JP4371924B2 - Cold cathode fluorescent lamp, cylindrical electrode and electrode unit - Google Patents

Cold cathode fluorescent lamp, cylindrical electrode and electrode unit Download PDF

Info

Publication number
JP4371924B2
JP4371924B2 JP2004188427A JP2004188427A JP4371924B2 JP 4371924 B2 JP4371924 B2 JP 4371924B2 JP 2004188427 A JP2004188427 A JP 2004188427A JP 2004188427 A JP2004188427 A JP 2004188427A JP 4371924 B2 JP4371924 B2 JP 4371924B2
Authority
JP
Japan
Prior art keywords
metal layer
cylindrical electrode
cold cathode
cathode fluorescent
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004188427A
Other languages
Japanese (ja)
Other versions
JP2006012612A (en
Inventor
俊和 杉村
治茂 杉村
敏 田村
均 畑
邦男 高橋
和彦 山岸
広昭 西方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hotalux Ltd
Original Assignee
NEC Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Lighting Ltd filed Critical NEC Lighting Ltd
Priority to JP2004188427A priority Critical patent/JP4371924B2/en
Priority to TW094120759A priority patent/TWI260672B/en
Priority to KR1020050054602A priority patent/KR100654109B1/en
Priority to CNB2005100811214A priority patent/CN100351991C/en
Publication of JP2006012612A publication Critical patent/JP2006012612A/en
Application granted granted Critical
Publication of JP4371924B2 publication Critical patent/JP4371924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/76Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only
    • H01J61/78Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a filling of permanent gas or gases only with cold cathode; with cathode heated only by discharge, e.g. high-tension lamp for advertising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0064Tubes with cold main electrodes (including cold cathodes)
    • H01J2893/0065Electrode systems
    • H01J2893/0066Construction, material, support, protection and temperature regulation of electrodes; Electrode cups

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、冷陰極蛍光ランプに関するものであり、特に、冷陰極蛍光ランプの電極の改良に関する。   The present invention relates to a cold cathode fluorescent lamp, and more particularly, to an improvement in an electrode of a cold cathode fluorescent lamp.

近年、液晶パネルの大型化、高輝度化に伴って、その光源である冷陰極蛍光ランプの電極には、高融点焼結金属を使ったカップ状電極が用いられている。具体的には、ニッケル(Ni)に比べて低仕事関数で耐スパッタ特性に優れたモリブデン(Mo)やニオブ(Nb)などを使ったカップ状電極が用いられている(例えば、特許文献1参照)。しかし、高融点焼結金属を使った電極は上記利点を有する一方で、次のような問題があった。すなわち、冷陰極蛍光ランプの電極には、該電極に電圧を印加するためのリード線を溶接する必要がある。しかし、電極が高融点の焼結金属からなる場合には、リード線の一端を電極に溶接する際に非常に高い熱を加えないと十分な接合強度が得られない。さらに、銅又は銅合金の線材の外側をコバールで被覆したリード線を用いる場合には、電極への溶接時の熱によって内部の銅が過熱され、外部に吹き出してしまうことがあった。   In recent years, with the increase in size and brightness of liquid crystal panels, cup-shaped electrodes using a high melting point sintered metal are used for the electrodes of cold cathode fluorescent lamps that are light sources. Specifically, a cup-shaped electrode using molybdenum (Mo), niobium (Nb) or the like having a low work function and excellent spatter resistance compared to nickel (Ni) is used (see, for example, Patent Document 1). ). However, an electrode using a high melting point sintered metal has the following problems, while having the above advantages. That is, it is necessary to weld a lead wire for applying a voltage to the electrode of the cold cathode fluorescent lamp. However, when the electrode is made of a sintered metal having a high melting point, sufficient bonding strength cannot be obtained unless very high heat is applied when welding one end of the lead wire to the electrode. Furthermore, when a lead wire in which the outer side of a copper or copper alloy wire is covered with Kovar is used, the internal copper may be overheated by the heat at the time of welding to the electrode and blown out to the outside.

そこで、特許文献2には、電極に溶接されるリード線の先端部に、電極材料よりも低融点のニッケル層を設けることによって、上記溶接温度の低下を図った技術が開示されている。
特開2002−358992号公報 特開2003−187740号公報
Therefore, Patent Document 2 discloses a technique in which the welding temperature is lowered by providing a nickel layer having a melting point lower than that of the electrode material at the tip of the lead wire welded to the electrode.
Japanese Patent Laid-Open No. 2002-358992 JP 2003-187740 A

モリブデン(Mo)やニオブ(Nb)などの高融点焼結金属を使った電極には、上記問題に加えて、ガラス管への封入時に表面が酸化するといった別の問題があった。具体的には、冷陰極蛍光ランプの製造工程においては、ガラス管の端部に電極を配置した後にそのガラス管の端部を封止ガラス(ビードガラス)によって気密に封止する。しかし、ビードガラスを溶融させる際の熱が電極に伝わり、その熱によって電極表面が酸化してしまう。さらに、モリブデン(Mo)やニオブ(Nb)などの高融点焼結金属は、一度酸化してしまうと還元され難い性質を有する。   In addition to the above problems, electrodes using high melting point sintered metals such as molybdenum (Mo) and niobium (Nb) have another problem that the surface is oxidized when sealed in a glass tube. Specifically, in the manufacturing process of the cold cathode fluorescent lamp, after an electrode is disposed at the end of the glass tube, the end of the glass tube is hermetically sealed with sealing glass (bead glass). However, heat at the time of melting the bead glass is transmitted to the electrode, and the electrode surface is oxidized by the heat. Furthermore, high melting point sintered metals such as molybdenum (Mo) and niobium (Nb) have the property that they are difficult to be reduced once oxidized.

本発明の目的は、リード線との溶接時の過熱に起因する上記問題、及びガラス管への封入時の表面酸化といった2つの問題を同時に解決することにある。   An object of the present invention is to simultaneously solve the above two problems such as the above-mentioned problem caused by overheating at the time of welding with a lead wire and surface oxidation at the time of encapsulation in a glass tube.

本発明の冷陰極蛍光ランプは、封止ガラスによって気密に封止された内部空間内に少なくとも希ガスが封入され、内壁面に蛍光体層が形成されたガラス管と、内部空間内に配置された筒状電極と、一端が筒状電極の外面に接合され、他端が封止ガラスを貫通してガラス管の外部に引き出されたリード線とを備えた冷陰極蛍光ランプであって、筒状電極は、内面を構成する第1の金属層と、外面を構成する第2の金属層と、それら第1の金属層と第2の金属層との間に設けられた焼結金属層とを有し、第1の金属層及び第2の金属層は、焼結金属層を形成する焼結金属よりも融点が低く、かつ、還元されやすい金属によって形成されている。   The cold cathode fluorescent lamp of the present invention is arranged in a glass tube in which at least a rare gas is sealed in an internal space hermetically sealed with a sealing glass and a phosphor layer is formed on an inner wall surface, and the internal space. A cold cathode fluorescent lamp having a cylindrical electrode and a lead wire having one end bonded to the outer surface of the cylindrical electrode and the other end penetrating the sealing glass and drawn out of the glass tube. The electrode has a first metal layer constituting the inner surface, a second metal layer constituting the outer surface, a sintered metal layer provided between the first metal layer and the second metal layer, The first metal layer and the second metal layer are made of a metal that has a lower melting point than the sintered metal forming the sintered metal layer and is easily reduced.

以上の構成を有する本発明によれば、ガラス管へ筒状電極を封入する際における焼結金属層の表面酸化が第1の金属層及び第2の金属層によって回避され、それら金属層の酸化は後に還元される。この意味で第1の金属層及び第2の金属層は焼結金属層に対する保護層として機能する。また、リード線が溶接される筒状電極の外面が焼結金属層に比べて低融点の第2の金属層によって構成されている。従って、焼結金属層にリード線を直接溶接する場合に比べて低い溶接温度によっても筒状電極とリード線とが十分に強固に接合される。   According to the present invention having the above configuration, the surface oxidation of the sintered metal layer when the cylindrical electrode is sealed in the glass tube is avoided by the first metal layer and the second metal layer, and the oxidation of these metal layers is performed. Will be reduced later. In this sense, the first metal layer and the second metal layer function as a protective layer for the sintered metal layer. Further, the outer surface of the cylindrical electrode to which the lead wire is welded is constituted by a second metal layer having a lower melting point than the sintered metal layer. Therefore, the cylindrical electrode and the lead wire are sufficiently firmly bonded even at a lower welding temperature than when the lead wire is directly welded to the sintered metal layer.

これまでの説明から明らかなように、上記筒状電極は、第1の金属層からなる内面と第2の金属層からなる外面との間に焼結金属層が設けられていればよく、3層構造には限定されない。例えば、第1の金属層と焼結金属層との間に他の金属層が1層以上介在していたり、第2の金属層と焼結金属層との間に他の金属層が1層以上介在していてもよい。   As is apparent from the above description, the cylindrical electrode only needs to be provided with a sintered metal layer between the inner surface made of the first metal layer and the outer surface made of the second metal layer. The layer structure is not limited. For example, one or more other metal layers are interposed between the first metal layer and the sintered metal layer, or one other metal layer is interposed between the second metal layer and the sintered metal layer. It may be interposed as described above.

また、上記筒状電極とリード線とは、冷陰極蛍光ランプの製造工程とは独立した製造工程によって予めユニット化されたものであっても、冷陰極蛍光ランプの一連の製造工程の中で、別体の筒状電極とリード線とが接合されて一体化されたものであってもよい。すなわち、ガラス管へ筒状電極を挿入する際に、その筒状電極の外面にリード線が接合された状態となっていればよい。   Moreover, even if the cylindrical electrode and the lead wire are previously unitized by a manufacturing process independent of the manufacturing process of the cold cathode fluorescent lamp, in a series of manufacturing processes of the cold cathode fluorescent lamp, A separate cylindrical electrode and a lead wire may be joined and integrated. That is, when the cylindrical electrode is inserted into the glass tube, it is only necessary that the lead wire is bonded to the outer surface of the cylindrical electrode.

尚、第1の金属層及び第2の金属層が焼結金属層に比して耐スパッタ特性に劣り、時間の経過に伴って第1の金属層及び第2の金属層が失われ、焼結金属層が露出されることがあっても不都合はない。何故なら焼結金属製の電極はそもそも上記のような利点を有する一方で、冷陰極蛍光ランプの点灯中には、焼結金属層を酸化させるような熱の発生及び酸化雰囲気に曝されることはないからである。かかる観点からは、ガラス管への電極封入後は、むしろ第1の金属層及び第2の金属層がスパッタされ、焼結金属層が露出することが望ましい。但し、第1の金属層及び第2の金属層からスパッタによって叩き出される金属が過剰になると、内部空間内に封入されている水銀と結合してアマルガムが発生する虞がある。そこで、筒状電極の内外面のうち、点灯時によりスパッタされやすい内面を構成する第1の金属層の厚みを焼結金属層の酸化防止という目的を達成するために必要最低限の厚みとすることが望ましい。もちろん、アマルガムの発生回避という観点からは、第2の金属層の厚みも薄いに越したことはないが、第2の金属層は、焼結金属層の酸化防止のみでなく、筒状電極とリード線とを強固に接合させるという別の役割も果たす。そこで、第2の金属層の厚みの設定に当たっては、かかる観点をも考慮する必要がある。以上を総合的に考慮した場合、第1の金属層の厚みと焼結金属層の厚みとの比率を1:45〜2:5の範囲内、第2の金属層の厚みと焼結金属層の厚みとの比率を1:9〜7:20の範囲内とすることが望ましい。   The first metal layer and the second metal layer are inferior in spatter resistance compared to the sintered metal layer, and the first metal layer and the second metal layer are lost with the passage of time. There is no inconvenience even if the binder metal layer is exposed. This is because sintered metal electrodes have the above-mentioned advantages in the first place, but during the operation of the cold cathode fluorescent lamp, they are exposed to heat generation and oxidizing atmosphere that oxidizes the sintered metal layer. Because there is no. From this point of view, it is desirable that the first metal layer and the second metal layer are sputtered after the electrodes are enclosed in the glass tube, and the sintered metal layer is exposed. However, if the metal struck out by sputtering from the first metal layer and the second metal layer becomes excessive, there is a possibility that amalgam is generated by combining with mercury enclosed in the internal space. Therefore, the thickness of the first metal layer constituting the inner surface of the cylindrical electrode that is more easily sputtered during lighting is set to the minimum thickness necessary to achieve the purpose of preventing oxidation of the sintered metal layer. It is desirable. Of course, from the viewpoint of avoiding the occurrence of amalgam, the thickness of the second metal layer is not too thin, but the second metal layer is not only for preventing oxidation of the sintered metal layer, but also for the cylindrical electrode and It also plays another role of firmly joining the lead wire. Therefore, when setting the thickness of the second metal layer, it is necessary to take this viewpoint into consideration. When the above is considered comprehensively, the ratio of the thickness of the first metal layer to the thickness of the sintered metal layer is within the range of 1:45 to 2: 5, and the thickness of the second metal layer and the sintered metal layer. It is desirable that the ratio with the thickness of the material be in the range of 1: 9 to 7:20.

低仕事関数で耐スパッタ特性に優れる焼結金属製の電極の利点を損なうことなく、ガラス管内への電極の封入時における表面酸化及びリード線接合時の過熱に起因する諸問題が同時に解決される。   Without sacrificing the advantages of sintered metal electrodes with low work function and excellent spatter resistance, problems due to surface oxidation during encapsulation of electrodes in glass tubes and overheating during lead wire bonding can be solved simultaneously .

(実施形態1)
以下、本発明の冷陰極蛍光ランプの実施形態の一例について図面を参照しながら詳細に説明する。図1は、本例の冷陰極ランプの構造概略を示す断面図である。
(Embodiment 1)
Hereinafter, an example of an embodiment of a cold cathode fluorescent lamp of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing a schematic structure of the cold cathode lamp of this example.

図1に示す冷陰極蛍光ランプ1では、硼・珪酸ガラスによって形成されたガラス管2の両端が封止ガラス(ビードガラス3)によって気密に封止されている。ガラス管2の外径は、1.5〜6.0mmの範囲内、好ましくは1.5〜3.0mmの範囲内である。もっとも、ガラス管2の材料は、鉛ガラス、ソーダガラス、低鉛ガラスなどであってもよい。   In the cold cathode fluorescent lamp 1 shown in FIG. 1, both ends of a glass tube 2 made of borosilicate glass are hermetically sealed with sealing glass (bead glass 3). The outer diameter of the glass tube 2 is in the range of 1.5 to 6.0 mm, preferably in the range of 1.5 to 3.0 mm. However, the material of the glass tube 2 may be lead glass, soda glass, low lead glass, or the like.

ガラス管2の内壁面4には、そのほぼ全長に亙って不図示の蛍光体層が設けられている。蛍光体層を構成する蛍光体は、ハロリン酸塩蛍光体や希土類蛍光体などの既存又は新規の蛍光体から冷陰極蛍光ランプ1の目的や用途に応じて適宜選択することができる。さらに、蛍光体層は、2種類以上の蛍光体が混合されてなる蛍光体によって構成することもできる。   The inner wall surface 4 of the glass tube 2 is provided with a phosphor layer (not shown) over almost the entire length thereof. The phosphor constituting the phosphor layer can be appropriately selected from existing or new phosphors such as halophosphate phosphors and rare earth phosphors according to the purpose and application of the cold cathode fluorescent lamp 1. Furthermore, the phosphor layer can be composed of a phosphor in which two or more kinds of phosphors are mixed.

内壁面4によって囲まれたガラス管2の内部空間5内には、アルゴン、キセノン、ネオン等の希ガス及び水銀が所定量封入され、内部圧力は大気圧の数十分の一程度に減圧されている。   A predetermined amount of rare gas such as argon, xenon, neon and mercury is enclosed in the internal space 5 of the glass tube 2 surrounded by the inner wall surface 4, and the internal pressure is reduced to about several tenths of the atmospheric pressure. ing.

ガラス管2の長手方向両端には、一対の電極ユニット6がそれぞれ設けられている。各電極ユニット6は、筒状電極7と、その筒状電極7の底面8に接合されたリード線9とから構成されている。一方の電極ユニット6が備える筒状電極7は、ガラス管2の内部空間5の長手方向端部よりもやや内側の位置に、他方の電極ユニット6が備える筒状電極7と対向する向きで配置され、各リード線9は、その一端が対応する筒状電極7の底面8に溶接され、他端がビードガラス3を貫通してガラス管2の外部に引き出されている。以上が本例の冷陰極蛍光ランプ1の構造概略である。   A pair of electrode units 6 is provided at both ends of the glass tube 2 in the longitudinal direction. Each electrode unit 6 includes a cylindrical electrode 7 and a lead wire 9 bonded to the bottom surface 8 of the cylindrical electrode 7. The cylindrical electrode 7 provided in one electrode unit 6 is disposed at a position slightly inside the longitudinal end of the internal space 5 of the glass tube 2 in a direction facing the cylindrical electrode 7 provided in the other electrode unit 6. One end of each lead wire 9 is welded to the bottom surface 8 of the corresponding cylindrical electrode 7, and the other end penetrates the bead glass 3 and is drawn out of the glass tube 2. The above is the schematic structure of the cold cathode fluorescent lamp 1 of this example.

次に、図1に示す各電極ユニット6について図2及び図3を参照しながらさらに詳しく説明する。図2は、冷陰極蛍光ランプ1が備える電極ユニット6を示す拡大斜視図であり、図3は拡大断面図である。   Next, each electrode unit 6 shown in FIG. 1 will be described in more detail with reference to FIGS. FIG. 2 is an enlarged perspective view showing the electrode unit 6 provided in the cold cathode fluorescent lamp 1, and FIG. 3 is an enlarged sectional view.

図2に示すように、電極ユニット6を構成している筒状電極7は、長手方向一方に開口部10を有し、他方が底11によって閉塞された円筒状(カップ状)に金属板をプレスしたものであり、リード線9は、一方の端面12が筒状電極7の底面8に溶接されている。筒状電極7の材料である上記金属板は、ニッケル又はニッケル合金からなる2つの金属層の間にモリブデンからなる焼結金属層が積層された多層構造(3層構造)を有する。ここで、2つの金属層は、一方が他方に比べて相対的に厚みが薄く形成されている。尚、ニッケル又はニッケル合金は、モリブデンに比べて融点が低く、かつ、還元されやすい性質を有する。   As shown in FIG. 2, the cylindrical electrode 7 constituting the electrode unit 6 has a metal plate in a cylindrical shape (cup shape) having an opening 10 in one longitudinal direction and the other closed by a bottom 11. One end face 12 of the lead wire 9 is welded to the bottom face 8 of the cylindrical electrode 7. The metal plate as the material of the cylindrical electrode 7 has a multilayer structure (three-layer structure) in which a sintered metal layer made of molybdenum is laminated between two metal layers made of nickel or a nickel alloy. Here, one of the two metal layers is formed relatively thin compared to the other. Nickel or a nickel alloy has a property that it has a lower melting point than molybdenum and is easily reduced.

上記金属板から筒状電極7をプレス成形する際には、厚みが薄い方の金属層側から他方の金属層側に向けて金属板に圧力を付与している。従って、図2に示す筒状電極7は図3に示すような断面構造を有する。すなわち、第1の金属層20によって内面21が構成され、第2の金属層22によって外面23が構成され、それら第1の金属層20と第2の金属層22との間に焼結金属層24が設けられている。この結果、リード線9の端面12が溶接されている筒状電極7の底面(外面23の一部)8は、第2の金属層22によって構成され、焼結金属層24の厚み(t1)は、第1の金属層20の厚み(t2)及び第2の金属層22の厚み(t3)よりも薄いことがわかる。 When the cylindrical electrode 7 is press-formed from the metal plate, pressure is applied to the metal plate from the metal layer side having the smaller thickness toward the other metal layer side. Therefore, the cylindrical electrode 7 shown in FIG. 2 has a sectional structure as shown in FIG. That is, the inner surface 21 is constituted by the first metal layer 20, and the outer surface 23 is constituted by the second metal layer 22, and the sintered metal layer is interposed between the first metal layer 20 and the second metal layer 22. 24 is provided. As a result, the bottom surface (a part of the outer surface 23) 8 of the cylindrical electrode 7 to which the end surface 12 of the lead wire 9 is welded is constituted by the second metal layer 22, and the thickness (t 1) of the sintered metal layer 24. ) is thin it can be seen than the first metal layer 20 having a thickness (t 2) and a second thickness of the metal layer 22 (t 3).

もっとも、筒状電極7は、内面21が第1の金属層20によって形成され、外面23が第2の金属層22によって形成され、それら金属層20、22の間に焼結金属層24が配置されていれば4層以上の多層構造であっても同様の効果が得られる。具体的には、第1の金属層20と焼結金属層24との間に他の金属層が1層以上積層されていたり、第2の金属層22と焼結金属層24との間に他の金属層が1層以上積層されていたりしてもよい。   However, in the cylindrical electrode 7, the inner surface 21 is formed by the first metal layer 20, the outer surface 23 is formed by the second metal layer 22, and the sintered metal layer 24 is disposed between the metal layers 20 and 22. If so, the same effect can be obtained even with a multilayer structure of four or more layers. Specifically, one or more other metal layers are laminated between the first metal layer 20 and the sintered metal layer 24, or between the second metal layer 22 and the sintered metal layer 24. One or more other metal layers may be laminated.

また、第1の金属層20及び第2の金属層22を構成する金属は、焼結金属層24を構成する焼結金属よりも融点が低く、かつ、還元されやすい金属であればニッケル又はニッケル合金に限定されない。   The metal constituting the first metal layer 20 and the second metal layer 22 is nickel or nickel as long as it has a lower melting point than the sintered metal constituting the sintered metal layer 24 and is easily reduced. It is not limited to alloys.

図3に示すように、本例における筒状電極7では、その端面(開口部10の周縁)において焼結金属層24の一部が外部に露出しているが、この部分も第1の金属層20又は/及び第2の金属層22によって被覆されるように構成してもよい。   As shown in FIG. 3, in the cylindrical electrode 7 in this example, a part of the sintered metal layer 24 is exposed to the outside at the end face (periphery of the opening 10), and this part is also the first metal. It may be configured to be covered by the layer 20 or / and the second metal layer 22.

さらに、筒状電極7の成形方法は上記方法に限定されない。例えば、焼結金属板を筒状にプレスした後に、第1の金属層20及び第2の金属層22を形成してもよい。また、焼結金属層の片面に、第1の金属層20又は第2の金属層22となる金属層が予め積層されている金属板をプレスした後に、第2の金属層22又は第1の金属層20を形成してもよい。   Furthermore, the forming method of the cylindrical electrode 7 is not limited to the above method. For example, the first metal layer 20 and the second metal layer 22 may be formed after the sintered metal plate is pressed into a cylindrical shape. Moreover, after pressing the metal plate by which the metal layer used as the 1st metal layer 20 or the 2nd metal layer 22 is laminated | stacked beforehand on the single side | surface of a sintered metal layer, the 2nd metal layer 22 or the 1st The metal layer 20 may be formed.

(実施形態2)
以下、本発明の冷陰極蛍光ランプの実施形態の他例について説明する。もっとも、本例の例陰極蛍光ランプの基本構成は、実施形態1の冷陰極蛍光ランプと同一であり、異なるのは電極ユニットの構成のみである。そこで、本例の冷陰極蛍光ランプが備える電極ユニットの構成についてのみ説明し、その他の構成についての説明は省略する。
(Embodiment 2)
Hereinafter, other examples of the embodiment of the cold cathode fluorescent lamp of the present invention will be described. However, the basic configuration of the example cathode fluorescent lamp of this example is the same as that of the cold cathode fluorescent lamp of Embodiment 1, and only the configuration of the electrode unit is different. Therefore, only the configuration of the electrode unit included in the cold cathode fluorescent lamp of this example will be described, and description of the other configurations will be omitted.

本例の冷陰極蛍光ランプが備える電極ユニットと実施形態1の冷陰極蛍光ランプが備える電極ユニットとの相違点はリード線にある。具体的には、図4に示すように、本例の冷陰極蛍光ランプが備える電極ユニット30を構成するリード線31は、銅(Cu)又は銅合金からなる内側部32がコバールからなる外側部33によって被覆された多層構造(2層構造)を有する。尚、実施形態1の冷陰極蛍光ランプ1が備える電極ユニット6と同一の構成については、図中に同一の符号を付して説明を省略する。   The difference between the electrode unit included in the cold cathode fluorescent lamp of this example and the electrode unit included in the cold cathode fluorescent lamp of Embodiment 1 is in the lead wire. Specifically, as shown in FIG. 4, the lead wire 31 constituting the electrode unit 30 included in the cold cathode fluorescent lamp of this example is an outer portion in which an inner portion 32 made of copper (Cu) or a copper alloy is made of Kovar. 33 has a multilayer structure (two-layer structure) covered with 33. In addition, about the structure same as the electrode unit 6 with which the cold cathode fluorescent lamp 1 of Embodiment 1 is provided, the same code | symbol is attached | subjected in a figure and description is abbreviate | omitted.

図4に示すリード線31は、例えば次のようにして製造することができる。まず、図5(a)に示すように、コバール製の板材をローラダイス40を用いて幅方向に丸めつつ、当接した幅方向の端面同士をアルゴンガス雰囲気中で溶接して、中空のコバール管41を製作する(コバール製造工程)。次に、図5(b)に示すように、コバール管41の内部空隙に、銅又は銅合金の線材42を内挿する(線材挿入工程)。その後、図5(c)に示すように、線材42が内挿されたコバール管41を回転するスウェージング用のダイス43に通して伸線化する。次に、伸線化されたコバール管41及び線材42を水素ガス雰囲気中で焼鈍する。かかる焼鈍工程によって、線材42の外周面と、コバール管41の内周面との間に金属拡散層が形成され、コバール管41と線材42との密着性が向上する。また、上記焼鈍によってコバール管41に発生した歪みも除去される。ここで、コバールと銅は上記密着性における相性が良く、密着不良による熱伝導率の低下を招き難いといった利点がある。焼鈍工程終了後、図5(d)に示すように、コバール管41及び線材42を穴ダイス44に通して伸線化し、所定の外径に仕上げ、図5(e)に示すように、所定の長さに切断する。   The lead wire 31 shown in FIG. 4 can be manufactured as follows, for example. First, as shown in FIG. 5A, while rolling a Kovar plate material in the width direction using a roller die 40, the contacting end surfaces in the width direction are welded in an argon gas atmosphere to form a hollow Kovar. The tube 41 is manufactured (Kovar manufacturing process). Next, as shown in FIG. 5 (b), a copper or copper alloy wire 42 is inserted into the internal space of the Kovar tube 41 (wire rod insertion step). Thereafter, as shown in FIG. 5C, the Kovar tube 41 in which the wire 42 is inserted is passed through a rotating swaging die 43 to be drawn. Next, the drawn Kovar tube 41 and the wire 42 are annealed in a hydrogen gas atmosphere. By this annealing step, a metal diffusion layer is formed between the outer peripheral surface of the wire 42 and the inner peripheral surface of the Kovar tube 41, and the adhesion between the Kovar tube 41 and the wire 42 is improved. Further, distortion generated in the Kovar tube 41 by the annealing is also removed. Here, Kovar and copper have good compatibility in the above-mentioned adhesion, and have an advantage that it is difficult to cause a decrease in thermal conductivity due to poor adhesion. After completion of the annealing step, as shown in FIG. 5 (d), the Kovar tube 41 and the wire 42 are drawn through a hole die 44, finished to a predetermined outer diameter, and as shown in FIG. Cut to length.

上述の通り、図4に示す筒状電極7は図2に示す筒状電極7と同様の多層構造を有する。すなわち、リード線31の端面12が溶接されている筒状電極7の底面8は、焼結金属層24に比べて低融点の第2の金属層22によって構成されている。従って、焼結金属層24にリード線31を溶接する場合よりも低い溶接温度によって筒状電極7とリード線31とを十分に強固に接合させることができることは勿論、溶接時の熱によってリード線31の内側部32が過熱され、外部に吹き出してしまうといった不都合がない。尚、ガラス管の内部空間内への電極の封入時における焼結金属層24の表面酸化が効果的に抑制される点も図2に示す筒状電極7と同様である。   As described above, the cylindrical electrode 7 shown in FIG. 4 has the same multilayer structure as the cylindrical electrode 7 shown in FIG. That is, the bottom surface 8 of the cylindrical electrode 7 to which the end surface 12 of the lead wire 31 is welded is constituted by the second metal layer 22 having a lower melting point than the sintered metal layer 24. Therefore, the cylindrical electrode 7 and the lead wire 31 can be sufficiently firmly joined to each other at a welding temperature lower than that when the lead wire 31 is welded to the sintered metal layer 24. There is no inconvenience that the inner part 32 of 31 is overheated and blows out. The point that the surface oxidation of the sintered metal layer 24 is effectively suppressed when the electrode is sealed in the internal space of the glass tube is the same as that of the cylindrical electrode 7 shown in FIG.

本発明の冷陰極蛍光ランプの実施形態の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of embodiment of the cold cathode fluorescent lamp of this invention. 図1に示す電極ユニットの拡大斜視図である。It is an expansion perspective view of the electrode unit shown in FIG. 図1に示す電極ユニットの拡大断面図である。It is an expanded sectional view of the electrode unit shown in FIG. 電極ユニットの他例を示す拡大断面図である。It is an expanded sectional view showing other examples of an electrode unit. (a)〜(e)は、リード線の製造工程の一例を示す模式図である。(A)-(e) is a schematic diagram which shows an example of the manufacturing process of a lead wire.

符号の説明Explanation of symbols

1 冷陰極蛍光ランプ
2 ガラス管
3 ビードガラス
4 内壁面
5 内部空間
6 電極ユニット
7 筒状電極
8 底面
9 リード線
10 開口部
11 底
20 第1の金属層
21 内面
22 第2の金属層
23 外面
24 焼結金属層
30 電極ユニット
31 リード線
32 内側部
33 外側部
40 ローラダイス
41 コバール管
42 線材
43 ダイス
44 穴ダイス
DESCRIPTION OF SYMBOLS 1 Cold cathode fluorescent lamp 2 Glass tube 3 Bead glass 4 Inner wall surface 5 Internal space 6 Electrode unit 7 Cylindrical electrode 8 Bottom surface 9 Lead wire 10 Opening part 11 Bottom 20 First metal layer 21 Inner surface 22 Second metal layer 23 Outer surface 24 Sintered metal layer 30 Electrode unit 31 Lead wire 32 Inner portion 33 Outer portion 40 Roller die 41 Kovar tube 42 Wire rod 43 Die 44 Hole die

Claims (7)

封止ガラスによって気密に封止された内部空間内に少なくとも希ガスが封入され、内壁面に蛍光体層が形成されたガラス管と、前記内部空間内に配置された筒状電極と、一端が前記筒状電極の外面に接合され、他端が前記封止ガラスを貫通して前記ガラス管の外部に引き出されたリード線とを備え、
前記筒状電極は、内面を構成する第1の金属層と、外面を構成する第2の金属層と、それら第1の金属層と第2の金属層との間に設けられた焼結金属層とを有し、
前記第1の金属層及び第2の金属層は、前記焼結金属層を形成する焼結金属よりも融点が低く、かつ、還元されやすい金属によって形成されている冷陰極蛍光ランプであって、
前記第1の金属層及び第2の金属層がニッケル又はニッケル合金によって形成され、前記焼結金属層がモリブデン、ニオブ又はこれらの合金によって形成されている冷陰極蛍光ランプ。
A glass tube in which at least a rare gas is sealed in an internal space hermetically sealed with a sealing glass and a phosphor layer is formed on an inner wall surface, a cylindrical electrode disposed in the internal space, and one end A lead wire joined to the outer surface of the cylindrical electrode, the other end penetrating the sealing glass and drawn out of the glass tube;
The cylindrical electrode includes a first metal layer constituting an inner surface, a second metal layer constituting an outer surface, and a sintered metal provided between the first metal layer and the second metal layer. And having a layer
The first metal layer and the second metal layer are cold cathode fluorescent lamps having a melting point lower than that of the sintered metal forming the sintered metal layer and formed of a metal that is easily reduced ,
The cold cathode fluorescent lamp, wherein the first metal layer and the second metal layer are formed of nickel or a nickel alloy, and the sintered metal layer is formed of molybdenum, niobium, or an alloy thereof .
前記第1の金属層の厚みと前記焼結金属層の厚みとの比率が1:45〜2:5であり、前記第2の金属層の厚みと前記焼結金属層の厚みとの比率が1:9〜7:20である請求項1に記載の冷陰極蛍光ランプ。 The ratio between the thickness of the first metal layer and the thickness of the sintered metal layer is 1:45 to 2: 5, and the ratio between the thickness of the second metal layer and the thickness of the sintered metal layer is The cold cathode fluorescent lamp according to claim 1, wherein the ratio is 1: 9 to 7:20. 前記リード線は、銅又は銅合金からなる内側部がコバールからなる外側部によって被覆された多層構造を有する請求項1又は請求項2に記載の冷陰極蛍光ランプ。 The cold cathode fluorescent lamp according to claim 1 or 2 , wherein the lead wire has a multilayer structure in which an inner portion made of copper or a copper alloy is covered with an outer portion made of Kovar. 面を構成する第1の金属層と、外面を構成する第2の金属層と、それら第1の金属層と第2の金属層との間に設けられた焼結金属層とを有し、前記第1の金属層及び第2の金属層は、前記焼結金属層を形成する焼結金属よりも融点が低く、かつ、還元されやすい金属によって形成されている、冷陰極蛍光ランプに用いられる筒状電極であって、
前記第1の金属層及び第2の金属層がニッケル又はニッケル合金によって形成され、前記焼結金属層がモリブデン、ニオブ又はこれらの合金によって形成されている筒状電極。
Having a first metal layer forming the inner surface, and a second metal layer constituting the outer surface, and a sintered metal layer provided between their first and second metal layers The first metal layer and the second metal layer are used for a cold cathode fluorescent lamp having a melting point lower than that of the sintered metal forming the sintered metal layer and formed of a metal that is easily reduced. A cylindrical electrode,
A cylindrical electrode in which the first metal layer and the second metal layer are formed of nickel or a nickel alloy, and the sintered metal layer is formed of molybdenum, niobium, or an alloy thereof .
前記第1の金属層の厚みと前記焼結金属層の厚みとの比率が1:45〜2:5であり、前記第2の金属層の厚みと前記焼結金属層の厚みとの比率が1:9〜7:20である請求項4に記載の筒状電極。 The ratio between the thickness of the first metal layer and the thickness of the sintered metal layer is 1:45 to 2: 5, and the ratio between the thickness of the second metal layer and the thickness of the sintered metal layer is It is 1: 9-7: 20, The cylindrical electrode of Claim 4 . 請求項4又は請求項5に記載の筒状電極と、一端が前記筒状電極の外面に接合されたリード線とを有する電極ユニット。 An electrode unit comprising the cylindrical electrode according to claim 4 or 5 , and a lead wire having one end joined to an outer surface of the cylindrical electrode. 前記リード線は、銅又銅合金からなる内側部がコバールからなる外側部によって被覆された多層構造を有する請求項6に記載の電極ユニット。 The electrode unit according to claim 6, wherein the lead wire has a multilayer structure in which an inner portion made of copper or a copper alloy is covered with an outer portion made of Kovar.
JP2004188427A 2004-06-25 2004-06-25 Cold cathode fluorescent lamp, cylindrical electrode and electrode unit Expired - Fee Related JP4371924B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004188427A JP4371924B2 (en) 2004-06-25 2004-06-25 Cold cathode fluorescent lamp, cylindrical electrode and electrode unit
TW094120759A TWI260672B (en) 2004-06-25 2005-06-22 Cold cathode fluorescent lamp with modified electrode
KR1020050054602A KR100654109B1 (en) 2004-06-25 2005-06-23 Cold cathode fluorescent lamp having the improved electrode
CNB2005100811214A CN100351991C (en) 2004-06-25 2005-06-27 Cold cathode fluorescent lamp with improved cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188427A JP4371924B2 (en) 2004-06-25 2004-06-25 Cold cathode fluorescent lamp, cylindrical electrode and electrode unit

Publications (2)

Publication Number Publication Date
JP2006012612A JP2006012612A (en) 2006-01-12
JP4371924B2 true JP4371924B2 (en) 2009-11-25

Family

ID=35718891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188427A Expired - Fee Related JP4371924B2 (en) 2004-06-25 2004-06-25 Cold cathode fluorescent lamp, cylindrical electrode and electrode unit

Country Status (4)

Country Link
JP (1) JP4371924B2 (en)
KR (1) KR100654109B1 (en)
CN (1) CN100351991C (en)
TW (1) TWI260672B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832931B2 (en) * 2006-03-16 2011-12-07 株式会社東芝 Method for producing sintered electrode for cold cathode tube
CN101110309B (en) * 2006-07-18 2010-09-01 启耀光电股份有限公司 Manufacturing method for fluorescent lamp and its electrode
JP4440911B2 (en) 2006-10-13 2010-03-24 ニチコン株式会社 Solid electrolytic capacitor
CN101785084B (en) * 2007-09-04 2012-04-04 夏普株式会社 Cold cathode tube lamp, lighting device for display device, display device, and television receiving device
CN102148128A (en) * 2010-02-04 2011-08-10 杨军 Cold cathode fluorescent lamp for illumination

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273617A (en) * 1998-03-26 1999-10-08 Harison Electric Co Ltd Cold cathode low pressure discharge lamp
JP2002289138A (en) * 2001-03-28 2002-10-04 Matsushita Electric Ind Co Ltd Cold cathode fluorescent lamp
CN2497427Y (en) * 2001-09-29 2002-06-26 东莞南光电器有限公司 Cold-cathode fluorescence lamp tube
CN2545702Y (en) * 2001-09-29 2003-04-16 东莞南光电器有限公司 Cold cathode fluorescent lamp tub
JP2003187740A (en) * 2001-12-19 2003-07-04 Harison Toshiba Lighting Corp Cold-cathode type electrode, discharge lamp and lighting system

Also Published As

Publication number Publication date
CN100351991C (en) 2007-11-28
JP2006012612A (en) 2006-01-12
TW200601382A (en) 2006-01-01
KR100654109B1 (en) 2006-12-06
CN1713335A (en) 2005-12-28
KR20060048502A (en) 2006-05-18
TWI260672B (en) 2006-08-21

Similar Documents

Publication Publication Date Title
KR100654109B1 (en) Cold cathode fluorescent lamp having the improved electrode
KR100667441B1 (en) Electrode assembly for fluorescent lamp and fabricating method thereof and cold cathod fluorescent lamp
US20060208640A1 (en) Electrode system provided with a novel connection, associated lamp comprising said film and method for the production of said connection
JP3990406B2 (en) Cold cathode fluorescent lamp, electrode, and electrode unit
JP4231380B2 (en) Light bulb and current conductor used therefor
JP4621508B2 (en) Low pressure mercury vapor discharge lamp manufacturing method and low pressure mercury vapor discharge lamp
CN100576420C (en) The manufacture method of cold-cathode fluorescence lamp, electrode unit and electrode unit
JP2006140129A (en) Electrode member, lead wire for sealing, and cold cathode fluorescent lamp
JP4185539B2 (en) Electrode member for cold cathode fluorescent lamp and method for producing the same
JP2008521176A (en) Cold cathode fluorescent lamp
KR20070093969A (en) Cold cathode fluorescent lamp
JP2007128918A (en) Cold-cathode fluorescent lamp, electrode, and electrode unit
JP2008130395A (en) Electrode member group for cold cathode fluorescent lamp
JP3555051B2 (en) Metal wires and tubes for sealing glass and electrical components
JP5093932B2 (en) Cold cathode fluorescent lamp, electric device light source, liquid crystal display device, and electrode member for cold cathode fluorescent lamp
JP2004273358A (en) Metal wire for glass sealing, tubular bulb, and electrical component
JP3975223B1 (en) Fluorescent discharge lamp electrode and manufacturing method thereof
JP2007080777A (en) Electrode, electrode unit, and cold cathode lamp
JP2007128917A (en) Cold-cathode fluorescent lamp, electrode, and electrode unit
JP2008135349A (en) Electrode structure for discharge lamp, and discharge lamp
JP2011065778A (en) Cold cathode discharge lamp
CN101558471A (en) Electrode component used for cold cathode fluorescent lamp
KR20090068356A (en) Electrode member for cold cathode fluorescent lamp
KR20090068357A (en) Electrode member for cold cathode fluorescent lamp
JP2007149474A (en) Lead wire for sealing, and cold-cathode fluorescent lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees