JP4380277B2 - Material for organic electroluminescence device and organic electroluminescence device using the same - Google Patents

Material for organic electroluminescence device and organic electroluminescence device using the same Download PDF

Info

Publication number
JP4380277B2
JP4380277B2 JP2003322556A JP2003322556A JP4380277B2 JP 4380277 B2 JP4380277 B2 JP 4380277B2 JP 2003322556 A JP2003322556 A JP 2003322556A JP 2003322556 A JP2003322556 A JP 2003322556A JP 4380277 B2 JP4380277 B2 JP 4380277B2
Authority
JP
Japan
Prior art keywords
group
light emitting
substituted
organic
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003322556A
Other languages
Japanese (ja)
Other versions
JP2005089544A (en
Inventor
俊一 鬼久保
年男 榎田
康政 須田
泰正 鳥羽
康典 木村
哲也 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2003322556A priority Critical patent/JP4380277B2/en
Publication of JP2005089544A publication Critical patent/JP2005089544A/en
Application granted granted Critical
Publication of JP4380277B2 publication Critical patent/JP4380277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は平面光源や表示に使用される有機燐光発光素子用発光材料および高輝度・高効率の発光素子に関するものである。   The present invention relates to a light-emitting material for organic phosphorescent light-emitting elements and a light-emitting element with high luminance and high efficiency used for flat light sources and displays.

有機物質を使用した有機エレクトロルミネッセンス(EL)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般に有機EL素子は、発光層および該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入され、電子が発光層において正孔と再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出する現象である。   An organic electroluminescence (EL) element using an organic substance is expected to be used as an inexpensive large-area full-color display element of a solid light emitting type and has been developed in many ways. In general, an organic EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side, holes are injected from the anode side, the electrons recombine with holes in the light emitting layer, and the energy level starts from the conduction band. It is a phenomenon in which energy is released as light when returning to the valence band.

従来の有機EL素子は、無機EL素子に比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。
近年、10V以下の低電圧で発光する高い蛍光量子効率を持った有機化合物を含有した薄膜を積層した有機EL素子が報告され、関心を集めている(非特許文献1参照)。この方法は、金属キレート錯体を発光層、アミン系化合物を正孔注入層に使用して、高輝度の緑色発光を得ており、6〜7Vの直流電圧で輝度は数1000cd/m2、最大発光効率は1.5lm/Wを達成して、実用領域に近い性能を持っている(非特許文献1参照)。
Conventional organic EL elements have a higher driving voltage and lower light emission luminance and light emission efficiency than inorganic EL elements. Further, the characteristic deterioration has been remarkably not put into practical use.
In recent years, organic EL elements in which thin films containing organic compounds having high fluorescence quantum efficiency that emit light at a low voltage of 10 V or less have been reported and attracted interest (see Non-Patent Document 1). This method uses a metal chelate complex as a light emitting layer and an amine compound as a hole injection layer to obtain a high luminance green light emission. The luminance is several thousand cd / m 2 at a direct current voltage of 6 to 7 V, maximum. The luminous efficiency is 1.5 lm / W, and the performance is close to the practical range (see Non-Patent Document 1).

さらには、従来の一重項励起状態を利用した有機EL素子に比べ、効率が大幅に改善された三重項励起状態からの発光を利用した有機EL素子(以下、有機燐光発光素子と略す)が報告され、注目を集めている(非特許文献2、3参照)。   Furthermore, an organic EL element using light emission from a triplet excited state (hereinafter, abbreviated as an organic phosphorescent light emitting element), which has greatly improved efficiency, compared to a conventional organic EL element using a singlet excited state, has been reported. It has attracted attention (see Non-Patent Documents 2 and 3).

これまでの有機燐光発光素子の多くは下記化合物(以下、CBPと省略する)に示されるようなカルバゾール骨格を有する化合物を含んでいる。また、これらの化合物は非常に結晶性が高く、安定した膜を得ることが困難である。よって、これらの材料を使った有機燐光発光素子は、寿命が短いといった問題を抱えている。   Many of the organic phosphorescent light emitting devices so far contain a compound having a carbazole skeleton as shown in the following compound (hereinafter abbreviated as CBP). In addition, these compounds have very high crystallinity and it is difficult to obtain a stable film. Therefore, organic phosphorescent light emitting devices using these materials have a problem that their lifetime is short.

CBP

Figure 0004380277
CBP
Figure 0004380277

カルバゾール環の外側ベンゼン環同士をつなぐ窒素原子の対面の直接結合をカルボニル基の炭素原子を介する結合に置換したアクリドン誘導体を有機EL素子へ応用した例はすでに知られている(特許文献1参照)。しかし、蛍光発光を利用した有機EL素子についてのみ記述がなされている。また、最近、前記直接結合を酸素原子、硫黄原子を介する結合に置換したフェノキサジン、フェノチアジン誘導体を有機燐光発光素子へ応用した例も報告がある(特許文献2、3参照)。しかし、アクリドンのカルボニル基など、環に二重結合を有する電子求引基を有する含窒素芳香環化合物の例は見られない。
アプライド・フィジクス・レターズ、51巻、913ページ、1987年 ネイチャー、395巻、151ページ、1998年 アプライド・フィジクス・レターズ、75巻、4ページ、1999年 特開平6−293883号公報 特開2002−231453号公報 再公表01/072927号公報
An example in which an acridone derivative in which a direct bond of nitrogen atoms connecting outer benzene rings of a carbazole ring is replaced with a bond via a carbon atom of a carbonyl group is applied to an organic EL device is already known (see Patent Document 1). . However, only an organic EL element utilizing fluorescence is described. In addition, there have recently been reported examples in which a phenoxazine or phenothiazine derivative in which the direct bond is substituted with a bond via an oxygen atom or a sulfur atom is applied to an organic phosphorescent light emitting device (see Patent Documents 2 and 3). However, no examples of nitrogen-containing aromatic ring compounds having an electron withdrawing group having a double bond in the ring such as a carbonyl group of acridone are found.
Applied Physics Letters, 51, 913, 1987 Nature, 395, 151 pages, 1998 Applied Physics Letters, 75, 4 pages, 1999 JP-A-6-2933883 JP 2002-231453 A Republication No. 01/072927

本発明の目的は、高い発光輝度、発光効率を持ち、繰り返し使用時での安定性に優れた有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子を提供することである。   An object of the present invention is to provide a material for an organic electroluminescence element having high emission luminance and luminous efficiency and excellent stability during repeated use, and an organic electroluminescence element using the same.

本発明は、下記一般式[1a]、[1b]、または、[1c]で示される置換もしくは未置換のアクリドン誘導体である含窒素環化合物(A)、および燐光発光材料(B)を含んでなる有機エレクトロルミネッセンス素子用材料関する。 The present invention includes a nitrogen-containing ring compound (A) that is a substituted or unsubstituted acridone derivative represented by the following general formula [1a], [1b], or [1c] , and a phosphorescent material (B). It relates to a material for an organic electroluminescence device comprising.

一般式[1a]

Figure 0004380277


一般式[1b]
Figure 0004380277




一般式[1c]
Figure 0004380277


[式中、R1〜R8は、互いにそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換のアルキルチオ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基、置換もしくは未置換のアリール基、または置換もしくは未置換の複素環基であり、置換基同士で一体となって環を形成していても良い。
Aは、Nと炭素原子で結合する置換基、または複数の同一もしくは異なるアクリドン環をつなぐ連結基である。]

General formula [1a]
Figure 0004380277


General formula [1b]
Figure 0004380277




General formula [1c]
Figure 0004380277


[Wherein, R 1 to R 8 are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group. An oxy group, a substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted amino group, a substituted or unsubstituted acyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group It is a cyclic group, and the substituents may be integrated to form a ring.
A is a substituent bonded to N and a carbon atom, or a linking group that connects a plurality of identical or different acridone rings. ]

また、本発明は、上記燐光発光材料(B)が、有機化合物もしくは有機残基の配位子からなるイリジウムもしくは白金錯体である上記有機エレクトロルミネッセンス素子用材料に関する。   The present invention also relates to the material for an organic electroluminescence device, wherein the phosphorescent material (B) is an iridium or platinum complex composed of an organic compound or a ligand of an organic residue.

さらに、本発明は、一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、前記層のいずれかが、上記有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子に関する。   Furthermore, the present invention relates to an organic electroluminescence device comprising a light emitting layer or a plurality of organic compound thin films including a light emitting layer between a pair of electrodes, wherein any one of the layers comprises the material for an organic electroluminescent device. It is related with the organic electroluminescent element to contain.

また、本発明は、一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、発光層が、上記有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子に関する。   In addition, the present invention provides an organic electroluminescence device in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer is formed between a pair of electrodes, wherein the light emitting layer contains an organic electroluminescent device material as described above. The present invention relates to an electroluminescence element.

また、本発明は、さらに、陰極と発光層との間に電子注入層を形成することを特徴とする上記有機エレクトロルミネッセンス素子に関する。   The present invention further relates to the organic electroluminescence element, wherein an electron injection layer is formed between the cathode and the light emitting layer.

また、本発明は、さらに、電子注入層と発光層との間に正孔ブロッキング層を形成することを特徴とする上記有機エレクトロルミネッセンス素子に関する。   The present invention further relates to the organic electroluminescence device, wherein a hole blocking layer is formed between the electron injection layer and the light emitting layer.

また、本発明は、さらに、陽極と発光層との間に正孔注入層を形成することを特徴とする上記有機エレクトロルミネッセンス素子に関する。   The present invention further relates to the organic electroluminescence element, wherein a hole injection layer is formed between the anode and the light emitting layer.

本発明の有機エレクトロルミネッセンス素子用材料は、特に安定性に優れ、それを使用した有機エレクトロルミネッセンス素子は、輝度、発光効率等の初期特性に優れるとともに、長い発光寿命と良好な対環境特性を持つ有機エレクトロルミネッセンス素子である。   The organic electroluminescent element material of the present invention is particularly excellent in stability, and the organic electroluminescent element using the material has excellent initial characteristics such as luminance and luminous efficiency, and has a long emission life and good environmental characteristics. It is an organic electroluminescence element.

即ち、本発明は、発光領域を有する有機層が陽極と陰極との間に設けられ、電流の注入により三重項励起状態から発光する有機物質を構成要素として含む有機燐光発光素子において、前記有機層に本発明で示される化合物が含まれることにより、その電気的物性と化学的安定性によって、素子の性能と耐久性に優れることを特徴とする。   That is, the present invention provides an organic phosphorescent light-emitting device in which an organic layer having a light-emitting region is provided between an anode and a cathode, and includes an organic substance that emits light from a triplet excited state by current injection as a constituent element. When the compound shown in the present invention is contained, the device is characterized in that it has excellent device performance and durability due to its electrical properties and chemical stability.

以下、本発明の化合物(A)について具体的に説明する。   Hereinafter, the compound (A) of the present invention will be specifically described.

発明の化合物(A)においては、含窒素環が2個以上あって、それらが連結基を介してつながっていても良い。この場合、連結基の種類、連結位置は、構造や結合が化学的に安定であれば、基本的には何であっても構わないが、好ましくは含窒素環の窒素原子を介して連結していることであり、また別の好ましい条件としては、連結基の炭素原子で含窒素環と結合していることである。さらに好ましくは、連結基の結合末端はアリール基であって、連結基がπ共役していることである。また、含窒素環の個数は4個以上になると、同一構造の高純度のものを安定的に合成することが難しかったり、高分子量になるために蒸着が難しくなったりするので、2または3個であることがさらに好ましい。 In the compounds of the present invention (A), there nitrogenous ring are two or more, they may be linked via a linking group. In this case, the type and position of the linking group may be basically any as long as the structure and bond are chemically stable, but preferably linked via a nitrogen atom of a nitrogen-containing ring. Another preferable condition is that the carbon atom of the linking group is bonded to the nitrogen-containing ring. More preferably, the bonding terminal of the linking group is an aryl group, and the linking group is π-conjugated. Further, when the number of nitrogen-containing rings is 4 or more, it is difficult to stably synthesize a high-purity product having the same structure, or it becomes difficult to deposit due to the high molecular weight, so 2 or 3 More preferably.

本発明の化合物(A)において、含窒素環と並んで重要な構造として、環上に二重結合を有する電子求引性基を有することが挙げられる。なお、電子求引性基は文献によっては電子吸引性基と表現されることもある。通常は同じ概念を指すものと思われるが、語彙的には電子求引性基と書くのが正しい。本発明における二重結合を有する電子求引性基は、二重結合があり電子求引性のヘテロ原子を含む官能基である。当該電子求引性基が有する二重結合は、好ましくは、炭素−炭素二重結合ないしは炭素−ヘテロ原子二重結合である。具体的にはカルボニル基シアノイミノ基、ジシアノメチレン基であるIn the compound (A) of the present invention, an important structure along with the nitrogen-containing ring includes an electron-withdrawing group having a double bond on the ring. In addition, an electron withdrawing group may be expressed as an electron withdrawing group depending on literature. Usually it seems to refer to the same concept, but lexically it is correct to write an electron withdrawing group. The electron withdrawing group having a double bond in the present invention is a functional group having a double bond and containing an electron withdrawing heteroatom. The double bond of the electron withdrawing group is preferably a carbon-carbon double bond or a carbon-heteroatom double bond. Specifically, a carbonyl group, cyanoimino group, a dicyanomethylene group.

本発明の二重結合を有する電子求引性基においては、当該二重結合は、含窒素環に共役して結合する。つまり、二重結合を構成する原子の一方、多くの場合、炭素原子が環を構成する原子の1つとなり、二重結合が環から外へ出る構造になる In the electron-withdrawing group having a double bond of the present invention, the double bond is conjugated and bonded to the nitrogen-containing ring. In other words, one of the atoms constituting the double bond, in many cases, the carbon atom is one of the atoms constituting the ring, and the double bond goes out of the ring .

本発明で環は、前記一般式[1a]、[1b]、または、[1c]で示されるアクリドンもしくはその誘導体環である。このとき、窒素原子上の水素原子は、置換基もしくは連結基であるAでAの炭素原子を介して置換されていることが好ましく、さらに好ましくはアリール基で置換されていることである。特に前記一般式[1a]、[1b]、または、[1c]でアクリドン環が複数ある場合は、連結基となるAは、環上の窒素原子と、炭素原子で結合する基である。また、カルボニル基、シアノイミノ基、および、ジシアノメチレン基ではない部分については、下記の一般的な置換基が結合していても良い。 In the present invention, the ring is an acridone represented by the above general formula [1a], [1b], or [1c] or a derivative ring thereof. In this case, the hydrogen atom on the nitrogen atom is preferably substituted with the substituent or linking group A via the carbon atom of A, and more preferably with an aryl group. In particular, when there are a plurality of acridone rings in the above general formulas [1a], [1b], or [1c] , A serving as a linking group is a group bonded to a nitrogen atom on the ring by a carbon atom. In addition, the following general substituents may be bonded to a portion that is not a carbonyl group, a cyanoimino group, or a dicyanomethylene group .

本発明における特に限定のない一般的な置換基の種類の具体例としては、ハロゲン原子、シアノ基、ニトロ基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換のアルキルチオ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換のアミノ基、または置換もしくは未置換の炭素環基または複素環基などが挙げられる。以下にそれぞれの置換基についてさらに詳細な代表例を示すが、これらに限定されるものではなく、またこれらの置換基にはさらに置換基が結合していても良い。   Specific examples of the general substituent type that is not particularly limited in the present invention include a halogen atom, a cyano group, a nitro group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted group. Examples thereof include an aryloxy group, a substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted amino group, or a substituted or unsubstituted carbocyclic group or heterocyclic group. In the following, more detailed representative examples of each substituent will be shown, but the present invention is not limited thereto, and these substituents may further have a substituent bonded thereto.

本発明における置換基となるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子があげられる。   Examples of the halogen atom serving as a substituent in the present invention include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

本発明における置換もしくは未置換のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、2−フェニルイソプロピル基、トリクロロメチル基、トリフルオロメチル基、ベンジル基、α−フェノキシベンジル基、α,α−ジメチルベンジル基、α,α−メチルフェニルベンジル基、α,α−ジトリフルオロメチルベンジル基、トリフェニルメチル基、α−ベンジルオキシベンジル基等がある。   Examples of the substituted or unsubstituted alkyl group in the present invention include methyl group, ethyl group, propyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, 2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, benzyl group, α-phenoxybenzyl group, α, α-dimethylbenzyl group, α, α-methylphenylbenzyl group, α, α-ditrifluoromethylbenzyl group , Triphenylmethyl group, α-benzyloxybenzyl group and the like.

本発明における置換もしくは未置換のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert−ブトキシ基、オクチルオキシ基、tert−オクチルオキシ基といった未置換のアルコキシ基や、3,3,3−トリフルオロエトキシ基、ベンジルオキシ基といった置換アルコキシ基があげられる。   Examples of the substituted or unsubstituted alkoxy group in the present invention include an unsubstituted alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butoxy group, an octyloxy group, and a tert-octyloxy group; , 3-trifluoroethoxy group, and substituted alkoxy group such as benzyloxy group.

本発明における置換もしくは未置換のアリールオキシ基としては、フェノキシ基、4−tert−ブチルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、9−アンスリルオキシ基といった未置換のアリールオキシ基や、4−ニトロフェノキシ基、3−フルオロフェノキシ基、ペンタフルオロフェノキシ基、3−トリフルオロメチルフェノキシ基等の置換アリールオキシ基があげられる。   Examples of the substituted or unsubstituted aryloxy group in the present invention include unsubstituted aryloxy groups such as phenoxy group, 4-tert-butylphenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, and 9-anthryloxy group. And substituted aryloxy groups such as 4-nitrophenoxy group, 3-fluorophenoxy group, pentafluorophenoxy group and 3-trifluoromethylphenoxy group.

本発明における置換もしくは未置換のアルキルチオ基としては、メチルチオ基、エチルチオ基、tert−ブチルチオ基、ヘキシルチオ基、オクチルチオ基といった未置換のアルキルチオ基や、1,1,1−テトラフルオロエチルチオ基、べンジルチオ基、トリフルオロメチルチオ基といった置換アルキルチオ基があげられる。   Examples of the substituted or unsubstituted alkylthio group in the present invention include an unsubstituted alkylthio group such as methylthio group, ethylthio group, tert-butylthio group, hexylthio group, and octylthio group, 1,1,1-tetrafluoroethylthio group, And substituted alkylthio groups such as benzylthio group and trifluoromethylthio group.

本発明における置換もしくは未置換のアリールチオ基としては、フェニルチオ基、2−メチルフェニルチオ基、4−tert−ブチルフェニルチオ基といった未置換のアリールチオ基や、3−フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、3−トリフルオロメチルフェニルチオ基等の置換アリールチオ基があげられる。   Examples of the substituted or unsubstituted arylthio group in the present invention include an unsubstituted arylthio group such as a phenylthio group, a 2-methylphenylthio group, and a 4-tert-butylphenylthio group, a 3-fluorophenylthio group, and a pentafluorophenylthio group. And substituted arylthio groups such as a 3-trifluoromethylphenylthio group.

本発明における置換もしくは未置換のアミノ基としては、アミノ基、モノまたはジアルキルアミノ基、モノまたはジアリールアミノ基、アルキルアリールアミノ基などがある。アルキルアミノ基の具体例としてはエチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ベンジルアミノ基、ジベンジルアミノ基等があり、アリールアミノ基の具体例としては、フェニルアミノ基、(3−メチルフェニル)アミノ基、(4−メチルフェニル)アミノ基等があり、アリールアミノ基の具体例としては、フェニルアミノ基、フェニルメチルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジビフェニリルアミノ基、ジ(4−メチルビフェニル)アミノ基、ジ(3−メチルフェニル)アミノ基、ジ(4−メチルフェニル)アミノ基、ナフチルフェニルアミノ基、ビス[4−(α,α’−ジメチルベンジル)フェニル]アミノ基等がある。アルキルアリールアミノ基の具体例としては、N−エチル−N−フェニルアミノ基、N−メチル−N−ナフチルアミノ基等がある。また、ビス(メトキシフェニル)アミノ基、ビス(アセトキシエチル)アミノ基等のアミノ基への置換基がさらに置換された構造も含む。   Examples of the substituted or unsubstituted amino group in the present invention include an amino group, a mono- or dialkylamino group, a mono- or diarylamino group, and an alkylarylamino group. Specific examples of the alkylamino group include an ethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, a benzylamino group, and a dibenzylamino group. Specific examples of the arylamino group include a phenylamino group, ( 3-methylphenyl) amino group, (4-methylphenyl) amino group, etc. Specific examples of the arylamino group include phenylamino group, phenylmethylamino group, diphenylamino group, ditolylamino group, dibiphenylylamino group Di (4-methylbiphenyl) amino group, di (3-methylphenyl) amino group, di (4-methylphenyl) amino group, naphthylphenylamino group, bis [4- (α, α'-dimethylbenzyl) phenyl There are amino groups and the like. Specific examples of the alkylarylamino group include an N-ethyl-N-phenylamino group and an N-methyl-N-naphthylamino group. Also included are structures in which substituents to amino groups such as bis (methoxyphenyl) amino group and bis (acetoxyethyl) amino group are further substituted.

本発明における置換もしくは未置換の炭素環基としては、単環基もしくは縮合多環基がある。   The substituted or unsubstituted carbocyclic group in the present invention includes a monocyclic group or a condensed polycyclic group.

単環基の具体例としては、単環シクロアルキル基、単環アリール基がある。   Specific examples of the monocyclic group include a monocyclic cycloalkyl group and a monocyclic aryl group.

単環シクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基がある。   Examples of the monocyclic cycloalkyl group include cycloalkyl groups such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.

単環アリール基としては、フェニル基がある。   A monocyclic aryl group includes a phenyl group.

置換もしくは未置換の縮合多環基としては、縮合多環アリール基、縮合多環シクロアルキル基等がある。   Examples of the substituted or unsubstituted condensed polycyclic group include a condensed polycyclic aryl group and a condensed polycyclic cycloalkyl group.

縮合多環アリール基としては、ナフチル基、アンスリル基、フェナンスリル基、フルオレニル基、アセナフチル基、アズレニル基、ヘプタレニル基、ピレニル基、ペリレニル基、トリフェニレニル基等がある。   Examples of the condensed polycyclic aryl group include a naphthyl group, anthryl group, phenanthryl group, fluorenyl group, acenaphthyl group, azulenyl group, heptalenyl group, pyrenyl group, perylenyl group, and triphenylenyl group.

本発明における置換もしくは未置換の複素環基としては、単環複素環基もしくは縮合多環複素環基がある。   Examples of the substituted or unsubstituted heterocyclic group in the present invention include a monocyclic heterocyclic group and a condensed polycyclic heterocyclic group.

単環複素環基としては、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、トリアゾリル基、オキサゾリル基、チアゾリル基、オキサジアゾリル基、チアジアゾリル基、イミダジアゾリル基等がある。
縮合多環複素環基としては、インドリル基、キノリル基、イソキノリル基、フタラジニル基、キノキサリニル基、キナゾリニル基、カルバゾリル基、アクリジニル基、フェナジニル基、ベンゾフリル基、イソチアゾリル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、ベンズイミダゾリル基、ベンゾトリアゾリル基、ピラニル基等がある。その他の縮合多環基として、1−テトラリル基、2−テトラリル基、テトラヒドロキノリル基等がある。
Examples of monocyclic heterocyclic groups include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, triazolyl, oxazolyl, thiazolyl, oxadiazolyl, There are thiadiazolyl and imidadiazolyl groups.
As the condensed polycyclic heterocyclic group, indolyl group, quinolyl group, isoquinolyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, carbazolyl group, acridinyl group, phenazinyl group, benzofuryl group, isothiazolyl group, isoxazolyl group, furazanyl group, phenoxazinyl group Benzothiazolyl group, benzoxazolyl group, benzimidazolyl group, benzotriazolyl group, pyranyl group and the like. Examples of other condensed polycyclic groups include 1-tetralyl group, 2-tetralyl group, tetrahydroquinolyl group and the like.

本発明の一般式[1a]、[1b]、および、[1c]の化合物は、ジフェニルアミン−2−カルボン酸の酸性試薬を用いた閉環法による合成法が一般的である(Org.Syn.Col.Vol.2,P15参照)。この他には、サリチル酸アニリド、アントラニル酸アニリドからの合成、アクリジン−N−オキシドと無水酢酸からの光化学反応による合成、N−置換芳香族アミン、n−ブチルリチウム、炭酸ガスからの環形成があるまた、アクリドン環の窒素原子をアリール基などに置換するには、ウルマン反応などを用いることができる。 The compounds of the general formulas [1a], [1b] and [1c] of the present invention are generally synthesized by a ring closure method using an acidic reagent of diphenylamine-2-carboxylic acid (Org. Syn. Col). Vol.2, see P15). Other than this, synthesis from salicylic acid anilide and anthranilic acid anilide, synthesis by photochemical reaction from acridine-N-oxide and acetic anhydride, ring formation from N-substituted aromatic amine, n-butyllithium, carbon dioxide . In addition, an Ullmann reaction or the like can be used to replace the nitrogen atom of the acridone ring with an aryl group or the like.

以下に、本発明の化合物(A)の代表例を、具体的に例示するが、本発明は、この代表例に限定されるものではない。   Specific examples of the compound (A) of the present invention are specifically illustrated below, but the present invention is not limited to these representative examples.

Figure 0004380277
Figure 0004380277

Figure 0004380277
Figure 0004380277

Figure 0004380277
Figure 0004380277

Figure 0004380277
Figure 0004380277

Figure 0004380277
Figure 0004380277

Figure 0004380277
Figure 0004380277

Figure 0004380277
Figure 0004380277

Figure 0004380277
Figure 0004380277

本発明における化合物(A)は、アクリドン環組み込まれる形で電子求引性基を有するため、電子求引性基を有さない環からなる化合物に比べて、分子の剛直性が増し、構造的に高い安定性を有し、ガラス転移点や融点が高くなっている。このため、電界発光時における有機層中、有機層間もしくは、有機層と金属電極間で発生するジュール熱に対する耐性(耐熱性)が向上するので、有機燐光発光素子材料として使用した場合、高い発光輝度を示し、長時間発光させる際にも有利である。また、カルボニル基などの二重結合を有する電子求引性基は、三重項励起状態を安定化させる効果が想定できるため、従来の蛍光型の有機EL素子においては、電子求引性基が他の基と相互作用を持たずに孤立して存在する場合には不適当とされていた。また電子求引性基と窒素原子などの電子供与性部分との位置関係が適切でないと、発光を弱めてしまうという悪影響が懸念された。しかし、有機燐光発光素子において本発明の化合物(A)を燐光発光材料(B)と同時に用いる際には発光を増強する効果が期待できSince the compound (A) in the present invention has an electron withdrawing group in a form incorporated in an acridone ring , the rigidity of the molecule is increased as compared with a compound comprising a ring having no electron withdrawing group. In particular, it has high stability and has a high glass transition point and melting point. For this reason, resistance to Joule heat (heat resistance) generated in the organic layer, between the organic layers, or between the organic layer and the metal electrode during electroluminescence is improved. Therefore, when used as an organic phosphorescent light emitting device material, high emission luminance This is also advantageous when light is emitted for a long time. In addition, since an electron withdrawing group having a double bond such as a carbonyl group can be expected to stabilize the triplet excited state, in the conventional fluorescent organic EL element, there are other electron withdrawing groups. It was considered inappropriate when it was isolated and had no interaction with the group. In addition, there is a concern about the adverse effect of weakening light emission if the positional relationship between the electron withdrawing group and the electron donating moiety such as a nitrogen atom is not appropriate. However, when using the compounds of the present invention (A) simultaneously with the phosphorescent material (B) in an organic phosphorescent device, the effect of enhancing the light emission can be expected.

有機燐光発光素子は、陽極と陰極間に一層もしくは多層の有機薄膜を形成した素子である。基本構成は従来の有機EL素子と同様であるが、三重項励起状態のエネルギーを発光に利用できるよう材料の選択と層構成の工夫を施したところが特徴となる。なお、本発明において、「燐光発光素子」とは、発光材料またはドーピング材料が三重項状態から直接的に光を放出する場合だけでなく、両極から注入された電荷の再結合によって生じた三重項励起状態を光以外のエネルギー放出に回すことなく、素子中で有効に発光に利用するような機構、過程を有するように設計された構成の素子全般を含む。この意味において、本発明の化合物(A)は、構造的、物性的に三重項励起状態を生成、保持しやすいため、各層を構成する材料として好適である。特に素子駆動中に三重項励起状態が最も多く存在する発光層の一成分に使用すると最大の効果を発揮する。   An organic phosphorescent light-emitting device is a device in which a single-layer or multilayer organic thin film is formed between an anode and a cathode. The basic configuration is the same as that of a conventional organic EL element, but is characterized in that material selection and layer configuration are devised so that triplet excited state energy can be used for light emission. In the present invention, the “phosphorescent light-emitting element” means not only a case where a light-emitting material or a doping material directly emits light from a triplet state, but also a triplet generated by recombination of charges injected from both electrodes. It includes all elements having a structure designed to have a mechanism and a process that can be effectively used for light emission in the element without turning the excited state into energy emission other than light. In this sense, the compound (A) of the present invention is suitable as a material constituting each layer because it easily generates and maintains a triplet excited state structurally and physically. In particular, when it is used as a component of a light emitting layer in which the triplet excited state is most present during device driving, the maximum effect is exhibited.

有機EL素子または有機燐光発光素子は、一層型の場合、陽極と陰極との間に発光層を設けている。発光層は、発光材料を含有し、それに加えて陽極から注入した正孔もしくは陰極から注入した電子を発光材料まで輸送させるために正孔注入材料もしくは電子注入材料を含有しても良い。電子注入材料とは陰極から電子を注入されうる能力を持つ材料であり、電子輸送材料とは注入された電子を発光層へ輸送する能力を持つ材料である。正孔注入材料とは、陽極から正孔を注入されうる能力を持つ材料であり、正孔輸送材料とは、注入された正孔を発光層へ輸送する能力を持つ材料である。多層型は、(陽極/正孔注入層/発光層/陰極)、(陽極/正孔注入層/正孔輸送層/発光層/陰極)、(陽極/発光層/電子注入層/陰極)、(陽極/発光層/電子輸送層/電子注入層/陰極)、(陽極/正孔注入層/発光層/電子注入層/陰極)、(陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極)、の多層構成で積層した有機燐光発光素子がある。多層型の正孔輸送層および電子輸送層は複数の層からなってもよい。ここで、正孔注入層と正孔輸送層、場合によっては正孔輸送性の強い発光層までを正孔注入帯域、電子注入層と電子輸送層、場合によっては電子輸送性の強い発光層までを電子注入帯域とそれぞれ呼ぶことがあり、各帯域に使用する材料を一括りで正孔注入材料(または正孔輸送材料)もしくは電子注入材料(または電子輸送材料)と呼ぶこともある。また、有機燐光発光素子の場合は、素子の特性や使用材料の点で、電子輸送層に要求される特性として、電子の輸送性より正孔が発光層から陰極側へ抜けてしまうことを阻止するブロック性をより重視するため、正孔ブロッキング層または正孔ブロック層と呼ばれることが多く、この層に用いられる材料を特に正孔ブロッキング材料と呼ぶことがある。これらの呼称は目的とする素子に対する材料の必要特性の一面を強調するために付けられているので、呼び方の違いにより材料の本質が異なることはない。これらの各層の材料とその構成は、材料のエネルギー準位、耐熱性、有機層もしくは金属電極との密着性等の各要因により選択され、決定される。   When the organic EL element or the organic phosphorescent light emitting element is a single layer type, a light emitting layer is provided between the anode and the cathode. The light emitting layer contains a light emitting material, and may further contain a hole injecting material or an electron injecting material in order to transport holes injected from the anode or electrons injected from the cathode to the light emitting material. The electron injection material is a material having the ability to inject electrons from the cathode, and the electron transport material is a material having the ability to transport the injected electrons to the light emitting layer. The hole injection material is a material having the ability to inject holes from the anode, and the hole transport material is a material having the ability to transport the injected holes to the light emitting layer. The multilayer type includes (anode / hole injection layer / light emitting layer / cathode), (anode / hole injection layer / hole transport layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (Anode / light emitting layer / electron transport layer / electron injection layer / cathode), (anode / hole injection layer / light emitting layer / electron injection layer / cathode), (anode / hole injection layer / hole transport layer / light emitting layer) There is an organic phosphorescent light emitting device laminated in a multilayer structure of / electron transport layer / electron injection layer / cathode). The multilayer hole transport layer and the electron transport layer may be composed of a plurality of layers. Here, a hole injection layer and a hole transport layer, in some cases up to a light emitting layer having a strong hole transport property, up to a hole injection band, an electron injection layer and an electron transport layer, and in some cases to a light emitting layer having a strong electron transport property May be referred to as an electron injection band, and materials used in each band may be collectively referred to as a hole injection material (or hole transport material) or an electron injection material (or electron transport material). In the case of an organic phosphorescent light emitting device, the electron transporting layer is required to prevent holes from escaping from the light emitting layer to the cathode side due to the electron transportability in terms of device characteristics and materials used. In order to give more importance to the blocking property, it is often called a hole blocking layer or a hole blocking layer, and the material used for this layer is sometimes called a hole blocking material. Since these designations are given to emphasize one aspect of the necessary characteristics of the material for the target element, the essence of the material does not differ depending on the designation. The material of each of these layers and the structure thereof are selected and determined according to various factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.

発光層には、必要があれば、本発明の材料に加えて、さらなる既存の有機蛍光色素を含む公知の発光材料、ドーピング材料および正孔注入材料や電子注入材料を使用することもできる。有機燐光発光素子は、多層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。必要があれば、発光材料、ドーピング材料、正孔注入材料や電子注入材料を組み合わせて使用することが出来る。また、ドーピング材料により、発光輝度や発光効率の向上、青色から赤色にわたる発光を得ることもできる。   If necessary, in addition to the material of the present invention, a known light emitting material, doping material, hole injecting material, and electron injecting material containing a further existing organic fluorescent dye can be used for the light emitting layer. The organic phosphorescent light emitting element can prevent a decrease in luminance and lifetime due to quenching by adopting a multilayer structure. If necessary, a light emitting material, a doping material, a hole injection material, and an electron injection material can be used in combination. Further, by using a doping material, emission luminance and luminous efficiency can be improved, and light emission ranging from blue to red can be obtained.

本発明の化合物(A)と共に発光層に使用できる燐光発光材料(B)またはドーピング材料としては、有機化合物もしくは有機残基の配位子からなる金属錯体がある。金属原子は通常、遷移金属であり、好ましくは周期では第5周期または第6周期、族では6族から11族、さらに好ましくは8族から10族の元素が対象となる。具体的にはイリジウムや白金などである。また、配位子としては2−フェニルピリジンや2−(2’―ベンゾチエニル)ピリジンなどがあり、これらの配位子上の炭素原子が金属と直接結合しているのが特徴である。別の例としてはポルフィリンまたはテトラアザポルフィリン環錯体などがある。中心金属としては白金などが挙げられる。燐光発光材料の代表例を以下に具体的に例示するが、本発明はこの代表例に限定されるものではない。なお、本例は三重項励起状態から直接発光するとの知見が得られている材料の例であり、素子内で三重項励起エネルギーが失われずに有効に発光に利用できる何らかの機構が別に存在する場合には、さらに多くの材料を発光材料またはドーピング材料として用いることができ、既存の有機蛍光色素、有機EL発光材料、ドーピング材料をも有機燐光発光素子に利用できる可能性を否定するものではない。   Examples of the phosphorescent light emitting material (B) or doping material that can be used in the light emitting layer together with the compound (A) of the present invention include an organic compound or a metal complex composed of an organic residue ligand. The metal atom is usually a transition metal, and is preferably an element of the 5th or 6th period in the period, and from the 6th group to the 11th group in the group, and more preferably in the 8th to 10th group. Specific examples include iridium and platinum. Examples of the ligand include 2-phenylpyridine and 2- (2'-benzothienyl) pyridine, and the carbon atom on these ligands is directly bonded to the metal. Another example is a porphyrin or tetraazaporphyrin ring complex. Examples of the central metal include platinum. Although the typical example of a phosphorescent luminescent material is specifically illustrated below, this invention is not limited to this representative example. Note that this example is an example of a material for which it is known that light is emitted directly from a triplet excited state, and there is another mechanism that can be used for light emission effectively without losing triplet excitation energy in the device. In addition, more materials can be used as the light emitting material or the doping material, and the possibility that the existing organic fluorescent dye, the organic EL light emitting material, and the doping material can be used for the organic phosphorescent light emitting element is not denied.

Figure 0004380277
Figure 0004380277

Figure 0004380277
Figure 0004380277

共に発光層に使用できる上記の材料および本発明の化合物の発光層中での存在比はどれが主成分であってもよいが、好ましくは、上記、燐光発光材料(B)またはドーピング材料に対して本発明の化合物(A)の存在比が50%以上であるホスト材料として使用することである。   Any of the above-mentioned materials that can be used in the light-emitting layer and the abundance ratio of the compound of the present invention in the light-emitting layer may be the main component, but preferably the above-mentioned phosphorescent light-emitting material (B) or doping material In other words, it is used as a host material having an abundance ratio of the compound (A) of the present invention of 50% or more.

正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、発光層または発光材料に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入帯域または電子注入材料への移動を防止し、かつ薄膜形成能力の優れた化合物が挙げられる。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、およびポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料等があるが、これらに限定されるものではない。   As a hole injection material, it has the ability to transport holes, has a hole injection effect from the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and excitons generated in the light emitting layer. Examples thereof include compounds that prevent movement to an electron injection zone or an electron injection material and have an excellent thin film forming ability. Specifically, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, oxazole, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyaryl Alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, etc., and their derivatives, and polymer materials such as polyvinyl carbazole, polysilane, conductive polymer, etc. However, it is not limited to these.

本発明の有機燐光発光素子において使用できる正孔注入材料の中で、さらに効果的な正孔注入材料は、アリールアミン誘導体、フタロシアニン化合物ないしはトリフェニレン誘導体である。アリールアミン誘導体の具体例としては、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N’−ジフェニル−N,N’−ジ−m−トリル−4,4’−ビフェニルジアミン、N,N,N’,N’−テトラ(p−トリル)−p−フェニレンジアミン、N,N,N’,N’−テトラ−p−トリル−4,4’−ビフェニルジアミン、N,N’−ジフェニル−N,N’−ジ(1−ナフチル)−4,4’−ビフェニルジアミン、N,N’−ジ(4−n−ブチルフェニル)−N,N’−ジ−p−トリル−9,10−フェナントレンジアミン、4,4’,4”−トリス(N−フェニル−N−m−トリルアミノ)トリフェニルアミン、1,1−ビス[4−(ジ−p−トリルアミノ)フェニル]シクロヘキサン等、もしくはこれらの芳香族三級アミン骨格を有したオリゴマーもしくはポリマー等があるが、これらに限定されるものではない。   Among the hole injection materials that can be used in the organic phosphorescent light emitting device of the present invention, more effective hole injection materials are arylamine derivatives, phthalocyanine compounds, or triphenylene derivatives. Specific examples of the arylamine derivative include triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N′-di-m-tolyl-4,4′-biphenyldiamine, N, N, N ', N'-tetra (p-tolyl) -p-phenylenediamine, N, N, N', N'-tetra-p-tolyl-4,4'-biphenyldiamine, N, N'-diphenyl-N, N′-di (1-naphthyl) -4,4′-biphenyldiamine, N, N′-di (4-n-butylphenyl) -N, N′-di-p-tolyl-9,10-phenanthrenediamine 4,4 ′, 4 ″ -tris (N-phenyl-Nm-tolylamino) triphenylamine, 1,1-bis [4- (di-p-tolylamino) phenyl] cyclohexane, or the like There are oligomers or polymers having tertiary amine skeletons, though not particularly limited thereto.

フタロシアニン(Pc)化合物の具体例としては、H2Pc、CuPc、C oPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2SiPc、(HO)A lPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc−O−GaPc等のフタロシアニン誘導体およびナフタロシアニン誘導体等があるが、これらに限定されるものではない。   Specific examples of the phthalocyanine (Pc) compound include H2Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl2SiPc, (HO) A1Pc, (HO) GaPc, OP , Phthalocyanine derivatives such as TiOPc, MoOPc, GaPc-O-GaPc, and naphthalocyanine derivatives, but are not limited thereto.

トリフェニレン誘導体の具体例としては、ヘキサメトキシトリフェニレン、ヘキサエトキシトリフェニレン、ヘキサヘキシルオキシトリフェニレン、ヘキサベンジルオキシトリフェニレン、トリメチレンジオキシトリフェニレン、トリエチレンジオキシトリフェニレンなどのヘキサアルコキシトリフェニレン類、ヘキサフェノキシトリフェニレン、ヘキサナフチルオキシトリフェニレン、ヘキサビフェニリルオキシトリフェニレン、トリフェニレンジオキシトリフェニレンなどのヘキサアリールオキシトリフェニレン類、ヘキサアセトキシトリフェニレン、ヘキサベンゾイルオキシトリフェニレンなどのヘキサアシロキシトリフェニレン類等があるが、これらに限定されるものではない。   Specific examples of triphenylene derivatives include hexaalkoxytriphenylenes such as hexamethoxytriphenylene, hexaethoxytriphenylene, hexahexyloxytriphenylene, hexabenzyloxytriphenylene, trimethylenedioxytriphenylene, triethylenedioxytriphenylene, hexaphenoxytriphenylene, hexanaphthyl. Examples include, but are not limited to, hexaaryloxytriphenylenes such as oxytriphenylene, hexabiphenylyloxytriphenylene, and triphenylenedioxytriphenylene, and hexaacyloxytriphenylenes such as hexaacetoxytriphenylene and hexabenzoyloxytriphenylene.

電子注入材料としては、電子を輸送する能力を持ち、陰極からの正孔注入効果、発光層または発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入帯域への移動を防止し、かつ薄膜形成能力の優れた化合物が挙げられる。例えば、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体があるが、これらに限定されるものではない。また、正孔注入材料に電子受容物質を、電子注入材料に電子供与性物質を添加することにより増感させることもできる。   As an electron injection material, it has the ability to transport electrons, has a hole injection effect from the cathode, and an excellent electron injection effect for the light-emitting layer or light-emitting material, and hole injection of excitons generated in the light-emitting layer Examples thereof include compounds that prevent migration to the zone and have an excellent thin film forming ability. For example, there are fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, anthrone, and their derivatives. However, it is not limited to these. Further, it can be sensitized by adding an electron accepting substance to the hole injecting material and an electron donating substance to the electron injecting material.

本発明の有機燐光発光素子において、さらに効果的な電子注入材料は、金属錯体化合物もしくは含窒素五員環誘導体である。具体的には、金属錯体化合物としては、8−ヒドロキシキノリナートリチウム、ビス(8−ヒドロキシキノリナート)亜鉛、ビス(8−ヒドロキシキノリナート)銅、ビス(8−ヒドロキシキノリナート)マンガン、トリス(8−ヒドロキシキノリナート)アルミニウム、トリス(2−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(8−ヒドロキシキノリナート)ガリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2−メチル−8−ヒドロキシキノリナート)クロロガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(o−クレゾラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)(1−ナフトラート)アルミニウム、ビス(2−メチル−8−ヒドロキシキノリナート)(2−ナフトラート)ガリウム、ビス(2−メチル−8−ヒドロキシキノリナート)フェノラートガリウム、ビス(o−(2−ベンゾオキサゾリル)フェノラート)亜鉛、ビス(o−(2−ベンゾチアゾリル)フェノラート)亜鉛、ビス(o−(2−ベンゾトリアゾリル)フェノラート)亜鉛等があるが、これらに限定されるものではない。   In the organic phosphorescent light emitting device of the present invention, a more effective electron injection material is a metal complex compound or a nitrogen-containing five-membered ring derivative. Specifically, as the metal complex compound, 8-hydroxyquinolinate lithium, bis (8-hydroxyquinolinate) zinc, bis (8-hydroxyquinolinate) copper, bis (8-hydroxyquinolinate) manganese , Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] quinolinato) beryllium Bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-hydroxyquinolinato) chlorogallium, bis (2-methyl-8-hydroxyquinolinato) (o-cresolate) gallium, Bis (2-methyl-8-hydroxyquinolinate) (1-naphthlar ) Aluminum, bis (2-methyl-8-hydroxyquinolinato) (2-naphtholato) gallium, bis (2-methyl-8-hydroxyquinolinato) phenolate gallium, bis (o- (2-benzoxazolyl) (L) phenolate) zinc, bis (o- (2-benzothiazolyl) phenolate) zinc, bis (o- (2-benzotriazolyl) phenolate) zinc, and the like, but are not limited thereto.

また、含窒素五員環誘導体としては、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールもしくはトリアゾール誘導体が好ましい。具体的には、2,5−ビス(1−フェニル)−1,3,4−オキサゾール、ジメチルPOPOP、2,5−ビス(1−フェニル)−1,3,4−チアゾール、2,5−ビス(1−フェニル)−1,3,4−オキサジアゾール、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−オキサジアゾール、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、1,4−ビス[2−(5−フェニルオキサジアゾリル)]ベンゼン、1,4−ビス[2−(5−フェニルオキサジアゾリル)−4−tert−ブチルベンゼン]、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−チアジアゾール、2,5−ビス(1−ナフチル)−1,3,4−チアジアゾール、1,4−ビス[2−(5−フェニルチアジアゾリル)]ベンゼン、2−(4’−tert−ブチルフェニル)−5−(4”−ビフェニル)−1,3,4−トリアゾール、2,5−ビス(1−ナフチル)−1,3,4−トリアゾール、1,4−ビス[2−(5−フェニルトリアゾリル)]ベンゼン等があるが、これらに限定されるものではない。   Further, as the nitrogen-containing five-membered ring derivative, an oxazole, thiazole, oxadiazole, thiadiazole or triazole derivative is preferable. Specifically, 2,5-bis (1-phenyl) -1,3,4-oxazole, dimethyl POPOP, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5- Bis (1-phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-oxadiazole, 2, 5-bis (1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5-phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyl) Oxadiazolyl) -4-tert-butylbenzene], 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-thiadiazole, 2,5-bis (1- Naphthyl) -1,3,4-thiadiazole, 1,4-bis [2- (5 Phenylthiadiazolyl)] benzene, 2- (4′-tert-butylphenyl) -5- (4 ″ -biphenyl) -1,3,4-triazole, 2,5-bis (1-naphthyl) -1, Examples include, but are not limited to, 3,4-triazole and 1,4-bis [2- (5-phenyltriazolyl)] benzene.

正孔ブロッキング材料としては、正孔が陰極へ輸送されるのを阻止する能力を持ち、発光層で生成した励起子の電子注入帯域への移動を防止する効果を兼ね備え、かつ薄膜形成能力の優れた化合物が挙げられる。前記の電子注入材料の多くは正孔ブロッキング材料として使用できるが、例えば、2−(4−ビフェニル)−5−(4−tert−ブチルフェニル)−1,3,4−トリアゾールや2,5−ビス(1−フェニル)−1,3,4−オキサジアゾールに代表されるアゾール(含窒素五員環)類、バソクプロインに代表されるフェナントロリン誘導体、ビス(2−メチル−8−ヒドロキシキノリナート)(4−ビフェニルオキソラート)アルミニウム(III)、ビス(2−メチル−8−ヒドロキシキノリナート)フェノラートガリウムに代表される金属錯体などの含窒素六員環類とそれらを配位子に有する金属錯体、シラシクロブテン(シロール)誘導体等があるが、これらに限定されるものではない。   As a hole blocking material, it has the ability to prevent holes from being transported to the cathode, has the effect of preventing the exciton generated in the light emitting layer from moving to the electron injection zone, and has excellent thin film forming ability Compounds. Many of the electron injection materials can be used as hole blocking materials. For example, 2- (4-biphenyl) -5- (4-tert-butylphenyl) -1,3,4-triazole and 2,5- Azoles (nitrogen-containing five-membered rings) represented by bis (1-phenyl) -1,3,4-oxadiazole, phenanthroline derivatives represented by bathocuproine, bis (2-methyl-8-hydroxyquinolinate) ) (4-biphenyloxolate) aluminum (III), nitrogen-containing six-membered rings such as metal complexes represented by bis (2-methyl-8-hydroxyquinolinato) phenolate gallium and the ligands Metal complexes, silacyclobutene (silole) derivatives, and the like, but are not limited thereto.

また、本発明の化合物(A)は、電子求引性基を有するため、電子輸送性の方が正孔輸送性より高く、上記の正孔ブロッキング材料または電子注入材料の一種として使用することが可能である。   Further, since the compound (A) of the present invention has an electron withdrawing group, the electron transporting property is higher than the hole transporting property, and it can be used as a kind of the above-described hole blocking material or electron injecting material. Is possible.

本発明により得られた有機燐光発光素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護することも可能である。   In order to improve the stability of the organic phosphorescent light-emitting device obtained by the present invention with respect to temperature, humidity, atmosphere, etc., a protective layer may be provided on the surface of the device, or the entire device may be protected with silicon oil, resin, etc. Is possible.

有機燐光発光素子の陽極に使用される導電性材料としては、4eVより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等およびそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。   As the conductive material used for the anode of the organic phosphorescent light emitting device, a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium And their alloys, metal oxides such as tin oxide and indium oxide used for ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole.

陰極に使用される導電性物質としては、4eVより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム等およびそれらの合金が用いられるが、これらに限定されるものではない。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。また、陰極としてフッ化リチウム、フッ化マグネシウム、酸化リチウムなどのアルカリ金属、アルカリ土類金属のフッ化物、酸化物を有機層上に1nm以下の膜厚で成膜し、その上にアルミニウム、銀などの比較的導電性の高い金属を成膜してもよい。また、陽極および陰極は、必要があれば二層以上の層構成により形成されていても良い。   As the conductive material used for the cathode, those having a work function smaller than 4 eV are suitable, and magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, etc., and alloys thereof are used. However, it is not limited to these. Examples of alloys include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto. The ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. Further, as a cathode, an alkali metal such as lithium fluoride, magnesium fluoride, or lithium oxide, a fluoride of an alkaline earth metal, or an oxide is formed on the organic layer with a film thickness of 1 nm or less, and aluminum or silver is formed thereon. A metal having a relatively high conductivity such as, for example, may be formed. Moreover, the anode and the cathode may be formed with a layer structure of two or more layers if necessary.

有機燐光発光素子では、効率良く発光させるために、少なくとも一方は素子の発光波長領域において充分透明にすることが望ましい。また、基板も透明であることが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明性を有するものであれば限定されるものではないが、例示すると、ガラス基板、ポリエチレン板、ポリエチレンテレフテレート板、ポリエーテルサルフォン板、ポリプロピレン板等の透明樹脂があげられる。   In the organic phosphorescent light emitting device, in order to emit light efficiently, it is desirable that at least one of them is sufficiently transparent in the light emitting wavelength region of the device. The substrate is also preferably transparent. The transparent electrode is set using the above-described conductive material so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering. The electrode on the light emitting surface preferably has a light transmittance of 10% or more. The substrate is not limited as long as it has mechanical and thermal strength and has transparency. For example, a glass substrate, a polyethylene plate, a polyethylene terephthalate plate, a polyethersulfone plate, Examples thereof include a transparent resin such as a polypropylene plate.

本発明に係わる有機燐光発光素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nmから10μmの範囲が適しているが、10nmから0.2μmの範囲がさらに好ましい。   The formation of each layer of the organic phosphorescent light emitting device according to the present invention applies any of dry deposition methods such as vacuum deposition, sputtering, plasma, and ion plating, and wet deposition methods such as spin coating, dipping, and flow coating. can do. The film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.

湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解または分散させて薄膜を形成するが、その溶媒はいずれであっても良い。また、いずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂およびそれらの共重合体、ポリ−N−ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げることができる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等を挙げることができる。   In the case of the wet film forming method, the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film, and any solvent may be used. In any organic thin film layer, an appropriate resin or additive may be used for improving film formability and preventing pinholes in the film. Usable resins include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, and cellulose, and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole. Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.

以上のように、有機燐光発光素子の発光層に本発明の化合物を用いることにより、発光効率、最大発光輝度等の有機燐光発光素子特性を改良することができた。また、この素子は熱や電流に対して非常に安定であり、さらには低い駆動電圧で実用的に使用可能の発光輝度が得られるため、従来まで大きな問題であった劣化も大幅に低下させることができた。   As described above, by using the compound of the present invention in the light emitting layer of the organic phosphorescent light emitting device, the characteristics of the organic phosphorescent light emitting device such as the light emission efficiency and the maximum light emission luminance can be improved. In addition, this element is extremely stable against heat and current, and can be used for light emission brightness that can be used practically at a low driving voltage, so that the degradation that has been a major problem until now is greatly reduced. I was able to.

以下、本発明を実施例に基づきさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

化合物(17)の合成方法
フラスコ中に、ジフェニルアミン−2−カルボン酸10gおよび希硫酸100gを入れて、70℃で5時間加熱撹拌した。得られた化合物をろ過水洗した後に、メタノールで洗浄して9−アクリドン8.7gを得た。
次に、窒素雰囲気下、9−アクリドン5.8g、4,4’−ジヨードビフェニル5.0g、ヨウ化銅47mg、シクロヘキサンジアミン280mg、リン酸カリウム11g、ジオキサン50mLをシュレンク管に計り取り110℃で8時間攪拌した。クロロホルム(100mL×3)−イオン交換水(100mL)で抽出し、メタノールより再沈殿することにより、2.0gの目的化合物(17)を得た。さらに昇華精製を行った。
Synthesis method of compound (17) 10 g of diphenylamine-2-carboxylic acid and 100 g of dilute sulfuric acid were placed in a flask, and the mixture was heated and stirred at 70 ° C. for 5 hours. The obtained compound was washed with filtered water and then washed with methanol to obtain 8.7 g of 9-acridone.
Next, under nitrogen atmosphere, 5.8 g of 9-acridone, 5.0 g of 4,4′-diiodobiphenyl, 47 mg of copper iodide, 280 mg of cyclohexanediamine, 11 g of potassium phosphate, and 50 mL of dioxane were measured into a Schlenk tube at 110 ° C. For 8 hours. Extraction with chloroform (100 mL × 3) -ion exchange water (100 mL) and reprecipitation from methanol gave 2.0 g of the target compound (17). Further sublimation purification was performed.

以下、実施例により本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。実施例においては、特に断りのない限り、混合比は全て重量比を示す。蒸着(真空蒸着)は10-6Torrの真空中で、基板加熱、冷却等の温度制御なしの条件下で行った。また、素子の発光特性評価においては、電極面積2mm×2mmの有機EL素子の特性を測定した。測定は1Vずつ上昇しながら各電圧で電流、輝度、色度を記録した。最大発光輝度および効率は各電圧ごとの測定値の最大値であり、その時の電圧は素子により異なる。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to the following Example. In the examples, all mixing ratios are weight ratios unless otherwise specified. Vapor deposition (vacuum deposition) was performed in a vacuum of 10 −6 Torr and under conditions without temperature control such as substrate heating and cooling. In the evaluation of the light emission characteristics of the element, the characteristics of an organic EL element having an electrode area of 2 mm × 2 mm were measured. The measurement recorded current, luminance, and chromaticity at each voltage while increasing by 1V. The maximum light emission luminance and efficiency are the maximum values measured for each voltage, and the voltage at that time varies depending on the element.

実施例2
洗浄したITO電極付きガラス板上に、N,N’―(1―ナフチル)―N,N’―ジフェニル―1,1’―ビフェニル-4,4’―ジアミン(NPD)を真空蒸着して膜厚20nmの正孔注入層を得た。次いで、化合物(17)と化合物(D1)を93:7の比率で共蒸着し膜厚40nmの発光層を作成し、次いでビス(2−メチル−5−フェニル−8−ヒドロキシキノリナート)フェノラートガリウム錯体を蒸着して膜厚30nmの電子注入層を得た。その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度3500(cd/m2)、最大発光輝度72000(cd/m2)、発光効率46(cd/A)の緑色発光が得られた。
Example 2
N, N '-(1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) is vacuum-deposited on a cleaned glass plate with an ITO electrode. A hole injection layer having a thickness of 20 nm was obtained. Next, the compound (17) and the compound (D1) were co-evaporated at a ratio of 93: 7 to prepare a light emitting layer having a thickness of 40 nm, and then bis (2-methyl-5-phenyl-8-hydroxyquinolinato) pheno An electron injection layer having a thickness of 30 nm was obtained by depositing a gallium complex. On top of this, an electrode having a thickness of 100 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 10: 1 to obtain an organic phosphorescent light emitting device. This device emitted green light with a luminance of 3500 (cd / m 2 ), a maximum luminance of 72000 (cd / m 2 ), and a luminous efficiency of 46 (cd / A) at a DC voltage of 10V.

実施例4
洗浄したITO電極付きガラス板上に、NPDを真空蒸着して膜厚30nmの正孔注入層を得た。次いで、化合物(24)と化合物(D5)を95:5の比率で共蒸着し膜厚40nmの発光層を作成し、次いでビス(2−メチル−8−ヒドロキシキノリナート)(p−フェニルフェノラート)アルミニウム錯体を蒸着して膜厚10nmの正孔ブロッキング層、さらにトリス(8−ヒドロキシキノリナート)アルミニウム錯体(Alq3)を蒸着して膜厚30nmの電子注入層を得た。その上に、まずフッ化リチウムを1nm、次いでアルミニウムを200nm蒸着して電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度730(cd/m2)、最大発光輝度26200(cd/m2)、発光効率9.7(cd/A)の赤色発光が得られた。
Example 4
NPD was vacuum-deposited on the cleaned glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 30 nm. Next, the compound (24) and the compound (D5) were co-evaporated at a ratio of 95: 5 to prepare a light-emitting layer having a thickness of 40 nm, and then bis (2-methyl-8-hydroxyquinolinate) (p-phenylphenol) Lat) An aluminum complex was vapor-deposited to form a hole blocking layer having a thickness of 10 nm, and further tris (8-hydroxyquinolinato) aluminum complex (Alq3) was vapor-deposited to obtain an electron injection layer having a thickness of 30 nm. On top of this, first, 1 nm of lithium fluoride and then 200 nm of aluminum were vapor-deposited to form an electrode to obtain an organic phosphorescent light emitting device. Emission luminance 730 of this device is DC voltage 10V (cd / m 2), the maximum emission luminance 26200 (cd / m 2), the red light-emitting efficiency 9.7 (cd / A) was obtained.

実施例5
洗浄したITO電極付きガラス板上に、化合物(40)と化合物(D6)を98:2の比率で塩化メチレンに溶解させ、スピンコーティング法により膜厚50nmの正孔注入型発光層を得た。次いでバソクプロインを蒸着して膜厚5nmの正孔ブロッキング層、さらにAlq3を蒸着して膜厚30nmの電子注入層を得た。その上に、まずフッ化リチウムを0.5nm、次いでアルミニウムを200nm蒸着して電極を形成して有機燐光発光素子を得た。この素子は、直流電圧10Vでの発光輝度380(cd/m2)、最大発光輝度9200(cd/m2)、発光効率5.6(cd/A)の赤色発光が得られた。
Example 5
On the washed glass plate with an ITO electrode, the compound (40) and the compound (D6) were dissolved in methylene chloride at a ratio of 98: 2, and a hole injection type light emitting layer having a thickness of 50 nm was obtained by a spin coating method. Next, bathocuproine was evaporated to form a hole blocking layer having a thickness of 5 nm, and further Alq3 was evaporated to obtain an electron injection layer having a thickness of 30 nm. On top of that, first, 0.5 nm of lithium fluoride and then 200 nm of aluminum were vapor-deposited to form an electrode to obtain an organic phosphorescent device. This device obtained red light emission with a light emission luminance of 380 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 9200 (cd / m 2 ), and a light emission efficiency of 5.6 (cd / A).

実施例7
洗浄したITO電極付きガラス板上に、銅フタロシアニンを真空蒸着して、膜厚20nmの正孔注入層を得た。次いで、化合物(41)のみを単独で真空蒸着して、膜厚30nmの正孔輸送層を得た。さらに、化合物(41)と化合物(D1)を93:7の比率で共蒸着して、膜厚40nmの発光層を作成し、次いでバソクプロインを蒸着して膜厚10nmの正孔ブロッキング層、さらにAlq3を真空蒸着して膜厚30nmの電子注入層を作成した。その上に、フッ化リチウム(LiF)を0.7nm、次いでアルミニウム(Al)を150nm真空蒸着することで電極を形成して、有機燐光発光素子を得た。この素子は、直流電圧10Vでの発光輝度3100(cd/m2)、最大発光輝度97700(cd/m2)、発光効率44(cd/A)の緑色発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は6600時間であった。
Example 7
Copper phthalocyanine was vacuum-deposited on the washed glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 20 nm. Subsequently, only the compound (41) was vacuum-deposited alone to obtain a 30 nm-thick hole transport layer. Further, the compound (41) and the compound (D1) were co-evaporated at a ratio of 93: 7 to prepare a light emitting layer with a thickness of 40 nm, and then bathocuproine was evaporated to form a hole blocking layer with a thickness of 10 nm. Was vacuum-deposited to prepare an electron injection layer having a thickness of 30 nm. An electrode was formed thereon by vacuum deposition of 0.7 nm of lithium fluoride (LiF) and then 150 nm of aluminum (Al) to obtain an organic phosphorescent device. This device emitted green light with a luminance of 3100 (cd / m 2 ), a maximum luminance of 97700 (cd / m 2 ), and a luminous efficiency of 44 (cd / A) at a DC voltage of 10V. Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 6600 hours.

実施例10
洗浄したITO電極付きガラス板上に、NPDを真空蒸着して膜厚50nmの正孔注入層を得た。次いで、化合物(23)と化合物(D3)を85:15の重量比で共蒸着して膜厚40nmの発光層を作成し、次いで、ビス(2−メチル−8−ヒドロキシキノリナート)(p−フェニルフェノラート)アルミニウム錯体を蒸着して膜厚10nmの正孔ブロッキング層、さらにAlq3を蒸着して膜厚30nmの電子注入層を得た。さらにその上に、まず、フッ化マグネシウムを0.5nm、さらにアルミニウムを200nm真空蒸着によって電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度2240(cd/m2)、最大発光輝度53200(cd/m2)、発光効率6.2(cd/A)の発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は2700時間であった。
Example 10
NPD was vacuum-deposited on the cleaned glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 50 nm. Next, the compound (23) and the compound (D3) were co-evaporated at a weight ratio of 85:15 to prepare a light-emitting layer having a thickness of 40 nm, and then bis (2-methyl-8-hydroxyquinolinate) (p -Phenylphenolate) An aluminum complex was vapor-deposited to form a hole blocking layer having a thickness of 10 nm, and further Alq3 was vapor-deposited to obtain an electron injection layer having a thickness of 30 nm. Furthermore, an electrode was first formed thereon by vacuum deposition of 0.5 nm of magnesium fluoride and 200 nm of aluminum, to obtain an organic phosphorescent light emitting device. This device emitted light with a luminance of 2240 (cd / m 2 ) at a DC voltage of 10 V, a maximum luminance of 53200 (cd / m 2 ), and a luminous efficiency of 6.2 (cd / A). Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 2700 hours.

比較例2
化合物(15)に代わりにCBPを用いた他は実施例2と同様にして素子を作成した。この素子の発光特性は、直流電圧10Vでの発光輝度1700(cd/m2)、最大発光輝度48000(cd/m2)、発光効率25(cd/A)の発光は得られた。しかし、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は820時間であった。
Comparative Example 2
A device was produced in the same manner as in Example 2 except that CBP was used instead of the compound (15). With respect to the light emission characteristics of this device, light emission with a direct current voltage of 10 V of light emission luminance of 1700 (cd / m 2 ), maximum light emission luminance of 48000 (cd / m 2 ), and light emission efficiency of 25 (cd / A) was obtained. However, the half-life when driven at a constant current with an emission luminance of 500 (cd / m 2 ) was 820 hours.

比較例3
化合物(23)に代わりに下記化合物(C2)を用いた他は実施例10と同様にして素子を作成した。この素子の発光特性は、直流電圧10Vでの発光輝度2560(cd/m2)、最大発光輝度30100(cd/m2)、発光効率4.5(cd/A)の発光は得られた。しかし、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は180時間であった。
化合物(C2)
Comparative Example 3
Compound (23) except that the following compound (C2) was used instead created a device in the same manner as in Example 10. With respect to the light emission characteristics of the device, light emission with a direct current voltage of 10 V of light emission luminance of 2560 (cd / m 2 ), maximum light emission luminance of 30100 (cd / m 2 ), and light emission efficiency of 4.5 (cd / A) was obtained. However, the half life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 180 hours.
Compound (C2)

Figure 0004380277
Figure 0004380277

実施例11
化合物(24)の代わりに化合物(29)を用いた他は実施例4と同様にして素子を作成した。この素子は直流電圧10Vでの発光輝度740(cd/m2)、最大発光輝度16600(cd/m2)、発光効率11.2(cd/A)の赤色発光が得られた。また発光輝度500(cd/m2)で定電流駆動したときの半減寿命は9600時間であった。
Example 11
A device was fabricated in the same manner as in Example 4 except that the compound (29) was used instead of the compound (24). This device produced red light emission with a light emission luminance of 740 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 16600 (cd / m 2 ), and a light emission efficiency of 11.2 (cd / A). Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 9600 hours.

実施例13
洗浄したITO電極付きガラス板上に、4,4’−ビス[N−(9−フェナントリル)−N−フェニルアミノ]ビフェニルを真空蒸着して膜厚30nmの正孔注入層を得た。次いで化合物(21)と化合物(D3)を95:5の比率で共蒸着して膜厚50nmの発光層を得た。次いで、ビス(2−メチル−8−ヒドロキシキノリナート)(p−フェニルフェノラート)アルミニウム錯体を真空蒸着して膜厚10nmの正孔ブロッキング層、さらにビス(2−メチル−5−フェニル−8−ヒドロキシキノリナート)フェノラートガリウム錯体を蒸着して膜厚30nmの電子注入層を得た。その上に、マグネシウムと銀を10:1(重量比)で混合した合金で膜厚250nmの電極を形成して有機燐光発光素子を得た。この素子は、直流電圧10Vでの発光輝度7100(cd/m2)、最大発光輝度59900(cd/m2)、発光効率8.8(cd/A)の青色発光が得られた。
Example 13
On the washed glass plate with an ITO electrode, 4,4′-bis [N- (9-phenanthryl) -N-phenylamino] biphenyl was vacuum-deposited to obtain a hole injection layer having a thickness of 30 nm. Next, the compound (21) and the compound (D3) were co-evaporated at a ratio of 95: 5 to obtain a light emitting layer having a thickness of 50 nm. Next, a bis (2-methyl-8-hydroxyquinolinate) (p-phenylphenolate) aluminum complex was vacuum-deposited to form a 10 nm-thick hole blocking layer, and bis (2-methyl-5-phenyl-8). -Hydroxyquinolinato) phenolate gallium complex was evaporated to obtain an electron injection layer having a thickness of 30 nm. On top of this, an electrode having a thickness of 250 nm was formed from an alloy in which magnesium and silver were mixed at a ratio of 10: 1 (weight ratio) to obtain an organic phosphorescent device. This device obtained blue light emission with a light emission luminance of 7100 (cd / m 2 ), a maximum light emission luminance of 59900 (cd / m 2 ), and a light emission efficiency of 8.8 (cd / A) at a DC voltage of 10V.

実施例14
発光層において、化合物(41)の代わりに化合物(43)を用いた他は実施例7と同様にして素子を作成した。この素子は直流電圧10Vでの発光輝度6930(cd/m2)、最大発光輝度51700(cd/m2)、発光効率46(cd/A)の緑色発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は7900時間であった。
Example 14
A device was prepared in the same manner as in Example 7 except that the compound (43) was used instead of the compound (41) in the light emitting layer. This device produced green light emission with a light emission luminance of 6930 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 51700 (cd / m 2 ), and a light emission efficiency of 46 (cd / A). Further, the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 7900 hours.

実施例15
洗浄したITO電極付きガラス板上に、4,4’,4”−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミンを真空蒸着して膜厚20nmの正孔注入層を得た。次いで、NPDを真空蒸着して、膜厚30nmの正孔輸送層を得た。さらに、化合物(15)と化合物(D6)を97:3の比率で共蒸着して、膜厚40nmの発光層を作成し、次いでバソフェナントロリンを蒸着して膜厚5nmの正孔ブロッキング層、さらにAlq3を真空蒸着して膜厚30nmの電子注入層を作成した。その上に、フッ化リチウムを0.7nm、次いでアルミニウムを200nm真空蒸着することで電極を形成して、有機燐光発光素子を得た。この素子は、直流電圧10Vでの発光輝度6230(cd/m2)、最大発光輝度10800(cd/m2)、発光効率5.1(cd/A)の発光が得られた。また、発光輝度500(cd/m2)で定電流駆動したときの半減寿命は8300時間であった。
Example 15
4,4 ′, 4 ″ -tris [N- (1-naphthyl) -N-phenylamino] triphenylamine is vacuum-deposited on a cleaned glass plate with an ITO electrode to form a 20 nm-thick hole injection layer. Next, NPD was vacuum-deposited to obtain a 30 nm-thick hole transport layer, and compound (15) and compound (D6) were co-deposited at a ratio of 97: 3 to give a thickness of 40 nm. Then, a 5 nm-thick hole blocking layer was deposited by vapor deposition of bathophenanthroline, and an electron injection layer having a thickness of 30 nm was created by vacuum-depositing Alq3. An electrode was formed by vacuum vapor deposition of 0.7 nm and then 200 nm of aluminum to obtain an organic phosphorescent light emitting device having an emission luminance of 6230 (cd / m 2 ) at a DC voltage of 10 V and a maximum emission luminance of 10800. (Cd / m 2 ), a light emission efficiency of 5.1 (cd / A) was obtained, and the half-life when driven at a constant current at an emission luminance of 500 (cd / m 2 ) was 8300 hours. .

実施例16
洗浄したITO電極付きガラス板上に、NPDを真空蒸着して膜厚30nmの正孔注入層を得た。次いで、化合物(36)と化合物(D5)を98:2の比率で共蒸着し膜厚40nmの発光層を作成し、次いでビス(2−メチル−8−ヒドロキシキノリナート)(p−フェニルフェノラート)アルミニウム錯体を蒸着して膜厚10nmの正孔ブロッキング層、さらにAlq3を蒸着して膜厚30nmの電子注入層を得た。その上に、まずフッ化リチウムを1nm、次いでアルミニウムを200nm蒸着して電極を形成して有機燐光発光素子を得た。この素子は直流電圧10Vでの発光輝度1840(cd/m2)、最大発光輝度16200(cd/m2)、発光効率7.4(cd/A)の赤色発光が得られた。
Example 16
NPD was vacuum-deposited on the cleaned glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 30 nm. Next, the compound (36) and the compound (D5) were co-evaporated at a ratio of 98: 2 to prepare a light-emitting layer having a thickness of 40 nm, and then bis (2-methyl-8-hydroxyquinolinate) (p-phenylphenol) Lat) An aluminum complex was evaporated to form a hole blocking layer having a thickness of 10 nm, and further Alq3 was evaporated to obtain an electron injection layer having a thickness of 30 nm. On top of this, first, 1 nm of lithium fluoride and then 200 nm of aluminum were vapor-deposited to form an electrode to obtain an organic phosphorescent light emitting device. This device produced red light emission with a light emission luminance of 1840 (cd / m 2 ) at a DC voltage of 10 V, a maximum light emission luminance of 16200 (cd / m 2 ), and a light emission efficiency of 7.4 (cd / A).

本実施例で半減寿命を明記した例以外の素子において、発光輝度500(cd/m2)で定電流駆動したところ、全ての実施例の素子において1000時間の時点で初期輝度の8割より低下したものはなかった。 In the devices other than the examples in which the half life was specified in this example, when the device was driven at a constant current with a light emission luminance of 500 (cd / m 2 ), all of the devices of the examples were reduced from 80% of the initial luminance at 1000 hours. There was nothing I did.

本発明の有機燐光発光素子は、壁掛けテレビ等のフラットパネルディスプレイや、平面発光体として、複写機やプリンター等の光源、液晶ディスプレイや計器類等の光源、表示板、標識灯等へ応用が考えられ、その工業的価値は非常に大きい。また、本発明の材料は、従来型の有機EL素子、電子写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用できる。

The organic phosphorescent light emitting device of the present invention can be applied to flat panel displays such as wall-mounted televisions, flat light emitters, light sources such as copiers and printers, light sources such as liquid crystal displays and instruments, display boards, and indicator lights. And its industrial value is very large. The material of the present invention can also be used in the fields of conventional organic EL devices, electrophotographic photoreceptors, photoelectric conversion devices, solar cells, image sensors and the like.

Claims (7)

下記一般式[1a]、[1b]、または、[1c]で示される置換もしくは未置換のアクリドン誘導体である含窒素環化合物(A)、および燐光発光材料(B)を含んでなる有機エレクトロルミネッセンス素子用材料。
一般式[1a]
Figure 0004380277




一般式[1b]
Figure 0004380277


一般式[1c]
Figure 0004380277


[式中、R1〜R8は、互いにそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換のアルキルチオ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換のアミノ基、置換もしくは未置換のアシル基、置換もしくは未置換のアリール基、または置換もしくは未置換の複素環基であり、置換基同士で一体となって環を形成していても良い。
Aは、Nと炭素原子で結合する置換基、または複数の同一もしくは異なるアクリドン環をつなぐ連結基である。]
Organic electroluminescence comprising a nitrogen-containing ring compound (A) which is a substituted or unsubstituted acridone derivative represented by the following general formula [1a], [1b], or [1c], and a phosphorescent material (B) Element material.
General formula [1a]
Figure 0004380277




General formula [1b]
Figure 0004380277


General formula [1c]
Figure 0004380277


[Wherein, R 1 to R 8 are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group. An oxy group, a substituted or unsubstituted alkylthio group, a substituted or unsubstituted arylthio group, a substituted or unsubstituted amino group, a substituted or unsubstituted acyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group It is a cyclic group, and the substituents may be integrated to form a ring.
A is a substituent bonded to N and a carbon atom, or a linking group that connects a plurality of identical or different acridone rings. ]
燐光発光材料(B)が、有機化合物もしくは有機残基の配位子からなるイリジウムまたは白金錯体を含んでなる請求項記載の有機エレクトロルミネッセンス素子用材料。 Phosphorescent material (B) is an organic compound or an organic electroluminescence device material according to claim 1, wherein comprising iridium or platinum complex consisting of ligands of the organic residue. 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、前記層のいずれかが、請求項1または2いずれか記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。 In the organic electroluminescent device obtained by forming an organic compound thin film of multiple layers including a light emitting layer or a light emitting layer between a pair of electrodes, one of said layers, for organic electroluminescence device according to any one of claims 1 or 2 An organic electroluminescence device containing a material. 一対の電極間に発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、発光層が、請求項1または2いずれか記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising a light emitting layer or a plurality of organic compound thin films including a light emitting layer formed between a pair of electrodes, wherein the light emitting layer contains the material for an organic electroluminescence device according to claim 1 or 2. Organic electroluminescence device. さらに、陰極と発光層との間に電子注入層を形成することを特徴とする請求項3または4記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 3 , further comprising an electron injection layer formed between the cathode and the light emitting layer. さらに、電子注入層と発光層との間に正孔ブロッキング層を形成することを特徴とする請求項3〜5いずれか記載の有機エレクトロルミネッセンス素子。 Furthermore, a hole blocking layer is formed between an electron injection layer and a light emitting layer, The organic electroluminescent element in any one of Claims 3-5 characterized by the above-mentioned. さらに、陽極と発光層との間に正孔注入層を形成することを特徴とする請求項3〜6いずれか記載の有機エレクトロルミネッセンス素子。 Furthermore, a hole injection layer is formed between an anode and a light emitting layer, The organic electroluminescent element in any one of Claims 3-6 characterized by the above-mentioned.
JP2003322556A 2003-09-16 2003-09-16 Material for organic electroluminescence device and organic electroluminescence device using the same Expired - Fee Related JP4380277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322556A JP4380277B2 (en) 2003-09-16 2003-09-16 Material for organic electroluminescence device and organic electroluminescence device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322556A JP4380277B2 (en) 2003-09-16 2003-09-16 Material for organic electroluminescence device and organic electroluminescence device using the same

Publications (2)

Publication Number Publication Date
JP2005089544A JP2005089544A (en) 2005-04-07
JP4380277B2 true JP4380277B2 (en) 2009-12-09

Family

ID=34453865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322556A Expired - Fee Related JP4380277B2 (en) 2003-09-16 2003-09-16 Material for organic electroluminescence device and organic electroluminescence device using the same

Country Status (1)

Country Link
JP (1) JP4380277B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113072A (en) * 2003-10-10 2005-04-28 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element and organic electroluminescent element produced by using the same
KR101663527B1 (en) 2014-01-22 2016-10-10 주식회사 엠비케이 New organic electroluminescent compounds and organic electroluminescent device comprising the same
CN108864054A (en) * 2018-07-26 2018-11-23 上海天马有机发光显示技术有限公司 A kind of nitrogen heterocyclic and organic light-emitting display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907912B2 (en) * 2005-07-08 2012-04-04 ケミプロ化成株式会社 Novel 1,3,5-triphenylbenzene derivative and organic electroluminescence device containing the same
KR101243918B1 (en) * 2006-01-03 2013-03-14 삼성디스플레이 주식회사 Blue electroluminescent polymer, a method for preparing the blue electroluminescent polymer and an organoelectroluminescent device employing the same
US8147987B2 (en) 2006-02-23 2012-04-03 Fujifilm Corporation Organic electroluminescent element and compounds for use in the element
JP5544775B2 (en) 2008-07-29 2014-07-09 住友化学株式会社 Composition containing phosphorescent compound and light emitting device using the composition
KR102021162B1 (en) * 2011-11-01 2019-09-11 메르크 파텐트 게엠베하 Organic electroluminescent device
CN104271701A (en) * 2012-04-25 2015-01-07 国立大学法人九州大学 Light-emitting material and organic light-emitting element
KR102325672B1 (en) * 2014-12-30 2021-11-15 엘지디스플레이 주식회사 Organic compound and Light emitting diode and Organic light emitting diode display device using the same
CN106699659B (en) * 2016-12-14 2018-12-18 中节能万润股份有限公司 A kind of N- phenylacridine ketone electroluminescent organic material and its preparation method and application
CN111032648B (en) * 2017-08-25 2023-06-27 三星显示有限公司 Organic triazine-containing molecules, in particular for optoelectronic devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113072A (en) * 2003-10-10 2005-04-28 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element and organic electroluminescent element produced by using the same
KR101663527B1 (en) 2014-01-22 2016-10-10 주식회사 엠비케이 New organic electroluminescent compounds and organic electroluminescent device comprising the same
CN108864054A (en) * 2018-07-26 2018-11-23 上海天马有机发光显示技术有限公司 A kind of nitrogen heterocyclic and organic light-emitting display device
CN108864054B (en) * 2018-07-26 2020-10-02 上海天马有机发光显示技术有限公司 Nitrogen heterocyclic compound and organic light-emitting display device

Also Published As

Publication number Publication date
JP2005089544A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4363133B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP4205059B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3503403B2 (en) Light emitting material for organic electroluminescent device and organic electroluminescent device using the same
JP3498533B2 (en) Light emitting material for organic electroluminescent device and organic electroluminescent device using the same
JP4002040B2 (en) Organic electroluminescence device
JP3666086B2 (en) Luminescent material for organic electroluminescence device and organic electroluminescence device using the same
JP3924943B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JPH11111458A (en) Organic electroluminescent element material and organic electroluminescent element using the same
JP2005082702A (en) Material for organic electroluminescent device and organic electroluminescent device using the same
JP2006045398A (en) Material for use in organic electroluminescent device, and organic electroluminescent device using the material
JP4026273B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4306379B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP4380277B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3994573B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JPH11273860A (en) Luminous material for organic electroluminescence and organic electroluminescent element using the same
JP4525119B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP3899698B2 (en) Organic electroluminescent device material and organic electroluminescent device using the same
JP2001019946A (en) Material for organic electroluminescent element and organic electroluminescent element using the same
KR20080112398A (en) Material for organic electroluminescence element, and organic electroluminescence element
JP3945032B2 (en) Luminescent material for organic electroluminescence device and organic electroluminescence device using the same
JPH1072581A (en) Luminescent material for organic electroluminescent element and organic electroluminescent element produced by using the same
JP4682503B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP2005113072A (en) Material for organic electroluminescent element and organic electroluminescent element produced by using the same
JP2001207167A (en) Light-emission material for organic electro-luminescent element and organic electro-luminescent element using the same
JP2001064640A (en) Material for organic electroluminescence element and organic electroluminescence element by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees