JP4376262B2 - Manufacturing method of mounting body of semiconductor device and wiring board - Google Patents

Manufacturing method of mounting body of semiconductor device and wiring board Download PDF

Info

Publication number
JP4376262B2
JP4376262B2 JP2006312504A JP2006312504A JP4376262B2 JP 4376262 B2 JP4376262 B2 JP 4376262B2 JP 2006312504 A JP2006312504 A JP 2006312504A JP 2006312504 A JP2006312504 A JP 2006312504A JP 4376262 B2 JP4376262 B2 JP 4376262B2
Authority
JP
Japan
Prior art keywords
wiring board
semiconductor device
connection terminal
mounting
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006312504A
Other languages
Japanese (ja)
Other versions
JP2007053409A (en
Inventor
正純 雨海
雅子 渡辺
Original Assignee
日本テキサス・インスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テキサス・インスツルメンツ株式会社 filed Critical 日本テキサス・インスツルメンツ株式会社
Priority to JP2006312504A priority Critical patent/JP4376262B2/en
Publication of JP2007053409A publication Critical patent/JP2007053409A/en
Application granted granted Critical
Publication of JP4376262B2 publication Critical patent/JP4376262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Wire Bonding (AREA)

Description

本発明は、半導体パッケージ等の半導体装置を配線基板に実装した半導体装置と配線基板との実装体に関する。   The present invention relates to a mounting body of a semiconductor device and a wiring board in which a semiconductor device such as a semiconductor package is mounted on the wiring board.

近年、半導体パッケージの小型化及び多ピン化のため、外部接続端子としてはんだボールを用いるBGA(Ball Grid Array)構造が注目を集めている。BGA構造の半導体パッケージでは、半導体チップを搭載するための絶縁基板の裏面(半導体チップを搭載する主面とは反対の面)に、はんだボールが装着されている。一般に、はんだボールの材料としては、Sn及びPb(鉛)を含む合金が用いられている。半導体パッケージを配線基板に実装する際には、このはんだボールを配線基板の接続端子にはんだ付けすることにより、半導体チップと配線基板との電気的な接続を確保するようになっている。   In recent years, a BGA (Ball Grid Array) structure using solder balls as external connection terminals has been attracting attention in order to reduce the size and increase the number of pins of a semiconductor package. In a semiconductor package having a BGA structure, solder balls are mounted on the back surface of the insulating substrate for mounting the semiconductor chip (the surface opposite to the main surface on which the semiconductor chip is mounted). In general, an alloy containing Sn and Pb (lead) is used as a material for solder balls. When the semiconductor package is mounted on the wiring board, the solder balls are soldered to the connection terminals of the wiring board to ensure electrical connection between the semiconductor chip and the wiring board.

ところで、半導体チップが作動時に熱を発生すると、半導体パッケージと配線基板との熱膨張差のためはんだボールに応力が加わり、はんだボールの破損を生じる場合がある。はんだボールの破損は、実装配線基板における接続不良につながる。そのため、このような不良発生を抑制するための対策が望まれている。加えて、近年、環境保護の観点から、Pbを使用しないようにすることも求められている。   By the way, when the semiconductor chip generates heat during operation, stress may be applied to the solder ball due to a difference in thermal expansion between the semiconductor package and the wiring board, and the solder ball may be damaged. Damage to the solder balls leads to poor connection on the mounted wiring board. Therefore, a countermeasure for suppressing the occurrence of such defects is desired. In addition, in recent years, from the viewpoint of environmental protection, it is also required not to use Pb.

従って本発明は、Pbを不要にし、且つ不良発生を低減することができる半導体装置と配線基板との実装体を提供することを目的とする。   Accordingly, an object of the present invention is to provide a mounting body of a semiconductor device and a wiring board that can eliminate Pb and reduce the occurrence of defects.

上記目的を達成するために、本発明に係る半導体装置と配線基板との実装体は、半導体チップと当該半導体チップの電極パッドに電気的に接続された装着部と当該装着部に装着された外部接続端子とを有する半導体装置と、絶縁基板と当該絶縁基板上に形成された接続端子部とを有する配線基板とを有し、上記配線基板の接続端子部に上記半導体装置の外部接続端子が接続された実装体であって、上記外部接続端子がSn(錫)、Ag(銀)、Cu(銅)及びAu(金)を含有する。   In order to achieve the above object, a mounting body of a semiconductor device and a wiring board according to the present invention includes a semiconductor chip, a mounting portion electrically connected to an electrode pad of the semiconductor chip, and an external mounted on the mounting portion. A semiconductor device having a connection terminal; and a wiring substrate having an insulating substrate and a connection terminal portion formed on the insulating substrate, and the external connection terminal of the semiconductor device is connected to the connection terminal portion of the wiring substrate. In the mounted body, the external connection terminal contains Sn (tin), Ag (silver), Cu (copper), and Au (gold).

また、本発明においては、上記配線基板の接続端子部がAuを含む層を有することが好ましい。   Moreover, in this invention, it is preferable that the connection terminal part of the said wiring board has a layer containing Au.

更に、本発明においては、上記半導体装置の装着部がAuを含む層を有することが好ましい。   Furthermore, in the present invention, it is preferable that the mounting portion of the semiconductor device has a layer containing Au.

更に、本発明においては、上記Auを含む層がNiを含む層上に形成されていることが好ましい。   Furthermore, in the present invention, the layer containing Au is preferably formed on the layer containing Ni.

加えて、上記外部接続端子におけるAuの含有率が0.1重量%以上12.0重量%以下であることが好ましい。   In addition, the Au content in the external connection terminal is preferably 0.1 wt% or more and 12.0 wt% or less.

また、本発明においては、上記外部接続端子におけるAgの含有率が1.0重量%以上3.5重量%以下であることが好ましい。   In the present invention, the content of Ag in the external connection terminal is preferably 1.0 wt% or more and 3.5 wt% or less.

更に、上記外部接続端子におけるCuの含有率が0.5重量%以上1.0重量%以下であることが好ましい。   Further, the Cu content in the external connection terminal is preferably 0.5 wt% or more and 1.0 wt% or less.

加えて、上記半導体装置の上記配線基板への実装時に使用する導電性ペーストがSn、Ag及びCuを含有することが好ましい。   In addition, it is preferable that the conductive paste used when mounting the semiconductor device on the wiring board contains Sn, Ag, and Cu.

以上の如く本発明によれば、導電性ボールがSn,Ag及びCuを含む導電性ボールを用いると共に、この導電性ボール、半導体装置の装着部及び配線基板の接続端子の少なくとも一つにAuを含ませるようにしたので、実装工程を経た後の導電性ボールがAuを含むようにすることができ、導電性ボールの接合強度を向上して疲労寿命を改善し、導電性ボールの破損等に伴う不良を低減することができる。   As described above, according to the present invention, the conductive ball uses a conductive ball containing Sn, Ag, and Cu, and Au is used for at least one of the conductive ball, the mounting portion of the semiconductor device, and the connection terminal of the wiring board. Because it is included, the conductive ball after the mounting process can be made to contain Au, the bonding strength of the conductive ball is improved, the fatigue life is improved, the conductive ball is damaged, etc. The accompanying defects can be reduced.

以下、図示した一実施形態に基いて本発明を詳細に説明する。図1は、本発明を適用した半導体パッケージの全体構造を示す一部切り欠き斜視図である。図1に示したように、本実施の形態における半導体パッケージ(半導体装置)100は、半導体チップ102を、絶縁基板104の主面にダイペースト106を用いて固定し、封止材108により封止したものである。半導体チップ102は、シリコン基板の一方の面(図中上側の面)に図示しない集積回路を形成したものである。半導体チップ102の集積回路側の面の外周には、その集積回路から引き出された多数の電極パッド110が配列されている。   Hereinafter, the present invention will be described in detail based on the illustrated embodiment. FIG. 1 is a partially cutaway perspective view showing the entire structure of a semiconductor package to which the present invention is applied. As shown in FIG. 1, in the semiconductor package (semiconductor device) 100 in this embodiment, the semiconductor chip 102 is fixed to the main surface of the insulating substrate 104 using a die paste 106 and sealed with a sealing material 108. It is a thing. The semiconductor chip 102 is obtained by forming an integrated circuit (not shown) on one surface (upper surface in the drawing) of a silicon substrate. A large number of electrode pads 110 drawn from the integrated circuit are arranged on the outer periphery of the surface of the semiconductor chip 102 on the integrated circuit side.

絶縁基板104は、ポリイミド又はセラミックス製等の基板である。絶縁基板104の主面には、Cuからなる導体パターン112が形成されており、絶縁基板104の裏面には外部接続端子であるはんだボール(導電性ボール)114が設けられる。導体パターン112は、半導体チップ102の電極パッド110に導体ワイヤ116を介して接続されると共に、絶縁基板104に穿孔されたビアホール118を介してはんだボール114に接続される。   The insulating substrate 104 is a substrate made of polyimide or ceramics. A conductive pattern 112 made of Cu is formed on the main surface of the insulating substrate 104, and solder balls (conductive balls) 114 that are external connection terminals are provided on the back surface of the insulating substrate 104. The conductor pattern 112 is connected to the electrode pad 110 of the semiconductor chip 102 via the conductor wire 116 and also connected to the solder ball 114 via the via hole 118 drilled in the insulating substrate 104.

はんだボール114は、直径約0.25mmの球形状を有しており、Sn、Ag及びCuを含む合金で構成されており、Agの含有率は1.0〜3.5重量%であり、Cuの含有率は0.5〜1.0重量%である。このはんだボール114は、半導体パッケージ100を配線基板などの配線基板200(図2)に実装する際に、配線基板側の接続端子208に接続されるものである。   The solder ball 114 has a spherical shape with a diameter of about 0.25 mm, is made of an alloy containing Sn, Ag, and Cu, and the Ag content is 1.0 to 3.5 wt%. The content of Cu is 0.5 to 1.0% by weight. The solder balls 114 are connected to the connection terminals 208 on the wiring board side when the semiconductor package 100 is mounted on the wiring board 200 (FIG. 2) such as a wiring board.

図2は、半導体パッケージ100を配線基板200に実装した状態を拡大して示す断面図である。配線基板200は、樹脂からなる絶縁基板202の表面にCuからなる導電層204を形成し、その導電層204の表面を絶縁層206で覆ったものである。絶縁層206は、導電層204において接続端子208となる部分だけを露出させるように形成されている。絶縁基板202の厚さは0.4mm〜3.0mmであり、導電層204の厚さは10μm〜50μmである。又、絶縁層206の厚さは、3μm〜50μmである。   FIG. 2 is an enlarged cross-sectional view showing a state where the semiconductor package 100 is mounted on the wiring board 200. In the wiring substrate 200, a conductive layer 204 made of Cu is formed on the surface of an insulating substrate 202 made of resin, and the surface of the conductive layer 204 is covered with an insulating layer 206. The insulating layer 206 is formed so as to expose only a portion to be the connection terminal 208 in the conductive layer 204. The thickness of the insulating substrate 202 is 0.4 mm to 3.0 mm, and the thickness of the conductive layer 204 is 10 μm to 50 μm. The insulating layer 206 has a thickness of 3 μm to 50 μm.

接続端子208において導電層204の表面には、Ni(ニッケル)めっきによりNi層210が形成されている。このNi層210の表面には、AuめっきによりAu層212が形成されている。Ni層210の厚さは、1μm〜10μmである。Au層212は、そのAu原子が後述するようにはんだボール114中に拡散した際に、はんだボール114におけるAuの含有率が0.1〜12重量%となるような厚さに形成される。   A Ni layer 210 is formed on the surface of the conductive layer 204 in the connection terminal 208 by Ni (nickel) plating. An Au layer 212 is formed on the surface of the Ni layer 210 by Au plating. The thickness of the Ni layer 210 is 1 μm to 10 μm. The Au layer 212 is formed in such a thickness that the Au content in the solder ball 114 is 0.1 to 12% by weight when the Au atoms diffuse into the solder ball 114 as described later.

接続端子208のAu層212の表面には、はんだペースト(導電性ペースト)214を介して、上述したはんだボール114が固定される。はんだペースト214は、はんだボール114と同様の組成を有することが好ましいが、他の組成(例えば、Sn及びPbからなる合金)を有していてもよい。   The solder balls 114 described above are fixed to the surface of the Au layer 212 of the connection terminal 208 via a solder paste (conductive paste) 214. The solder paste 214 preferably has the same composition as that of the solder balls 114, but may have another composition (for example, an alloy composed of Sn and Pb).

半導体パッケージ100の絶縁基板104には、上述したビアホール118が穿孔されている。このビアホール118において、導体パターン112の図中下面にはNi層220が形成され、そのNi層220の図中下面にはAu層222が形成されている。絶縁基板104の厚さは75μm〜100μmである。又、Ni層220の厚さは1μm〜10μmであり、Au層222の厚さは0.1μm〜2.0μmである。ビアホール118、Ni層220及びAu層220は、図示しないはんだペーストを介してはんだボール114を装着するための装着部となる。   The above-described via hole 118 is formed in the insulating substrate 104 of the semiconductor package 100. In this via hole 118, a Ni layer 220 is formed on the lower surface of the conductor pattern 112 in the drawing, and an Au layer 222 is formed on the lower surface of the Ni layer 220 in the drawing. The thickness of the insulating substrate 104 is 75 μm to 100 μm. The Ni layer 220 has a thickness of 1 μm to 10 μm, and the Au layer 222 has a thickness of 0.1 μm to 2.0 μm. The via hole 118, the Ni layer 220, and the Au layer 220 serve as a mounting portion for mounting the solder ball 114 via a solder paste (not shown).

本実施の形態において、はんだボール114に接する位置にAu層212,222を設けたのは、はんだボール114を加熱して接続端子208に接続する際に、Au層212,222のAu原子をはんだボール114中に拡散させるためである。Auがはんだボール114中に拡散すると、はんだボール114は、Sn,Ag,Cu,Auを含む組成となり、接続強度を高くして疲労寿命を改善することができるからである。   In the present embodiment, the Au layers 212 and 222 are provided at positions in contact with the solder balls 114 because the Au atoms of the Au layers 212 and 222 are soldered when the solder balls 114 are heated and connected to the connection terminals 208. This is for diffusion into the ball 114. This is because when Au diffuses into the solder ball 114, the solder ball 114 has a composition containing Sn, Ag, Cu, and Au, and can increase the connection strength and improve the fatigue life.

又、はんだボール114が主成分のSnのほかに、Ag及びCuを含むようにしたのは、Pbを用いることなく強度を確保し、耐クリープ性を向上することができるからである。   The reason why the solder ball 114 contains Ag and Cu in addition to the main component Sn is that the strength can be secured and the creep resistance can be improved without using Pb.

次に、半導体パッケージ100を配線基板200に実装する実装方法について説明する。図3に、半導体パッケージ100の製造方法の概略を示す。まず、図3(A)に示したように、絶縁基板104に、フォトリソグラフィー法又は打ち抜き加工によりビアホール118を形成する。次いで、図3(B)に示したように、ビアホール118を形成した絶縁基板104の主面に、フォトリソグラフィー法を用いて導体パターン112を形成する。続いて、図3(C)に示したように、絶縁基板104上のチップ搭載領域にエポキシ系樹脂からなるダイペースト106を滴下する。更に、図3(D)に示したように、別の工程で製造した半導体チップ102をダイペースト106に押し付け、ヒータ等により雰囲気温度を上げてダイペースト106を硬化させ、絶縁基板104上に半導体チップ102を固定する。   Next, a mounting method for mounting the semiconductor package 100 on the wiring board 200 will be described. FIG. 3 shows an outline of a method for manufacturing the semiconductor package 100. First, as shown in FIG. 3A, a via hole 118 is formed in the insulating substrate 104 by photolithography or punching. Next, as shown in FIG. 3B, a conductor pattern 112 is formed on the main surface of the insulating substrate 104 in which the via hole 118 is formed by using a photolithography method. Subsequently, as shown in FIG. 3C, a die paste 106 made of epoxy resin is dropped on the chip mounting region on the insulating substrate 104. Further, as shown in FIG. 3D, the semiconductor chip 102 manufactured in another process is pressed against the die paste 106, the ambient temperature is raised by a heater or the like, the die paste 106 is cured, and the semiconductor is formed on the insulating substrate 104. The chip 102 is fixed.

半導体チップ102を絶縁基板104に固定したのち、図3(E)に示したように、半導体チップ102の電極パッド110とワイヤ接続ランド120とを導体ワイヤ116でボンディングする。ボンディングが完了した後、モールド樹脂からなる封止材108で半導体チップ102を封止する。続いて、図3(F)に示したように、絶縁基板102のビアホール118内において、導体パターン112の上に、Ni層220及びAu層222を順次形成したのち、スキージ等を用いてはんだペーストを充填し、そのはんだペーストを介してはんだボール114を取り付ける。以上の工程を経て、半導体パッケージ100が完成する。   After fixing the semiconductor chip 102 to the insulating substrate 104, the electrode pads 110 and the wire connection lands 120 of the semiconductor chip 102 are bonded with the conductor wires 116 as shown in FIG. After the bonding is completed, the semiconductor chip 102 is sealed with a sealing material 108 made of mold resin. Subsequently, as shown in FIG. 3F, a Ni layer 220 and an Au layer 222 are sequentially formed on the conductor pattern 112 in the via hole 118 of the insulating substrate 102, and then solder paste using a squeegee or the like. And solder balls 114 are attached through the solder paste. The semiconductor package 100 is completed through the above steps.

図4(A)、(B)は、配線基板200の製造工程の概略を示す。まず、図4(A)に示したように、絶縁基板202の表面に、Cuからなる導電層204を形成する。次に、図4(B)に示したように、導電層204の表面に、Ni層210及びAu層212をそれぞれめっき法により順次形成し、接続端子208に対応する部分を除いて絶縁層206で覆う。   4A and 4B show an outline of the manufacturing process of the wiring board 200. FIG. First, as shown in FIG. 4A, a conductive layer 204 made of Cu is formed on the surface of the insulating substrate 202. Next, as shown in FIG. 4B, an Ni layer 210 and an Au layer 212 are sequentially formed on the surface of the conductive layer 204 by plating, and the insulating layer 206 is removed except for portions corresponding to the connection terminals 208. Cover with.

続いて、図4(C)に示したように、半導体パッケージ100を配線基板200に実装する。すなわち、配線基板200の接続端子208のAu層212の表面に予めはんだペースト(図4では省略)を塗布し、半導体パッケージ100のはんだボール114を接触させ、約220℃〜250℃の加熱処理を行う。これにより、半導体パッケージ100のはんだボール114と配線基板200の接続端子208とが接続される。これにより、半導体パッケージ100を配線基板200に実装してなる、実装配線基板(半導体実装済み配線基板)が得られる。はんだボール114を接続端子208に固定する際、Au層212,222のAu原子がはんだボール114中に拡散するため、はんだボール114は、Sn,Ag,Cuに加えてAuを含むこととなり、高い接続強度及び疲労寿命が得られる。   Subsequently, as illustrated in FIG. 4C, the semiconductor package 100 is mounted on the wiring substrate 200. That is, a solder paste (not shown in FIG. 4) is applied in advance to the surface of the Au layer 212 of the connection terminal 208 of the wiring board 200, the solder balls 114 of the semiconductor package 100 are brought into contact, and a heat treatment at about 220 ° C. to 250 ° C. is performed. Do. As a result, the solder balls 114 of the semiconductor package 100 and the connection terminals 208 of the wiring board 200 are connected. As a result, a mounting wiring board (wiring board on which a semiconductor is mounted) obtained by mounting the semiconductor package 100 on the wiring board 200 is obtained. When the solder ball 114 is fixed to the connection terminal 208, the Au atoms of the Au layers 212 and 222 diffuse into the solder ball 114, so that the solder ball 114 contains Au in addition to Sn, Ag, and Cu. Connection strength and fatigue life can be obtained.

以上説明したように、本実施の形態では、Sn、Ag、Cuを含む組成のはんだボール114を用いると共に、半導体パッケージ100を配線基板200に実装する際にはんだボール114内にAuが拡散するようにし、これにより、接続強度を高くして疲労寿命を改善するようにした。従って、Pbを不要にし、且つ、はんだボール114の破損等に伴う不良の発生を低減することができる。   As described above, in the present embodiment, the solder ball 114 having a composition containing Sn, Ag, and Cu is used, and Au is diffused into the solder ball 114 when the semiconductor package 100 is mounted on the wiring board 200. Thus, the fatigue strength is improved by increasing the connection strength. Accordingly, it is possible to eliminate Pb and reduce the occurrence of defects due to breakage of the solder balls 114 or the like.

特に、はんだボール114におけるAuの含有率が0.1〜12重量%となるようにすることにより、はんだボール114の高い引っ張り強度及びせん断強度を得ることができる。   In particular, the high tensile strength and shear strength of the solder ball 114 can be obtained by making the Au content in the solder ball 114 0.1 to 12% by weight.

更に、はんだボール114の組成において、Agの含有率を1〜3.5重量%とし、Cuの含有率を0.5〜1.0重量%とすることにより、耐クリープ性を向上することができる。   Furthermore, in the composition of the solder balls 114, the creep resistance can be improved by setting the Ag content to 1 to 3.5% by weight and the Cu content to 0.5 to 1.0% by weight. it can.

尚、配線基板200の接続端子208にAu層212,222を形成する代わりに、はんだボール114内に最初からAuを含有させておいてもよい。この場合、はんだボール114は、Sn、Ag、Cu及びAuを含む合金で構成される。Auの含有率は0.1〜12重量%である。又、上述した実施の形態と同様、Agの含有率は1.0〜3.5重量%であり、Cuの含有率は0.5〜1.0重量%である。このようにしても、はんだボール114がAuを含むため、接合強度及び疲労寿命が改善され、はんだボール114の破損等に伴う不良の発生を低減することができる。   Instead of forming the Au layers 212 and 222 on the connection terminals 208 of the wiring board 200, the solder balls 114 may contain Au from the beginning. In this case, the solder ball 114 is made of an alloy containing Sn, Ag, Cu, and Au. The content of Au is 0.1 to 12% by weight. Moreover, the content rate of Ag is 1.0 to 3.5 weight% similarly to embodiment mentioned above, The content rate of Cu is 0.5 to 1.0 weight%. Even in this case, since the solder ball 114 contains Au, the bonding strength and fatigue life are improved, and the occurrence of defects due to breakage of the solder ball 114 or the like can be reduced.

次に、上述した実施の形態による効果を、具体的な数値実施例に基づいて説明する。まず、はんだ材料の粘弾性についての試験結果を説明する。ここでは、Sn,Ag,Cuからなる2通りの組成からなるはんだ材料によりそれぞれ試験片を作成した。組成1は、Agを3.5重量%、Cuを0.75重量%含むものであり、組成2は、Agを1.0重量%、Cuを0.5重量%含むものである。試験片は、図5(A)に示したように、長さL1が140mm、外径D1が15mmの円柱であって、長さ方向中央域の外径を細くした形状を有している。外径の細い部分は、長さL2が50mm、外径D2が10mmとなっている。各試験片につき、3通りの温度(−25℃、+25℃、+125℃)で引っ張り試験を行い、歪み速度と降伏応力との関係を調べた。この結果を、図5(B),(C)にそれぞれ示す。また、図6には、従来のPbを含むはんだ材料(すなわちSnを63重量%含み、Pbを37重量%含むはんだ材料)について、同様の試験を行った結果を示す。図5及び図6では、縦軸がひずみ速度を表し、横軸が応力を表す。   Next, the effects of the above-described embodiment will be described based on specific numerical examples. First, the test results on the viscoelasticity of the solder material will be described. Here, each test piece was made of a solder material having two compositions of Sn, Ag, and Cu. Composition 1 contains 3.5 wt% Ag and 0.75 wt% Cu, and composition 2 contains 1.0 wt% Ag and 0.5 wt% Cu. As shown in FIG. 5A, the test piece is a cylinder having a length L1 of 140 mm and an outer diameter D1 of 15 mm, and has a shape in which the outer diameter of the central region in the length direction is reduced. The portion with a thin outer diameter has a length L2 of 50 mm and an outer diameter D2 of 10 mm. Each test piece was subjected to a tensile test at three different temperatures (−25 ° C., + 25 ° C., and + 125 ° C.), and the relationship between strain rate and yield stress was examined. The results are shown in FIGS. 5B and 5C, respectively. FIG. 6 shows the result of a similar test performed on a conventional solder material containing Pb (that is, a solder material containing 63 wt% Sn and 37 wt% Pb). 5 and 6, the vertical axis represents the strain rate, and the horizontal axis represents the stress.

図5及び図6から、組成1,2では、従来のはんだ材料に比べ、特に低応力下で歪み速度の影響を受けにくいという性質を持つこと、すなわち耐クリープ性に優れていることが分かった。   From FIGS. 5 and 6, it was found that compositions 1 and 2 have a property that they are less susceptible to strain rate, especially under low stress, that is, excellent in creep resistance as compared with conventional solder materials. .

次に、はんだ材料の接合強度についての試験結果について説明する。図7(A)に示したように2枚の銅板600の端面同士を組成1,2のはんだ材料602を用いてそれぞれ接合した。各銅板600は、長さLが59mm、幅Wが15mm、厚さtが0.9mmである。このとき、接合端面に予めNiめっき(厚さ3μm)を施したものと、Niめっき(厚さ3μm)の上にさらにAuめっき(厚さ0.6μm)を施したものと、全くめっきを施していないもののそれぞれについて、引っ張り試験を行った。図7(B)には組成1についての試験結果を示し、図7(C)には組成2についての試験結果を示す。図7(B)及び図7(C)から、組成1及び組成2のいずれについても、Niめっき上にAuめっきをしたものが、最も高い接合強度を示していることが分かる。これは、はんだ付けの際にAuがはんだ材料に拡散したためと考えられる。   Next, the test results regarding the bonding strength of the solder material will be described. As shown in FIG. 7A, the end surfaces of the two copper plates 600 were joined to each other using the solder materials 602 having compositions 1 and 2. Each copper plate 600 has a length L of 59 mm, a width W of 15 mm, and a thickness t of 0.9 mm. At this time, the joint end face is pre-plated with Ni (thickness 3 μm), the Ni plating (thickness 3 μm) is further plated with Au (thickness 0.6 μm), and completely plated A tensile test was carried out for each of those that were not. FIG. 7B shows the test results for composition 1, and FIG. 7C shows the test results for composition 2. From FIG. 7B and FIG. 7C, it can be seen that, for both Composition 1 and Composition 2, Au plating on Ni plating shows the highest bonding strength. This is presumably because Au diffused into the solder material during soldering.

次に、Sn,Ag,Cu,Auからなる組成における、Auの含有率と強度との関係についての試験結果を説明する。ここでは、Agを1.0重量%、Cuを0.5重量%と固定して、Auの含有率を変化させてそれぞれ試験片を作成し、各試験片につき引っ張り強度及びせん断強度を測定した。図8に、その測定結果を示す。図8から、Auの含有率が0.1〜12.0重量%の場合には特に高い引っ張り強度が得られ、Auの含有率が0.1〜9.0重量%の場合には特に高いせん断強度が得られることが分かった。   Next, the test results on the relationship between the Au content and strength in the composition composed of Sn, Ag, Cu, and Au will be described. Here, Ag was fixed at 1.0 wt% and Cu was fixed at 0.5 wt%, and the test piece was prepared by changing the Au content, and the tensile strength and shear strength were measured for each test piece. . FIG. 8 shows the measurement results. From FIG. 8, particularly high tensile strength is obtained when the Au content is 0.1 to 12.0% by weight, and particularly high when the Au content is 0.1 to 9.0% by weight. It was found that shear strength can be obtained.

次に、上述した半導体パッケージ100を配線基板200に実装して温度サイクル試験を行った結果について説明する。ここでは、実施例として、9mm×6mmのサイズの半導体パッケージ100であって、103個のボール(配設ピッチ0.5mm)を搭載するタイプのものを用いた。半導体チップ102のサイズは5mm×3mm×0.28mmとした。はんだボール114の直径は0.25mmとし、組成は上述の組成1とした。はんだペースト214の組成は上述の組成2とした。配線基板200の厚さは0.8mmとし、接続端子208の内径は0.3mmとした。この接続端子208には、厚さ3μmのNi層210と、厚さ0.6μmのAu層212とを形成した。又、はんだボール114にAuが拡散した状態で、Auの含有率が6.9重量%になるようにした。   Next, a result of a temperature cycle test performed by mounting the semiconductor package 100 described above on the wiring board 200 will be described. Here, as an example, a semiconductor package 100 having a size of 9 mm × 6 mm and having 103 balls (arrangement pitch 0.5 mm) was used. The size of the semiconductor chip 102 was 5 mm × 3 mm × 0.28 mm. The diameter of the solder ball 114 was 0.25 mm, and the composition was composition 1 described above. The composition of the solder paste 214 was the composition 2 described above. The thickness of the wiring board 200 was 0.8 mm, and the inner diameter of the connection terminal 208 was 0.3 mm. The connection terminal 208 was formed with a Ni layer 210 having a thickness of 3 μm and an Au layer 212 having a thickness of 0.6 μm. In addition, the Au content was 6.9% by weight in a state where Au was diffused into the solder balls 114.

温度サイクル試験は、温度を−40℃と125℃とで交互に変化させるようにし、それぞれの温度の持続時間を10分とした。又、昇温・降温にかける時間は5分とした。このような温度サイクル試験において、はんだ接合部にクラックが生ずるか否かを調べた。又、比較例として、Au層212,222及びNi層210,220を形成せずに実装を行ったものについて、同様に試験を行った。試験結果を図9に示す。図9において、横軸はサイクル数であり、縦軸は不良発生率である。   In the temperature cycle test, the temperature was alternately changed between −40 ° C. and 125 ° C., and the duration of each temperature was 10 minutes. The time required for temperature increase / decrease was 5 minutes. In such a temperature cycle test, it was examined whether or not a crack occurred in the solder joint. Further, as a comparative example, a test was performed in the same manner on a case where the mounting was performed without forming the Au layers 212 and 222 and the Ni layers 210 and 220. The test results are shown in FIG. In FIG. 9, the horizontal axis represents the number of cycles, and the vertical axis represents the defect occurrence rate.

図9から、比較例では900サイクルで初期不良が現れたのに対し、本実施例では1000サイクルまで初期不良が現れず、不良発生の抑制効果が見られた。すなわち、Au層212,222及びNi層210,220を設けてはんだボール114の接合強度及び疲労寿命を改善することにより、不良発生を低減できることが分かった。   From FIG. 9, the initial failure appeared in 900 cycles in the comparative example, whereas the initial failure did not appear until 1000 cycles in the present example, and the effect of suppressing the occurrence of failure was observed. That is, it has been found that the occurrence of defects can be reduced by providing the Au layers 212 and 222 and the Ni layers 210 and 220 to improve the bonding strength and fatigue life of the solder balls 114.

尚、図示は省略するが、はんだペースト214の組成をSnPb(Snが63重量%、Pbが37重量%)とし、はんだボール114の組成を上記組成2のSnAgCu(Agが1.0重量%、Cuが0.5重量%)として実装を行い、実装後の配線基板につき上述の温度サイクル試験を行ったところ、900サイクルで初期不良が現れた。一方、はんだペースト214及びはんだボール114の組成を、いずれもSnPb(Snが63重量%、Pbが37重量%)として実装を行い、実装後の配線基板につき上述の温度サイクル試験を行ったところ、500サイクルで初期不良が現れた。このことから、はんだペーストの組成に関わらず、SnAgCuの組成を有するはんだボールにAuを拡散することにより、不良発生を低減できることが分かった。   Although illustration is omitted, the composition of the solder paste 214 is SnPb (Sn is 63% by weight, Pb is 37% by weight), and the composition of the solder ball 114 is SnAgCu (Ag is 1.0% by weight; When mounting was performed with Cu being 0.5% by weight, and the above-described temperature cycle test was performed on the mounted wiring board, initial defects appeared at 900 cycles. On the other hand, the composition of the solder paste 214 and the solder ball 114 is both SnPb (Sn is 63 wt%, Pb is 37 wt%), and the above-described temperature cycle test is performed on the mounted wiring board. Initial defects appeared after 500 cycles. From this, it was found that the occurrence of defects can be reduced by diffusing Au into solder balls having the SnAgCu composition regardless of the composition of the solder paste.

以上、本発明の実施形態を図面に沿って説明した。しかしながら本発明は前記実施形態に示した事項に限定されず、特許請求の範囲の記載に基いてその変更、改良等が可能であることは明らかである。例えば、半導体装置の外部接続端子として、上述した実施例においてははんだボールを示したが、はんだボールに代えてはんだランド等を用いてもよいことは当業者には明らかであろう。   The embodiments of the present invention have been described with reference to the drawings. However, the present invention is not limited to the matters shown in the above-described embodiments, and it is obvious that changes, improvements, etc. can be made based on the description of the scope of claims. For example, although solder balls are shown as external connection terminals of a semiconductor device in the above-described embodiments, it will be apparent to those skilled in the art that solder lands or the like may be used instead of solder balls.

本発明の一実施の形態に係る半導体パッケージの構造を示す一部切り欠き斜視図である。1 is a partially cutaway perspective view showing a structure of a semiconductor package according to an embodiment of the present invention. 図1に示した半導体パッケージを配線基板に実装した状態を示す断面図である。It is sectional drawing which shows the state which mounted the semiconductor package shown in FIG. 1 on the wiring board. 図1に示した半導体パッケージの製造プロセスを示す工程ごとの断面図である。FIG. 3 is a cross-sectional view for each process showing a manufacturing process of the semiconductor package shown in FIG. 1. 図1に示した半導体パッケージを配線基板に実装するプロセスを示す工程ごとの断面図である。FIG. 3 is a cross-sectional view for each process showing a process of mounting the semiconductor package shown in FIG. 1 on a wiring board. 本実施の形態におけるはんだ材料の粘弾性を示す図である。It is a figure which shows the viscoelasticity of the solder material in this Embodiment. 従来のはんだ材料の粘弾性を示す図である。It is a figure which shows the viscoelasticity of the conventional solder material. Ni層及びAu層の有無と接合強度との関係を示す図である。It is a figure which shows the relationship between the presence or absence of Ni layer and Au layer, and joining strength. Auの含有率と引っ張り強度及びせん断強度との関係を示す図である。It is a figure which shows the relationship between the content rate of Au, tensile strength, and shear strength. 半導体パッケージ100を配線基板200に実装し、温度サイクル試験を行った結果を示す図である。It is a figure which shows the result of having mounted the semiconductor package 100 on the wiring board 200, and having performed the temperature cycle test.

符号の説明Explanation of symbols

100:半導体装置 102:半導体チップ
104:絶縁基板 106:ダイペースト
108:封止材 112:導体パターン
114:はんだボール 118:ビアホール
200:配線基板 202:導電層
208:接続端子 210,221:Ni層
212,222:Au層 214:はんだペースト
DESCRIPTION OF SYMBOLS 100: Semiconductor device 102: Semiconductor chip 104: Insulating substrate 106: Die paste 108: Sealing material 112: Conductive pattern 114: Solder ball 118: Via hole 200: Wiring board 202: Conductive layer 208: Connection terminal 210, 221: Ni layer 212, 222: Au layer 214: Solder paste

Claims (5)

半導体チップと当該半導体チップの電極パッドに電気的に接続された装着部と当該装着部に装着された外部接続端子とを有する半導体装置と、絶縁基板と当該絶縁基板上に形成された接続端子部とを有する配線基板とを有し、上記配線基板の接続端子部に上記半導体装置の外部接続端子が接続された実装体の製造方法であって、
上記外部接続端子が、Sn(錫)を主成分として、Ag(銀)、Cu(銅)及びAu(金)を含有し、上記Agの含有率が1.0重量%以上3.5重量%以下であり、上記Cuの含有率が0.5重量%以上1.0重量%以下であり、上記Auの含有率が0.1重量%以上12.0重量%以下であり、
上記外部接続端子を接続する際の加熱処理により、上記配線基板の接続端子部又は上記半導体装置の装着部に設けられたAuを含む層からAuが上記外部接続端子に拡散して上記Auの含有率となる、
半導体装置と配線基板との実装体の製造方法。
A semiconductor device having a semiconductor chip, a mounting portion electrically connected to an electrode pad of the semiconductor chip, and an external connection terminal mounted on the mounting portion, an insulating substrate, and a connection terminal portion formed on the insulating substrate A mounting body in which an external connection terminal of the semiconductor device is connected to a connection terminal portion of the wiring board,
The external connection terminal contains Sn (tin) as a main component and contains Ag (silver), Cu (copper), and Au (gold), and the Ag content is 1.0 wt% or more and 3.5 wt%. The Cu content is 0.5 wt% or more and 1.0 wt% or less, the Au content is 0.1 wt% or more and 12.0 wt% or less,
Due to the heat treatment when connecting the external connection terminals, Au diffuses from the layer containing Au provided in the connection terminal portion of the wiring board or the mounting portion of the semiconductor device to the external connection terminals, thereby containing the Au Become a rate,
Manufacturing method of mounting body of semiconductor device and wiring board.
上記Auの含有率が0.1重量%以上9.0重量%以下である、請求項1に記載の半導体装置と配線基板との実装体の製造方法。 The manufacturing method of the mounting body of the semiconductor device and wiring board of Claim 1 whose content rate of the said Au is 0.1 weight% or more and 9.0 weight% or less. 上記配線基板の接続端子部及び上記半導体装置の装着部がAuを含む層をそれぞれ有する、請求項1又は2に記載の半導体装置と配線基板との実装体の製造方法。 The manufacturing method of the mounting body of the semiconductor device and wiring board of Claim 1 or 2 with which the connection terminal part of the said wiring board and the mounting part of the said semiconductor device each have a layer containing Au. 上記Auを含む層がNiを含む層上に形成されている、請求項1、2又は3に記載の半導体装置と配線基板との実装体の製造方法。 The manufacturing method of the mounting body of the semiconductor device and wiring board of Claim 1, 2, or 3 with which the layer containing said Au is formed on the layer containing Ni. 上記半導体装置の上記配線基板への実装時に使用する導電性ペーストがSn、Ag及びCuを含有する、請求項1、2、3又は4に記載の半導体装置と配線基板との実装体の製造方法。 The manufacturing method of the mounting body of the semiconductor device and wiring board of Claim 1, 2, 3 or 4 with which the electrically conductive paste used at the time of mounting to the said wiring board of the said semiconductor device contains Sn, Ag, and Cu. .
JP2006312504A 2006-11-20 2006-11-20 Manufacturing method of mounting body of semiconductor device and wiring board Expired - Fee Related JP4376262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312504A JP4376262B2 (en) 2006-11-20 2006-11-20 Manufacturing method of mounting body of semiconductor device and wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312504A JP4376262B2 (en) 2006-11-20 2006-11-20 Manufacturing method of mounting body of semiconductor device and wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002000283A Division JP3897596B2 (en) 2002-01-07 2002-01-07 Mounted body of semiconductor device and wiring board

Publications (2)

Publication Number Publication Date
JP2007053409A JP2007053409A (en) 2007-03-01
JP4376262B2 true JP4376262B2 (en) 2009-12-02

Family

ID=37917582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312504A Expired - Fee Related JP4376262B2 (en) 2006-11-20 2006-11-20 Manufacturing method of mounting body of semiconductor device and wiring board

Country Status (1)

Country Link
JP (1) JP4376262B2 (en)

Also Published As

Publication number Publication date
JP2007053409A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP3897596B2 (en) Mounted body of semiconductor device and wiring board
KR100239406B1 (en) Surface mounted semiconductor package and method of manufacturing the same
TWI421910B (en) Substrate for semiconductor element, method of forming the same, and semiconductor device
US20070114664A1 (en) Packaged device and method of forming same
TWI479626B (en) Lead frame board, method of forming the same, and semiconductor device
US20070018308A1 (en) Electronic component and electronic configuration
JP2007503721A (en) Reversible leadless package and its manufacture and use
TW201705413A (en) Semiconductor apparatus
TWI480989B (en) Semiconductor package and fabrication method thereof
US7183652B2 (en) Electronic component and electronic configuration
US20040072396A1 (en) Semiconductor electronic device and method of manufacturing thereof
JP3217046B2 (en) BGA type IC package
TWI556368B (en) Chip package structure and manufacturing method thereof
JP4376262B2 (en) Manufacturing method of mounting body of semiconductor device and wiring board
US7179682B2 (en) Packaged device and method of forming same
JPWO2004030075A1 (en) Manufacturing method of semiconductor device
CN212542425U (en) Semiconductor packaging part
US20070085220A1 (en) Re-enforced ball-grid array packages for semiconductor products
JP2007335652A (en) Semiconductor device, circuit board, and their manufacturing methods
JP2001044319A (en) Wiring board and mounting structure thereof
JPH10261735A (en) Semiconductor device and its manufacture
JP2001168224A (en) Semiconductor device, electronic circuit device, and its manufacturing method
JP2001185642A (en) Package substrate for mounting semiconductor
JP3508683B2 (en) Semiconductor device and manufacturing method thereof
WO2009145196A1 (en) Semiconductor chip, intermediate substrate and semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090908

R150 Certificate of patent or registration of utility model

Ref document number: 4376262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees