JP4379315B2 - Mechanical structure member and shaft using the same - Google Patents

Mechanical structure member and shaft using the same Download PDF

Info

Publication number
JP4379315B2
JP4379315B2 JP2004341469A JP2004341469A JP4379315B2 JP 4379315 B2 JP4379315 B2 JP 4379315B2 JP 2004341469 A JP2004341469 A JP 2004341469A JP 2004341469 A JP2004341469 A JP 2004341469A JP 4379315 B2 JP4379315 B2 JP 4379315B2
Authority
JP
Japan
Prior art keywords
less
structural member
shaft
strength
mechanical structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004341469A
Other languages
Japanese (ja)
Other versions
JP2006152330A (en
Inventor
孝雄 林
秀樹 臼木
正寿 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004341469A priority Critical patent/JP4379315B2/en
Publication of JP2006152330A publication Critical patent/JP2006152330A/en
Application granted granted Critical
Publication of JP4379315B2 publication Critical patent/JP4379315B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、機械構造部材及びこれを用いたシャフトに係り、更に詳細には、特にねじり疲労強度が重要視される全ての部品に用い得る機械構造部材及びこれを用いたシャフトに関する。   The present invention relates to a mechanical structural member and a shaft using the same, and more particularly to a mechanical structural member that can be used for all parts in which torsional fatigue strength is particularly important and a shaft using the mechanical structural member.

従来の浸炭シャフトとしては、JISで定められているSCr420H、SCM420H等が用いられている。しかし、最近の自動車等輸送機械の高出力化、軽量化の動向に伴い、動力伝達部品においてねじり強度向上のニーズが高く、上記JIS規格鋼では十分ではなかった。   As a conventional carburized shaft, SCr420H, SCM420H, etc. defined by JIS are used. However, with the recent trend toward higher output and lighter weight for transportation equipment such as automobiles, there is a high need for improving torsional strength in power transmission parts, and the above JIS standard steel is not sufficient.

このような背景から、本願発明者は、ボロンを添加した肌焼鋼を用いてねじり強度を向上させる手法を開示している(例えば特許文献1参照)。しかしながら、この手法では不完全焼入れによる硬度低下を避けるべく、浸炭熱処理条件が限定されることから、量産製造性が良くないという欠点があった。
特開2003−239039号公報
From such a background, the inventor of the present application discloses a technique for improving torsional strength using a case-hardened steel to which boron is added (see, for example, Patent Document 1). However, this method has a drawback in that mass production manufacturability is not good because the carburizing heat treatment conditions are limited in order to avoid a decrease in hardness due to incomplete quenching.
JP 2003-239039 A

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、従来から使用されている浸炭部材に比べて、部品コストの大幅な増加がなく、製造性に優れ、ねじり疲労強度に優れた機械構造部材及びこれを用いたシャフトを提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is that there is no significant increase in parts cost compared to carburized members that have been used in the past. An object of the present invention is to provide a mechanical structural member having excellent properties and torsional fatigue strength and a shaft using the same.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、ボロン以外にモリブデンを添加すること、及び浸炭層の深さを最適化することにより、上記課題が解決できることを見出し、本発明を完成するに至った。
また、本発明者らは、小径のショットピーニングを破壊起点部に効率良く投射することにより、ねじり疲労強度の向上が見込めることを見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by adding molybdenum in addition to boron and optimizing the depth of the carburized layer. The invention has been completed.
In addition, the present inventors have found that an improvement in torsional fatigue strength can be expected by efficiently projecting small diameter shot peening onto the fracture starting point portion, and have completed the present invention.

本発明によれば、ボロンとともに添加するモリブデン及び一定深さの浸炭層により、浸炭層の靭性が向上するため、ねじり疲労強度に優れた機械構造部材及びこれを用いたシャフトが得られる。   According to the present invention, since the toughness of the carburized layer is improved by molybdenum added together with boron and the carburized layer having a certain depth, a mechanical structural member excellent in torsional fatigue strength and a shaft using the same are obtained.

以下、本発明の機械構造部材及びこれを用いたシャフトについて詳細に説明する。なお、本明細書及び特許請求の範囲において、「%」は特記しない限り質量百分率を示す。   Hereinafter, the mechanical structural member of the present invention and the shaft using the same will be described in detail. In the present specification and claims, “%” indicates a mass percentage unless otherwise specified.

本発明の機械構造部材は、C:0.10〜0.30%、Si:1.00%以下、Mn:0.30〜1.70%、P:0.015%以下、S:0.020%以下、Cr:0.10〜1.60%、Mo:0.10〜1.00%、B:0.005〜0.0030%、N:0.03%以下及びAl:0.04%以下を含有し、更にNb:0.010〜0.200%及び/又はTi:0.010〜0.100%を含有し、残部はFe及び不可避不純物より構成される。このような構成により、浸炭層の靭性が向上し、ねじり入力を受ける構造部品に採用すれば高強度化、軽量化が可能となる。
以下に、各含有成分の限定理由を示す。
The mechanical structural member of the present invention has C: 0.10 to 0.30%, Si: 1.00% or less, Mn: 0.30 to 1.70%, P: 0.015% or less, S: 0.00. 020% or less, Cr: 0.10 to 1.60%, Mo: 0.10 to 1.00%, B: 0.005 to 0.0030%, N: 0.03% or less, and Al: 0.04 %, Nb: 0.010 to 0.200% and / or Ti: 0.010 to 0.100%, and the balance is composed of Fe and inevitable impurities. With such a configuration, the toughness of the carburized layer is improved, and if it is adopted for a structural component that receives torsional input, it is possible to increase the strength and reduce the weight.
Below, the reason for limitation of each containing component is shown.

C:0.10〜0.30%
Cは浸炭焼入れ後の硬さを向上させ、浸炭後の強度を向上させる作用がある。また、心部の強度を得るために必要な元素である。C量が0.10%未満の場合、その効果が小さくなり、0.30%を超えると心部の靭性や加工性が低下する。
C: 0.10 to 0.30%
C has the effect of improving the hardness after carburizing and quenching and improving the strength after carburizing. Further, it is an element necessary for obtaining the strength of the core. When the amount of C is less than 0.10%, the effect becomes small, and when it exceeds 0.30%, the toughness and workability of the core part are lowered.

Si:1.00%以下
Siは浸炭後の粒界酸化を助長し、強度の低下をもたらすため0.25%以下とすることが望ましい。しかし、真空浸炭やプラズマ浸炭などの粒界酸化の抑制が可能な処理においては0.25%以下に限定しなくてもよい。但し、過剰な添加は機械加工性や冷間鍛造性の悪化を招くので、その上限を1.00%以下とする。
Si: 1.00% or less Since Si promotes grain boundary oxidation after carburizing and brings about a decrease in strength, it is desirable to make it 0.25% or less. However, in a process capable of suppressing grain boundary oxidation such as vacuum carburizing and plasma carburizing, it is not necessarily limited to 0.25% or less. However, excessive addition causes deterioration of machinability and cold forgeability, so the upper limit is made 1.00% or less.

Mn:0.30〜1.70%
Mnは焼入れ性向上に有効な元素である。下限を0.3としたのは、靭性向上のため浸炭後に適度なオーステナイトの残留も必要だからである。また、1.70%を超えて含有すると冷間鍛造性を低下させ、浸炭後の粒界酸化を助長する。
Mn: 0.30 to 1.70%
Mn is an element effective for improving hardenability. The lower limit is set to 0.3 because moderate austenite remains after carburizing in order to improve toughness. Moreover, when it contains exceeding 1.70%, cold forgeability will be reduced and the grain boundary oxidation after carburizing will be promoted.

P:0.015%以下
Pは粒界に偏析しやすく、浸炭層の靭性を劣化させる元素である。その含有量が0.015%を超えると疲労強度の低下が顕著となる。また、Pは不純物元素のためなるべく含有量を0%に近づけることが望ましい。
P: 0.015% or less P is an element that easily segregates at grain boundaries and degrades the toughness of the carburized layer. When the content exceeds 0.015%, the decrease in fatigue strength becomes significant. Further, since P is an impurity element, the content is preferably as close to 0% as possible.

S:0.020%以下
Sも浸炭層の靭性を劣化させる元素である。その含有量が0.020%を超えると疲労強度の低下が顕著となる。またSは不純物元素のためなるべく含有量を0%に近づけることが望ましい。
S: 0.020% or less S is an element that deteriorates the toughness of the carburized layer. When the content exceeds 0.020%, the decrease in fatigue strength becomes significant. Further, since S is an impurity element, the content is preferably as close to 0% as possible.

Cr:0.10〜1.60%
Crは母材の焼入れ性の向上や心部の強度を向上させるため添加するが、過剰に添加すると結晶粒界の脆性を招くことがあるので1.60%以下とする。また、焼入れ性を確保するため含有量は0.10%以上添加する。
Cr: 0.10 to 1.60%
Cr is added in order to improve the hardenability of the base material and improve the strength of the core. However, if excessively added, brittleness of crystal grain boundaries may be caused, so the content is made 1.60% or less. Moreover, in order to ensure hardenability, content is added 0.10% or more.

Mo:0.10〜1.00%
Moは焼入れ性を向上させ、浸炭層の異常組織の生成を抑制し、且つ浸炭層の粒界強度の向上によって靭性を向上させることにより、き裂進展を遅延させる効果がある。0.10%未満ではその効果が十分ではなく、1.00%を超えて添加すると素材の硬さが増加し加工性や被削性が劣化する。
Mo: 0.10 to 1.00%
Mo improves the hardenability, suppresses the formation of abnormal structures in the carburized layer, and improves the toughness by improving the grain boundary strength of the carburized layer, thereby delaying crack propagation. If the content is less than 0.10%, the effect is not sufficient. If the content exceeds 1.00%, the hardness of the material increases and the workability and machinability deteriorate.

B:0.0005〜0.0030%
Bは焼入れ性に有効な元素であり、結晶粒界に偏析して粒界を強化して強度を向上させる効果がある。含有量が0.0005%未満ではその効果は十分に発揮されず、0.0030%を超えてもその効果は飽和する。
B: 0.0005 to 0.0030%
B is an element effective for hardenability, and has an effect of improving the strength by segregating at the grain boundaries and strengthening the grain boundaries. If the content is less than 0.0005%, the effect is not sufficiently exhibited, and if it exceeds 0.0030%, the effect is saturated.

Al:0.04%以下
Alは鋼中のNと反応してAlNを形成し、浸炭時のオーステナイト結晶粒の粗大化を防止する作用がある。しかし、0.04%を超えて添加するとその効果が飽和する。
Al: 0.04% or less Al reacts with N in steel to form AlN, and has an action of preventing coarsening of austenite crystal grains during carburizing. However, the effect is saturated when it exceeds 0.04%.

N:0.03%以下
Nは銅中のAlと反応してAlNを形成し、浸炭時のオーステナイト結晶粒の粗大化を防止する作用がある。しかし、0.03%を超えて添加するとその効果が飽和する。
N: 0.03% or less N reacts with Al in copper to form AlN and has an effect of preventing coarsening of austenite crystal grains during carburizing. However, if added over 0.03%, the effect is saturated.

Nb:0.010〜0.200%
浸炭焼入れ処理を施す肌焼鋼は、結晶粒が粗大化し易い。これを抑制するために微細析出物による粒界のピン留めが有効でありNbの炭窒化物を利用する。この場合、Nbの含有量が少ないと粒成長を抑制効果が乏しく、過剰に添加すると圧延後の鋼材の硬さ上がり冷間鍛造性が悪化する。
Nb: 0.010-0.200%
Case-hardened steel subjected to carburizing and quenching treatment tends to coarsen the crystal grains. In order to suppress this, pinning of grain boundaries by fine precipitates is effective, and Nb carbonitride is used. In this case, if there is little content of Nb, the effect which suppresses grain growth is scarce, and if it adds excessively, the hardness of the steel materials after rolling will rise and cold forgeability will deteriorate.

Ti:0.010〜0.100%
Bを添加してその結果を発揮するためには鋼材中では固溶Bで存在する必要がある。しかしBはNと親和力がつよくBNを形成してしまう。そこで、NをTiで固定して固溶Bを確保する。その場合、0.010%未満では添加量が少く、Nが残ってしまう。また、0.100%超では過剰な添加となり、粗大は析出物が発生して強度面に悪影響を及ぼす。
Ti: 0.010 to 0.100%
In order to exhibit the result by adding B, it is necessary to exist in a solid solution B in the steel material. However, B has a strong affinity for N and forms BN. Therefore, N is fixed with Ti to ensure solid solution B. In that case, if it is less than 0.010%, the addition amount is small and N remains. On the other hand, if it exceeds 0.100%, it is excessively added, and if it is coarse, precipitates are generated and the strength is adversely affected.

また、本発明の機械構造部材は、表面硬化処理として浸炭焼入れ焼戻し処理が施され、当該処理後の有効硬化層深さ(基準硬さ:513HV)は、機械構造部材の厚さに対して0.5〜3.0%である。例えば、本機械構造部材を用いたシャフトであれば、軸径に対して有効硬化層深さの比が0.5〜3.0%を満足する。
浸炭焼入れ焼戻し処理は、表面を硬化させ、ねじり強度を向上させるのに有効な処理であるが、少なくとも部材厚さ対する有効硬化層深さの比0.5%以上でなければその効果は発揮せず、3.0%を超えると浸炭層の靭性低下をもたらす。更に好ましくは1.0〜2.5%とすることがよい。
Further, the machine structural member of the present invention is subjected to a carburizing quenching and tempering treatment as a surface hardening treatment, and the effective hardened layer depth (reference hardness: 513 HV) after the treatment is 0 with respect to the thickness of the mechanical structural member. 0.5 to 3.0%. For example, in the case of a shaft using this machine structural member, the ratio of the effective hardened layer depth to the shaft diameter satisfies 0.5 to 3.0%.
The carburizing and tempering treatment is an effective treatment for hardening the surface and improving the torsional strength, but if the ratio of the effective hardened layer depth to the member thickness is not more than 0.5%, the effect cannot be exerted. If it exceeds 3.0%, the toughness of the carburized layer is reduced. More preferably, it is good to set it as 1.0 to 2.5%.

Ni:0.25%以下
Niは、焼入れ性を向上させる元素であり、浸炭焼入れ後の内部硬さを上げることに寄与する。また、製鋼段階において、除去不可能な不純物として存在している。しかし、0.25%を超える添加の場合は鋼材の硬さが高くなることにより、製造時の冷間鍛造性や切削加工性が悪化すること、材料のコストが大幅に増大するといった副作用が生じる。よって上限を0.25とする。
Ni: 0.25% or less Ni is an element that improves hardenability and contributes to increasing the internal hardness after carburizing and quenching. Moreover, it exists as an unremovable impurity in the steelmaking stage. However, in the case of addition exceeding 0.25%, the hardness of the steel material is increased, which causes adverse effects such as deterioration of cold forgeability and cutting workability at the time of manufacture and a significant increase in material cost. . Therefore, the upper limit is set to 0.25.

更に、上記機械構造部材は、Pb:0.3%以下、Bi:0.1%以下又はCa:0.1%以下、及びこれらを任意に組合せて含有することが好適である。
これらの元素は被削性を向上させるのに有効な元素であるが、上記含有量を超えると被削性向上効果が飽和するばかりでなく靭性が低下することがある。
Furthermore, the mechanical structural member preferably contains Pb: 0.3% or less, Bi: 0.1% or less, or Ca: 0.1% or less, and any combination thereof.
These elements are effective elements for improving the machinability. However, if the content exceeds the above content, not only the machinability improving effect is saturated but also the toughness may be lowered.

更にまた、上記機械構造部材は、40〜200μmの鋼球を投射圧力4〜6kg/cmで投射するショットピーニング処理が施され、被投射部表面の圧縮残留応力が1000〜1500MPaを満足することが好適である。
ねじり疲労負荷においてショットピーニングは初期亀裂の発生を抑制するのに有効である。初期亀裂の起点となる応力集中部を強化するためには、200μm以下の鋼球が望ましい。一方、40μmを下回ると、鋼球に十分なエネルギーを与えられず、圧縮残留応力の付与が困難となる。また、付与される圧縮残留応力は高い方が望ましいが、上述の手法により1000〜1500MPaであれば足りる。
Furthermore, the mechanical structural member is subjected to shot peening treatment in which a steel ball of 40 to 200 μm is projected at a projection pressure of 4 to 6 kg / cm 2 , and the compressive residual stress on the surface of the projection part satisfies 1000 to 1500 MPa. Is preferred.
Shot peening is effective in suppressing the occurrence of initial cracks in torsional fatigue loads. In order to reinforce the stress concentration part that becomes the starting point of the initial crack, a steel ball of 200 μm or less is desirable. On the other hand, if the thickness is less than 40 μm, sufficient energy cannot be given to the steel ball, and it becomes difficult to give compressive residual stress. Moreover, although it is desirable that the applied compressive residual stress is higher, 1000 to 1500 MPa is sufficient by the above-described method.

上述の機械構造部材は、ねじり疲労強度が重要視される全ての部品に用い得るが、代表的には、変速機のシャフトが挙げられる。かかるシャフトは、ねじり疲労強度が向上するので、部品の高強度化及び細軸化による軽量化が可能である。   The above-mentioned mechanical structural member can be used for all parts in which torsional fatigue strength is regarded as important, but a typical example is a transmission shaft. Since the torsional fatigue strength of such a shaft is improved, it is possible to reduce the weight by increasing the strength of the component and reducing the shaft.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1及び比較例1〜4)
表1に示す化学組織の鋼を通常の方法によって150kg真空溶製した。次いで、これらの鋼を通常の方法によって熱間鍛造、焼きならした後、図1に示すシャフト試験片に加工した。また、各試験片について浸炭焼入れ焼戻しを行い、表面の研削加工を施した。
また、実施例1及び比較例1,2では、表2に示す条件にてショットピーニング処理を行った。作製したシャフトの全仕様を表1に示す。
(Example 1 and Comparative Examples 1 to 4)
150 kg of steel having a chemical structure shown in Table 1 was vacuum-melted by a conventional method. Next, these steels were hot forged and normalized by a normal method, and then processed into a shaft specimen shown in FIG. Each test piece was carburized, quenched, and tempered, and the surface was ground.
In Example 1 and Comparative Examples 1 and 2, shot peening was performed under the conditions shown in Table 2. Table 1 shows all specifications of the manufactured shaft.

Figure 0004379315
Figure 0004379315

Figure 0004379315
Figure 0004379315

得られたシャフト試験片を用いて、ねじり試験機により疲労試験を実施した。図2に示す試験結果により負荷トルクと破損回数の関係を求め、それぞれ10万回の時間強度を求めた。表3に10万回強度及び比較例4を基準にしたときの強度比を示す。   Using the obtained shaft test piece, a fatigue test was performed with a torsion tester. The relationship between the load torque and the number of breakage was obtained from the test results shown in FIG. Table 3 shows strength ratios based on 100,000 times strength and Comparative Example 4.

Figure 0004379315
Figure 0004379315

表1及び表3より、実施例1では、モリブデンが添加され、硬化層も浅く、ショットピーニング処理も施されていることから、最も高いねじり疲労強度を示す。
これに対して、比較例1では、ボロンが添加され、硬化層が浅く、ショットピーニング処理が施されているが、モリブデンが添加されていない材料であるため強度が低い。また、比較例2では、硬化層が浅く、ショットピーニング処理が施されているが、ボロン、モリブデンが添加されていない材料であるため強度が低い。更に、比較例3では、ボロンが添加されているが、モリブデンが添加されていない材料であり、硬化層が深く、ショットピーニング処理が施されていないため強度が低い。更にまた、比較例4はボロン,モリブデンが添加されていない材料であり、硬化層も深く、ショットピーニング処理が施されていないため強度が低い。
From Table 1 and Table 3, in Example 1, since molybdenum is added, the hardened layer is shallow, and the shot peening treatment is performed, the highest torsional fatigue strength is shown.
On the other hand, in Comparative Example 1, boron is added, the hardened layer is shallow, and the shot peening treatment is performed, but the strength is low because the material is not added with molybdenum. In Comparative Example 2, the hardened layer is shallow and shot peening is performed, but the strength is low because it is a material to which boron and molybdenum are not added. Furthermore, in Comparative Example 3, boron is added, but molybdenum is not added. The cured layer is deep and the shot peening treatment is not performed, so the strength is low. Furthermore, Comparative Example 4 is a material to which boron and molybdenum are not added, the hardened layer is deep, and since the shot peening treatment is not performed, the strength is low.

シャフト試験片を示す断面図である。It is sectional drawing which shows a shaft test piece. ねじり疲労試験結果を示すグラフである。It is a graph which shows a torsional fatigue test result.

Claims (5)

C:0.10〜0.30%、Si:1.00%以下、Mn:0.30〜1.70%、P:0.015%以下、S:0.020%以下、Cr:0.10〜1.60%、Mo:0.10〜1.00%、B:0.0005〜0.0030%、N:0.03%以下及びAl:0.04%以下を含有し、更にNb:0.010〜0.200%及び/又はTi:0.010〜0.100%を含有し、残部がFe及び不可避不純物である鋼材より構成される機械構造部材であって、
浸炭焼入れ焼戻し処理による有効硬化層深さ(基準硬さ:513HV)が、当該部材の厚さに対して0.5〜3.0%を満足していることを特徴とする機械構造部材。
C: 0.10 to 0.30%, Si: 1.00% or less, Mn: 0.30 to 1.70%, P: 0.015% or less, S: 0.020% or less, Cr: 0.00. 10 to 1.60%, Mo: 0.10 to 1.00%, B: 0.0005 to 0.0030%, N: 0.03% or less and Al: 0.04% or less, and Nb : A mechanical structural member composed of a steel material containing 0.010 to 0.200% and / or Ti: 0.010 to 0.100%, the balance being Fe and inevitable impurities,
An effective hardened layer depth (standard hardness: 513 HV) by carburizing and quenching and tempering processing satisfies 0.5 to 3.0% with respect to the thickness of the member.
Ni:0.25%以下を含有することを特徴とする請求項1に記載の機械構造部材。   The mechanical structural member according to claim 1, containing Ni: 0.25% or less. Pb:0.3%以下、Bi:0.1%以下及びCa:0.1%以下から成る群より選ばれた少なくとも1種の元素を含有することを特徴とする請求項1又は2に記載の機械構造部材。   3. The composition according to claim 1, comprising at least one element selected from the group consisting of Pb: 0.3% or less, Bi: 0.1% or less, and Ca: 0.1% or less. Mechanical structural member. 40〜200μmの鋼球を投射圧力4〜6kg/cmで投射するショットピーニング処理が施され、被投射部表面の圧縮残留応力が1000〜1500MPaを満足することを特徴とする請求項1〜3のいずれか1つの項に記載の機械構造部材。 The shot peening process which projects a 40-200 micrometer steel ball with a projection pressure of 4-6 kg / cm < 2 > is performed, and the compressive residual stress of the surface of a to-be-projected part satisfies 1000-1500 MPa, It is characterized by the above-mentioned. The machine structural member according to any one of the above. 請求項1〜4のいずれか1つの項に記載の機械構造部材を用いて成ることを特徴とするシャフト。   A shaft comprising the mechanical structural member according to any one of claims 1 to 4.
JP2004341469A 2004-11-26 2004-11-26 Mechanical structure member and shaft using the same Expired - Fee Related JP4379315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341469A JP4379315B2 (en) 2004-11-26 2004-11-26 Mechanical structure member and shaft using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341469A JP4379315B2 (en) 2004-11-26 2004-11-26 Mechanical structure member and shaft using the same

Publications (2)

Publication Number Publication Date
JP2006152330A JP2006152330A (en) 2006-06-15
JP4379315B2 true JP4379315B2 (en) 2009-12-09

Family

ID=36630969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341469A Expired - Fee Related JP4379315B2 (en) 2004-11-26 2004-11-26 Mechanical structure member and shaft using the same

Country Status (1)

Country Link
JP (1) JP4379315B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100433B2 (en) * 2007-03-12 2012-12-19 本田技研工業株式会社 Carburized parts with excellent low cycle fatigue characteristics
JP5790693B2 (en) * 2013-03-29 2015-10-07 Jfeスチール株式会社 Case-hardened steel for cold forging
CN110484837A (en) * 2019-08-16 2019-11-22 江阴兴澄特种钢铁有限公司 A kind of ball-screw steel and its manufacturing method
JP7453524B2 (en) 2020-03-19 2024-03-21 日本製鉄株式会社 steel parts

Also Published As

Publication number Publication date
JP2006152330A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP5760453B2 (en) Carburized material
AU2016324658B2 (en) Steel with High Hardness and Excellent Toughness
JP2023002842A (en) Machine component for automobiles made of steel material for carburization excellent in static torsional strength and torsional fatigue strength
JP5630978B2 (en) Mechanical structural steel with excellent toughness
JP4847681B2 (en) Ti-containing case-hardened steel
JP2006169637A (en) Method for manufacturing high-strength carburized part
JP2005042188A (en) Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment
JP5707938B2 (en) Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength
JP4379315B2 (en) Mechanical structure member and shaft using the same
JP5177517B2 (en) Hardened steel for shafts with excellent low cycle torsional fatigue strength
JP2004238702A (en) Carburized component excellent in low-cycle impact fatigue resistance
JP2008088484A (en) Steel component for bearing having excellent fatigue property, and its production method
JP2008174810A (en) Inner ring and outer ring of bearing, having excellent rolling fatigue characteristic, and bearing
JP2000273574A (en) Steel for carburizing or carbonitriding treatment
JP2020041186A (en) Case hardened steel for gas carburization, and gas carburization
JP5672740B2 (en) Manufacturing method of high fatigue strength case hardening steel
WO2017170540A1 (en) Carbonitrided component having excellent surface fatigue strength and bending fatigue strength, and method for manufacturing same
JP2003201513A (en) High strength case hardening steel
JP2630670B2 (en) Steel with high fatigue strength for carburized gears
JP2004300550A (en) High-strength case hardening steel
JPH10310823A (en) Manufacture of shaft-shaped parts for machine structural use, excellent in fatigue characteristic
JP5361293B2 (en) Carburized parts with excellent static strength
JP2010090457A (en) Non-heat-treated steel to be nitrocarburized
JP2005036257A (en) Carburized gear with excellent impact fatigue strength, and its manufacturing method
JP2005163148A (en) Case hardening steel for high strength gear

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees