JP4376943B2 - Ultrasonic motor and electronic device with ultrasonic motor - Google Patents

Ultrasonic motor and electronic device with ultrasonic motor Download PDF

Info

Publication number
JP4376943B2
JP4376943B2 JP2008025354A JP2008025354A JP4376943B2 JP 4376943 B2 JP4376943 B2 JP 4376943B2 JP 2008025354 A JP2008025354 A JP 2008025354A JP 2008025354 A JP2008025354 A JP 2008025354A JP 4376943 B2 JP4376943 B2 JP 4376943B2
Authority
JP
Japan
Prior art keywords
ultrasonic motor
piezoelectric
vibration
piezoelectric material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008025354A
Other languages
Japanese (ja)
Other versions
JP2008167651A (en
Inventor
政雄 春日
朗弘 飯野
鈴木  誠
賢二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008025354A priority Critical patent/JP4376943B2/en
Publication of JP2008167651A publication Critical patent/JP2008167651A/en
Application granted granted Critical
Publication of JP4376943B2 publication Critical patent/JP4376943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電振動部材を積層させた超音波モータに係わり、特に、圧電振動部材の積層に保持手段を用いないタイプの超音波モータの改良に関する。   The present invention relates to an ultrasonic motor in which piezoelectric vibration members are laminated, and more particularly, to an improvement in an ultrasonic motor of a type that does not use holding means for lamination of piezoelectric vibration members.

近時、マイクロモータの分野では、電圧の印加により振動する圧電振動子を利用して移動体を移動させる超音波モータが注目されている。   Recently, in the field of micro motors, attention has been focused on ultrasonic motors that move a moving body using a piezoelectric vibrator that vibrates when a voltage is applied.

特に、矩形状の圧電振動子の伸縮振動と屈曲振動(2重モード振動子)を用いた超音波モータは、この合成振動により移動体を直線運動、回転運動等させることから、各種用途に用いられており、また、高出力を必要とする用途には、圧電振動子を積層したタイプも用いられている(特開平7−184382号公報参照)。   In particular, an ultrasonic motor using a stretching vibration and a bending vibration (double mode vibrator) of a rectangular piezoelectric vibrator is used for various applications because the synthetic body vibrates the moving body linearly, rotationally, etc. In addition, for applications that require high output, a type in which piezoelectric vibrators are laminated is used (see Japanese Patent Laid-Open No. 7-184382).

図10は、矩形状の圧電振動子を積層させたタイプの超音波モータを示すものである。   FIG. 10 shows an ultrasonic motor of a type in which rectangular piezoelectric vibrators are stacked.

即ち、本超音波モータの基本振動子は、2重モード振動するため所定の分極処理した圧電振動子61、62と、圧電振動子61、62の先端に設けられた出力取り出し部材71、72と、圧電振動子61、62の両面に設けられた電極からなり、圧電振動子61、62を縦方向に3段、横方向に2列並べ、これら6個の圧電振動子を結合手段67a、67b、で保持したものである。   That is, the basic vibrator of this ultrasonic motor is a piezoelectric vibrator 61, 62 that has been subjected to a predetermined polarization process to vibrate in dual mode, and output extraction members 71, 72 provided at the tips of the piezoelectric vibrators 61, 62. The piezoelectric vibrators 61 and 62 are electrodes provided on both surfaces. The piezoelectric vibrators 61 and 62 are arranged in three rows in the vertical direction and in two rows in the horizontal direction, and the six piezoelectric vibrators are coupled to the coupling means 67a and 67b. , Is held by.

図11は、上記超音波モータの基本構造に係わるブロック図を示す。   FIG. 11 is a block diagram relating to the basic structure of the ultrasonic motor.

これによれば、圧電振動子61、62は、夫々の電極81、82から電圧を印加されて2重モード振動し、この合成振動を各出力取り出し部材71、72に伝達し、出力取り出し部材71、72に当接されている移動体21を移動させる。   According to this, the piezoelectric vibrators 61 and 62 are applied with voltages from the respective electrodes 81 and 82 to vibrate in a double mode, and transmit this combined vibration to the output take-out members 71 and 72. , 72 is moved.

そして、複数の出力取り出し部材71、72により出力を取り出すので、高出力が得られる。   And since an output is taken out by the several output taking-out members 71 and 72, a high output is obtained.

しかしながら、上記超音波モータによれば、各圧電振動子61、62の一部を上記結合手段67で固定しているにすぎないため、各圧電振動子61、62間に振動方向のバラツキが生じ、また、各圧電振動子61、62の固定部分では振動運動は抑制されるため、振動運動のロスとなり、有効に出力を取り出せないという技術的課題が存在する。   However, according to the ultrasonic motor, since only a part of the piezoelectric vibrators 61 and 62 is fixed by the coupling means 67, the vibration direction varies between the piezoelectric vibrators 61 and 62. Further, since the vibration motion is suppressed at the fixed portions of the piezoelectric vibrators 61 and 62, there is a technical problem that the vibration motion is lost and the output cannot be extracted effectively.

また、各圧電振動子61、62の固定に別部材としての上記結合手段67を用いると、モータ全体構成の大型化、複雑化につながり好ましくなく、また、製造工程は、結合手段67を取付ける工程を加えるため、複雑になる。   Further, if the coupling means 67 as a separate member is used for fixing the piezoelectric vibrators 61 and 62, it leads to an increase in the size and complexity of the entire motor configuration, and the manufacturing process is a process of attaching the coupling means 67. Adding complexity.

一方、2重モード振動する各圧電振動子61、62は、屈曲振動によってモータの移動方向を切り換えるために、所定の分極処理された部位に電圧を印加するため、強制的に励振される屈曲振動に比較して、付勢的に励振される伸縮振動を大きくすることができないという技術的課題を有する。   On the other hand, each of the piezoelectric vibrators 61 and 62 that vibrate in a double mode vibrates forcibly because the piezoelectric vibrators 61 and 62 apply a voltage to a predetermined polarization-treated portion in order to switch the moving direction of the motor by bending vibration. Compared to the above, there is a technical problem that it is impossible to increase the stretching vibration that is urged.

そこで、本発明は以上の技術的課題を解決するためなされたものであって、積層された圧電振動子の振動方向のバラツキ、振動ロスを防止し、積層構造の小型化、簡略化を図ると共に、合成振動の高出力化を図る超音波モータ及び超音波モータ付電子機器の提供を目的とする。   Accordingly, the present invention has been made to solve the above technical problem, and prevents variation in the vibration direction and vibration loss of the stacked piezoelectric vibrators, thereby reducing the size and simplifying the stacked structure. An object of the present invention is to provide an ultrasonic motor and an electronic apparatus with an ultrasonic motor that can increase the output of synthetic vibration.

上記課題を解決するに当たり本発明の超音波モータは、電極を有する複数の圧電材を積層した振動体部と、前記振動体部の振動により動作する可動部とを有する超音波モータにおいて、振動体部の一つの面において複数の前記圧電材の全ての電極と導通する電圧印加用電極パターンを有することを特徴とする。   In order to solve the above problems, an ultrasonic motor according to the present invention is an ultrasonic motor having a vibrating body portion in which a plurality of piezoelectric materials having electrodes are laminated, and a movable portion that operates by vibration of the vibrating body portion. It has the electrode pattern for voltage application which conduct | electrically_connects with all the electrodes of the said several piezoelectric material in one surface of a part.

そして好もしくは、前記電圧印加用電極パターンは、前記振動体部が発生する振動の節に向かって張り出した電極を有することを特徴とする。   Preferably, the voltage applying electrode pattern includes an electrode projecting toward a vibration node generated by the vibrating body portion.

これによれば、複数の圧電部材を積層して振動体部を構成してあるので振動体部個々の性能ばらつきは小さくできる。また、小型で信頼性の高い超音波モータが実現できる。そして更に積層面の電極と振動体部の節近傍で導通がとれるため、導通構造が簡素化できると共に、導通構造(リード線等)の影響を受けにくく振動ロスが小さくできる。   According to this, since the vibration body portion is configured by laminating a plurality of piezoelectric members, the performance variation of each vibration body portion can be reduced. In addition, a small and highly reliable ultrasonic motor can be realized. Further, since conduction can be obtained in the vicinity of the node between the electrode on the laminated surface and the vibrating body portion, the conduction structure can be simplified, and vibration loss can be reduced with little influence from the conduction structure (such as a lead wire).

また、複数の圧電振動部材を積層して構成した振動体部と接する可動体を可動させる超音波モータにおいて、圧電振動部材の積層面に設けられた電極と導通する電圧印加用電極パターンが設けられた電極配線部材が圧電振動部材に一体的に積層されたことを有することを特徴とする。   Further, in an ultrasonic motor that moves a movable body that is in contact with a vibrating body portion formed by laminating a plurality of piezoelectric vibrating members, a voltage applying electrode pattern that is electrically connected to an electrode provided on a laminated surface of the piezoelectric vibrating members is provided. The electrode wiring member is integrally laminated on the piezoelectric vibration member.

これによれば、電極配線部材も圧電振動部材に一体的に積層された構成であるから、振動体部の構造並びに製造が簡素化され、小型化、高効率化が実現できる。   According to this, since the electrode wiring member is also integrally laminated on the piezoelectric vibrating member, the structure and manufacturing of the vibrating body portion are simplified, and downsizing and high efficiency can be realized.

以上示したように本発明の振動体部の構造によれば、製造が簡単(分極処理も容易)で小型、高効率、個々の性能ばらつきが小さい超音波モータが実現できる。   As described above, according to the structure of the vibrator part of the present invention, it is possible to realize an ultrasonic motor that is simple to manufacture (easily polarized), small in size, high in efficiency, and small in individual performance variations.

以下、図1〜図11を参照して本発明を適用した実施の形態を詳細に説明する。   Hereinafter, embodiments to which the present invention is applied will be described in detail with reference to FIGS.

{実施の形態1}
図1は、本発明を超音波モータに適用した実施の形態1を示すものである。
{Embodiment 1}
FIG. 1 shows a first embodiment in which the present invention is applied to an ultrasonic motor.

本実施の形態は、図1に示すように、振動体部10と、振動体部10の縁部に設けられた本発明の振動伝達部材としての出力取り出し部17と、出力取り出し部17に当接される本発明の可動体としての移動体20と、移動体20と出力取り出し部17とを加圧する加圧機構18から構成されている。   In the present embodiment, as shown in FIG. 1, the vibration body portion 10, the output extraction portion 17 as the vibration transmission member of the present invention provided at the edge of the vibration body portion 10, and the output extraction portion 17 are applied. A movable body 20 as a movable body of the present invention that is in contact with the movable body 20 and a pressurizing mechanism 18 that pressurizes the movable body 20 and the output extraction unit 17 are configured.

移動体20は、回転軸受け21aを有する回転部材21と、回転部材21に対向して設けられた固定部材23と、固定部材23に設置され、回転部材21の回転軸受け21aを貫通する回転軸22から構成されている。   The moving body 20 includes a rotating member 21 having a rotating bearing 21 a, a fixing member 23 provided facing the rotating member 21, and a rotating shaft 22 that is installed on the fixing member 23 and penetrates the rotating bearing 21 a of the rotating member 21. It is composed of

出力取り出し部17は、直方体形状であり、剛性を有する材料からなる。   The output take-out part 17 has a rectangular parallelepiped shape and is made of a material having rigidity.

加圧機構18は、振動体部10に対向して設けられた固定部材18aと、振動体部10を移動体20に加圧する加圧部材18bとからなる。   The pressurizing mechanism 18 includes a fixing member 18 a provided to face the vibrating body portion 10 and a pressurizing member 18 b that pressurizes the vibrating body portion 10 to the moving body 20.

図2は、振動体部の各積層層の平面及び振動体部の側面を示すものである。   FIG. 2 shows the plane of each laminated layer of the vibrating body portion and the side surface of the vibrating body portion.

振動体部10は、図2(a)〜(d)に示すように、電圧の印加により屈曲振動する本発明の圧電屈曲振動部材としての圧電材11と、圧電材11に一体的に積層され、伸縮振動する本発明の圧電伸縮振動部材としての圧電材12と、さらに圧電材12に一体的に積層される圧電材13と、圧電材13と圧電材12との間に設けられた電極パターン16と、圧電材12と圧電材11との間に設けられた電極パターン15と、圧電材11の圧電材12との積層面に対向する面に設けられた電極パターン14と、圧電材11の電極パターン14面に一体的に積層される本発明の電極配線部材としての電極配線部材31から構成されている。   As shown in FIGS. 2A to 2D, the vibrating body portion 10 is integrally laminated with the piezoelectric material 11 as a piezoelectric bending vibration member of the present invention that bends and vibrates when a voltage is applied. The piezoelectric material 12 as the piezoelectric expansion / contraction vibration member of the present invention that undergoes stretching vibration, the piezoelectric material 13 laminated on the piezoelectric material 12, and the electrode pattern provided between the piezoelectric material 13 and the piezoelectric material 12 16, an electrode pattern 15 provided between the piezoelectric material 12 and the piezoelectric material 11, an electrode pattern 14 provided on a surface of the piezoelectric material 11 facing the laminated surface of the piezoelectric material 12, and the piezoelectric material 11 It is comprised from the electrode wiring member 31 as an electrode wiring member of this invention laminated | stacked integrally on the electrode pattern 14 surface.

ここで、圧電材11、12は、図2(b)(c)に示すように、平面矩形状であり、所定の共振周波数を設定する寸法に加工され、強誘電体材料、例えば、チタン酸バリウム、チタン酸ジルコン酸鉛が用いられる。   Here, as shown in FIGS. 2B and 2C, the piezoelectric materials 11 and 12 have a planar rectangular shape and are processed into dimensions that set a predetermined resonance frequency, and are made of a ferroelectric material such as titanic acid. Barium and lead zirconate titanate are used.

圧電材11は、矩形体をさらに十字方向に小さな矩形体に4等分し、対角線方向の一対の矩形体を同極性に、辺方向の一対の矩形体も同極性となるように分極処理する。   The piezoelectric material 11 further divides the rectangular body into four smaller rectangular bodies in the cross direction, and polarizes so that the pair of rectangular bodies in the diagonal direction have the same polarity and the pair of rectangular bodies in the side direction also have the same polarity. .

一方、圧電材12は、矩形体のほぼ全体を同一極性に分極処理されている。   On the other hand, in the piezoelectric material 12, almost the entire rectangular body is polarized to the same polarity.

また、電極パターン14a、14bは、図2(b)に示すように、圧電材11の分極処理された部分に対応して4分割して固定されており、対角線方向の一対の電極14a、14bは、同時に電圧を印加される。   Further, as shown in FIG. 2B, the electrode patterns 14a and 14b are fixed by being divided into four corresponding to the polarized portions of the piezoelectric material 11, and a pair of electrodes 14a and 14b in the diagonal direction. Are simultaneously energized.

また、各電極パターン14a、14bには、圧電材11の矩形面の近接する長縁部に達するよう突出部を設ける。   Further, each electrode pattern 14a, 14b is provided with a protruding portion so as to reach a long edge portion close to the rectangular surface of the piezoelectric material 11.

電極パターン15は、図2(c)に示すように、圧電材12の矩形面のほぼ全面に設け、圧電材12の矩形面の一対の長辺のうち一方の長縁部の中央に達するよう突出部を設ける。 電極パターン16は、図2(d)に示すように、圧電材13のほぼ全面に固定され、圧電材12の矩形面の一対の長辺のうち電極パターン15とは逆方向の長縁部の中央に達するよう突出部を設ける。   As shown in FIG. 2C, the electrode pattern 15 is provided on almost the entire rectangular surface of the piezoelectric material 12 so as to reach the center of one long edge portion of the pair of long sides of the piezoelectric material 12. Protrusions are provided. As shown in FIG. 2D, the electrode pattern 16 is fixed to almost the entire surface of the piezoelectric material 13, and has a long edge portion in a direction opposite to the electrode pattern 15 out of a pair of long sides of the rectangular surface of the piezoelectric material 12. Protrusion is provided to reach the center.

電極配線部材31は、図2(a)(e)に示すように、圧電材31aと、各電極パターン14、15、16の突出部と対応する部位に設けられた電圧印加用電極パターン31b、31c、31d、31eからなる。   As shown in FIGS. 2A and 2E, the electrode wiring member 31 includes a piezoelectric material 31a and voltage application electrode patterns 31b provided at portions corresponding to the protruding portions of the electrode patterns 14, 15, and 16. 31c, 31d, 31e.

各電圧印加用電極パターン31b、31c、31d、31eは、矩形面の近接する長縁部に達し、さらに、振動体部10の側面まで延長され、各電極パターン14、15、16と接続されている(図2(e)参照)。     Each voltage application electrode pattern 31b, 31c, 31d, 31e reaches a long edge portion adjacent to the rectangular surface, is further extended to the side surface of the vibrating body portion 10, and is connected to each electrode pattern 14, 15, 16 (See FIG. 2 (e)).

次に、図1〜4に基づいて、本実施の形態の使用方法について説明する。   Next, based on FIGS. 1-4, the usage method of this Embodiment is demonstrated.

図3は、本実施の形態に係わる超音波モータのブロック図を示すものであり、図4は、本実施の形態に係わる圧電材の振動態様を示すものである。   FIG. 3 shows a block diagram of the ultrasonic motor according to the present embodiment, and FIG. 4 shows a vibration mode of the piezoelectric material according to the present embodiment.

先ず、移動体20の回転部材21を時計回りに回転させたいときは、図3に示すように、電圧印加用電極パターン31b、d、eに電圧を印加すればよい。   First, when it is desired to rotate the rotating member 21 of the moving body 20 clockwise, a voltage may be applied to the voltage applying electrode patterns 31b, 31d and 31e as shown in FIG.

このとき、電極パターン14a、15、16は通電される。ここで、電極パターン14a、15間の圧電材11は、図4のAに示すような、横方向に屈曲振動を起こす一方、電極パターン15、16間の圧電材12は、図4のBに示すように、縦横方向に伸縮振動を起こす。   At this time, the electrode patterns 14a, 15 and 16 are energized. Here, the piezoelectric material 11 between the electrode patterns 14a and 15 causes bending vibration in the lateral direction as shown in FIG. 4A, while the piezoelectric material 12 between the electrode patterns 15 and 16 corresponds to B in FIG. As shown, it causes stretching vibration in the vertical and horizontal directions.

ここで、各圧電材11の振動方向は一定に保たれ、振動運動は制限されない。また、圧電材12は、ほぼ全面に電圧を印加されるので、大きな伸縮振動を起こす。   Here, the vibration direction of each piezoelectric material 11 is kept constant, and the vibration motion is not limited. In addition, since the piezoelectric material 12 is applied with a voltage almost over the entire surface, it causes a large stretching vibration.

各圧電材11、12は一体となっているので、各圧電材11、12の屈曲振動及び伸縮振動は合成され、矩形面の短縁部は、反時計回りに楕円運動を行う。   Since the piezoelectric materials 11 and 12 are integrated, the bending vibration and the stretching vibration of the piezoelectric materials 11 and 12 are combined, and the short edge portion of the rectangular surface performs elliptical motion counterclockwise.

矩形面の短縁部に固定された出力取り出し部17は、前記楕円運動を拡大させて移動体20の回転部材21に所定のタイミングで圧接する。   The output take-out part 17 fixed to the short edge of the rectangular surface expands the elliptical motion and presses against the rotating member 21 of the moving body 20 at a predetermined timing.

よって、所定のタイミングで圧接される移動体20の回転部材21は、当接される毎に摩擦力を受け、時計方向に回転する。   Therefore, the rotating member 21 of the moving body 20 that is press-contacted at a predetermined timing receives a frictional force each time it contacts and rotates in the clockwise direction.

また、移動体の回転部材21を反時計方向に回転させたいときは、図3に示すように、電圧印加用電極パターン31c、d、eに電圧を印加すればよい。   Further, when it is desired to rotate the rotating member 21 of the moving body in the counterclockwise direction, a voltage may be applied to the voltage applying electrode patterns 31c, d, e as shown in FIG.

このとき、電極パターン14b、15、16は通電される。ここで、電極パターン14b、15間の圧電材11は、図4のAとは逆位相の屈曲振動を起こす一方、電極パターン15、16間の圧電材12は、図4のBに示すような、伸縮振動を起こす。   At this time, the electrode patterns 14b, 15 and 16 are energized. Here, the piezoelectric material 11 between the electrode patterns 14b and 15 causes bending vibration in the opposite phase to A in FIG. 4, while the piezoelectric material 12 between the electrode patterns 15 and 16 is as shown in FIG. 4B. Causes stretching vibration.

各圧電材11、12は一体となっているので、各圧電材11、12の屈曲振動及び伸縮振動は合成され、矩形面の短縁部では、時計回りに楕円運動を行う。   Since the piezoelectric materials 11 and 12 are integrated, the bending vibration and the stretching vibration of the piezoelectric materials 11 and 12 are combined, and an elliptical motion is performed clockwise at the short edge portion of the rectangular surface.

よって、所定のタイミングで当接される移動体20の回転部材21は、出力取り出し部17を圧接される毎に摩擦力を受け、反時計方向を回転する。   Therefore, the rotating member 21 of the moving body 20 that contacts at a predetermined timing receives a frictional force each time the output take-out portion 17 is pressed and rotates counterclockwise.

以上より、本実施の形態によれば、圧電材11を固定手段を用いることなく保持することにより、振動運動を制限されることもなく、また、振動方向は一定に保たれるようにしたので、各圧電材11の振動運動のロス、及び振動方向のバラツキが防止される。   As described above, according to the present embodiment, by holding the piezoelectric material 11 without using the fixing means, the vibration motion is not limited, and the vibration direction is kept constant. The loss of the vibration motion of each piezoelectric material 11 and the variation in the vibration direction are prevented.

また、圧電材12によって強制的に伸縮運動を励振するようにしたので、伸縮振動を大きくすることができ、この伸縮振動と屈曲振動との合成振動は、2重モード振動する各圧電材を積層させたものと比較して、高出力が得られる。   In addition, since the expansion and contraction motion is forcibly excited by the piezoelectric material 12, the expansion and contraction vibration can be increased, and the combined vibration of the expansion and contraction vibration and the bending vibration is formed by laminating each piezoelectric material that vibrates in double mode. High output can be obtained compared to the above.

また、電極パターン14、15との間、及び電極パターン15、16間に電圧を印加するようにしたので、電極パターン15を基準として共用し、装置構成の簡略化を図る。   In addition, since a voltage is applied between the electrode patterns 14 and 15 and between the electrode patterns 15 and 16, the electrode pattern 15 is used as a reference to simplify the device configuration.

また、電極配線部材31の電極面31bのみに通電することで各電極パターン14に通電するようにしたので、各電極パターン14に対して個別に配線する必要がなく、また、圧電材11、12を一度に分極処理することが可能である。   In addition, since each electrode pattern 14 is energized by energizing only the electrode surface 31b of the electrode wiring member 31, there is no need to individually wire each electrode pattern 14, and the piezoelectric materials 11 and 12 Can be polarized at a time.

また、出力取り出し部17により圧電材11、12の合成振動の変位を拡大するようにしたので、出力取り出し部17の先端で圧接される回転部材21はより大きな摩擦力を受け回転される。   In addition, since the displacement of the combined vibration of the piezoelectric materials 11 and 12 is increased by the output take-out portion 17, the rotating member 21 that is in pressure contact with the tip of the output take-out portion 17 is rotated by receiving a larger frictional force.

また、圧電材11、12の合成振動により出力取り出し部17を所定のタイミングで回転部材21に圧接して摩擦力を付与するようにしたので、回転部材21を回転運動させる。   Further, since the output take-out portion 17 is pressed against the rotating member 21 at a predetermined timing by the combined vibration of the piezoelectric materials 11 and 12, a frictional force is applied, so that the rotating member 21 is rotated.

{実施の形態2}
図5は、本発明を超音波モータに適用した実施の形態2を示すものである。本実施の形態の要部は、図5に示すように、振動体部10と、振動体部10の縁部に設けられた本発明の振動伝達部材としての出力取り出し部17と、出力取り出し部17に当接される本発明の可動体としての移動体20と、移動体20と出力取り出し部17とを加圧する加圧機構(図示外)から構成されている。
{Embodiment 2}
FIG. 5 shows a second embodiment in which the present invention is applied to an ultrasonic motor. As shown in FIG. 5, the main part of the present embodiment includes a vibrating body portion 10, an output extracting portion 17 as a vibration transmitting member of the present invention provided at an edge of the vibrating body portion 10, and an output extracting portion. The movable body 20 as a movable body of the present invention that is in contact with 17, and a pressurizing mechanism (not shown) that pressurizes the movable body 20 and the output extraction unit 17.

移動体20は、案内溝(図示外)を有し、所定の方向に直線運動する直線運動部材21と、案内溝と対になって直線運動部材21の運動方向を規制する規制部材(図示外)から構成されている。   The moving body 20 has a guide groove (not shown), and a linear motion member 21 that linearly moves in a predetermined direction, and a regulation member (not shown) that controls the motion direction of the linear motion member 21 paired with the guide groove. ).

出力取り出し部17は、実施の形態1と同様の構成であり、振動体部10の下面に中央部から左右均等な距離に一対設けられている。   The output extraction unit 17 has the same configuration as that of the first embodiment, and a pair of output extraction units 17 are provided on the lower surface of the vibrating body unit 10 at equal distances from the center to the left and right.

加圧機構は、振動体部10の上面の振動節部を下方に向けて加圧する構造からなる。   The pressurizing mechanism is configured to pressurize the vibration node portion on the upper surface of the vibrating body portion 10 downward.

図6は、振動体部の各積層層の平面及び振動体部の側面を示すものである。   FIG. 6 shows the plane of each laminated layer of the vibrating body portion and the side surface of the vibrating body portion.

振動体部10は、図6(a)〜(g)に示すように、電圧の印加により屈曲振動する本発明の圧電屈曲振動部材としての圧電材11と、圧電材11に一体的に積層され、伸縮振動する本発明の圧電伸縮振動部材としての圧電材12と、さらに圧電材12に一体的に積層される本発明の圧電伸縮振動部材としての圧電材13と、圧電材13に一体的に積層される本発明の圧電屈曲振動部材としての圧電材44と、圧電材44に一体的に積層される本発明の圧電屈曲振動部材としての圧電材45と、圧電材45に積層される圧電材46を備え、各圧電材11間には、本発明の第一の電極としての電極パターン14、48と、本発明の第二の電極としての電極パターン16と、本発明の基準電極としての電極パターン15、47、49と、圧電材11の電極パターン14側に積層される本発明の電極配線部材としての電極配線部材31から構成されている。   As shown in FIGS. 6A to 6G, the vibrating body portion 10 is integrally laminated with a piezoelectric material 11 as a piezoelectric bending vibration member of the present invention that flexurally vibrates when a voltage is applied, and the piezoelectric material 11. The piezoelectric material 12 as a piezoelectric expansion / contraction vibration member of the present invention that stretches and vibrates, the piezoelectric material 13 as the piezoelectric expansion / contraction vibration member of the present invention laminated integrally with the piezoelectric material 12, and the piezoelectric material 13 integrally. The piezoelectric material 44 as the piezoelectric bending vibration member of the present invention to be laminated, the piezoelectric material 45 as the piezoelectric bending vibration member of the present invention laminated integrally with the piezoelectric material 44, and the piezoelectric material laminated on the piezoelectric material 45. 46, and between each piezoelectric material 11, the electrode patterns 14 and 48 as the first electrode of the present invention, the electrode pattern 16 as the second electrode of the present invention, and the electrode as the reference electrode of the present invention Patterns 15, 47, 49 and piezoelectric material 1 And a electrode wire member 31 as an electrode wiring member of the present invention which is laminated on the electrode pattern 14 side.

ここで、圧電材11は、図6(b)に示すように、実施の形態1とほぼ同様の構成であるが、圧電材11は、矩形体をさらに横方向に小さな矩形体に4等分して、交互に逆極性となるよう分極処理し、一方の矩形面に、分極処理する部位に対応して電極パターン14a、bを設けている点に特徴を有する。   Here, as shown in FIG. 6B, the piezoelectric material 11 has substantially the same configuration as that of the first embodiment. However, the piezoelectric material 11 further divides the rectangular body into four equal parts in the lateral direction. Thus, polarization processing is performed alternately so as to have opposite polarities, and electrode patterns 14a and 14b are provided on one rectangular surface corresponding to the portions to be polarized.

また、各電極パターン14a、bは、全て、一方の長縁部に達する突出部を有する。   Each of the electrode patterns 14a and 14b has a protruding portion that reaches one long edge portion.

一方、圧電材13は、図6(d)に示すように、圧電材12とは上下逆方向に同様な分極処理される。   On the other hand, as shown in FIG. 6D, the piezoelectric material 13 is subjected to the same polarization process in the reverse direction to the piezoelectric material 12.

また、図6(e)(f)に示すように、圧電材44、45は、圧電材11の分極処理を施されている部位に対応する部位を逆極性に分極処理される。   Further, as shown in FIGS. 6E and 6F, the piezoelectric materials 44 and 45 are subjected to polarization processing with a reverse polarity at a portion corresponding to the portion subjected to the polarization processing of the piezoelectric material 11.

圧電材44、45間に設けられる電極パターン48は、電極パターン14とほぼ同様の構成であるが、電極パターン14aの突出部とは反対側に圧電材45の突出部を設ける。   The electrode pattern 48 provided between the piezoelectric materials 44 and 45 has substantially the same configuration as that of the electrode pattern 14, but the protruding portion of the piezoelectric material 45 is provided on the side opposite to the protruding portion of the electrode pattern 14 a.

電極配線部材31は、図6(a)に示すように、本体部として圧電材31aと、電極パターン14a、14bの突出部に対応する部位に設けられた電極印加用パターン31bと、電極パターン48a、48bの突出部に対応する部位に設けられた電極印加用パターン31cと、電極パターン15、47、49の突出部に対応する部位に設けられた電極パターン31dと、電極パターン16の突出部に対応する部位に設けられた電極パターン31eから構成されている。   As shown in FIG. 6A, the electrode wiring member 31 includes a piezoelectric material 31a as a main body, an electrode application pattern 31b provided in a portion corresponding to the protruding portions of the electrode patterns 14a and 14b, and an electrode pattern 48a. 48b, the electrode application pattern 31c provided at the portion corresponding to the protruding portion of 48b, the electrode pattern 31d provided at the portion corresponding to the protruding portion of the electrode patterns 15, 47, 49, and the protruding portion of the electrode pattern 16 It is comprised from the electrode pattern 31e provided in the corresponding site | part.

各電極パターン31b、31c,31d,31eは、圧電材31aの矩形面の近接する長縁部に達し、さらに、振動体部10の側面まで延長され、各電極パターン14、15,16,44,47,48,49と接続されている(図6(h)参照)。   Each of the electrode patterns 31b, 31c, 31d, and 31e reaches the adjacent long edge portion of the rectangular surface of the piezoelectric material 31a, and is further extended to the side surface of the vibrating body portion 10, so that each electrode pattern 14, 15, 16, 44, 47, 48, and 49 (see FIG. 6H).

次に、図5〜8に基づいて、本実施の形態の使用方法について説明する。   Next, the usage method of this Embodiment is demonstrated based on FIGS.

図7は、本実施の形態の移動体20を左方向に動かすときの主要部のブロック図を示し、図8は、本実施の形態に係わる振動体部の動作を示すものである。   FIG. 7 shows a block diagram of the main part when the moving body 20 of the present embodiment is moved in the left direction, and FIG. 8 shows the operation of the vibrator part according to the present embodiment.

先ず、移動体20の直線運動部材21を右方向に直線運動させたいときは、図6(a)に示すように、電極印加用パターン31c、31d、31eに電圧を印加すればよい。 このとき、電極パターン15、16、47、48、49に通電され、電極パターン47、48、49の間の圧電材44、45は、図4のAに示すように、上下方向に屈曲振動を起こす一方、電極パターン15、16、47間の圧電材12、13は、図8のBに示すような、縦横方向の伸縮振動を起こす。   First, when it is desired to linearly move the linear motion member 21 of the moving body 20 in the right direction, a voltage may be applied to the electrode application patterns 31c, 31d, and 31e as shown in FIG. At this time, the electrode patterns 15, 16, 47, 48, 49 are energized, and the piezoelectric materials 44, 45 between the electrode patterns 47, 48, 49 undergo bending vibration in the vertical direction as shown in FIG. On the other hand, the piezoelectric materials 12 and 13 between the electrode patterns 15, 16 and 47 cause stretching vibration in the vertical and horizontal directions as shown in FIG.

そして、各圧電材44、45、12、13は一体となっているので、各圧電材44の屈曲振動及び伸縮振動は合成され、振動体部10の下面の各部位は反時計回りに楕円運動を行う。   And since each piezoelectric material 44, 45, 12, 13 is united, the bending vibration and expansion-contraction vibration of each piezoelectric material 44 are synthesize | combined, and each site | part of the lower surface of the vibrating body part 10 is elliptical motion counterclockwise. I do.

振動体部10の下面に固定された一対の出力取り出し部17a、17bは、前記楕円運動を拡大させて移動体20の直線運動部材21に所定のタイミングで圧接する。   A pair of output extraction portions 17a and 17b fixed to the lower surface of the vibrating body portion 10 expands the elliptical motion and presses against the linear motion member 21 of the moving body 20 at a predetermined timing.

よって、所定のタイミングで圧接される移動体20の直線運動部材21は、当接される毎に摩擦力を受け、右方向に直線運動する。   Therefore, the linear motion member 21 of the moving body 20 that is press-contacted at a predetermined timing receives a frictional force each time it abuts and linearly moves in the right direction.

移動体20の直線運動部材21を左方向に運動させたいときは、図6(a)に示すように、電極印加用パターン31b、31d、31eに電圧を印加すればよい。   In order to move the linear motion member 21 of the moving body 20 leftward, as shown in FIG. 6A, a voltage may be applied to the electrode application patterns 31b, 31d, and 31e.

このとき、図7に示すように、電極パターン14、15、16、47は通電され、電極パターン14間の圧電材11、12、13は電圧を印加される。   At this time, as shown in FIG. 7, the electrode patterns 14, 15, 16, 47 are energized, and voltages are applied to the piezoelectric materials 11, 12, 13 between the electrode patterns 14.

ここで、圧電材11は、図8のAとは180°位相の異なる屈曲振動を起こす一方、電極パターン15、16間の圧電材12、13は、図8のBに示すような、縦横方向の伸縮振動を起こす。   Here, the piezoelectric material 11 causes bending vibration having a phase difference of 180 ° from that of A in FIG. 8, while the piezoelectric materials 12 and 13 between the electrode patterns 15 and 16 have vertical and horizontal directions as shown in B of FIG. 8. Causes stretching vibration.

そして、各圧電材11、12、13は一体となっているので、各圧電材11、12の屈曲振動及び伸縮振動は合成され、振動体部10の下面の各部位は時計回りに楕円運動を行う。   And since each piezoelectric material 11, 12, 13 is united, the bending vibration and expansion-contraction vibration of each piezoelectric material 11, 12 are synthesize | combined, and each site | part of the lower surface of the vibrating body part 10 carries out elliptical motion clockwise. Do.

よって、所定のタイミングで圧接される移動体20の直線運動部材21は、当接される毎に摩擦力を受け、左方向に直線運動する。   Therefore, the linear motion member 21 of the moving body 20 that is press-contacted at a predetermined timing receives a frictional force each time it abuts and linearly moves in the left direction.

以上より、特に、本実施の形態によれば、さらに圧電材13、45を積層しているので、大きな合成振動を得られ、直線運動部材21をより高出力で直線運動させる。   As described above, in particular, according to the present embodiment, since the piezoelectric materials 13 and 45 are further laminated, a large synthetic vibration can be obtained, and the linear motion member 21 is linearly moved at a higher output.

また、合成振動により出力取り出し部17を所定のタイミングで直線運動部材21に圧接して摩擦力を付与するようにしたので、直線運動部材21を直線運動させる。   Further, since the output take-out portion 17 is pressed against the linear motion member 21 at a predetermined timing by synthetic vibration and a frictional force is applied, the linear motion member 21 is linearly moved.

なお、振動体部10を加圧して固定面上に設置し、超音波モータ自身が直線運動するようにしてもよい。このとき、振動体部10は、合成振動により、出力取り出し部17a、17bを楕円運動させ、出力取り出し部17a、17bは、固定面に圧接する毎に摩擦力を受け、超音波モータ自身は、固定面上を直線運動する。   Alternatively, the vibrating body unit 10 may be pressurized and installed on the fixed surface so that the ultrasonic motor itself moves linearly. At this time, the vibrating body portion 10 causes the output extraction portions 17a and 17b to elliptically move by synthetic vibration, and the output extraction portions 17a and 17b receive a frictional force every time they come into pressure contact with the fixed surface. Move linearly on the fixed surface.

{実施の形態3}
図9は、本発明を超音波モータを駆動源とする電子機器に適用したブロック図を示すものである。
{Third embodiment}
FIG. 9 shows a block diagram in which the present invention is applied to an electronic apparatus using an ultrasonic motor as a drive source.

本実施の形態は、積層型の圧電素子51と、積層型圧電素子51に一体的に振動される振動体52と、振動体52に周期的に圧接される移動体53と、移動体53と一体に動作する伝達機構54と、伝達機構54の動作に基づいて可動される出力機構55と、振動体52と移動体53を加圧する加圧機構56から構成されている。   In the present embodiment, a laminated piezoelectric element 51, a vibrating body 52 that vibrates integrally with the laminated piezoelectric element 51, a moving body 53 that is periodically pressed against the vibrating body 52, and a moving body 53 A transmission mechanism 54 that operates integrally, an output mechanism 55 that is moved based on the operation of the transmission mechanism 54, and a pressurizing mechanism 56 that pressurizes the vibrating body 52 and the moving body 53.

ここで、伝達機構54としては、例えば、歯車列、摩擦車等の伝達車を用いる。   Here, as the transmission mechanism 54, for example, a transmission wheel such as a gear train or a friction wheel is used.

出力機構55としては、カメラにおいてはシャッタ駆動機構、レンズ駆動機構等を、電子時計又は計測器においては指針等を、ロボットにおいてはアームを、工作機械においては、刃具送り機構や加工部材送り機構等を用いる。   The output mechanism 55 includes a shutter drive mechanism and a lens drive mechanism in a camera, a pointer in an electronic timepiece or a measuring instrument, an arm in a robot, and a cutting tool feed mechanism and a machining member feed mechanism in a machine tool. Is used.

なお、本実施の形態における電子機器としては、好ましくは、電子時計、計測器、カメラ、プリンタ、印刷機、工作機械、ロボット、移動装置等を実現できる。   In addition, as an electronic device in this embodiment, preferably, an electronic timepiece, a measuring instrument, a camera, a printer, a printing machine, a machine tool, a robot, a moving device, and the like can be realized.

さらに、移動体53に出力軸を取付け、出力軸からのトルクを伝達するための動力伝達機構を有する構成とすれば、超音波モータ駆動装置を実現できる。   Furthermore, if an output shaft is attached to the moving body 53 and a power transmission mechanism for transmitting torque from the output shaft is provided, an ultrasonic motor drive device can be realized.

(a)は、本発明を超音波モータに適用した実施の形態1の平面構造を示す説明図であり、(b)は、断面構造を示す説明図である。(A) is explanatory drawing which shows the planar structure of Embodiment 1 which applied this invention to the ultrasonic motor, (b) is explanatory drawing which shows a cross-sectional structure. 図1に係わる各積層層の平面構造及び振動体部の側面を示す説明図である。FIG. 2 is an explanatory diagram illustrating a planar structure of each laminated layer and a side surface of a vibrating body portion related to FIG. 1. 図1に係わるブロック図を示すものである。FIG. 2 is a block diagram related to FIG. 1. 図1に係わる振動の態様を示す説明図である。It is explanatory drawing which shows the aspect of the vibration concerning FIG. (a)は、本発明を超音波モータに適用した実施の形態2の平面構造を示す説明図であり、(b)は、断面構造を示す説明図である。(A) is explanatory drawing which shows the planar structure of Embodiment 2 which applied this invention to the ultrasonic motor, (b) is explanatory drawing which shows a cross-section. 図5に係わる各積層層の平面構造及び振動体部の側面を示す説明図である。It is explanatory drawing which shows the planar structure of each laminated layer concerning FIG. 5, and the side surface of a vibrating body part. 図5に係わる移動体を左方向に動かすときの主要部のブロック図を示す説明図である。It is explanatory drawing which shows the block diagram of the principal part when moving the mobile body concerning FIG. 5 to the left direction. 図5に係わる振動の態様を示す説明図である。It is explanatory drawing which shows the aspect of the vibration concerning FIG. 本発明を電子機器に適用した実施の形態3を示す説明図である。It is explanatory drawing which shows Embodiment 3 which applied this invention to the electronic device. 従来技術に係わる積層構造の超音波モータの斜視方向の構造を示す説明図である。It is explanatory drawing which shows the structure of the perspective direction of the ultrasonic motor of the laminated structure concerning a prior art. 図10に係わる基本構造のブロック図を示すものである。FIG. 11 is a block diagram of a basic structure related to FIG. 10.

符号の説明Explanation of symbols

10 振動体部
11 圧電材(圧電屈曲振動部材)
12 圧電材(圧電伸縮振動部材)
14 電極パターン(第一の電極)
15 電極パターン(基準電極)
16 電極パターン(第二の電極)
17 出力取り出し部(振動伝達部材)
20 移動体(可動体)
31 電極配線部材(電極配線部材)
10 vibrator 11 piezoelectric material (piezoelectric bending vibration member)
12 Piezoelectric material (Piezoelectric stretching vibration member)
14 Electrode pattern (first electrode)
15 Electrode pattern (reference electrode)
16 Electrode pattern (second electrode)
17 Output extraction part (vibration transmission member)
20 Mobile body (movable body)
31 Electrode wiring member (electrode wiring member)

Claims (5)

電極を有する複数の圧電材を積層した振動体部と、前記振動体部の振動により動作する可動部と、
前記振動体部の前記圧電材の積層方向端面において前記圧電材の全ての電極と導通する電圧印加用電極パターンと、を有する超音波モータにおいて、
前記電圧印加用電極パターンは、前記電極夫々から前記圧電材の縁に達する突出部と導通が取られたものであることを特徴とする超音波モータ。
A vibrating body portion in which a plurality of piezoelectric materials having electrodes are laminated; a movable portion that operates by vibration of the vibrating body portion;
In the ultrasonic motor having a voltage application electrode pattern that is electrically connected to all the electrodes of the piezoelectric material at the end surface of the vibrating member in the stacking direction of the piezoelectric material,
The ultrasonic motor according to claim 1, wherein the voltage applying electrode pattern is connected to a protruding portion that reaches the edge of the piezoelectric material from each of the electrodes.
請求項1に記載の超音波モータにおいて、
前記電圧印加用電極パターンは、前記振動体部が発生する振動の節に向かって張り出した電極を有することを特徴とする超音波モータ。
The ultrasonic motor according to claim 1,
The ultrasonic motor according to claim 1, wherein the voltage applying electrode pattern includes an electrode projecting toward a vibration node generated by the vibrating body portion.
請求項1又は2に記載の超音波モータにおいて、
前記電圧印加用電極パターンが設けられた電極配線部材が前記圧電振動部材に一体的に積層されたことを特徴とする超音波モータ。
The ultrasonic motor according to claim 1 or 2,
An ultrasonic motor, wherein an electrode wiring member provided with the voltage applying electrode pattern is integrally laminated on the piezoelectric vibration member.
前記電極配線部材は圧電材からなることを特徴とする請求項3に記載の超音波モータ。   The ultrasonic motor according to claim 3, wherein the electrode wiring member is made of a piezoelectric material. 請求項1乃至4のいずれか一つに記載の超音波モータを備えたことを特徴とする超音波モータ付電子機器。An electronic apparatus with an ultrasonic motor, comprising the ultrasonic motor according to claim 1.
JP2008025354A 1997-05-16 2008-02-05 Ultrasonic motor and electronic device with ultrasonic motor Expired - Fee Related JP4376943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025354A JP4376943B2 (en) 1997-05-16 2008-02-05 Ultrasonic motor and electronic device with ultrasonic motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12759697 1997-05-16
JP2008025354A JP4376943B2 (en) 1997-05-16 2008-02-05 Ultrasonic motor and electronic device with ultrasonic motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10101570A Division JPH1132491A (en) 1997-05-16 1998-04-13 Ultrasonic motor and electronic equipment with it

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2008208711A Division JP4343995B2 (en) 1997-05-16 2008-08-13 Ultrasonic motor and electronic device with ultrasonic motor
JP2009121959A Division JP4563490B2 (en) 1997-05-16 2009-05-20 Ultrasonic motor and electronic device with ultrasonic motor

Publications (2)

Publication Number Publication Date
JP2008167651A JP2008167651A (en) 2008-07-17
JP4376943B2 true JP4376943B2 (en) 2009-12-02

Family

ID=39696336

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2008025354A Expired - Fee Related JP4376943B2 (en) 1997-05-16 2008-02-05 Ultrasonic motor and electronic device with ultrasonic motor
JP2008208711A Expired - Lifetime JP4343995B2 (en) 1997-05-16 2008-08-13 Ultrasonic motor and electronic device with ultrasonic motor
JP2009121959A Expired - Lifetime JP4563490B2 (en) 1997-05-16 2009-05-20 Ultrasonic motor and electronic device with ultrasonic motor
JP2010112088A Expired - Lifetime JP4681679B2 (en) 1997-05-16 2010-05-14 Vibrating body, ultrasonic motor, and electronic device with ultrasonic motor

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2008208711A Expired - Lifetime JP4343995B2 (en) 1997-05-16 2008-08-13 Ultrasonic motor and electronic device with ultrasonic motor
JP2009121959A Expired - Lifetime JP4563490B2 (en) 1997-05-16 2009-05-20 Ultrasonic motor and electronic device with ultrasonic motor
JP2010112088A Expired - Lifetime JP4681679B2 (en) 1997-05-16 2010-05-14 Vibrating body, ultrasonic motor, and electronic device with ultrasonic motor

Country Status (1)

Country Link
JP (4) JP4376943B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072302A1 (en) 2007-12-06 2009-06-11 Panasonic Corporation Ultrasonic actuator
EP2937913A1 (en) * 2014-04-25 2015-10-28 Physik Instrumente (PI) GmbH & Co. Kg Piezoelectric actuator for an ultrasonic motor
JP6224841B2 (en) * 2014-07-30 2017-11-01 京セラ株式会社 Piezoelectric element, sound generator, sound generator, electronic equipment
JP6543951B2 (en) * 2015-02-18 2019-07-17 セイコーエプソン株式会社 Piezoelectric drive device, robot, and method of driving them

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196075A (en) * 1982-05-11 1983-11-15 Nec Corp Electrostrictive effect element
JPH0226386U (en) * 1988-08-01 1990-02-21
JPH05146171A (en) * 1991-11-19 1993-06-11 Olympus Optical Co Ltd Ultrasonic oscillator
JP3236334B2 (en) * 1992-03-13 2001-12-10 セイコーインスツルメンツ株式会社 Manufacturing method of piezoelectric actuator
JP3370178B2 (en) * 1994-03-30 2003-01-27 三井化学株式会社 Multilayer piezoelectric element and method of manufacturing the same
JPH08242025A (en) * 1995-03-03 1996-09-17 Hitachi Metals Ltd Piezoelectric actuator
JPH08308268A (en) * 1995-04-28 1996-11-22 Canon Inc Laminated type piezoelectric element and its polarization treatment method, oscillatory wave motor, and driver
JP3627197B2 (en) * 1995-08-08 2005-03-09 Necトーキン株式会社 Piezoelectric transformer and transformer device using the same

Also Published As

Publication number Publication date
JP2009183144A (en) 2009-08-13
JP4343995B2 (en) 2009-10-14
JP2008167651A (en) 2008-07-17
JP4563490B2 (en) 2010-10-13
JP2008271783A (en) 2008-11-06
JP2010172196A (en) 2010-08-05
JP4681679B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US6081063A (en) Ultrasonic motor and electronic apparatus having ultrasonic motor
JP3792864B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JP4510179B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
US4999536A (en) Vibrator-type actuator
JP4794897B2 (en) Ultrasonic motor
JP4327268B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4681679B2 (en) Vibrating body, ultrasonic motor, and electronic device with ultrasonic motor
JP4459317B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JP4918122B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4673420B2 (en) Multilayer piezoelectric vibrator, ultrasonic motor, and electronic device with ultrasonic motor
JP4485238B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4641709B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JP4634174B2 (en) Ultrasonic motor and electronic device using the same
JP4672999B2 (en) Ultrasonic motor, laminated piezoelectric element and electronic device
JP4388273B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JPH05115846A (en) Ultrasonic vibrator and driver having the same
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JP5216822B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JP4350786B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JP3492163B2 (en) Piezo actuator
JP4477915B2 (en) Ultrasonic motor
JPH0898565A (en) Vibrating actuator
JP2007336614A (en) Vibratory actuator
JP2005102369A (en) Driving device
JP2005295657A (en) Ultrasonic motor and electronic equipment fitted with ultrasonic motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees