JP4379232B2 - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
JP4379232B2
JP4379232B2 JP2004202666A JP2004202666A JP4379232B2 JP 4379232 B2 JP4379232 B2 JP 4379232B2 JP 2004202666 A JP2004202666 A JP 2004202666A JP 2004202666 A JP2004202666 A JP 2004202666A JP 4379232 B2 JP4379232 B2 JP 4379232B2
Authority
JP
Japan
Prior art keywords
catalyst
poisoning
exhaust gas
temperature
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004202666A
Other languages
Japanese (ja)
Other versions
JP2006022754A (en
Inventor
誠二 菊池
均一 岩知道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2004202666A priority Critical patent/JP4379232B2/en
Publication of JP2006022754A publication Critical patent/JP2006022754A/en
Application granted granted Critical
Publication of JP4379232B2 publication Critical patent/JP4379232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、自動車等内燃機関に好適な排気ガス浄化装置に係り、一層詳細には広い温度領域で触媒の高浄化性能を維持することができる排気ガス浄化装置に関するものである。   The present invention relates to an exhaust gas purification device suitable for an internal combustion engine such as an automobile, and more particularly to an exhaust gas purification device capable of maintaining a high purification performance of a catalyst in a wide temperature range.

一般に、自動車用内燃機関(エンジン)の排気系には、例えば車両の床下に位置して床下触媒コンバータ(UCC)が介装されており、この床下触媒コンバータでは、主として該触媒コンバータに内蔵された三元触媒によって排気ガス中のHC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)を浄化・低減している。また、近年、床下触媒コンバータに三元触媒とともに、酸化雰囲気でNOxを吸蔵するとともに還元雰囲気で当該吸蔵したNOxを放出し還元するNOx吸蔵触媒(NOxトラップ触媒)を備えた車両も実用化されている。   In general, an exhaust system of an internal combustion engine (engine) for an automobile is provided with, for example, an underfloor catalytic converter (UCC) located under the floor of a vehicle. In this underfloor catalytic converter, the underfloor catalytic converter is mainly built in the catalytic converter. A three-way catalyst purifies and reduces HC (hydrocarbon), CO (carbon monoxide), and NOx (nitrogen oxide) in the exhaust gas. In recent years, a vehicle including a three-way catalyst in an underfloor catalytic converter and a NOx occlusion catalyst (NOx trap catalyst) that occludes NOx in an oxidizing atmosphere and releases and reduces the occluded NOx in a reducing atmosphere has been put into practical use. Yes.

さらに、最近では、床下触媒コンバータ以外に、触媒の早期活性化を図るべくエンジンからの高温の燃焼ガスを受け易い排気マニホールド内や排気マニホールド直後に別途前段触媒コンバータ(MCC、FCC)を介装するようにし、エンジンの冷態始動直後からでも高い排気浄化性能を発揮可能にした排気ガス浄化装置が開発され実用化されている。   Furthermore, recently, in addition to the underfloor catalytic converter, a pre-stage catalytic converter (MCC, FCC) is additionally provided in the exhaust manifold that is susceptible to high-temperature combustion gas from the engine or immediately after the exhaust manifold in order to activate the catalyst early. In this way, an exhaust gas purification device that can exhibit high exhaust purification performance even immediately after the cold start of the engine has been developed and put into practical use.

特開平7−279713号公報JP 7-279713 A

ところで、近年排気ガス規制強化に伴って、高い触媒浄化性能が要求されている。ところが、上述したような従来の触媒にあっては、高温のある温度域(触媒が機能する上で頻繁に曝される温度帯でもある)において、貴金属のCO被毒によると考えられる排気ガス浄化性能の低下が見られる。   By the way, in recent years, high catalyst purification performance has been required with the tightening of exhaust gas regulations. However, in the conventional catalyst as described above, exhaust gas purification considered to be due to CO poisoning of noble metals in a high temperature range (a temperature range that is frequently exposed when the catalyst functions). There is a drop in performance.

例えば、図4のNOx浄化温度特性を示すグラフでも解るように、NOxは、貴金属量(PGM)如何にかかわらず、触媒のベッド(中心)温度が700℃近傍で、性能が低下する特性があることが、本発明者等により確認されており、これはHCやCOにおいても同様の特性が確認されている。尚、図4において縦軸はNOx浄化効率で、横軸は触媒のベッド温度である。   For example, as can be seen from the graph showing the NOx purification temperature characteristic of FIG. 4, NOx has a characteristic that the performance decreases when the bed (center) temperature of the catalyst is around 700 ° C., regardless of the amount of noble metal (PGM). This has been confirmed by the present inventors, and similar characteristics have been confirmed in HC and CO. In FIG. 4, the vertical axis represents the NOx purification efficiency, and the horizontal axis represents the catalyst bed temperature.

これは、前記温度域が、セリア(CeO2 :OSC(酸素ストレージ機能)剤)の形態が変化する領域であることから、貴金属への酸素授受の反応性が低下し、NOxの浄化性能に悪影響を与えていると考えられる。 This is because the temperature range is a region where the form of ceria (CeO 2 : OSC (oxygen storage function) agent) changes, and the reactivity of oxygen transfer to the noble metal is reduced, which adversely affects the NOx purification performance. It is thought that has been given.

尚、特許文献1では、パラジウム触媒の温度が約500℃を越えるとCO被毒によりNOx浄化率の低下が生じ、また空燃比がリッチ側に傾くとCO被毒が進むという知見に基づいて、この二つの特性を活かして、パラジウム触媒の温度が約500℃以下の時には内燃機関の制御中心空気過剰率が0.989〜0.996となるようにリッチ側へ、また、約500℃以上の時には内燃機関の制御中心空気過剰率が理論空燃比近傍の0.998〜1.003となるようにリーン側へ、空燃比を変更する燃料噴射量制御手段を設定した技術が開示されている。   In Patent Document 1, based on the knowledge that when the temperature of the palladium catalyst exceeds about 500 ° C., the NOx purification rate is reduced due to CO poisoning, and when the air-fuel ratio is inclined to the rich side, CO poisoning proceeds. Taking advantage of these two characteristics, when the temperature of the palladium catalyst is about 500 ° C. or less, the excess air ratio of the control center of the internal combustion engine becomes 0.989 to 0.996 so that the rich side, and about 500 ° C. or more. A technique is disclosed in which fuel injection amount control means for changing the air-fuel ratio to the lean side is sometimes set so that the control center excess air ratio of the internal combustion engine becomes 0.998 to 1.003 in the vicinity of the theoretical air-fuel ratio.

しかしながら、特許文献1に開示された技術では、パラジウム触媒に限定され、かつ空燃比を変更する温度領域が約500℃に限定されることから汎用性が低いという問題点がある。   However, the technique disclosed in Patent Document 1 has a problem that versatility is low because the temperature range for changing the air-fuel ratio is limited to about 500 ° C. because the temperature is limited to the palladium catalyst.

そこで、本発明の目的は、エンジン制御に関係なく広い温度領域で触媒の高浄化性能を維持することができる排気ガス浄化装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas purification device that can maintain a high purification performance of a catalyst in a wide temperature range regardless of engine control.

上記目的を達成するための請求項1に係る発明は、酸素ストレージ機能を備えた触媒を有する排気ガス浄化装置において、前記触媒の下流に設けられ排気ガスの状態を検出する排気ガス状態検出手段と、前記触媒の温度を検出する触媒温度検出手段と、前記排気ガスの状態に基づいて触媒のCO被毒を判定するCO被毒判定手段と、前記触媒の温度に基づいてCO被毒判定手段の判定閾値を変更する閾値変更手段と、前記触媒のCO被毒を判定したとき、触媒に過剰酸素を供給する酸素供給手段と、を備えたことを特徴とする。 In order to achieve the above object, an invention according to claim 1 is an exhaust gas purifying apparatus having a catalyst having an oxygen storage function, and an exhaust gas state detecting means provided downstream of the catalyst for detecting the state of the exhaust gas. a catalyst temperature detection means for detecting a temperature of the catalyst, before and CO poisoning determining means for determining the CO poisoning of the catalyst based on the state of Sharing, ABS air gas, CO poisoning determination based on the temperature of the catalyst Threshold change means for changing the determination threshold of the means, and oxygen supply means for supplying excess oxygen to the catalyst when the catalyst is poisoned by CO.

請求項1の発明によれば、所要の条件下で2次空気供給装置等により触媒に過剰酸素を供給することで、貴金属活性点を覆うCOとの酸化反応を促進し、触媒活性の回復が図られると共に、触媒のCO被毒をより的確に判定することができるAccording to the invention of claim 1, by supplying excess oxygen to the catalyst by a secondary air supply device or the like under the required conditions, the oxidation reaction with CO covering the noble metal active point is promoted, and the recovery of the catalyst activity is achieved. In addition , the CO poisoning of the catalyst can be more accurately determined .

以下、本発明に係る排気ガス浄化装置を実施例により図面を用いて詳細に説明する。   Hereinafter, an exhaust gas purifying apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の一実施例を示す内燃機関の排気ガス浄化装置の概略構成図、図2は同じくCO被毒回復制御のフローチャート、図3は同じくリーンスパイクによる被毒回復の試験結果を示すグラフである。   FIG. 1 is a schematic configuration diagram of an exhaust gas purifying apparatus for an internal combustion engine showing an embodiment of the present invention, FIG. 2 is a flowchart of CO poisoning recovery control, and FIG. 3 is a test result of poisoning recovery by lean spike. It is a graph.

図1に示すように、内燃機関本体(以下、単にエンジンという)1としては、例えば、火花点火式ガソリンエンジンが採用される。このエンジン1は、容易にして理論空燃比(ストイキオ)での運転やリッチ空燃比での運転(リッチ運転)の他、リーン空燃比での運転(リーン運転)が実現可能である。   As shown in FIG. 1, as an internal combustion engine body (hereinafter simply referred to as an engine) 1, for example, a spark ignition gasoline engine is employed. The engine 1 can easily realize an operation at a lean air-fuel ratio (lean operation) in addition to an operation at a stoichiometric air-fuel ratio (stoichio) or an operation at a rich air-fuel ratio (rich operation).

エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ3が取り付けられるとともに各吸気ポート毎に電磁式の燃料噴射弁4が取り付けられている。点火プラグ3には高電圧を出力する図示しない点火コイルが接続されている。燃料噴射弁4には、燃料パイプを介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。   An ignition plug 3 is attached to each cylinder head 2 of the engine 1 and an electromagnetic fuel injection valve 4 is attached to each intake port. An ignition coil (not shown) that outputs a high voltage is connected to the spark plug 3. A fuel supply device (not shown) having a fuel tank is connected to the fuel injection valve 4 via a fuel pipe.

シリンダヘッド2には、各気筒毎に略水平方向に吸気ポート5が形成されており、各吸気ポート5と連通するようにして吸気マニホールド6の一端がそれぞれ接続されている。また、シリンダヘッド2には、各気筒毎に略水平方向に排気ポート7が形成されており、各排気ポート7と連通するようにして排気マニホールド8の一端がそれぞれ接続されている。図中9は吸気ポート5を開閉する吸気弁で、10は排気ポート7を開閉する排気弁である。   An intake port 5 is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and one end of an intake manifold 6 is connected so as to communicate with each intake port 5. Further, an exhaust port 7 is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and one end of an exhaust manifold 8 is connected so as to communicate with each exhaust port 7. In the figure, 9 is an intake valve for opening and closing the intake port 5, and 10 is an exhaust valve for opening and closing the exhaust port 7.

排気マニホールド8には排気管(排気通路)11が接続されており、この排気管11には、UCCとしての三元触媒コンバータ12が介装されている。この三元触媒コンバータ12における触媒は、酸素ストレージ機能(O2 Storage Component:OSC)としてセリア(CeO2 )を担持している。また、三元触媒コンバータ12直下の排気管11には排温センサ(触媒温度算出手段)13とO2 センサ(排気ガス状態検出手段で、リニアA/F(空燃比)センサやNOxセンサでも良い)14とが介装される。 An exhaust pipe (exhaust passage) 11 is connected to the exhaust manifold 8, and a three-way catalytic converter 12 as a UCC is interposed in the exhaust pipe 11. The catalyst in the three-way catalytic converter 12 carries ceria (CeO 2 ) as an oxygen storage function (O 2 Storage Component: OSC). The exhaust pipe 11 directly below the three-way catalytic converter 12 may be an exhaust temperature sensor (catalyst temperature calculation means) 13 and an O 2 sensor (exhaust gas state detection means, a linear A / F (air / fuel ratio) sensor or NOx sensor. ) 14 is interposed.

そして、本実施例では、吸気マニホールド6と排気マニホールド8との間に、エアポンプ15a,二次空気制御バルブ(ACV)15b及び電磁弁15c等からなる公知の二次空気供給装置(酸素供給手段)15が設けられ、後述する所定の状況下で排気マニホールド8内に大気(過剰酸素)を導入し得るようになっている。   In this embodiment, a known secondary air supply device (oxygen supply means) including an air pump 15a, a secondary air control valve (ACV) 15b, an electromagnetic valve 15c, and the like is provided between the intake manifold 6 and the exhaust manifold 8. 15 is provided so that the atmosphere (excess oxygen) can be introduced into the exhaust manifold 8 under a predetermined condition described later.

また、車両には、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を有するECU(電子制御ユニット)16が設けられており、このECU16によりエンジン1を含めた総合的な制御が行なわれる。即ち、ECU16の入力側には、図示しないスロットルポジションセンサ、エアフローセンサ、クランク角センサ、アクセルポジションセンサの他に前述した排温センサ13、O2 センサ14等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力する。 The vehicle is provided with an ECU (electronic control unit) 16 having an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), a timer counter, and the like. Thus, comprehensive control including the engine 1 is performed. That is, various sensors such as the exhaust temperature sensor 13 and the O 2 sensor 14 described above are connected to the input side of the ECU 16 in addition to a throttle position sensor, an air flow sensor, a crank angle sensor, and an accelerator position sensor (not shown). Detection information from these sensors is input.

一方、ECU16の出力側には、前述した点火コイルを介して点火プラグ3、燃料噴射弁4及び図示しないスロットル弁等が接続されており、これら点火プラグ3、燃料噴射弁4及びスロットル弁等には、各種センサ類からの検出情報に基づいて演算された点火時期、燃料噴射量及びスロットル開度th等の最適値がそれぞれ出力される。これにより、点火プラグ3によって適正なタイミングで点火が実施されると共に、燃料噴射弁4から所定の空燃比(A/F)となるように適正量の燃料が適正なタイミングで噴射される。   On the other hand, an ignition plug 3, a fuel injection valve 4, a throttle valve (not shown), and the like are connected to the output side of the ECU 16 through the ignition coil described above. The ignition plug 3, the fuel injection valve 4, the throttle valve, and the like are connected. Respectively output optimum values such as ignition timing, fuel injection amount, and throttle opening th calculated based on detection information from various sensors. Thus, ignition is performed at an appropriate timing by the spark plug 3, and an appropriate amount of fuel is injected from the fuel injection valve 4 at an appropriate timing so that a predetermined air-fuel ratio (A / F) is obtained.

また、本実施例では、ECU16は、三元触媒コンバータ12における触媒の一時的なCO被毒による触媒性能低下(図4参照)を防止すべくCO被毒回復制御を行うようになっている。即ち、所定の状況下で電磁弁15cを開閉制御すると共にエアポンプ15aを駆動制御し、二次空気供給装置15により排気マニホールド8内に大気を導入するのである。   In this embodiment, the ECU 16 performs CO poisoning recovery control in order to prevent catalyst performance deterioration (see FIG. 4) due to temporary CO poisoning of the catalyst in the three-way catalytic converter 12. That is, the electromagnetic valve 15c is controlled to open and close and the air pump 15a is driven and controlled under a predetermined condition, and the atmosphere is introduced into the exhaust manifold 8 by the secondary air supply device 15.

前記CO被毒回復制御を図2に示すフローチャートに基づいて詳細に説明する。
先ず、ステップP1で三元触媒コンバータ12における触媒がCO被毒検出範囲内か否かを判断する。即ち、排温センサ13により触媒の温度が例えば600〜800℃(好ましくは700℃前後)の温度範囲にあるか否かを判断するのである。
The CO poisoning recovery control will be described in detail based on the flowchart shown in FIG.
First, in step P1, it is determined whether or not the catalyst in the three-way catalytic converter 12 is within the CO poisoning detection range. That is, it is determined by the exhaust temperature sensor 13 whether the temperature of the catalyst is within a temperature range of, for example, 600 to 800 ° C. (preferably around 700 ° C.).

そして、可であればステップP2でO2 センサ(リアO2 )14からの出力をモニタした後、ステップP3で触媒がCO被毒劣化しているか否かを判断する。即ち、O2 センサ14の出力信号の振れと閾値を比較するのである(CO被毒判定手段)。 If yes, the output from the O 2 sensor (rear O 2 ) 14 is monitored in step P2, and then it is determined in step P3 whether or not the catalyst is deteriorated by CO poisoning. That is, the fluctuation of the output signal of the O 2 sensor 14 is compared with the threshold value (CO poisoning determination means).

ステップP3で可であれば、ステップP4で二次空気供給装置15により排気マニホールド8内に大気を導入する(O2 供給開始)。一方、否であればステップP1に戻る。 If yes in step P3, atmospheric air is introduced into the exhaust manifold 8 by the secondary air supply device 15 in step P4 (O 2 supply start). On the other hand, if no, the process returns to Step P1.

次に、ステップP5で触媒がCO被毒解除したか否かを判断する。即ち、O2 センサ14の出力信号の振れと閾値を比較するのである(CO被毒判定手段)。 Next, in step P5, it is determined whether or not the catalyst has been released from CO poisoning. That is, the fluctuation of the output signal of the O 2 sensor 14 is compared with the threshold value (CO poisoning determination means).

そして、ステップP5で可であれば、ステップP6で二次空気供給装置15により排気マニホールド8内に大気を導入するのを停止(O2 供給終了)してCO被毒回復制御を終了する。 If yes in Step P5, the introduction of the atmosphere into the exhaust manifold 8 by the secondary air supply device 15 is stopped (O 2 supply end) in Step P6, and the CO poisoning recovery control is ended.

このようにして、触媒の温度が例えば600〜800℃の温度範囲(これは触媒温度の高温への推移に対し、一旦浄化効率が向上した後、浄化効率が低下する温度領域であり、セリアの形態が変化する温度領域でもある)内において、一時的なCO被毒を検出した際には、酸素(二次空気)を短期間(数秒)供給することで、貴金属活性点を覆うCOとの酸化反応を促進させられ、触媒活性の回復を図ることができる。   In this way, the temperature of the catalyst is in a temperature range of, for example, 600 to 800 ° C. (This is a temperature region in which the purification efficiency is lowered after the purification efficiency is once improved with respect to the transition of the catalyst temperature to a high temperature. In the temperature region where the form changes), when temporary poisoning of CO is detected, oxygen (secondary air) is supplied for a short period (several seconds), so that CO The oxidation reaction is promoted, and the catalytic activity can be recovered.

本発明者等は、図3のリーンスパイクによる被毒回復の試験結果を示すグラフで解るように、空燃比フィードバック制御においてリッチ側にシフトされた状況下でリーンスパイクすることで触媒がCO被毒から回復することを確認した。   As shown in the graph showing the test result of the poisoning recovery by the lean spike in FIG. 3, the present inventors perform the lean spike under the condition shifted to the rich side in the air-fuel ratio feedback control, so that the catalyst is poisoned by CO. Confirmed to recover from.

また、本実施例では、二次空気供給装置15により排気マニホールド8内に大気を導入するので、エンジン制御に関係なく排気ガスの空燃比を制御でき、ECU16による制御が簡単である。   Further, in this embodiment, since the atmosphere is introduced into the exhaust manifold 8 by the secondary air supply device 15, the air-fuel ratio of the exhaust gas can be controlled regardless of the engine control, and the control by the ECU 16 is simple.

尚、上記実施例では、三元触媒コンバータ19に例をとって説明したが、NOxトラップ触媒に適用することもできる。また、CO被毒を判定する閾値を触媒の温度に基づいて変更しても良い(閾値変更手段)。この場合、酸素ストレージ剤の機能が低下する温度域(セリアの場合600℃〜800℃)においてCO被毒の判定を低くしそれ以外の温度域を高くする。このようにすれば、触媒のCO被毒判定が全温度域で行なえ、特に酸素ストレージ機能が低下する温度域では早期にCO被毒を判定でき、それ以外の温度域では、一時的な運転状態(例えばリッチ運転)による過剰な判定を抑制できる。   In the above embodiment, the three-way catalytic converter 19 is described as an example, but the present invention can also be applied to a NOx trap catalyst. Further, the threshold for determining CO poisoning may be changed based on the temperature of the catalyst (threshold changing means). In this case, in the temperature range where the function of the oxygen storage agent is lowered (600 to 800 ° C. in the case of ceria), the determination of CO poisoning is lowered and the other temperature range is raised. In this way, it is possible to determine the CO poisoning of the catalyst in the entire temperature range, and in particular, it is possible to determine the CO poisoning early in the temperature range where the oxygen storage function is lowered, and in the other temperature range, the temporary operating state Excessive determination due to (for example, rich operation) can be suppressed.

本発明の一実施例を示す内燃機関の排気ガス浄化装置の概略構成図である。1 is a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine showing an embodiment of the present invention. 同じくCO被毒回復制御のフローチャートである。It is a flowchart of CO poisoning recovery control similarly. 同じくリーンスパイクによる被毒回復の試験結果を示すグラフである。It is a graph which similarly shows the test result of the poisoning recovery | restoration by a lean spike. NOx浄化温度特性を示すグラフである。It is a graph which shows a NOx purification temperature characteristic.

符号の説明Explanation of symbols

1 エンジン、2 シリンダヘッド、3 点火プラグ、4 燃料噴射弁、5 吸気ポート、6 吸気マニホールド、7 排気ポート、8 排気マニホールド、9 吸気弁、10 排気弁、11 排気管、12 三元触媒コンバータ、13 排温センサ、14 O2 センサ、15 二次空気供給装置、16 ECU(電子制御ユニット)。 1 engine, 2 cylinder head, 3 spark plug, 4 fuel injection valve, 5 intake port, 6 intake manifold, 7 exhaust port, 8 exhaust manifold, 9 intake valve, 10 exhaust valve, 11 exhaust pipe, 12 three-way catalytic converter, 13 exhaust temperature sensor, 14 O 2 sensor, 15 secondary air supply device, 16 ECU (electronic control unit).

Claims (1)

酸素ストレージ機能を備えた触媒を有する排気ガス浄化装置において、
前記触媒の下流に設けられ排気ガスの状態を検出する排気ガス状態検出手段と、
前記触媒の温度を検出する触媒温度検出手段と、
記排気ガスの状態に基づいて触媒のCO被毒を判定するCO被毒判定手段と、
前記触媒の温度に基づいてCO被毒判定手段の判定閾値を変更する閾値変更手段と、
前記触媒のCO被毒を判定したとき、触媒に過剰酸素を供給する酸素供給手段と、
を備えたことを特徴とする排気ガス浄化装置。
In an exhaust gas purification apparatus having a catalyst having an oxygen storage function,
Exhaust gas state detection means provided downstream of the catalyst for detecting the state of exhaust gas;
Catalyst temperature detecting means for detecting the temperature of the catalyst;
And CO poisoning determining means for determining the CO poisoning of the catalyst based on the state of the prior Sharing, ABS air gas,
A threshold value changing means for changing a determination threshold value of the CO poisoning determining means based on the temperature of the catalyst;
An oxygen supply means for supplying excess oxygen to the catalyst when determining the CO poisoning of the catalyst;
An exhaust gas purification device comprising:
JP2004202666A 2004-07-09 2004-07-09 Exhaust gas purification device Expired - Fee Related JP4379232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202666A JP4379232B2 (en) 2004-07-09 2004-07-09 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202666A JP4379232B2 (en) 2004-07-09 2004-07-09 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2006022754A JP2006022754A (en) 2006-01-26
JP4379232B2 true JP4379232B2 (en) 2009-12-09

Family

ID=35796207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202666A Expired - Fee Related JP4379232B2 (en) 2004-07-09 2004-07-09 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP4379232B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832326B2 (en) * 2007-02-06 2011-12-07 Udトラックス株式会社 Engine exhaust purification system
CN103649501B (en) 2011-07-15 2016-08-17 丰田自动车株式会社 The emission-control equipment of internal combustion engine
EP2891777B1 (en) 2012-08-28 2016-11-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for spark ignition internal combustion engine

Also Published As

Publication number Publication date
JP2006022754A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4537417B2 (en) NOx sensor abnormality diagnosis device
JP4485553B2 (en) NOx sensor abnormality diagnosis device
US7797097B2 (en) Exhaust purification device for internal combustion engine
JP4415648B2 (en) Sulfur purge control method and exhaust gas purification system
US6644021B2 (en) Exhaust gas purifying apparatus of internal combustion engine
JP4635860B2 (en) Exhaust gas purification device for internal combustion engine
US20170138245A1 (en) Deterioration diagnosis apparatus for exhaust gas purification apparatus
JP3446815B2 (en) Exhaust gas purification device for internal combustion engine
JP2009121330A (en) Catalyst poisoning determining method and device, and exhaust emission control method and device
JP4379232B2 (en) Exhaust gas purification device
JPH11117726A (en) Catalyst degradation diagnostic device for internal combustion engine
JP4613894B2 (en) Exhaust purification device for internal combustion engine
JP3838139B2 (en) Exhaust gas purification device for internal combustion engine
JP4269666B2 (en) Exhaust gas purification device for internal combustion engine
JP4609299B2 (en) Exhaust gas purification device for internal combustion engine
JP3747693B2 (en) Exhaust gas purification device for internal combustion engine
JP3539286B2 (en) Exhaust gas purification device for internal combustion engine
JP3661464B2 (en) Exhaust gas purification device for internal combustion engine
JP3582582B2 (en) Exhaust purification system for in-cylinder injection internal combustion engine
JP4241530B2 (en) Exhaust gas purification device for internal combustion engine
JP4507426B2 (en) Exhaust purification catalyst deterioration detector
JP3661461B2 (en) Exhaust gas purification device for internal combustion engine
US8096113B2 (en) Exhaust purification system for internal combustion engine
JP3334634B2 (en) Exhaust gas purification device for internal combustion engine
JP4914875B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees