JP4374044B2 - Toner manufacturing method, toner and toner manufacturing apparatus - Google Patents

Toner manufacturing method, toner and toner manufacturing apparatus Download PDF

Info

Publication number
JP4374044B2
JP4374044B2 JP2007200413A JP2007200413A JP4374044B2 JP 4374044 B2 JP4374044 B2 JP 4374044B2 JP 2007200413 A JP2007200413 A JP 2007200413A JP 2007200413 A JP2007200413 A JP 2007200413A JP 4374044 B2 JP4374044 B2 JP 4374044B2
Authority
JP
Japan
Prior art keywords
toner
sieve
air
sieve surface
cleaning air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007200413A
Other languages
Japanese (ja)
Other versions
JP2007328362A (en
Inventor
賢一 上原
秀男 市川
祥弘 杉山
浩介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007200413A priority Critical patent/JP4374044B2/en
Publication of JP2007328362A publication Critical patent/JP2007328362A/en
Application granted granted Critical
Publication of JP4374044B2 publication Critical patent/JP4374044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

本発明は、電子写真や静電記録の分野における画像形成方法に使用されるトナーの製造法に関する。   The present invention relates to a method for producing toner used in an image forming method in the fields of electrophotography and electrostatic recording.

トナーは一般に、熱可塑性樹脂に所要材料(例えば染料、顔料磁性粉など)を加熱溶融混練し、均一な分散体を形成した後、冷却した混練物を粉砕するための粉砕工程及び必要に応じて粉砕物を分級するための分級工程を経て、所定粒径及び粒度分布を有するトナー粒子が生産される。更に、複写機現像工程、転写工程、感光体から未転写トナーを除去するクリーニング工程において安定に画出しを続けるためにトナー流動性、帯電安定性、潤滑性、クリーニング性などの特性を向上させる目的で無機微粉体や有機微粉体の如き外添剤とトナー粒子を混合する工程を経てトナーは製造される。   In general, a toner is obtained by heat-melting and kneading required materials (for example, dyes, pigment magnetic powder, etc.) in a thermoplastic resin to form a uniform dispersion, and then a pulverization step for pulverizing the cooled kneaded product, and if necessary Through a classification step for classifying the pulverized product, toner particles having a predetermined particle size and particle size distribution are produced. Furthermore, the toner fluidity, charging stability, lubricity, cleaning properties, etc. are improved in order to continue image formation stably in the copying machine development process, transfer process, and cleaning process for removing untransferred toner from the photoreceptor. For the purpose, a toner is manufactured through a process of mixing an external additive such as an inorganic fine powder or an organic fine powder with toner particles.

しかしながら、これらの工程において、粗粒や機械的な発熱による融着粗粒やファンデルワールス力や液架橋による再凝集体が発生し、粗粒および再凝集体は現像機内の微小隙間のつまりを生じたり、帯電不良粒子として種々の画像欠陥を発生させる原因となる。粗粒や再凝集体を除去するために、例えば、目開き100から2500μmの篩を通す工程が行なわれている。篩を有する装置としては、例えば、多段ジャイロシフターがあり、振動法としては機械的振動や超音波振動などがある。
このような方法によって、粗粒や再凝集体は一応、除去可能になるが、現状において、生産安定性トナーの品質にいくつかの改良すべき点を有している。また近年トナーは小粒径化する傾向にあり、篩の目開きが小さくなる方向にあることから更に新たな問題も発生してきている。
However, in these steps, coarse particles, fused coarse particles due to mechanical heat generation, van der Waals force, and re-aggregates due to liquid crosslinking are generated, and the coarse particles and re-aggregates are clogged with minute gaps in the developing machine. Or cause various image defects as poorly charged particles. In order to remove coarse particles and re-aggregates, for example, a step of passing through a sieve having an opening of 100 to 2500 μm is performed. As an apparatus having a sieve, for example, there is a multistage gyro shifter, and as a vibration method, there are mechanical vibration and ultrasonic vibration.
By such a method, coarse particles and re-aggregates can be temporarily removed, but at present, there are some points to be improved in the quality of production stable toner. In recent years, the toner has a tendency to reduce the particle size, and the problem is that a new problem has arisen because the opening of the sieve tends to be reduced.

従来目開き100から2500μmの篩では金網は100μm以上の線径で構成されており、目つまりに対する洗浄エアー及び洗浄エアーの作り出す振動でも篩における強度上の問題は発生していない。しかしトナーの小粒径化により目開きが小さくなることで線径が細くなり、それまでの洗浄エアーの風圧及び洗浄エアーの作り出す振動強度等では篩の破損を早めることになる。   Conventionally, in a sieve having a mesh size of 100 to 2500 μm, the wire mesh is configured with a wire diameter of 100 μm or more, and the problem of strength in the sieve does not occur even with the cleaning air and vibration generated by the cleaning air. However, since the opening of the toner becomes smaller due to the smaller particle size of the toner, the wire diameter becomes thinner, and the breakage of the sieve is accelerated by the wind pressure of the cleaning air and the vibration strength generated by the cleaning air.

また洗浄エアーの作る風速にトナーも加速され篩面に衝突する。その衝撃による発熱等でトナーは溶融状態になり金網に付着し時間と共に成長を重ねる。この付着物は洗浄エアーの作り出す振動等で剥がれ、その際篩の濾過側に析出したものは製品内部に混入し上記に述べた諸問題を引き起こす。
更にこの篩への付着物は篩面の目詰まりを引き起こし、篩前後の差圧が高くなることで、篩の荷重が増加することになる。この負担は篩目開きが小さくなることで、強度等の点から篩の破損を早めることになる。
Also, the toner is accelerated by the wind speed created by the cleaning air and collides with the sieve surface. Due to the heat generated by the impact, the toner becomes a molten state and adheres to the wire mesh and grows with time. The deposits are peeled off by vibrations produced by the cleaning air, and at this time, the deposits on the filtration side of the sieve are mixed into the product and cause the above-mentioned problems.
Further, the adhering matter to the sieve causes clogging of the sieve surface, and the differential pressure before and after the sieve increases, so that the load on the sieve increases. This burden is that the sieve opening is reduced, so that the breakage of the sieve is accelerated in terms of strength and the like.

このトナー付着物はトナーの処方等で発生状態は異なるが、篩面への衝突エアー風速が100m/sを超えると急激に増加する。   The state of occurrence of this toner adhering matter varies depending on the toner prescription or the like, but increases rapidly when the air velocity of the air impinging on the screen exceeds 100 m / s.

篩へのトナー付着には大気中及び処理エアーの湿度も大きな影響を与える。大気中のエアーは篩へのトナー投入の際同時に流入するが、湿度が高い場合にはトナー粒子表面に水分が析出し溶融とは異なる金網への固着が発生する。これは洗浄エアーの湿度によっても同様な状態が起こり、外気温との差が大きい場合にも発生しやすい。   Toner adhesion to the sieve is also greatly affected by the humidity of the atmosphere and processing air. Air in the atmosphere flows in at the same time when the toner is put into the sieve. However, when the humidity is high, moisture is deposited on the surface of the toner particles, and sticking to a metal mesh different from melting occurs. This also occurs depending on the humidity of the cleaning air, and is likely to occur even when the difference from the outside air temperature is large.

現在までに小粒径トナーの粗粒子等の除去法に関しては特許文献1(特開平9−304968号公報)等で記載されたものがあるが、これら公報には篩の目開き等の記載はあるものの、状態や原因への対策が記載されておらず、安定した稼働状態並びに製品回収が困難である。
特開平9−304968号公報
To date, there are methods described in Patent Document 1 (Japanese Patent Laid-Open No. 9-304968) regarding the method for removing coarse particles and the like of small-diameter toner. Although there are no countermeasures for the condition and cause, there is no description of stable operation and product recovery.
JP-A-9-304968

上記従来技術の問題点に鑑み、本発明の目的とするところは、凝集体や粗粒子を安定して除去し次工程に至るまで、凝集体の発生し難いトナーの製造法を提供することにある。   In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a method for producing a toner in which aggregates and coarse particles are stably removed and aggregation does not easily occur until the next step. is there.

上記課題は、本発明の(1)「現像剤におけるトナーが1種あるいは2種以上の外添剤を含有し体積平均粒径が5.0〜11.0μmで、粒度調整後外添剤と混合した後、篩面通過側(後方)より篩面に向けエアー吹付機能としての大きさの異なるエアー吹き出し孔を複数個もち、該エアー吹き出し孔が、篩面に沿うように旋回し、複数のエアー吹き出し孔が互いに篩面の異なる箇所を吹き付ける篩を使用するトナーの製造方法であって、次の条件を満足する篩で処理することを特徴とするトナー製造方法;
前記複数個のエアー吹き出し孔の各面積の最大最小の比が1.6以下であり、篩目開きW 100μm>W>20μm、篩面通過側(後方)より篩面への吹付けエアー中の水分量が大気圧露点−15℃以下、かつ、篩面通過側(後方)より篩面に向け複数個からなり、エアー吹出し孔の面積(S1)と、その孔の単位時間(秒)当たりに通過する篩面面積(S2)との比(S2/S1)が、(最大のS2/S1値)/(最小のS2/S1値)≦1.3の関係を満たす。
」、(2)「篩面通過側(後方)より篩面に向けた、複数個からなるエアー吹き出し孔からの吹付エアー速度を40m/s乃至100m/sで使用することを特徴とする前記第(1)項に記載のトナー製造方法。」、(3)「篩の粉体投入方向側より篩面に向け吹付ける(前方)洗浄エアーと篩面通過側より篩面に向け吹付ける(後方)洗浄エアーが交互に吹付けられる吹付機能による、後方洗浄エアー吹付け始めから、前方洗浄エアー吹付け始めまでの時間をB1、前方洗浄エアー吹付け始めから、後方洗浄エアー吹付け始めまでの時間をB2としたとき、交番する双方向からの吹付(B2)及び(B1)のタイミングのずれ(位相差)が、次の条件を満足することを特徴とする前記第(1)項または前記(2)項に記載のトナー製造方法。
n0.01sec<時間差(タイミングのずれ)B2及び時間差(タイミングのずれ)B1<0.1sec」、(4)「前記篩の粉体投入方向側より篩面に向け吹付ける(前方)洗浄エアー中の水分量が大気圧露点−15℃以下であることを特徴とする前記第(1)項乃至前記第(3)項の何れか1に記載のトナー製造方法。」、(5)「篩面の周りより少なくとも一個所篩面中心方向にエアーを吹付けることを特徴とする前記第(1)乃至前記第(4)項何れか1に記載のトナー製造方法。」、(6)「粉体投入口より粉体と共に吸引されるエアーの湿度が次の条件を満足することを特徴とする前記第(1)項乃至前記第(5)項何れか1に記載のトナー製造方法。
エアー中の水分量が大気圧露点−10℃以下」、(7)「結着樹脂、着色剤、離型剤を含有し、前記第(1)項乃至前記第(6)項何れか1に記載のトナー製造方法により得られることを特徴とするトナー
」、(8)「篩及び後方洗浄エアー機からなる篩機を有する、前記第(1)項乃至前記第(6)項何れか1に記載のトナー製造方法に用いることを特徴とするトナー製造装置。」によって達成される。
The above-described problem is that (1) “the toner in the developer contains one or more external additives, the volume average particle size is 5.0 to 11.0 μm, after mixing, the sizes of different air blowing holes as air blowing function towards the sieve surface from the sieve plane passing side (rear) plural also Chi, the air blowing holes is pivoted along the sieve surface, a plurality A method for producing a toner using a sieve in which air blowing holes of the nozzles blow different portions of the sieve surface, wherein the toner is treated with a sieve satisfying the following conditions;
The maximum / minimum ratio of each area of the plurality of air blowing holes is 1.6 or less, sieve opening W 100 μm>W> 20 μm, in the blowing air from the sieve surface passing side (rear) to the sieve surface The amount of water is at or below the atmospheric dew point of -15 ° C., and it consists of a plurality from the sieve surface passing side (rear) toward the sieve surface. The area of the air blowing holes (S1) and the unit time (seconds) of the holes The ratio (S2 / S1) with the passing sieve surface area (S2) satisfies the relationship of (maximum S2 / S1 value) / (minimum S2 / S1 value) ≦ 1.3.
(2) The above-mentioned, wherein the blowing air velocity from a plurality of air blowing holes directed from the sieve surface passage side (rear) to the sieve surface is used at 40 m / s to 100 m / s. (3) “Blowing toward the sieve surface from the powder loading direction side of the sieve (front) and blowing toward the sieve surface from the side passing the washing surface and the sieve surface (rear side)” ) B1 is the time from the start of the rear cleaning air spraying to the start of the front cleaning air spraying by the spraying function in which the cleaning air is sprayed alternately. The time from the start of the front cleaning air spraying to the start of the rear cleaning air spraying. Where B2 is an alternating two-way blowing (B2) and (B1) timing deviation (phase difference) satisfies the following condition: (1) or ( The toner production method according to item 2)
n0.01 sec <time difference (timing deviation) B2 and time difference (timing deviation) B1 <0.1 sec ”, (4)“ in the cleaning air sprayed toward the sieve surface from the powder loading direction side of the sieve (front) The toner production method according to any one of (1) to (3) above, wherein the moisture content of the toner is an atmospheric dew point of −15 ° C. or lower. ”, (5)“ Sieving surface ” The toner production method according to any one of (1) to (4) above, wherein air is blown from at least one portion toward the center of the sieve surface. ”, (6)“ Powder ” The toner production method according to any one of (1) to (5), wherein the humidity of the air sucked together with the powder from the inlet satisfies the following condition.
The amount of moisture in the air is atmospheric dew point -10 ° C. or lower ”, (7)“ Contains a binder resin, a colorant, and a release agent, and any one of the items (1) to (6) ”. Any one of the above-mentioned (1) to (6), wherein the toner has a sieving machine comprising a sieving and a rear cleaning air machine. The toner manufacturing apparatus is used for the toner manufacturing method described above.

本発明によれば、トナー製造工程における篩工程の生産能力を大幅に増加でき、更には篩後のトナー凝集物や溶融粗大粒子の発生を飛躍的に低減可能とするという極めて優れた効果を奏するものである。   According to the present invention, it is possible to greatly increase the production capacity of the sieving process in the toner manufacturing process, and furthermore, it is possible to significantly reduce the generation of toner aggregates and molten coarse particles after sieving. Is.

以下、本発明を図面によって詳細に説明する。
本発明においてトナー粒子は外添剤と混合された後篩にかけられる。使用する篩機の1例を図1に示す。
この篩機において、外添剤と混合トナー(1)は投入口(2)より流入し篩面(3)に衝突する。このとき微小トナーは篩面(3)を簡単に通過するが粗粒子トナーは篩面(3)にしばらく滞在した後その目開き部より通過する。このとき目開き寸法に近い径をもつトナーは篩目に挟まり目詰まりを発生させる。この打開策として篩面(3)後方のスペース(4)に設けられた後方洗浄エアー機(5)より篩面に高速エアー(6)を噴出させ、その圧力およびそれより発生する振動で目詰まりを除去する。このとき篩金網の後方に200μmから2mm程度の目開きを持つ篩を本篩に密着させ本篩の耐強度を増す構成とすることができる。本篩に使用される金網の形状であるが、平織、綾織等の制限は特にない。篩材質においても同様に金属以外にも樹脂等の使用が可能である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
In the present invention, the toner particles are mixed with an external additive and then sieved. An example of the sieve used is shown in FIG.
In this sieving machine, the external additive and the mixed toner (1) flow from the inlet (2) and collide with the sieving surface (3). At this time, the fine toner easily passes through the sieving surface (3), but the coarse toner stays on the sieving surface (3) for a while and then passes through the opening. At this time, the toner having a diameter close to the opening size is caught between the sieves to cause clogging. As a breakthrough measure, high-speed air (6) is jetted from the rear cleaning air machine (5) provided in the space (4) behind the sieve surface (3) to the sieve surface and clogged by the pressure and vibration generated therefrom. Remove. At this time, a structure having an opening of about 200 μm to 2 mm behind the sieving mesh can be brought into close contact with the main screen to increase the strength of the main screen. Although it is the shape of the wire mesh used for this sieve, there is no restriction | limiting in particular in plain weave, twill, etc. Similarly, in the material of the sieve, a resin or the like can be used in addition to the metal.

このとき洗浄エアー機(5)より篩面(3)に噴出する高速エアー(6)の水分量を大気圧露点−15℃以下に保つことにより凝集体の発生や篩の目詰まりによる篩寿命の低下を削減できる。好ましくは水分量を大気圧露点−20℃以下に保つことにより外乱による変動を受けることのない篩作業を可能にする。更に好ましくは水分量を大気圧露点−25℃以下に保つことによりトナー供給量の増減にも対応した上での効率的な篩作業を可能にする。   At this time, the moisture content of the high-speed air (6) ejected from the cleaning air machine (5) to the sieve surface (3) is kept at atmospheric dew point of −15 ° C. or less, thereby reducing the life of the sieve due to generation of aggregates and clogging of the sieve. Decrease can be reduced. Preferably, the amount of moisture is kept at an atmospheric pressure dew point of −20 ° C. or lower, thereby enabling a sieving operation without being affected by disturbance. More preferably, by keeping the water content at atmospheric dew point of −25 ° C. or less, efficient sieving work can be performed while dealing with the increase / decrease of the toner supply amount.

同様に篩の投入口(2)からはトナー(1)を流入させる際、外気(14)を同時に吸引する。外気(14)が調湿されていない雰囲気では上記と同様に凝集体の発生や篩の目詰まりが発生しやすくなる。よってこの場合水分量を大気圧露点−10℃以下のエアーにより凝集体の発生や篩の目詰まりによる篩寿命の低下を削減できる。好ましくは水分量を大気圧露点−20℃以下のエアーにより、トナー等に含まれる水分の影響を受けることのない篩作業を可能にする。また更に好ましくは水分量を大気圧露点−25℃以下に保つことによりトナー供給量の増減にも対応した上での効率的な篩作業を可能にする。   Similarly, when the toner (1) is caused to flow from the inlet (2) of the sieve, the outside air (14) is sucked at the same time. In an atmosphere where the outside air (14) is not conditioned, the generation of aggregates and clogging of the sieve are likely to occur as described above. Therefore, in this case, reduction of the sieve life due to the generation of aggregates and clogging of the sieve can be reduced by air having an atmospheric pressure dew point of −10 ° C. or less. Preferably, the sieving operation that is not affected by the moisture contained in the toner or the like is made possible by air having a moisture content of atmospheric dew point of -20 ° C. or lower. More preferably, by keeping the water content at atmospheric dew point of −25 ° C. or less, an efficient sieving operation can be performed while accommodating the increase and decrease in the toner supply amount.

図2に篩面(3)より見た後方洗浄エアー機(5)及び篩面に高速エアー(6)の吹き出しノズル(7)を示す。篩面積により吹き出しノズル(7)の個数は異なるが一般に複数個の吹き出しノズル(7)を1支柱(8)に対し1個もしくは複数個有する。通常エアー速度は各ノズルまでの送風経路長の違いによる差圧損の違い、ノズル開口面積の違い、開口方向の違い等に基因して各ノズル間でばらつきを持っており、エアー速度の設定は最低風速を持つノズルの目詰まり防止能力を基準に行なわれる。   FIG. 2 shows a rear cleaning air machine (5) viewed from the sieve surface (3) and a blowing nozzle (7) for high-speed air (6) on the sieve surface. Although the number of blowing nozzles (7) varies depending on the sieve area, one or a plurality of blowing nozzles (7) are generally provided for one column (8). The normal air speed varies among nozzles due to differences in differential pressure loss due to differences in the air path length to each nozzle, differences in nozzle opening area, differences in opening direction, etc. This is based on the ability to prevent clogging of nozzles with wind speed.

よって風速の速いノズルに対しては最低風速部を上げることでより大きな風速を得ることになり、このためトナーの篩への衝突速度の増加による溶融物(10)の発生や、篩寿命の低下に陥る。このとき各吹き出しノズル面積(9)の最大と最小値の比を1.6以下にすることで吹き出しノズル(7)間の低速領域が削減され風速分布を一定にすることが可能になり、製品中の溶融物の削減や篩寿命の向上に効果がある。好ましくは各吹き出しノズル面積(9)の最大と最小値の比を1.4以下にすることでノズル(7)のエアー速度の均一化が可能となり、製品中の溶融物の削減に効果がある。更に好ましくは各吹き出しノズル面積(9)の最大と最小値の比を1.2以下にすることでエアー速度の均一低速化が可能となり、より篩寿命の向上に効果がある。   Therefore, for a nozzle with a high wind speed, a higher wind speed can be obtained by increasing the minimum wind speed portion. For this reason, generation of a melt (10) due to an increase in the collision speed of the toner to the sieve, and a reduction in the sieve life. Fall into. At this time, by setting the ratio of the maximum and minimum values of each blowing nozzle area (9) to 1.6 or less, the low speed region between the blowing nozzles (7) can be reduced, and the wind speed distribution can be made constant. It is effective in reducing the melt inside and improving the sieve life. Preferably, by setting the ratio of the maximum and minimum values of each blowing nozzle area (9) to 1.4 or less, the air speed of the nozzle (7) can be made uniform, which is effective in reducing the melt in the product. . More preferably, by setting the ratio of the maximum and minimum values of each blowing nozzle area (9) to 1.2 or less, it is possible to uniformly reduce the air speed, which is more effective in improving the sieve life.

目詰まりの発生は篩面(3)においてノズル(7)の洗浄エアー(6)から直接受ける部分面積に、時間当たりに受けるエネルギーが低い場合に多発する。エネルギーは、風速の二乗と面積の積で表現される。このとき洗浄エアー(6)の風速を速くすると凝集物(10)が多発し130m/s以上では激増する。また40m/s以下では流入した外気(14)の篩面(3)における風速と同レベルの風速となるため、篩面(3)のトナー付着物を除去する効果は低い。   Clogging frequently occurs when the energy received per hour is low in the partial area directly received from the cleaning air (6) of the nozzle (7) on the sieve surface (3). Energy is expressed as the product of the square of the wind speed and the area. At this time, when the wind speed of the cleaning air (6) is increased, agglomerates (10) are generated frequently and increase rapidly at 130 m / s or more. Further, at 40 m / s or less, the wind speed at the same level as the wind speed on the sieving surface (3) of the inflowing outside air (14) is low, so the effect of removing the toner adhering matter on the sieving surface (3) is low.

よって吹き出しノズル(7)の開口面積(S1)と、回動する吹き出しノズル(7)が単位時間(秒)に通過する篩面(3)の面積(S2)の比を考慮して、風量を調整し、S2/S1の最大値と最小値の関係を1.5以下にすることにより篩面(3)を有効に活用でき、目詰まり無く粗粒子の除去を行なえる。好ましくは最大値と最小値の関係を1.3以下にすることにより篩面(3)の負荷がより等分布荷重を受けることになり篩の寿命にも効果をおよぼす。   Therefore, considering the ratio of the opening area (S1) of the blowing nozzle (7) and the area (S2) of the sieving surface (3) through which the rotating blowing nozzle (7) passes in unit time (seconds), the air volume is adjusted. By adjusting and making the relationship between the maximum value and the minimum value of S2 / S1 1.5 or less, the sieve surface (3) can be used effectively, and coarse particles can be removed without clogging. Preferably, by setting the relationship between the maximum value and the minimum value to 1.3 or less, the load on the sieve surface (3) is more equally distributed, which also has an effect on the life of the sieve.

このとき篩面(3)が受けるエネルギーは1つのノズル(7)以外に、その他の通過ノズル(7)を含め受け側面積における時間当たりの総和として良い。   At this time, the energy received by the sieving surface (3) may be the sum per unit time in the receiving area including the other nozzles (7) in addition to the one nozzle (7).

図3のように円形の篩面(3)を持つ場合には後方洗浄エアー機(5)は軸心より洗浄エアー(6)が供給され各吹き出しノズル(7)に分散する。各吹き出しノズル(7)は軸心に設けられた回転機構(11)により篩面内(3)を旋回しエアー除去と篩に振動を与える。このような構造を持つ篩では角速度が同じ場合、軸心からの距離に応じてノズル開口面積(9)を狭くする等の調節をする手段や、吹き出しノズル(7)の個数を加減する方法などが考えられる。   In the case of having a circular sieve surface (3) as shown in FIG. 3, the cleaning air (5) is supplied from the shaft center to the rear cleaning air machine (5) and is distributed to each blowing nozzle (7). Each blowing nozzle (7) swirls in the sieve surface (3) by a rotating mechanism (11) provided at the shaft center to apply air removal and vibration to the sieve. In the case of a sieve having such a structure, when the angular velocity is the same, means for adjusting the nozzle opening area (9) to be narrowed according to the distance from the axial center, a method for adjusting the number of blowing nozzles (7), etc. Can be considered.

図4では篩面(3)の前方スペース(12)に前方洗浄エアー機(13)を設けた篩を示す。篩面に供給されたトナーは微小物は瞬時に篩面(3)を通過するが、粗粒子や凝集体は停滞や目詰まりを起こし、後方洗浄エアー機(5)により除去や再突入がなされる。この再突入を含めたトナーの篩面(3)の通過速度を幇助する機能を前方洗浄エアー機(13)は有する。   In FIG. 4, the sieve which provided the front washing | cleaning air machine (13) in the front space (12) of the sieve surface (3) is shown. The toner supplied to the sieving surface passes finely through the sieving surface (3), but coarse particles and agglomerates cause stagnation and clogging, and are removed or re-entered by the rear cleaning air machine (5). The The front cleaning air machine (13) has a function of assisting the passage speed of the toner sieving surface (3) including the re-entry.

篩の処理量増加を行なうには篩面に振動を与えることが有効である。前方洗浄エアー機(13)と後方洗浄エアー機(5)は各々のブローが位相を持つことで、その際振幅や振動加速度を操作することを可能とする。それぞれの洗浄エアーのタイミングは、ある篩面(3)の任意の点において、前方洗浄エアー(13)と後方洗浄エアー(5)、後方洗浄エアー(5)と前方洗浄エアー(13)の時間間隔を0.1secから0.01secにすることで篩面(3)の振動が効果的に作用し篩面(3)の目詰まりを削減することができる。好ましくは前方洗浄エアー(13)と後方洗浄エアー(5)、後方洗浄エアー(5)と前方洗浄エアー(13)の時間間隔を0.05secから0.02secにすることでよりトナー処理量を増加した条件の下、篩面(3)の目詰まりを削減することができる。   In order to increase the throughput of the sieve, it is effective to give vibration to the sieve surface. The front cleaning air machine (13) and the rear cleaning air machine (5) have their phases blown so that the amplitude and vibration acceleration can be manipulated. The timing of each cleaning air is the time interval between the front cleaning air (13) and the rear cleaning air (5) and the rear cleaning air (5) and the front cleaning air (13) at an arbitrary point on a certain sieve surface (3). By setting the value from 0.1 sec to 0.01 sec, the vibration of the sieve surface (3) can effectively act and clogging of the sieve surface (3) can be reduced. Preferably, the toner processing amount is increased by changing the time interval between the front cleaning air (13) and the rear cleaning air (5), and the rear cleaning air (5) and the front cleaning air (13) from 0.05 sec to 0.02 sec. Under the above conditions, clogging of the sieve surface (3) can be reduced.

図5は分散エアー吹き付け機能(20)を設けた篩機を示す。篩機に流入したトナーはエアーの流れと慣性力で上手く分散せず、篩面(3)に至る経路により偏った流れとなり、篩面(3)に到達する。この偏りが篩面に多くのトナー付着を作る原因となる。よってエアー吹き付け機能(20)を設けることで篩面(3)に到達する以前にトナーの偏流を分散し篩面の付着物を取り去ることで更に処理量を増加させることが可能となる。吹き付け位置は篩外周部で角度(22)は篩面(3)に対し0プラスマイナス20度、軸心とのずれ角(23)は0プラスマイナス20度により更に篩面(3)のトナー付着の除去が可能となる。
また、エアー吹き付け機能(20)のエアー源はコンプレッサー等を使用した、供給型、並びに機内圧力を利用した自吸型も有効である。
FIG. 5 shows a sieve equipped with a distributed air blowing function (20). The toner that has flowed into the sieving machine does not disperse well due to the air flow and the inertial force, but becomes a biased flow along the path to the sieving surface (3) and reaches the sieving surface (3). This deviation causes a lot of toner adhesion on the sieve surface. Therefore, by providing the air blowing function (20), it is possible to disperse the toner drift before reaching the sieve surface (3) and to remove the adhering matter on the sieve surface, thereby further increasing the processing amount. The spraying position is the outer periphery of the sieve, the angle (22) is 0 plus or minus 20 degrees with respect to the sieve surface (3), and the deviation angle (23) from the shaft center is 0 plus or minus 20 degrees. Can be removed.
As the air source for the air blowing function (20), a supply type using a compressor or the like, and a self-priming type using an in-machine pressure are also effective.

以下、本発明を製造例及び実施例により具体的に説明するが、これは本発明をなんら限定するものではない。
なお、以下の配合における部数は全て重量部である。
[参考例1]
結着樹脂 ポリエステル樹脂 100部
着色剤 カーボンブラック 10部
帯電制御剤 サリチル酸亜鉛塩 5部
離型剤 低分子量ポリエチレン 5部
上記原材料をミキサーで十分に混合した後、2軸押し出し機により混練物温度120℃で溶融混練した。混練物を圧延冷却後カッターミルで粗粉砕し、ジェット気流を用いた微粉砕機で粉砕後、旋回式風力分級装置を用いて、重量平均粒径7.5μm、4μm以下の個数分布の割合が11%のトナーを得た。さらに、母体着色粒子100部に対して、疎水性シリカ0.3部比表面積188m2/gをヘンシェルミキサーにて混合し、さらに篩面積2830m2、排気処理風量11m3/min、処理量毎時80kg/hで目開き45μmの篩で後方洗浄エアーを設け、更には表1で記載する条件にて、ふるい工程を実施した。その際篩機稼働時の篩面トナー付着面積、及びトナー凝集物の発生量を表1に記載する。付着面積の測定に関しては篩機内部に洗浄機能付きCCDカメラを設置し、約30min稼働時の映像から面積を割り出した。また風速に関してはカノマックス製熱線式風速計MODEL1011を使用した。
Hereinafter, the present invention will be specifically described with reference to production examples and examples, but this does not limit the present invention in any way.
In addition, all the parts in the following mixing | blending are a weight part.
[Reference Example 1]
Binder resin Polyester resin 100 parts Colorant Carbon black 10 parts Charge control agent Salicylic acid zinc salt 5 parts Release agent Low molecular weight polyethylene 5 parts The above raw materials are thoroughly mixed with a mixer and then kneaded at 120 ° C with a biaxial extruder. Was melt kneaded. The kneaded product is cooled and rolled, coarsely pulverized by a cutter mill, pulverized by a fine pulverizer using a jet stream, and then a swirl type air classifier is used to obtain a weight distribution with a weight average particle size of 7.5 μm and 4 μm or less. 11% toner was obtained. Furthermore, 0.3 part of hydrophobic silica and a specific surface area of 188 m 2 / g are mixed with a Henschel mixer with respect to 100 parts of the base colored particles, and further a sieve area of 2830 m 2 , an exhaust treatment air volume of 11 m 3 / min, and a throughput of 80 kg per hour. Back washing air was provided with a sieve having an opening of 45 μm at / h, and the sieving step was performed under the conditions described in Table 1. At that time, the screen surface toner adhesion area when the sieving machine is operating and the amount of toner aggregate generated are shown in Table 1. Regarding the measurement of the adhesion area, a CCD camera with a cleaning function was installed inside the sieve, and the area was determined from the image during operation for about 30 minutes. Regarding the wind speed, a hot wire type anemometer MODEL1011 manufactured by Kanomax was used.

[参考例2]
参考例1での分級工程までで得られたトナーに対し、篩面通過側より篩面に向けエアー吹き付け機能となる後方洗浄エアーの各ノズルの吹き付け面積の最大と最小値の比が1.3とし、更には表1で記載する条件にて、参考例1と同様の評価を行なった。結果を表1に示す。
[Reference Example 2]
For the toner obtained up to the classification step in Reference Example 1, the ratio of the maximum and minimum spray area of each nozzle of the rear cleaning air that functions as an air spray function from the sieve surface passing side toward the sieve surface is 1.3. Further, the same evaluation as in Reference Example 1 was performed under the conditions described in Table 1. The results are shown in Table 1.

[参考例3]
参考例1での分級工程までで得られたトナーに対し、該製造工程において篩面に向け、複数個からなるエアー吹き出し孔からの吹き付けエアー速度を80m/sで使用し、更には表1で記載する条件にて、参考例1と同様の評価を行なった。結果を表1に示す。
[Reference Example 3]
For the toner obtained up to the classification step in Reference Example 1, the air velocity from the plurality of air blowing holes is used at 80 m / s toward the sieve surface in the production process, and further in Table 1. The same evaluation as in Reference Example 1 was performed under the conditions described. The results are shown in Table 1.

[実施例1]
参考例1での分級工程までで得られたトナーに対し、篩面通過側より篩面に向けエアー吹き付け機能となる後方洗浄エアーの各ノズルの吹き付け面積とその吹き付け面が時間当たり通過面積する篩面積との比が各ノズル間で最大最小が1.3とし、更には表1で記載する条件にて、参考例1と同様の評価を行なった。結果を表1に示す。
[Example 1]
For the toner obtained up to the classification step in Reference Example 1, the spray area of each nozzle of the rear cleaning air that functions as an air spray from the sieve surface passing side to the sieve surface, and the sieve where the spray surface passes per hour The ratio to the area was set to 1.3 between the maximum and minimum between the nozzles, and the same evaluation as in Reference Example 1 was performed under the conditions described in Table 1. The results are shown in Table 1.

[実施例2]
参考例1での分級工程までで得られたトナーに対し、篩の粉体投入方向より篩面に向けエアーを吹き付ける前方洗浄エアー機能を持つ篩の篩面において、通過側より篩面に吹き付ける後方洗浄エアーの吹き付けを持ち、更には表1で記載する条件にて、参考例1と同様の評価を行なった。結果を表1に示す。
[Example 2]
For the toner obtained up to the classification step in Reference Example 1, on the sieve surface of the sieve having a front washing air function that blows air toward the sieve surface from the powder input direction of the sieve, the back sprayed on the sieve surface from the passing side Evaluation was performed in the same manner as in Reference Example 1 under the conditions described in Table 1 with spraying of cleaning air. The results are shown in Table 1.

[参考例4]
参考例1での分級工程までで得られたトナーに対し、篩の篩面において、篩の粉体投入方向より篩面に吹き付ける前方洗浄エアーと通過側より篩面に吹き付ける後方洗浄エアーとの時間差B2、及び通過側より篩面に吹き付ける後方洗浄エアーと篩の粉体投入方向より篩面に吹き付ける前方洗浄エアーとの時間差B1がそれぞれ0.4secとし更には表1で記載する条件にて、参考例1と同様の評価を行なった。結果を表1に示す。
[Reference Example 4]
For the toner obtained up to the classification process in Reference Example 1, the time difference between the front cleaning air sprayed on the sieve surface from the sieve powder loading direction and the rear cleaning air sprayed on the sieve surface from the passing side on the sieve surface of the sieve B2 and the time difference B1 between the rear cleaning air blown to the sieve surface from the passing side and the front washing air blown to the sieve surface from the powder feeding direction of the sieve is set to 0.4 sec. Evaluation similar to Example 1 was performed. The results are shown in Table 1.

[実施例3]
参考例1での分級工程までで得られたトナーに対し、通過側より吹き付けられる粉体通過方向と逆方向に前方洗浄エアーの大気圧露点を−17℃とし、更には表1で記載する条件にて、参考例1と同様の評価を行なった。結果を表1に示す。
[Example 3]
For the toner obtained up to the classification step in Reference Example 1, the atmospheric pressure dew point of the front washing air is set to −17 ° C. in the direction opposite to the powder passing direction sprayed from the passing side, and the conditions described in Table 1 Thus, the same evaluation as in Reference Example 1 was performed. The results are shown in Table 1.

[実施例4]
参考例1での分級工程までで得られたトナーに対し、エアー供給口を1箇所設け、外部より篩面中心方向にエアーを吹き付け、更には表1で記載する条件にて、参考例1と同様の評価を行なった。結果を表1に示す。
[Example 4]
For the toner obtained up to the classification step in Reference Example 1, one air supply port is provided, air is blown from the outside toward the center of the sieve surface, and under the conditions described in Table 1, Reference Example 1 and Similar evaluations were made. The results are shown in Table 1.

[実施例5]
参考例1での分級工程までで得られたトナーに対し、粉体投入口より粉体と共に吸引されるエアーの湿度が大気圧露点−15℃に設定され、更には表1で記載する条件にて、参考例1と同様の評価を行なった。結果を表1に示す。
[Example 5]
For the toner obtained up to the classification process in Reference Example 1, the humidity of the air sucked together with the powder from the powder inlet is set to the atmospheric pressure dew point of −15 ° C., and the conditions described in Table 1 are satisfied. The same evaluation as in Reference Example 1 was performed. The results are shown in Table 1.

[比較例1]
参考例1での分級工程までで得られたトナーに対し、表1で記載する条件にて、参考例1と同様の評価を行なった。結果を表1に示す。
[Comparative Example 1]
The toner obtained up to the classification step in Reference Example 1 was evaluated in the same manner as in Reference Example 1 under the conditions described in Table 1. The results are shown in Table 1.

Figure 0004374044

但し、AはS2/S1の最大値と最小値の比であり、Bは交番する双方向からの吹付(B2)及び(B1)のタイミングのずれ(位相差「秒」)である。

Figure 0004374044

However, A is the ratio between the maximum value and the minimum value of S2 / S1, and B is the timing difference (phase difference “seconds”) between the alternating blowing (B2) and (B1).

Figure 0004374044
Figure 0004374044

本発明の篩設備ならびに後方洗浄機能を示す図である。It is a figure which shows the sieve installation and back washing | cleaning function of this invention. 本発明の後方洗浄エアーノズルを示す図である。It is a figure which shows the back washing | cleaning air nozzle of this invention. 本発明の後方エアーノズル面積と篩面積の関係を示す図である。It is a figure which shows the relationship between the back air nozzle area of this invention, and a sieve area. 本発明の前方洗浄機能を示す図である。It is a figure which shows the front washing | cleaning function of this invention. 本発明の分散エアー吹き付け機能を示す図である。It is a figure which shows the dispersion | distribution air spraying function of this invention.

符号の説明Explanation of symbols

1 トナー
2 投入口
3 篩面
3.1 単位時間のブロー領域
3.2 単位時間のブロー領域
3.3 単位時間のブロー領域
3.4 単位時間のブロー領域
4 篩面後方のスペース
5 後方洗浄エアー機
6 高速エアー
7 吹き出しノズル
8 支柱
9 吹き出しノズル面積
10 溶融物(凝集物)
11 回転機構
12 前方スペース
13 前方洗浄エアー機
14 外気
20 エアー吹き付け機能
22 篩面に対するエアー吹き付け位置の角度
23 軸心に対するエアー吹き付け位置の角度
DESCRIPTION OF SYMBOLS 1 Toner 2 Input port 3 Sieve surface 3.1 Blow area of unit time 3.2 Blow area of unit time 3.3 Blow area of unit time 3.4 Blow area of unit time 4 Space behind sieve surface 5 Back cleaning air Machine 6 High-speed air 7 Blowing nozzle 8 Strut 9 Blowing nozzle area 10 Melt (aggregate)
DESCRIPTION OF SYMBOLS 11 Rotation mechanism 12 Front space 13 Front washing | cleaning air machine 14 Outside air 20 Air blowing function 22 The angle of the air blowing position with respect to a sieve surface 23 The angle of the air blowing position with respect to an axial center

Claims (8)

現像剤におけるトナーが1種あるいは2種以上の外添剤を含有し体積平均粒径が5.0〜11.0μmで、粒度調整後外添剤と混合した後、篩面通過側(後方)より篩面に向けエアー吹付機能としての大きさの異なるエアー吹き出し孔を複数個もち、該エアー吹き出し孔が、篩面に沿うように旋回し、複数のエアー吹き出し孔が互いに篩面の異なる箇所を吹き付ける篩を使用するトナーの製造方法であって、次の条件を満足する篩で処理することを特徴とするトナー製造方法;
前記複数個のエアー吹き出し孔の各面積の最大最小の比が1.6以下であり、篩目開きW 100μm>W>20μm、篩面通過側(後方)より篩面への吹付けエアー中の水分量が大気圧露点−15℃以下、かつ、篩面通過側(後方)より篩面に向け複数個からなり、エアー吹出し孔の面積(S1)と、その孔の単位時間(秒)当たりに通過する篩面面積(S2)との比(S2/S1)が、(最大のS2/S1値)/(最小のS2/S1値)≦1.3の関係を満たす。
The toner in the developer contains one or more external additives, the volume average particle size is 5.0 to 11.0 μm, and after mixing with the external additive after adjusting the particle size, the sieve surface passing side (rear) even Chi plurality of different sizes air blowing holes as more air blowing function towards the sieve surface, the air blowing holes is pivoted along the sieve surface, place a plurality of air blowing holes is different Furuimen mutually A method of producing a toner using a sieve for spraying a toner, wherein the toner is treated with a sieve satisfying the following conditions:
The maximum / minimum ratio of each area of the plurality of air blowing holes is 1.6 or less, sieve opening W 100 μm>W> 20 μm, in the blowing air from the sieve surface passing side (rear) to the sieve surface The amount of water is at or below the atmospheric dew point of -15 ° C., and it consists of a plurality from the sieve surface passing side (rear) toward the sieve surface. The area of the air blowing holes (S1) and the unit time (seconds) of the holes The ratio (S2 / S1) with the passing sieve surface area (S2) satisfies the relationship of (maximum S2 / S1 value) / (minimum S2 / S1 value) ≦ 1.3.
篩面通過側(後方)より篩面に向けた、複数個からなるエアー吹き出し孔からの吹付エアー速度を40m/s乃至100m/sで使用することを特徴とする請求項1に記載のトナー製造方法。 2. The toner production according to claim 1, wherein a blowing air velocity from a plurality of air blowing holes directed from the sieve surface passing side (rear) to the sieve surface is used at 40 m / s to 100 m / s. Method. 篩の粉体投入方向側より篩面に向け吹付ける(前方)洗浄エアーと篩面通過側より篩面に向け吹付ける(後方)洗浄エアーが交互に吹付けられる吹付機能による、後方洗浄エアー吹付け始めから、前方洗浄エアー吹付け始めまでの時間をB1、前方洗浄エアー吹付け始めから、後方洗浄エアー吹付け始めまでの時間をB2としたとき、交番する双方向からの吹付(B2)及び(B1)のタイミングのずれ(位相差)が、次の条件を満足することを特徴とする請求項1または2に記載のトナー製造方法。
0.01sec<時間差(タイミングのずれ)B2及び時間差(タイミングのずれ)B1<0.1sec
The rear cleaning air blowing is performed by the spraying function in which the cleaning air sprayed from the sieve powder loading direction side toward the sieve surface (front) and the cleaning air sprayed from the sieve surface passing side toward the sieve surface (rear) are alternately sprayed. When the time from the start of spraying to the start of spraying of the front cleaning air is B1, and the time from the start of spraying of the front cleaning air to the start of spraying of the rear cleaning air is B2, The toner manufacturing method according to claim 1, wherein the timing shift (phase difference) of (B1) satisfies the following condition.
0.01 sec <time difference (timing deviation) B2 and time difference (timing deviation) B1 <0.1 sec
前記篩の粉体投入方向側より篩面に向け吹付ける(前方)洗浄エアー中の水分量が大気圧露点−15℃以下であることを特徴とする請求項1乃至3何れか1に記載のトナー製造方法。 The amount of water in the cleaning air sprayed from the powder charging direction side of the sieve toward the sieve surface (front) is an atmospheric pressure dew point of -15 ° C or less, according to any one of claims 1 to 3. Toner manufacturing method. 篩面の周りより少なくとも一個所篩面中心方向にエアーを吹付けることを特徴とする請求項1乃至4何れか1に記載のトナー製造方法。 5. The toner manufacturing method according to claim 1, wherein air is blown toward the center of the screen at least at one location from around the screen. 粉体投入口より粉体と共に吸引されるエアーの湿度が次の条件を満足することを特徴とする請求項1乃至5何れか1に記載のトナー製造方法。
エアー中の水分量が大気圧露点−10℃以下
6. The toner manufacturing method according to claim 1, wherein the humidity of the air sucked together with the powder from the powder inlet satisfies the following condition.
Moisture content in air is atmospheric dew point -10 ℃ or less
結着樹脂、着色剤、離型剤を含有し、請求項1乃至6何れか1に記載のトナー製造方法により得られることを特徴とするトナー。 A toner comprising a binder resin, a colorant, and a release agent, wherein the toner is obtained by the toner manufacturing method according to claim 1. 篩及び後方洗浄エアー機からなる篩機を有する、請求項1乃至6何れか1に記載のトナー製造方法に用いることを特徴とするトナー製造装置。 7. A toner manufacturing apparatus used in the toner manufacturing method according to claim 1, wherein the toner manufacturing apparatus has a sieving machine including a sieving machine and a rear cleaning air machine.
JP2007200413A 2007-08-01 2007-08-01 Toner manufacturing method, toner and toner manufacturing apparatus Expired - Lifetime JP4374044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200413A JP4374044B2 (en) 2007-08-01 2007-08-01 Toner manufacturing method, toner and toner manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200413A JP4374044B2 (en) 2007-08-01 2007-08-01 Toner manufacturing method, toner and toner manufacturing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20817299A Division JP2001034012A (en) 1999-07-22 1999-07-22 Toner treatment

Publications (2)

Publication Number Publication Date
JP2007328362A JP2007328362A (en) 2007-12-20
JP4374044B2 true JP4374044B2 (en) 2009-12-02

Family

ID=38928816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200413A Expired - Lifetime JP4374044B2 (en) 2007-08-01 2007-08-01 Toner manufacturing method, toner and toner manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4374044B2 (en)

Also Published As

Publication number Publication date
JP2007328362A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP3054883B2 (en) Manufacturing method of electrostatic image developing toner and apparatus system for the same
US20100170973A1 (en) Pulverizing and coarse powder classifying apparatus and fine powder classifying apparatus
JP4662462B2 (en) Toner manufacturing apparatus and manufacturing method
US5316222A (en) Collision type gas current pulverizer and method for pulverizing powders
JPH08505834A (en) Fine particle classifier
US8191808B2 (en) Fluid spray nozzle, pulverizer and method of preparing toner
JP4374044B2 (en) Toner manufacturing method, toner and toner manufacturing apparatus
JP2001034012A (en) Toner treatment
EP0666114A2 (en) Gas current classifier and process for producing toner
US7706726B2 (en) Apparatus and process to reclaim toner from a toner/carrier mixture
JP2007185564A (en) Apparatus for dispersing powder, equipment for treating powder and method for manufacturing toner
JP2000042494A (en) Air-current classification
JP3919164B2 (en) Toner manufacturing method and manufacturing apparatus
US8404425B2 (en) Apparatus and method for manufacturing toner
JP4787140B2 (en) Method for producing toner for electrophotography
JP3347551B2 (en) Airflow classifier and method for producing toner
JP4183388B2 (en) Grinding device, toner manufacturing device and toner
JP3327773B2 (en) Manufacturing method of toner for electrostatic charge development
JPH11109678A (en) Method for classifying toner
JPH09299885A (en) Air current classifying device for manufacture of toner
JP2000237688A (en) Air classifier, and manufacture of toner
JP2002346480A (en) Classification apparatus and powder manufacturing apparatus and toner production apparatus and toner for electronic photography
JP2704777B2 (en) Collision type air flow crusher and crushing method
JPH0985741A (en) Method and device to manufacture spherical toner
JPH11288133A (en) Winnowing method of toner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4374044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

EXPY Cancellation because of completion of term