JP4380154B2 - Solidification method of mud - Google Patents

Solidification method of mud Download PDF

Info

Publication number
JP4380154B2
JP4380154B2 JP2002372391A JP2002372391A JP4380154B2 JP 4380154 B2 JP4380154 B2 JP 4380154B2 JP 2002372391 A JP2002372391 A JP 2002372391A JP 2002372391 A JP2002372391 A JP 2002372391A JP 4380154 B2 JP4380154 B2 JP 4380154B2
Authority
JP
Japan
Prior art keywords
mud
solidifying
phosphorus
soil
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002372391A
Other languages
Japanese (ja)
Other versions
JP2004203962A (en
Inventor
孝典 平尾
和正 山本
元四 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002372391A priority Critical patent/JP4380154B2/en
Publication of JP2004203962A publication Critical patent/JP2004203962A/en
Application granted granted Critical
Publication of JP4380154B2 publication Critical patent/JP4380154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、泥土の固化方法に係り、例えば土木建築現場において発生する建設汚泥等の高含水比の泥土であっても固化することができる固化方法に関する。
【0002】
【従来の技術】
建設現場から排出される土は、含水比が高く、「泥状の状態」を示すことがある。「泥状の状態」とは、一般的に、標準仕様ダンプトラックに山積みができず、その上を人が歩けない状態を指し、この「泥状の状態」を、土の強度の指標で示すならば、コーン指数が200kN/m未満、又は一軸圧縮強度50kN/m以下の状態である。なお、コーン指数(kN/m)とは、コーンを土中に貫入させたときの貫入抵抗力をコーンの底面積で除した値であり、運搬、リサイクルのためには、コーン指数200kN/m以上が必要とされる。
【0003】
このような泥状の状態を示す建設汚泥は、産業廃棄物として取り扱われるため、廃棄物処理法に従って埋立処分等の方法で、適性に処理する必要がある。
【0004】
ところで、建設現場から排出される各種の建設廃棄物のうち、「木材、コンクリート塊、アスファルト塊」については、平成14年5月30日に施行された「建設リサイクル法」にてリサイクルすることが義務付けられている。しかしながら、建設汚泥は、1年間に800万トン(平成7年実績)排出され、建設廃棄物の10%程度を占めているにもかかわらず、十分な処理技術が確立されていないという理由から、「建設リサイクル法」の規制の対象とされておらず、産業廃棄物としてその多くが埋立て処分されているのが現状である。
【0005】
しかし、埋立処分場の残余容積は逼迫しており、残余年数は全国平均で3.1年という状態である(平成10年実績)。このような背景から、国土交通省は、新たに「建設リサイクル推進計画2002」を策定し、建設汚泥のリサイクルの推進目標を具体的にうたっている。従って、今後は、建設汚泥のリサイクルが必要とされることが十分に予想される。
【0006】
従来、泥土の固化処理技術としては、以下の方法がある。
(1) セメント系固化剤による泥土の固化
(2) 古紙、吸水繊維、無機吸水材、吸水樹脂といった吸水素材による泥土の固化
(3) 機械的な脱水による泥土の固化
【0007】
このうち、セメント系固化剤による泥土の固化では、処理土がpH12付近という強いアルカリ性になるという問題がある。高アルカリ性の土壌は植物の生育に不向きであり、発芽障害、生育障害が起こるため、セメント系固化剤で固化することはできず処理された高pHの処理土は、植生を目的とした用途にリサイクルすることはできず、用途が限定される。また、降雨や地下水などが高pHの処理土と接触した場合、アルカリ性に変化して流れ出ることになり、環境基準、排水基準を満足しないという問題も生じる。
【0008】
吸水素材による泥土の固化では、含水率が高い泥土に対して、吸水素材を大量に添加しなければならず、効率が悪い。また、吸水素材を泥土に大量に混合することで、処理土の体積が増加し、処理土の運搬費用の増大につながる。また一般的に、吸水素材は比重が軽く、粒径が小さいことから、泥土と混合する際の粉塵が問題となることもある。
【0009】
機械的な脱水による泥土の固化では、脱水機の設置スペースが必要であり、また、脱水された処理土は化学的性状が改質された状態ではないため、再び降雨や地下水にさらされることで、泥状の状態に戻る(再泥化)という問題がある。
【0010】
【発明が解決しようとする課題】
本発明は、上記従来の問題点を解決し、運搬汚泥等の高含水比の泥土であっても十分に固化することができ、また、pHが中性ないし弱アルカリ性でありリサイクル性に優れた処理土を得ることができる泥土の固化方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の泥土の固化方法は、泥土に高分子凝集剤を添加混合することにより、泥土を団粒化させた後、酸性無機物質と水硬性物質とを含む泥土の固化剤を添加混合し、pHが中性ないし弱アルカリ性であり、コーン指数が200kN/m以上の処理土を得る泥土の固化方法であって、該高分子凝集剤がアクリルアミド系高分子エマルジョンであり、該高分子凝集剤の添加量が泥土に対して1〜8kg/m であることを特徴とする。
【0012】
本発明の固化剤では、水硬性物質により泥土をコーン指数200kN/m以上に固化し、また酸性無機物質により処理土のpHを中性ないし弱アルカリ性に調整することができる。
【0013】
本発明において、酸性無機物質としては、燐含有酸性肥料が好ましく、また水硬性物質としては酸化マグネシウム及び/又は酸化カルシウムが好ましい。
【0014】
本発明の固化剤の作用効果を、水硬性物質としての酸化マグネシウムと酸性無機物質としての過燐酸石灰を例に説明すると、泥土に混合された酸化マグネシウムはその水和反応に伴い、水酸化マグネシウムを経て、空気中の炭酸に炭酸化され、炭酸マグネシウムとなる。この反応により泥土が固化される。この状態では、泥土は弱アルカリ性を示すが、酸性無機物質である燐酸石灰を併用することによりpHを中性ないし弱アルカリ性とすることができ、かつ、コーン指数200kN/m以上の処理土を得ることができる。
【0015】
なお、燐酸は、土のpHが6以上の場合は、置換性カルシウムと反応して難溶性の燐酸第二石灰や燐酸第三石灰となるため、土に吸収され、肥料として植物の生育に利用される。マグネシウムと燐酸の塩は石灰と比べて、水に溶けやすいが、土への燐酸の吸収を促進することが期待できる。
【0016】
本発明の泥土の固化方法は、pHが中性ないし弱アルカリ性で、コーン指数が200kN/m以上の処理土を得るものであり、植生土として有効利用可能な良好な処理土を得ることができる。
【0017】
【発明の実施の形態】
以下に本発明の泥土の固化方法の実施の形態を詳細に説明する。
【0018】
本発明の固化剤は、酸性無機物質と水硬性物質とを含むものである。
【0019】
酸性無機物質としては、処理土を植生土としてリサイクルした場合に良好な植生効果が得られることから、燐含有耐性肥料を用いることが好ましく、燐含有酸性肥料としては、過燐酸石灰、重過燐酸石灰、苦土過燐酸、苦土重焼燐、及び熔成燐肥等の一般に農業分野で使用されているものを用いることができる。
【0020】
酸性無機物質は、燐と共にマグネシウムを含む肥料であっても良く、このようなものとしては、蛇紋岩過燐酸石灰があり、マグネシウム欠乏地では特に肥料効果が高い。即ち、燐とマグネシウムは肥料の5要素(N,P,K,Ca,Mg)に含まれるものであり、植物の生育に適した処理土を得るために有効である。
【0021】
これらの燐含有酸性肥料は1種を単独で用いても良く、2種以上を混合して用いても良い。
【0022】
水硬性物質としては、酸化マグネシウム及び/又は酸化カルシウムが好適であるが、ポルトランドセメントなどのセメントであっても良い。なお、酸化マグネシウムは、植生土としての再利用の場合に有効である。
【0023】
酸性無機物質と水硬性物質との混合割合には特に制限はなく、pH中性ないし弱アルカリ性でコーン指数が200kN/m以上の処理土が得られるような割合となるように適宜決定されるが、通常の場合、酸性無機物質:水硬性物質=20:80〜50:50(重量比)の範囲とすることが好ましい。この範囲よりも酸性無機物質が多いと得られる処理土のコーン指数が低くなる傾向にあり、水硬性物質が多いと得られる処理土のpHが高くなる傾向がある。
【0024】
本発明の固化剤は、酸性無機物質と水硬性物質とが予め混合されたものであっても良く、また、各々別々となっているものであっても良い。酸性無機物質と水硬性物質とが別々に提供される場合、予め混合して泥土に添加しても良く、各々別々に添加混合しても良い。酸性無機物質と水硬性物質とを別々に泥土に添加混合する場合、酸性無機物質を先に添加混合しても水硬性物質を先に添加混合でも、いずれでも良い。
【0025】
また、本発明の固化剤は、酸性無機物質及び水硬性物質以外の成分を含有していても良く、この場合、含有し得る他の成分としては木材、古紙、シリカ等の繊維物質やシリカヒューム、炭酸カルシウムなどのマイクロフィラー効果が得られる無機物等が挙げられる。
【0026】
泥土への本発明の固化剤の添加量は、所望のpH及びコーン指数の処理土が得られるような量であれば良く、特に制限はないが、実用的な添加量は泥土に対して50〜150kg/mである。
【0027】
このような本発明の固化剤で処理して得られる処理土のpHは、特に6〜10の中性ないし弱アルカリ性であることが好ましい。また、処理土のコーン指数は、200kN/m以上とする。
【0028】
なお、このコーン指数は、本発明の固化剤を泥土に添加混合した後、長くとも24時間後の処理土のコーン指数である。即ち、本発明の固化剤は、泥土に混合した後24時間以内にコーン指数200kN/m以上の処理土を得ることができるものである。
【0029】
本発明の固化方法は、このような本発明の固化剤を泥土に添加混合して固化するものであるが、この固化剤の添加混合に先立ち、アクリルアミド系の高分子凝集剤を泥土に添加混合し、その後本発明の固化剤を添加混合する。
【0030】
このように固化剤の添加混合に先立ち高分子凝集剤を添加混合することにより、泥土を団粒化させ、固化剤との混練性を良好なものとすることができる。
【0031】
この場合、高分子凝集剤の添加量は、泥土に対して1〜8kg/m程度、或いはコーン指数50〜150kN/m程度の団粒物が得られる程度とするのが好ましい。
【0032】
本発明で固化対象とする泥土は、土木建築現場(浚渫工事、建設工事、トンネル工事)等で発生する建設汚泥であるが、本発明はこれに限らず、泥水、ヘドロ、スラッジ類、更には、上、下水処理場などで発生する汚泥の固化処理にも適用することができる。これらの泥土は通常含水比(含有水分重量/泥土の乾燥重量)0.65以上、特に0.7以上の高含水比で、コーン指数30kN/m以下の低コーン指数の泥状物である。
【0033】
本発明の固化方法により得られた処理土は、pH中性ないし弱アルカリ性で植生に適したものであるため、農業用土壌として有効に再利用することができる。
【0034】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0035】
[泥土の固化試験]
実施例1〜4,比較例1
以下の手順で泥土の固化処理を行った。
(1) 浚渫泥土(含水比:1.443、比重:1.350、pH:6.97、コーン指数
0kN/m)を200ccビーカーに採取した。
(2) 凝集剤(栗田工業(株)製 アクリルアミド系高分子エマルジョン「クリサット
C−333L」を3kg/m添加して、泥土を団粒化させた。
(3) 表1に示す配合の固化剤を泥土1m当り、200kg添加した(ただし、比較例
1では固化剤添加せず)。
(4) スパーテルにて十分に撹拌した。
【0036】
上記固化処理後、4時間及び24時間経過後の処理土のコーン指数を各々山中式土壌硬度計を用いて測定すると共に、処理土のpHを測定した。
【0037】
結果を表1に示す。
【0038】
比較例2,3
実施例1で処理したものと同じ浚渫泥土に凝集剤を添加することなく、普通ポルトラントセメントを50kg/m(比較例2)又は200kg/m(比較例3)添加、混合して固化処理し、同様に24時間後の処理土のコーン指数及びpHを測定し、結果を表1に示した。
【0039】
【表1】

Figure 0004380154
【0040】
[植生試験]
上記汚泥の固化試験において、実施例1,4及び比較例1〜3で得られた処理土を試験土壌とし、「こまつな」を20粒植えて発芽試験を行うと共に、生育試験を行った。
【0041】
栽培から2日及び4日経過した段階での発芽率をそれぞれ調べ、結果を表2に示した。また、13日経過後の草丈を調べ、結果を表2に示した。
【0042】
【表2】
Figure 0004380154
【0043】
以上の結果から本発明によれば、高含水比の泥土を固化して、植生土として有効利用可能な良好な改質土を得ることができることがわかる。
【0044】
【発明の効果】
以上詳述した通り、本発明の泥土の固化方法によれば、建設汚泥等の含水比の高い泥土を、良好な作業性のもとに効果的に固化することができ、pHが中性ないし弱アルカリ性で再泥化や容量の増加の問題もないリサイクル性に優れた処理土を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-method of the mud, for example, to a solid method even mud high water content such as construction sludge that can be solidified to occur in civil engineering construction site.
[0002]
[Prior art]
The soil discharged from the construction site has a high moisture content and may show a “muddy state”. “Muddy state” generally refers to a state where a standard dump truck cannot be piled up and a person cannot walk on it, and this “muddy state” is indicated by an index of soil strength. If less than the cone index 200 kN / m 2, or uniaxial compressive strength 50 kN / m 2 or less states. The corn index (kN / m 2 ) is a value obtained by dividing the penetration resistance when the corn penetrates into the soil by the bottom area of the corn. For transportation and recycling, the cone index is 200 kN / m 2 or more is required.
[0003]
Since construction sludge showing such a mud state is handled as industrial waste, it needs to be appropriately treated by a method such as landfill disposal according to the waste treatment method.
[0004]
By the way, among various types of construction waste discharged from construction sites, “wood, concrete blocks, asphalt blocks” can be recycled according to the “Construction Recycling Law” enforced on May 30, 2002. Mandatory. However, construction sludge is discharged 8 million tons per year (actual result in 1995) and accounts for about 10% of construction waste. However, sufficient treatment technology has not been established. It is not subject to the regulations of the “Construction Recycling Law”, and many of them are disposed of as landfills as industrial waste.
[0005]
However, the remaining volume of the landfill site is tight, and the remaining years are 3.1 years on average in Japan (actual results in 1998). Against this background, the Ministry of Land, Infrastructure, Transport and Tourism has newly formulated the “Construction Recycling Promotion Plan 2002” and has specifically stated the promotion goals for construction sludge recycling. Therefore, it is expected that recycling of construction sludge will be required in the future.
[0006]
Conventionally, there are the following methods as a solidification technique for mud.
(1) Solidification of mud with cement solidifying agent
(2) Solidification of mud with water-absorbing materials such as waste paper, water-absorbing fiber, inorganic water-absorbing material, water-absorbing resin
(3) Solidification of mud by mechanical dehydration [0007]
Among these, solidification of mud with a cement-based solidifying agent has a problem that the treated soil becomes strongly alkaline with a pH of around 12. Highly alkaline soil is unsuitable for plant growth, and germination and growth failures occur, so it cannot be solidified with a cement-based solidifying agent, and treated high-pH treated soil can be used for vegetation purposes. It cannot be recycled and uses are limited. In addition, when rain, groundwater, or the like comes into contact with high pH treated soil, it changes to alkaline and flows out, resulting in a problem that environmental standards and drainage standards are not satisfied.
[0008]
In solidifying mud with a water-absorbing material, a large amount of water-absorbing material must be added to mud with a high water content, which is inefficient. In addition, by mixing a large amount of the water-absorbing material with the mud, the volume of the treated soil increases, leading to an increase in the transportation cost of the treated soil. In general, since the water-absorbing material has a low specific gravity and a small particle size, dust when mixed with mud may be a problem.
[0009]
Solidification of mud by mechanical dehydration requires a space for installing a dehydrator, and the dehydrated treated soil is not in a state of improved chemical properties, so it is exposed to rainfall and groundwater again. There is a problem of returning to a muddy state (re-mudification).
[0010]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, can be sufficiently solidified even in a high water content mud such as transport sludge, and has a pH of neutral to weak alkaline and excellent recyclability. and to provide a solid-method of mud can get treated soil.
[0011]
[Means for Solving the Problems]
In the method for solidifying mud according to the present invention, after the mud is agglomerated by adding and mixing the polymer flocculant to the mud, the solidifying agent for mud containing an acidic inorganic substance and a hydraulic substance is added and mixed. A method for solidifying mud to obtain a treated soil having a neutral or weak alkaline pH and a corn index of 200 kN / m 2 or more, wherein the polymer flocculant is an acrylamide polymer emulsion, and the polymer flocculant The added amount of is 1 to 8 kg / m 3 with respect to the mud .
[0012]
In the solidifying agent of the present invention, mud can be solidified to a cone index of 200 kN / m 2 or more with a hydraulic substance, and the pH of the treated soil can be adjusted to neutral to weakly alkaline with an acidic inorganic substance.
[0013]
In the present invention, the acidic inorganic substance is preferably a phosphorus-containing acidic fertilizer, and the hydraulic substance is preferably magnesium oxide and / or calcium oxide.
[0014]
The action and effect of the solidifying agent of the present invention will be explained by taking magnesium oxide as a hydraulic substance and lime perphosphate as an acidic inorganic substance as an example. Magnesium oxide mixed in mud is accompanied by its hydration reaction, magnesium hydroxide. After passing through, it is carbonated to carbonic acid in the air to become magnesium carbonate. This reaction solidifies the mud. In this state, the mud is weakly alkaline, but the pH can be made neutral or weakly alkaline by using lime phosphate, which is an acidic inorganic substance, and treated soil having a corn index of 200 kN / m 2 or more can be obtained. Obtainable.
[0015]
In addition, when the soil pH is 6 or more, phosphoric acid reacts with substituting calcium to form hardly soluble dicalcium phosphate or tricalcium phosphate, so it is absorbed into the soil and used as a fertilizer for plant growth. Is done. Magnesium and phosphoric acid salts are more soluble in water than lime, but can be expected to promote absorption of phosphoric acid into the soil.
[0016]
Mud method of the solidification of the present invention, p H is a neutral to weakly alkaline, which cone index to obtain a 200 kN / m 2 or more treated soil, to obtain effective available good processing soil as vegetation soil Can do.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the solid method the mud of the present invention will be described in detail below.
[0018]
The solidifying agent of the present invention contains an acidic inorganic substance and a hydraulic substance.
[0019]
As the acidic inorganic substance, it is preferable to use a phosphorus-containing fertilizer because a good vegetation effect can be obtained when the treated soil is recycled as vegetation soil. As the phosphorus-containing acidic fertilizer, phosphoperphosphate, heavy superphosphate Those generally used in the agricultural field, such as lime, bituminous superphosphoric acid, bitumen heavy burned phosphorus, and molten phosphorus fertilizer, can be used.
[0020]
The acidic inorganic substance may be a fertilizer containing magnesium together with phosphorus. As such, there is serpentine perphosphate lime, and the fertilizer effect is particularly high in a magnesium-deficient land. That is, phosphorus and magnesium are contained in the five elements of fertilizer (N, P, K, Ca, Mg) and are effective in obtaining treated soil suitable for plant growth.
[0021]
These phosphorus-containing acidic fertilizers may be used alone or in combination of two or more.
[0022]
As the hydraulic substance, magnesium oxide and / or calcium oxide is suitable, but cement such as Portland cement may be used. Magnesium oxide is effective in the case of reuse as vegetation soil.
[0023]
The mixing ratio of the acidic inorganic substance and the hydraulic substance is not particularly limited, and is determined as appropriate so that a treated soil having a pH neutral or weak alkaline and a corn index of 200 kN / m 2 or more can be obtained. However, in the usual case, it is preferable that the acidic inorganic substance: hydraulic substance = 20: 80 to 50:50 (weight ratio). When there is more acidic inorganic substance than this range, the corn index of the treated soil obtained tends to be low, and when there are many hydraulic substances, the pH of the treated soil obtained tends to be high.
[0024]
The solidifying agent of the present invention may be prepared by mixing an acidic inorganic substance and a hydraulic substance in advance, or may be separate from each other. When the acidic inorganic substance and the hydraulic substance are provided separately, they may be mixed in advance and added to the mud, or may be added and mixed separately. When the acidic inorganic substance and the hydraulic substance are separately added to the mud, the acidic inorganic substance may be added and mixed first, or the hydraulic substance may be added and mixed first.
[0025]
Further, the solidifying agent of the present invention may contain components other than the acidic inorganic substance and hydraulic substance. In this case, examples of other components that can be contained include fiber substances such as wood, waste paper, and silica, and silica fume. And inorganic substances that can obtain a microfiller effect such as calcium carbonate.
[0026]
The amount of the solidifying agent of the present invention added to the mud is not particularly limited as long as a treated soil having a desired pH and corn index can be obtained. ~ 150 kg / m 3 .
[0027]
The pH of the treated soil obtained by treatment with such a solidifying agent of the present invention is preferably 6 to 10 neutral to weakly alkaline. The treated soil has a cone index of 200 kN / m 2 or more.
[0028]
In addition, this corn index is a corn index of the treated soil after 24 hours at the most after adding and mixing the solidifying agent of the present invention to the mud. That is, the solidifying agent of the present invention can obtain treated soil having a cone index of 200 kN / m 2 or more within 24 hours after mixing with mud.
[0029]
Solidification method of the present invention is a solidifying agent of the invention is to solidify added and mixed into the mud, prior to the admixing of the solidification agent, adding a polymer flocculant acrylamide based on mud After mixing, the solidifying agent of the present invention is added and mixed.
[0030]
Thus, by adding and mixing the polymer flocculant prior to the addition and mixing of the solidifying agent, the mud can be agglomerated and the kneadability with the solidifying agent can be improved.
[0031]
In this case, the addition amount of the polymeric coagulant, 1~8kg / m 3 approximately against mud, or preferably in the extent to which the cone index 50~150kN / m 2 about agglomerates are obtained.
[0032]
The mud to be solidified in the present invention is construction sludge generated at a civil engineering construction site (such as dredging, construction, and tunnel construction), but the present invention is not limited to this, and mud, sludge, sludge, and more In addition, it can be applied to solidification treatment of sludge generated in water treatment and sewage treatment plants. These muds are usually low-cone mud with a high water content ratio (content of water content / dry weight of mud) of 0.65 or more, particularly 0.7 or more, and a cone index of 30 kN / m 2 or less. .
[0033]
Since the treated soil obtained by the solidification method of the present invention is neutral or weakly alkaline and suitable for vegetation, it can be effectively reused as agricultural soil.
[0034]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0035]
[Solid solidification test]
Examples 1-4, Comparative Example 1
The mud was solidified by the following procedure.
(1) Dredged mud soil (water content ratio: 1.443, specific gravity: 1.350, pH: 6.97, corn index 0 kN / m 2 ) was collected in a 200 cc beaker.
(2) Aggregating agent (Kurita Kogyo Co., Ltd. acrylamide polymer emulsion “Chrysat C-333L” was added at 3 kg / m 3 to aggregate mud.
(3) 200 kg of a solidifying agent having the composition shown in Table 1 was added per 1 m 3 of mud (however, in Comparative Example 1, no solidifying agent was added).
(4) The mixture was sufficiently stirred with a spatula.
[0036]
The corn index of the treated soil after 4 hours and 24 hours after the solidification treatment was measured using a Yamanaka soil hardness tester, and the pH of the treated soil was measured.
[0037]
The results are shown in Table 1.
[0038]
Comparative Examples 2 and 3
Without adding a flocculant to the same dredged soil treated in Example 1, 50 kg / m 3 (Comparative Example 2) or 200 kg / m 3 (Comparative Example 3) of ordinary portland cement was added, mixed and solidified. In the same manner, the corn index and pH of the treated soil after 24 hours were measured, and the results are shown in Table 1.
[0039]
[Table 1]
Figure 0004380154
[0040]
[Vegetation test]
In the sludge solidification test, the treated soil obtained in Examples 1 and 4 and Comparative Examples 1 to 3 was used as a test soil, and 20 seeds of “Komatsuna” were planted to perform a germination test and a growth test was performed.
[0041]
The germination rates at the stage when 2 days and 4 days have passed after cultivation were examined, and the results are shown in Table 2. The plant height after 13 days was examined and the results are shown in Table 2.
[0042]
[Table 2]
Figure 0004380154
[0043]
From the above results, it can be seen that according to the present invention, it is possible to solidify mud soil with a high water content ratio and obtain a good modified soil that can be effectively used as vegetation soil.
[0044]
【The invention's effect】
As described above in detail, according to the solid method the mud of the present invention, a high water content ratio, such as construction sludge mud, it is possible to effectively solidify the original good workability, pH neutral In addition, it is possible to obtain a treated soil excellent in recyclability that is weakly alkaline and does not have a problem of re-mudging or capacity increase.

Claims (6)

泥土に高分子凝集剤を添加混合することにより、泥土を団粒化させた後、酸性無機物質と水硬性物質とを含む泥土の固化剤を添加混合し、pHが中性ないし弱アルカリ性で、コーン指数が200kN/m以上の処理土を得る泥土の固化方法であって、該高分子凝集剤がアクリルアミド系高分子エマルジョンであり、該高分子凝集剤の添加量が泥土に対して1〜8kg/m であることを特徴とする泥土の固化方法。After the mud is agglomerated by adding and mixing a polymer flocculant to the mud, a mud solidifying agent containing an acidic inorganic substance and a hydraulic substance is added and mixed, the pH is neutral to weakly alkaline, A method for solidifying mud to obtain treated soil having a cone index of 200 kN / m 2 or more, wherein the polymer flocculant is an acrylamide polymer emulsion, and the amount of the polymer flocculant added is 1 to mud method of solidification which is a 8 kg / m 3. 請求項1において、該酸性無機物質が燐含有酸性肥料であることを特徴とする泥土の固化方法。  The method for solidifying mud according to claim 1, wherein the acidic inorganic substance is phosphorus-containing acidic fertilizer. 請求項2において、該燐含有酸性肥料が過燐酸石灰、重過燐酸石灰、苦土過燐酸、苦土重焼燐、及び熔成燐肥よりなる群から選ばれる1種又は2種以上であることを特徴とする泥土の固化方法。  3. The phosphorus-containing acidic fertilizer according to claim 2, wherein the phosphorus-containing acidic fertilizer is one or more selected from the group consisting of superphosphate lime, heavy superphosphate lime, bitumen superphosphate, bitumen heavy burnt phosphorus, and molten phosphorus fertilizer. A method for solidifying mud characterized by the above. 請求項1ないし3のいずれか1項において、該水硬性物質が酸化マグネシウム及び/又は酸化カルシウムであることを特徴とする泥土の固化方法。  4. The method for solidifying mud according to claim 1, wherein the hydraulic substance is magnesium oxide and / or calcium oxide. 請求項1ないし4のいずれか1項において、該処理土のpHが6〜10であることを特徴とする泥土の固化方法。  The solidification method of mud according to any one of claims 1 to 4, wherein the pH of the treated soil is 6 to 10. 請求項1ないし5のいずれか1項において、該固化剤の酸性無機物質と水硬性物質との含有割合が酸性無機物質:水硬性物質=20:80〜50:50(重量比)であることを特徴とする泥土の固化方法。  The content ratio of the acidic inorganic substance and the hydraulic substance in the solidifying agent according to any one of claims 1 to 5 is acidic inorganic substance: hydraulic substance = 20: 80 to 50:50 (weight ratio). A method for solidifying mud.
JP2002372391A 2002-12-24 2002-12-24 Solidification method of mud Expired - Fee Related JP4380154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372391A JP4380154B2 (en) 2002-12-24 2002-12-24 Solidification method of mud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372391A JP4380154B2 (en) 2002-12-24 2002-12-24 Solidification method of mud

Publications (2)

Publication Number Publication Date
JP2004203962A JP2004203962A (en) 2004-07-22
JP4380154B2 true JP4380154B2 (en) 2009-12-09

Family

ID=32811010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372391A Expired - Fee Related JP4380154B2 (en) 2002-12-24 2002-12-24 Solidification method of mud

Country Status (1)

Country Link
JP (1) JP4380154B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075989A (en) * 2003-09-02 2005-03-24 Arumaare Engineering Kk Method for producing artificial soil
JP4632865B2 (en) * 2005-05-25 2011-02-16 新日本製鐵株式会社 Construction sludge improvement method and improvement equipment used therefor
JP5969099B1 (en) * 2015-09-07 2016-08-10 太平洋セメント株式会社 Treatment method of mud generated by bubble shield method
CN113526809A (en) * 2021-07-20 2021-10-22 深圳市市政工程总公司 Dredged sediment curing modification method based on organic conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3796598B2 (en) * 1997-07-11 2006-07-12 太平洋セメント株式会社 Low alkaline hydraulic composition
JP3511287B2 (en) * 2000-01-18 2004-03-29 独立行政法人農業工学研究所 Soil hardener composition and method for producing the same
JP4298139B2 (en) * 2000-06-22 2009-07-15 阪神高速道路株式会社 Recycling method for mud containing organic components
JP2002206090A (en) * 2000-11-09 2002-07-26 Matsuda Giken Kogyo Kk Neutral soil-solidifying agent and method of improving ground and the like, and means for preventing elution of heavy metal
JP3527477B2 (en) * 2001-02-26 2004-05-17 松田技研工業株式会社 Soil hardening agent
JP2002363563A (en) * 2001-06-01 2002-12-18 Taiyu Kensetsu Co Ltd Mud caking material

Also Published As

Publication number Publication date
JP2004203962A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
Elbaz et al. Review of beneficial uses of cement kiln dust (CKD), fly ash (FA) and their mixture
CN105254166B (en) A kind of dewatered sludge curing agent, preparation method and application method
KR100956593B1 (en) Manufacturing method of artificial soil by solidifying organic or inorganic sludge
KR101374264B1 (en) Composition for conditioning soil or promoting plant growth comprising inorganic sludge and method for producing thefeof
JP3824844B2 (en) Improving material for solidifying / neutralizing mud substances and method for solidifying / neutralizing mud substances
JP2000176493A (en) Sludge solidifying material and solidifying treatment
CN100503487C (en) High efficiency solidifying processing agent for waste sludge in oil area and its solidifying treating process
KR101144777B1 (en) Manufacturing method of soil modifier using sludge of dredge
JP4380154B2 (en) Solidification method of mud
JP2001182044A (en) Muddy soil solidifying material and muddy soil solidifying method
JP2005013973A (en) Solidification material of sludge, processing method of sludge using the same and reutilizing method of solidified sludge
JP5533690B2 (en) Granular materials for civil engineering work
JP3803076B2 (en) Admixture for soil stabilization and soil stabilization method using the same
KR100356344B1 (en) Founding method of wall for blocking a leachate from a buried wastes
RU2646882C2 (en) Method for ground production in sludge decantation and subsequent reclamation
RU2378233C2 (en) Lime fertiliser production method
JP2000041479A (en) Treatment of dehydrated cake and culture material made thereof
RU2598546C2 (en) Binder mixture containing lime-containing wastes of heat power industrial complex (versions)
GB2295146A (en) Agricultural product from waste
JP2002114556A (en) Functional cement hardened body
KR101453066B1 (en) Ameliorated topsoil for stabilizing and greening of slope surface and method for stabilizing and greening slope surface using the same
JP4892196B2 (en) Greening soil, method for producing greening soil, and greening method using greening soil
KR100881149B1 (en) High water content dredging mud solidification stabilizer and it's improved soil production method
JP2002121555A (en) Soil stabilizer
JPH0971777A (en) Process for neutralizing solidified soil resulting from solidification of sludge and soft soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees