この電池はタブ突出封止部と電極体との幅を狭くできる点において、体積エネルギー密度にも優れる。
【図面の簡単な説明】
【図1】本発明に係る薄型密閉電池の正面図。
【図2】図1のA−A線矢視断面図。
【図3】本発明に係る薄型密閉電池に用いるラミネート外装体の断面図。
【図4】本発明に係る薄型密閉電池に用いる集電タブが突出した電極体の斜視図。
【図5】図1のB−B線矢視断面概略図。
【図6】本発明に係る薄型密閉電池のタブ突出封止部の斜視図。
【図7】本発明に係る薄型密閉電池に用いられる金型の斜視図。
【図8】従来の技術による薄型密閉電池の正面図。
【図9】図8のC−C矢視断面概略図。
【図10】従来の技術による薄型密閉電池のタブ突出封止部の斜視図。
【図11】従来の技術による薄型密閉電池に用いられる金型の斜視図。
【図12】従来の技術による他の形状の薄型密閉電池の正面図。
【図13】従来の技術による他の形状の薄型密閉電池のタブ突出封止部の斜視図。
【符号の説明】
1 電極体
2 収納空間
3 アルミラミネート外装体
4a、4b、4c 封止部
41 第一領域
42 第二領域
43 第三領域
5 正極
6 負極
7 正極タブ
8 負極タブ
9 保護部材
141 第1凹部
142 第2凹部
143 平坦部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a thin sealed battery, and more particularly, to an improvement in volume energy density and an improvement in sealing performance of a thin sealed battery.
[0002]
[Prior art]
Conventionally, a battery made of a hard metal such as stainless steel has been used as a battery casing. However, although such an exterior body is excellent in strength, it is difficult to reduce the thickness of the battery. For this reason, a technique for reducing the thickness of a battery has been developed by forming an exterior body with a thin and flexible laminate film and using it. As shown in FIG. 3, a thin sealed battery to which this technology is applied heats aluminum laminate films in which a polyolefin resin layer 13 is formed on both surfaces of a metal layer 11 made of aluminum via an adhesive layer 12. A bag-shaped aluminum laminate film outer package is formed by fusing, and a storage space for the aluminum laminate film outer package includes a positive electrode, a negative electrode, and a separator (not shown in FIG. 4) as shown in FIG. The electrode body is housed and the positive and negative current collecting tabs are taken out from the sealing portion. If the battery has such a structure, the battery can be further miniaturized and the volume energy density of the battery can be improved.
[0003]
However, in order to form an electrode body as shown in FIG. 4 in a battery using a laminate film exterior body, it is necessary to first press the electrode body wound in a circle. The positive and negative current collecting tabs attached to both the positive and negative electrodes have square portions (burrs), and when the electrode body is pressed, the burrs break through the separator and contact with the other electrodes. Occurs. Therefore, in order to prevent such a short circuit, a protective member such as a protective tape is disposed on the burr portion.
[0004]
On the other hand, the laminate film exterior body is sealed by pressure welding the resin layers inside the laminate film, but in the case of bonding between the laminate films, the resin layer and the resin layer face each other. These metal layers are sufficiently separated by two resin layers. However, in the sealing portion where the current collecting tab protrudes (tab protruding sealing portion), the metal layer faces the current collecting tab through one resin layer, and this resin layer is thinned by pressure welding. It has become. For this reason, the metal layer of the laminate film and the current collecting tab are easily short-circuited.
[0005]
Therefore, in Japanese Patent Application Laid-Open No. 2000-173562, by using a mold having a recess corresponding to the shape of the electrode tab as shown in FIG. 11, an excessive pressure is applied to the current collecting tab portion and the resin layer becomes thin. There has been proposed a technique for sealing the tab protruding sealing portion while preventing this.
[0006]
However, recently, in order to further increase the volume energy density, the distance between the electrode body and the tab protrusion sealing portion has been shortened. In this case, the above technique cannot sufficiently prevent a short circuit. The reason for this is that when the distance between the electrode body and the tab protruding sealing part is shortened, the protective tape is bitten into the tab protruding sealing part, and the thickness of the part increases, resulting in the resin after pressure welding. This is because the thickness of the layer (insulating layer) is reduced. On the other hand, if the width of the sealing portion is reduced in order to avoid biting of the protective tape, there is a problem that the sealing performance becomes insufficient as the width of the sealing portion is reduced.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and an object of the present invention is to provide a safe battery having a high volumetric energy density, excellent sealing properties, and no internal short circuit.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the invention described in claim 1 is configured as follows. In a thin sealed battery in which an electrode body having a positive electrode with a current collecting tab and a negative electrode with a current collecting tab is housed in an outer body made of a film in which a metal and a resin are laminated, the outer body has positive and negative The current collector tab has a tab protrusion sealing portion that protrudes out of the exterior body, and a protective member is disposed on a portion of the current collection tab that overlaps with the positive and negative electrodes. The second region (42) sealed in a state including the first region (41), which is a region near the electrode body of the electric tab, and the current collecting tab portion other than the first region and where no protective member is disposed. And the third region (43) sealed only with the films without including other members, and the total thickness of the exterior body in the first region (41) is in the second region (42). The total thickness of the outer package and the total thickness of the outer package in the third region (43) Thicker than Re, Jitsuatsu of said film in said first region (41) is characterized by thicker than the actual thickness of the film in the second region (42).
[0009]
Here, the region near the electrode body of the current collector tab in the above configuration refers to the vicinity of the boundary between the current collector tab protruding from the electrode body and the electrode body in the diagram of the electrode body shown in FIG. The total thickness of the outer package is the total thickness including all of the outer package, electrode tabs, protective members, etc. The actual thickness of the film is the thickness of the film alone at that location. The other member means a current collecting tab, a protective member, or the like.
[0010]
In this configuration, the first region (41) is formed in the electrode body vicinity region of the current collecting tab portion of the tab protruding sealing portion, and the total thickness of the exterior body in the first region (41) is the second region. The actual thickness of the film in the first region (41) is greater than both the total thickness of the outer package in the region (42) and the total thickness of the outer package in the third region (43), and the second region (42). It is formed thicker than the actual thickness of the film. Therefore, even when the protective member is arranged in the first region (41), the internal pressure does not become excessive, so that the resin layer of the laminate film is not damaged by the pressure and the metal layer is not exposed. As a result, an internal short circuit in the electrode body vicinity region can be prevented.
Moreover, in the said structure, the protection member is arrange | positioned at the current collection tab part which overlaps with an electrode, and this protection member acts so that the damage of the separator by the edge of a current collection tab may be prevented. Therefore, with the above configuration, a thin sealed battery excellent in safety and reliability can be provided.
[0011]
The invention described in claim 2 is configured as follows. In the manufacturing method of a thin sealed battery in which an electrode body having a positive electrode with a current collecting tab and a negative electrode with a current collecting tab is housed in an exterior body made of a film in which a metal and a resin are laminated, A protective member arranging step of arranging a protective member in a portion overlapping the positive and negative electrodes of the current collecting tab, and an electrode body producing step of producing an electrode body having at least a positive and negative electrode after the protective member arranging step; The electrode body is housed in an exterior body having an opening in a state where the leading end side of the positive and negative current collecting tabs protrudes outside the exterior body, and after the electrode body housing process, the opening is pressurized. And a pressurizing step for forming a tab projecting sealing portion, and the pressurizing step is a first region (41) that is a region near the electrode body of the current collecting tab, and is protected except for the first region In the state including the current collection tab part where the member is not arranged The second region (42) to be stopped and the third region (43) sealed only by the films without including other members are formed by simultaneously or sequentially pressing under the condition of the following formula 2. It is a process.
[0012]
[Expression 2]
Figure 0004380970
[0013]
In the above configuration, the pressure applied to the first region is smaller than that of the second and third regions, so that the resin layer thickness in the first region where internal short circuit is likely to occur is properly maintained, and the current collecting tab and film A short circuit with the metal layer of the outer casing can be prevented. Moreover, even when the distance between the electrode body and the tab protruding sealing portion is short, an internal short circuit can be prevented without impairing the sealing performance.
[0014]
Also, pressurizing method in the pressurizing step, before Symbol a flat portion for pressurizing the third region (43), said to correspond to the shape of the first region (41), a first region (41) Simultaneous pressurization using a pressurizing member having a first recess for pressurization and a second recess for pressurizing the second region (42) corresponding to the shape of the second region (42) It can be said that it is the method of sealing.
[0015]
When the pressurizing member as described above is used, the tab projecting sealing portion can be sealed under the condition that satisfies the above-described Expression 2 by a single pressurizing operation, and thus the production efficiency is high. Therefore, according to this configuration, a thin sealed battery excellent in safety and storage can be produced.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
While describing the contents of the present invention, a preferred embodiment is described.
[0017]
1 is a front view of a thin sealed battery according to an embodiment of the present invention using a laminate film outer package, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a laminate package used for the thin sealed battery. FIG. 4 is a perspective view of an electrode body used for a thin sealed battery. In addition, the same code | symbol is attached | subjected to the member from which the same effect is acquired.
[0018]
As shown in FIG. 2, the thin sealed battery according to the present invention has an electrode body 1, and the electrode body 1 is disposed in a storage space 2. As shown in FIG. 1, the storage space 2 is formed by sealing the upper and lower ends and the center portion of the laminate outer package 3 with sealing portions 4a, 4b, and 4c, respectively. In addition, an electrolytic solution in which LiPF 6 as an electrolyte salt is dissolved at a rate of 1 M (mol / liter) is injected into the storage space 2 in a non-aqueous solvent.
[0019]
The thin sealed battery includes, in the sealing portion 4a, a first region 41 that is a region near the electrode body of the current collecting tab, and a current collecting tab portion that is not disposed on the first region and in which a protective member is not disposed. A second region 42 sealed in a state, and a third region 43 sealed only by films without sandwiching other members, and the total thickness of the exterior body in the first region 41 is the second region It is thicker than any of the total thickness of the outer package in the region 42 and the total thickness of the outer package in the third region 43, and the actual thickness of the film in the first region 41 is greater than the actual thickness of the film in the second region 42. It is also made thick.
[0020]
Moreover, it is preferable that ratio L1 / L of the width | variety L1 of said 1st area | region shown in FIG. 1 and the width | variety L of a tab protrusion sealing part is 0.01 or more and 0.7 or less. If the ratio L1 / L is greater than 0.7, the first region is not sufficiently sealed because the actual thickness of the resin layer of the film is thicker than the other regions, leading to a decrease in battery sealing performance. If it is smaller than 0.01, a protective member may be disposed in the second region, resulting in a risk of an internal short circuit. The ratio L1 / L is more preferably 0.05 or more and 0.5 or less.
[0021]
As shown in FIG. 4, the electrode body 1 is formed by winding a positive electrode 5, a negative electrode 6, and a separator (not shown in FIG. 4) separating these two electrodes into a flat spiral shape. Produced. As the separator, a microporous film (thickness: 0.025 mm) made of an inexpensive olefin resin is used which has low reactivity with an organic solvent.
[0022]
Further, the positive electrode 5 is connected to a positive electrode tab 7 made of aluminum, and the negative electrode 6 is connected to a negative electrode tab 8 made of nickel, so that chemical energy generated inside the battery can be taken out as electric energy to the outside. . Moreover, although not shown in FIG. 4, the protective tape made from polyphenylene sulfide is affixed on the part which overlaps each current collection tab and positive and negative electrodes.
[0023]
In addition, as shown in FIG. 3, the specific structure of the laminate outer package 3 is such that adhesive layers 12 and 12 (thickness: 5 μm) made of modified polypropylene are formed on both sides of the aluminum layer 11 (thickness: 30 μm), respectively. In this structure, resin layers 13 and 13 (thickness: 30 μm) made of polypropylene are bonded to each other. However, the adhesive layer is not shown in FIGS.
[0024]
As the positive electrode material, for example, a lithium-containing transition metal composite oxide is used alone or in combination of two or more. As specific examples, lithium cobaltate, lithium nickelate, lithium manganate, lithium ferrate, or an oxide obtained by substituting a part of the transition metal contained in these oxides with another element, or the like is used.
[0025]
As the negative electrode material, for example, natural graphite, carbon black, coke, glassy carbon, carbon fiber, or a carbonaceous material such as a fired body thereof, or the carbonaceous material, lithium, a lithium alloy, and a metal capable of inserting and extracting lithium A mixture with one or more selected from the group consisting of oxides is used.
[0026]
Examples of the non-aqueous solvent used in the electrolytic solution include a high dielectric constant solvent having high lithium salt solubility such as ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1 , 2-dimethoxyethane, tetrahydrofuran, anisole, 1,4-dioxane, 4-methyl-2-pentanone, cyclohexanone, acetonitrile, propionitrile, dimethylformamide, sulfolane, methyl formate, ethyl formate, methyl acetate, ethyl acetate, acetic acid It is used by mixing with a low viscosity solvent such as propyl and ethyl propionate. The high dielectric constant solvent and the low viscosity solvent may be two or more mixed solvents.
[0027]
As the electrolyte salt, for example, LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiClO 4 , LiPF 6 , LiBF 4, etc. are used alone or in combination of two or more. . Further, the amount dissolved in the non-aqueous solvent is, for example, 0.5 to 2.0 mol / liter.
[0028]
Example 1
A thin sealed battery according to the present invention was produced as follows.
A positive electrode active material made of lithium cobaltate (LiCoO 2 ), a carbon-based conductive agent made of acetylene black, a binder made of polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidone (NMP) The mixture was mixed to obtain an active material slurry.
[0029]
The active material slurry is uniformly applied to both surfaces of a positive electrode core body made of an aluminum foil having a thickness of 20 μm by a doctor blade, and then passed through a dryer to be dried, thereby removing the organic solvent necessary for slurry preparation. Removed. Subsequently, this electrode plate was rolled by a roll press so that the thickness was 0.17 mm, and the positive electrode 5 was produced.
[0030]
An active material slurry was prepared by mixing 95 parts by mass of a negative electrode active material made of graphite, 5 parts by mass of a binder made of polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidone (NMP). This active material slurry is uniformly applied to both surfaces of a negative electrode core made of a copper foil having a thickness of 20 μm by a doctor blade, and then passed through a drier to dry the organic solvent necessary for slurry preparation. Removed. Next, this electrode plate was rolled by a roll press so that the thickness was 0.14 mm, and a negative electrode 6 was produced.
[0031]
A positive electrode tab 7 or a negative electrode tab 8 is attached to the positive electrode 5 and the negative electrode 6 prepared as described above, respectively, and a protective tape 9 (not shown in FIG. 4) made of polyphenyl sulfide is attached. A separator made of a microporous film made of resin (thickness: 0.025 mm) was placed between them, and the center lines in the width direction of the electrode plates were made to coincide with each other. Thereafter, the flat wound electrode body 1 was produced by winding with a winder and tapering the outermost periphery.
[0032]
After preparing a sheet-like laminate material consisting of a five-layer structure of resin layer (polypropylene) / adhesive layer / aluminum alloy layer / adhesive layer / resin layer (polypropylene), resin layers near the edges of the aluminum laminate material The sealing portion 4c was formed by welding the overlapping portions. Next, the electrode body 1 was inserted into the storage space 2 of the cylindrical aluminum laminate material. At this time, the electrode body 1 was disposed so that the current collecting tabs 7 and 8 protruded from one opening of the cylindrical aluminum laminate material.
[0033]
Thereafter, both current collecting tabs are sandwiched by an exterior body through a film (not shown) made of a modified polyolefin resin, and as shown in FIG. 7, the third region is sealed only with laminate films. A flat portion 143 for pressurizing the electrode, a first concave portion 141 corresponding to the shape of the first region which is a region near the electrode body of the current collector tab, and a current collector other than the first region and where no protective member is arranged The opening is pressure-welded and sealed using a pressure member having a second recess 142 corresponding to the shape of the second region sealed in a state including the tab portion, and the sealing portion 4a was formed.
[0034]
Next, a pregel composed of an electrolytic solution obtained by mixing LiPF 6 as an electrolyte salt in a mixed solvent composed of ethylene carbonate and diethyl carbonate so as to be 1 M (mol / liter), polyethylene glycol diacrylate, and a polymerization initiator is prepared. After injecting from the opening of the aluminum laminate material opposite to the sealing portion, the opening was sealed secretly to form the sealing portion 4b. Finally, the aluminum laminate outer package 3 was heated at 60 ° C. for 3 hours to gel the pregel inside the aluminum laminate outer package, thereby producing the battery A of the present invention according to Example 1. The size of the battery was 60 × 60 × thickness 3.8 (mm).
[0035]
In the battery manufactured in this way, the pressure applied to the first region, which is the region near the electrode body of the current collecting tab, includes the current collecting tab portion other than the first region and where the protective member is not disposed. The pressure applied to the second region sealed in the state is smaller, and as shown in FIG. 6, the total thickness of the exterior body in the first region 41 is the total thickness of the exterior body in the second region 42, and It is thicker than any of the total thickness of the exterior body in the three regions 43. Furthermore, the actual thickness of the laminate film in the first region 41 is larger than the actual thickness of the laminate film in the second region 42.
[0036]
(Comparative Example 1)
As shown in FIG. 11, the same as in the above embodiment, except that a pressing member having only a flat portion 143 for pressing the third region and a concave portion 142 corresponding to the shape of the current collecting tab was used. Thus, a battery X according to Comparative Example 1 was produced. In the battery manufactured in this way, since the pressure applied to the first region and the second region is equal, the protrusion of the first region is not seen from the appearance as shown in FIGS.
[0037]
(Comparative Example 2)
A battery Y according to Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the width of the pressure surface was narrower than that of the pressure member of Comparative Example 1. Since the battery manufactured in this way does not have any pressure applied to the first region, it becomes a sealed portion narrower than the comparative battery X as shown in FIGS.
[0038]
In addition, 50 batteries were produced for each.
[0039]
<Short detection>
In the manufacturing process, continuity between the current collecting tab and the metal layer of the exterior body was detected by a tester, and those for which continuity was confirmed were counted as occurrence of a short circuit. The battery confirmed to be conductive was not used in the following tests.
[0040]
<Sealing performance test>
The 40% charged battery was stored for 30 days under conditions of 80 ° C. and 90% humidity, and the thickness of the battery was measured. The occurrence of short circuit and the sealing performance test results are shown in Table 1 below.
[0041]
[Table 1]
Figure 0004380970
[0042]
From Table 1 above, it was confirmed that the battery A1 of the present invention did not cause a short circuit and the battery swell after storage was almost the same as that of the comparative battery X, and the good sealing performance was 28 for the comparative battery X. % Is short-circuited, and in the comparative battery Y, the increase in battery thickness after storage is 0.38 mm larger than the increase in battery thickness of the present invention battery A after storage.
[0043]
Here, in the comparative battery X, as shown in FIG. 11, the pressure member has only the concave portion 142 corresponding to the shape of the current collecting tab and does not have the first concave portion corresponding to the shape of the first region. Is used, the pressure applied to the first region is equal to that of the second region. For this reason, as shown in FIG. 9, the protective tape is inserted into the sealing portion, the thickness of the resin layer in the portion is reduced, and the current collecting tab and the metal layer of the laminate material are easily short-circuited.
[0044]
Moreover, since the comparison battery Y uses a pressure member that is narrower than the pressure member of Comparative Example 1 and does not apply any pressure to the first region, the width of the sealing portion is reduced. As a result, the airtightness is lowered, and moisture and the like easily enter from the sealing portion, and the battery thickness after storage increases due to the mixed water.
[0045]
On the other hand, in the present invention battery A, as shown in FIG. 7, the first recess 141 corresponding to the shape of the first region, the second recess 142 corresponding to the shape of the second region, and the third region are pressurized. Since pressure welding is performed using the pressure member in which the flat portion 143 is formed, the pressure applied to the first region is smaller than the pressure applied to the second region, and the resin layer of the portion is not sealed. Since it is maintained at the same level as the thickness of the stop portion, a short circuit can be prevented and the sealing performance is not deteriorated. Therefore, it is considered that the results shown in Table 1 were obtained.
[0046]
In the above embodiment, the first concave portion and the second concave portion are each formed of a pressure member made of a die cut out in a rectangular parallelepiped shape as shown in FIG. 7, but the present invention has this shape. The present invention is not limited, and can be freely modified without departing from the scope of the present invention. For example, the same effect can be obtained by using a mold in which the first concave portion and the second concave portion are cut into a columnar shape, a trapezoidal columnar shape, an ellipsoidal shape, or the like. Further, the shapes of the first region and the second region may be a columnar shape, a trapezoidal columnar shape, an ellipsoidal shape, or the like.
[0047]
In addition, the resin layer of the laminate outer package is not limited to the above-mentioned polypropylene. For example, a polyolefin polymer such as polyethylene, a polyester polymer such as polyethylene terephthalate, a polyvinylidene such as polyvinylidene fluoride and polyvinylidene chloride. Polyamide polymers such as nylon polymers, nylon 6, nylon 66, nylon 7, etc. can be used. Furthermore, the structure of the laminate outer package is not limited to the above five-layer structure.
[0048]
Moreover, in the said embodiment, in order to improve the adhesiveness of a current collection tab and an exterior body, although the film as another member was used, such a film etc. do not need to be used.
[0049]
Moreover, in the said Example, although the protective tape made from polyphenyl sulfide was used, it is not limited to this, For example, the protective member which consists of polyolefin, a polyimide, etc. may be sufficient.
[0050]
【The invention's effect】
As described above, in the present invention, the actual thickness of the film-shaped outer package in the vicinity of the electrode body of the current collecting tab is made substantially equal to the actual thickness of the non-sealed portion, so that the tab protruding sealing portion and the electrode Even in a battery with a reduced distance from the body, a low-profile sealed battery excellent in safety and storability that can prevent a short circuit between the current collecting tab and the metal layer of the film without impairing the sealing performance is provided at a low cost. be able to. This battery is excellent in volume energy density in that the width between the tab protruding sealing portion and the electrode body can be narrowed.
[Brief description of the drawings]
FIG. 1 is a front view of a thin sealed battery according to the present invention.
2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a cross-sectional view of a laminate outer package used for a thin sealed battery according to the present invention.
FIG. 4 is a perspective view of an electrode body from which a current collecting tab protrudes for use in a thin sealed battery according to the present invention.
FIG. 5 is a schematic cross-sectional view taken along line BB in FIG. 1;
FIG. 6 is a perspective view of a tab protruding sealing portion of a thin sealed battery according to the present invention.
FIG. 7 is a perspective view of a mold used for a thin sealed battery according to the present invention.
FIG. 8 is a front view of a conventional thin sealed battery.
9 is a schematic cross-sectional view taken along the line CC in FIG.
FIG. 10 is a perspective view of a tab protruding sealing portion of a thin sealed battery according to a conventional technique.
FIG. 11 is a perspective view of a mold used in a conventional thin sealed battery.
FIG. 12 is a front view of another shape thin sealed battery according to the prior art.
FIG. 13 is a perspective view of a tab protruding sealing portion of another shape thin sealed battery according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrode body 2 Storage space 3 Aluminum laminate exterior body 4a, 4b, 4c Sealing part 41 1st area | region 42 2nd area | region 43 3rd area | region 5 Positive electrode 6 Negative electrode 7 Positive electrode tab 8 Negative electrode tab 9 Protection member 141 1st recessed part 142 1st 2 concave part 143 flat part

Claims (3)

集電タブを備えた正極と集電タブを備えた負極とを有する電極体が、金属と樹脂とが積層されたフィルムからなる外装体に収納された薄型密閉電池において、
前記外装体は、正負集電タブの先端側が外装体外に突出したタブ突出封止部を有し、前記集電タブの前記正負極と重なる部分には保護部材が配置されており、
前記タブ突出封止部は、集電タブの電極体近傍領域である第一領域(41)と、前記第一領域以外で且つ保護部材が配置されていない集電タブ部分を含んだ状態で封止された第二領域(42)と、他部材を含むことなく前記フィルム同士のみで封止された第三領域(43)とを有し、
前記第一領域(41)における外装体全厚は、前記第二領域(42)における外装体全厚、及び前記第三領域(43)における外装体全厚のいずれよりも厚く、
前記第一領域(41)における前記フィルムの実厚は、前記第二領域(42)におけるフィルムの実厚よりも厚いことを特徴とする薄型密閉電池。
In a thin sealed battery in which an electrode body having a positive electrode with a current collecting tab and a negative electrode with a current collecting tab is housed in an exterior body made of a film in which a metal and a resin are laminated,
The exterior body has a tab protruding sealing portion in which the front end side of the positive and negative current collecting tabs protrudes outside the exterior body, and a protective member is disposed on a portion overlapping the positive and negative electrodes of the current collection tab,
The tab protruding sealing portion is sealed in a state including a first region (41) that is a region in the vicinity of the electrode body of the current collecting tab and a current collecting tab portion other than the first region where no protective member is disposed. The second region (42) stopped and the third region (43) sealed only with the films without including other members,
The exterior body total thickness in the first region (41) is thicker than any of the exterior body total thickness in the second region (42) and the exterior body total thickness in the third region (43).
The thin sealed battery according to claim 1, wherein an actual thickness of the film in the first region (41) is larger than an actual thickness of the film in the second region (42).
集電タブを備えた正極と集電タブを備えた負極とを有する電極体が、金属と樹脂とが積層されたフィルムからなる外装体に収納された薄型密閉電池の製造方法において、
前記製造方法は、
前記集電タブの正負極と重なる部分に保護部材を配置する保護部材配置工程と、
前記保護部材配置工程の後、少なくとも正負極を有してなる電極体を作製する電極体作製工程と、
前記電極体を、開口を有する外装体内に、正負集電タブの先端側を外装体外に突出した状態で収納する電極体収納工程と、
前記電極体収納工程の後、前記開口を加圧して、タブ突出封止部を形成する加圧工程と、を有し、
前記加圧工程が、集電タブの電極体近傍領域である第一領域(41)と、前記第一領域以外で且つ保護部材が配置されていない集電タブ部分を含んだ状態で封止される第二領域(42)と、他部材を含むことなく前記フィルム同士のみで封止される第三領域(43)と、を下記数1の条件で同時または順次加圧することにより形成する工程である、
ことを特徴とする薄型密閉電池の製造方法。
Figure 0004380970
In the manufacturing method of a thin sealed battery in which an electrode body having a positive electrode with a current collecting tab and a negative electrode with a current collecting tab is housed in an exterior body made of a film in which a metal and a resin are laminated,
The manufacturing method includes:
A protective member arranging step of arranging a protective member on a portion overlapping the positive and negative electrodes of the current collecting tab;
After the protective member arranging step, an electrode body preparation step for producing an electrode body having at least positive and negative electrodes,
An electrode body housing step of housing the electrode body in an exterior body having an opening in a state in which a tip end side of a positive and negative current collecting tab protrudes outside the exterior body;
After the electrode body storing step, pressurizing the opening to form a tab protruding sealing portion, and
The pressurizing step is sealed in a state including a first region (41) that is a region near the electrode body of the current collecting tab and a current collecting tab portion other than the first region where no protective member is disposed. Forming the second region (42) and the third region (43) sealed only by the films without including other members by simultaneously or sequentially pressing under the condition of the following formula 1. is there,
A method for producing a thin sealed battery, wherein
Figure 0004380970
請求項2記載の薄型密閉電池の製造方法において、
前記加圧工程における加圧方法が、前記第三領域(43)を加圧するための平坦部と、前記第一領域(41)の形状に対応させた、第一領域(41)を加圧するための第一凹部と、前記第二領域(42)の形状に対応させた、第二領域(42)を加圧するための第二凹部と、を有する加圧部材を用いて同時に加圧封止する方法である、ことを特徴とする薄型密閉電池の製造方法。
In the manufacturing method of the thin sealed battery of Claim 2,
The pressurizing method in the pressurizing step pressurizes the first region (41) corresponding to the flat portion for pressurizing the third region (43) and the shape of the first region (41). And pressurizing and sealing simultaneously using a pressure member having a first recess and a second recess for pressurizing the second region (42) corresponding to the shape of the second region (42). A method for producing a thin sealed battery, wherein the method is a method.
JP2002248391A 2002-08-28 2002-08-28 Thin sealed battery and manufacturing method thereof Expired - Fee Related JP4380970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248391A JP4380970B2 (en) 2002-08-28 2002-08-28 Thin sealed battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248391A JP4380970B2 (en) 2002-08-28 2002-08-28 Thin sealed battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004087364A JP2004087364A (en) 2004-03-18
JP4380970B2 true JP4380970B2 (en) 2009-12-09

Family

ID=32055785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248391A Expired - Fee Related JP4380970B2 (en) 2002-08-28 2002-08-28 Thin sealed battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4380970B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952658B2 (en) * 2008-06-02 2012-06-13 ソニー株式会社 Battery element exterior member and non-aqueous electrolyte secondary battery using the same
JP5964102B2 (en) * 2012-03-27 2016-08-03 三洋電機株式会社 Manufacturing method of battery having flat electrode body
WO2015173686A1 (en) * 2014-05-16 2015-11-19 Semiconductor Energy Laboratory Co., Ltd. Electronic device with secondary battery
KR102348074B1 (en) * 2015-05-19 2022-01-11 에스케이온 주식회사 Pouch sealing apparatus and method of manufacturing secondary battery
JPWO2019116609A1 (en) * 2017-12-15 2020-12-03 株式会社エンビジョンAescエナジーデバイス Film exterior battery and assembled battery equipped with it
CN113782918B (en) * 2021-08-20 2024-04-09 宁德新能源科技有限公司 Battery core and electricity utilization device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173562A (en) * 1998-12-01 2000-06-23 Tokai Rubber Ind Ltd Sealing method of bag for thin battery and die for use in method
JP2000268786A (en) * 1999-03-19 2000-09-29 Hitachi Maxell Ltd Low-profile battery
JP4228376B2 (en) * 1999-08-12 2009-02-25 株式会社ジーエス・ユアサコーポレーション battery
JP4498514B2 (en) * 2000-01-18 2010-07-07 大日本印刷株式会社 Battery container
JP5042402B2 (en) * 2000-02-16 2012-10-03 大日本印刷株式会社 Sealing head for polymer battery packaging
JP2002245988A (en) * 2001-02-20 2002-08-30 At Battery:Kk Thin battery

Also Published As

Publication number Publication date
JP2004087364A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP5929897B2 (en) Positive electrode plate for nonaqueous electrolyte secondary battery and method for producing the same, nonaqueous electrolyte secondary battery and method for producing the same
JP5260838B2 (en) Non-aqueous secondary battery
JP4502616B2 (en) Batteries having a film-like outer package
JP2001167743A (en) Secondary battery and electronic device using the same
EP2709187A1 (en) Vibration and impact resistant battery
JP5465755B2 (en) Non-aqueous secondary battery
JP4193271B2 (en) Solid electrolyte battery
JP6919572B2 (en) Secondary battery and its manufacturing method
US20140045057A1 (en) Non-aqueous electrolyte secondary battery
US20140080010A1 (en) Non-aqueous electrolyte secondary battery
US7704636B2 (en) Cell having film outer casing
JP4366775B2 (en) Solid electrolyte battery
JP4427976B2 (en) Bipolar battery
JP4245205B2 (en) Non-aqueous electrolyte battery
JP6862919B2 (en) Square lithium ion secondary battery
JP4380970B2 (en) Thin sealed battery and manufacturing method thereof
JP2001155779A (en) Nonaqueous electrolyte battery
JP2013201094A (en) Nonaqueous electrolyte secondary battery
JP5964102B2 (en) Manufacturing method of battery having flat electrode body
JP2004327362A (en) Non-aqueous electrolyte secondary battery
US20220223982A1 (en) Electrochemical device and electronic device containing the same
JP2011216209A (en) Laminated battery and its manufacturing method
CN111066175A (en) Non-aqueous electrolyte secondary battery
JP2019169307A (en) Electrochemical element
JP5213003B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees