JP3990406B2 - Cold cathode fluorescent lamp, electrode, and electrode unit - Google Patents

Cold cathode fluorescent lamp, electrode, and electrode unit Download PDF

Info

Publication number
JP3990406B2
JP3990406B2 JP2005042557A JP2005042557A JP3990406B2 JP 3990406 B2 JP3990406 B2 JP 3990406B2 JP 2005042557 A JP2005042557 A JP 2005042557A JP 2005042557 A JP2005042557 A JP 2005042557A JP 3990406 B2 JP3990406 B2 JP 3990406B2
Authority
JP
Japan
Prior art keywords
electrode
cold cathode
cathode fluorescent
fluorescent lamp
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005042557A
Other languages
Japanese (ja)
Other versions
JP2006228615A (en
Inventor
俊和 杉村
均 畑
治茂 杉村
敏 田村
邦男 高橋
和彦 山岸
広昭 西方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hotalux Ltd
Original Assignee
NEC Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Lighting Ltd filed Critical NEC Lighting Ltd
Priority to JP2005042557A priority Critical patent/JP3990406B2/en
Priority to TW095104043A priority patent/TW200634890A/en
Priority to CNB2006100076307A priority patent/CN100530514C/en
Priority to KR1020060015853A priority patent/KR100779433B1/en
Publication of JP2006228615A publication Critical patent/JP2006228615A/en
Application granted granted Critical
Publication of JP3990406B2 publication Critical patent/JP3990406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury

Landscapes

  • Discharge Lamp (AREA)

Description

本発明は、冷陰極蛍光ランプ、ならびに、冷陰極蛍光ランプの一部を構成する電極および電極ユニットに関し、特に、冷陰極蛍光ランプの電極構造に関する。   The present invention relates to a cold cathode fluorescent lamp, and electrodes and electrode units that constitute a part of the cold cathode fluorescent lamp, and more particularly to an electrode structure of the cold cathode fluorescent lamp.

冷陰極蛍光ランプは、小型化が容易で、低消費電力、長寿命といった特性により、近年、液晶パネルのバックライト等に多用されている。冷陰極蛍光ランプは、一般に、アルゴン等の希ガスと水銀ガスとを充填したガラス管の内部に一対の電極が対向配置され、各電極にリード線が接続された構造を有している。電極はカップ状に成形され、カップの開口部が互いに対向するように配置される。電極間にリード線を介して電圧が印加されると、一方の電極から電子が放出され、水銀原子に衝突し、紫外線が発生する。紫外線はガラス管の表面に形成された蛍光膜で可視光線に変換され、ガラス管の内部から可視光線が放出される。したがって、冷陰極蛍光ランプの寿命は、水銀ガスの消耗に大きく依存する。   In recent years, cold cathode fluorescent lamps are widely used in backlights of liquid crystal panels because of their small size, low power consumption, and long life. In general, a cold cathode fluorescent lamp has a structure in which a pair of electrodes are arranged opposite to each other inside a glass tube filled with a rare gas such as argon and mercury gas, and a lead wire is connected to each electrode. The electrodes are formed in a cup shape, and are arranged so that the openings of the cups face each other. When a voltage is applied between the electrodes via the lead wire, electrons are emitted from one electrode, collide with mercury atoms, and ultraviolet rays are generated. Ultraviolet rays are converted into visible light by a fluorescent film formed on the surface of the glass tube, and visible light is emitted from the inside of the glass tube. Therefore, the lifetime of the cold cathode fluorescent lamp greatly depends on the consumption of mercury gas.

電極は通常ニッケルで製作され、一例を示すと、ニッケル99.7%、マンガン0.1%、鉄0.1%、その他の不純物(炭素、けい素、銅、硫黄)0.1%である。ニッケルには0.01%程度の微量のコバルトを含んでいる。なお、以上の混合比は重量%である。ニッケルがガラス管内部のアルゴンガス等の衝撃を受けると、ニッケル原子がたたき出され、飛散する。この現象はスパッタリングと呼ばれる。飛散したニッケル原子は水銀ガスを取り込みアマルガムとなるため、水銀ガスの有効量が低減する。この結果、水銀ガスが消耗し、冷陰極蛍光ランプの寿命の低下につながる。   The electrodes are usually made of nickel. For example, nickel is 99.7%, manganese is 0.1%, iron is 0.1%, and other impurities (carbon, silicon, copper, sulfur) are 0.1%. . Nickel contains a trace amount of cobalt of about 0.01%. In addition, the above mixing ratio is weight%. When nickel receives an impact of argon gas or the like inside the glass tube, nickel atoms are knocked out and scattered. This phenomenon is called sputtering. Since the scattered nickel atoms take in mercury gas and become amalgam, the effective amount of mercury gas is reduced. As a result, mercury gas is consumed, leading to a reduction in the lifetime of the cold cathode fluorescent lamp.

そこで、近年では、耐スパッタ性能の良好な電極を採用し、冷陰極蛍光ランプの長寿命化を図る技術が検討されている。具体的には、ニッケルに比べて低仕事関数で耐スパッタ性能に優れたモリブデン(Mo)やニオブ(Nb)などを使ったカップ状電極の技術が開示されている(例えば、特許文献1,2参照)。
特開2002−358992号公報 特開2003−187740号公報
Thus, in recent years, a technique for extending the life of a cold cathode fluorescent lamp by using an electrode having good sputtering resistance has been studied. Specifically, a cup electrode technique using molybdenum (Mo), niobium (Nb), etc., which has a lower work function and superior sputtering resistance compared to nickel is disclosed (for example, Patent Documents 1 and 2). reference).
Japanese Patent Laid-Open No. 2002-358992 JP 2003-187740 A

しかし、これらの金属を用いた冷陰極蛍光ランプには、以下の問題があった。第一に、モリブデンやニオブなどの高融点金属を使った電極は、ガラス管への封入時に表面が酸化するという問題があった。具体的には、冷陰極蛍光ランプの製造工程においては、ガラス管の端部に電極を配置した後に、ガラス管の一方の端部の封止ガラス(ビードガラス)を大気中でガスバーナー等であぶり、ガラス管に溶着させて気密に封止する。しかし、ビードガラスを溶融させる際の熱が電極に伝わり、その熱によって電極表面が酸化されてしまう。電極表面が酸化すると、耐スパッタ性能が低下するため、せっかくの耐スパッタ性能が生かされないことになる。しかも、モリブデンやニオブは、一度酸化されてしまうと還元されにくいため、後工程で、水素ガス等の雰囲気で還元することも難しい。   However, cold cathode fluorescent lamps using these metals have the following problems. First, an electrode using a refractory metal such as molybdenum or niobium has a problem that the surface is oxidized when encapsulated in a glass tube. Specifically, in the manufacturing process of the cold cathode fluorescent lamp, after placing an electrode at the end of the glass tube, the sealing glass (bead glass) at one end of the glass tube is removed with a gas burner or the like in the atmosphere. Seal and seal hermetically by welding to a glass tube. However, heat at the time of melting the bead glass is transmitted to the electrode, and the electrode surface is oxidized by the heat. When the surface of the electrode is oxidized, the spatter resistance is lowered, so that the spatter resistance is not utilized. Moreover, since molybdenum and niobium are not easily reduced once oxidized, it is difficult to reduce them in an atmosphere of hydrogen gas or the like in a subsequent process.

第二に、モリブデンやニオブは高融点金属であるため、リード線を電極に溶接する際に、非常に高い熱を加えないと十分な接合強度が得られない。特に、モリブデンの融点は約3400℃と、リード線として用いられることの多いコバールの融点(約1550℃)よりも相当高いため、リード線を十分に溶融させて電極に接合させる必要がある。しかし、モリブデンの電極はほとんど溶融しないため、結果的に十分な接合強度が得られないおそれがある。また、モリブデンの電極が十分に溶融する温度をかけると、リード線に過度の高温がかかり、接合が困難となる。さらに、コバール製の外管の内部に銅を充填した二重構造のリード線が用いられる場合、銅の融点は約1080℃とさらに低いため、内部の銅が先に溶融し、溶接時に流れ出してしまうという問題もある。銅は、ランプ使用時における電極の発熱をガラス管の外部に逃がす放熱手段として用いられるが、銅が流出すると、コバール製の外管の内部に銅で充填されない空洞部が生じ、放熱性能の低下につながる。   Second, since molybdenum and niobium are refractory metals, sufficient bonding strength cannot be obtained unless very high heat is applied when welding the lead wire to the electrode. In particular, the melting point of molybdenum is about 3400 ° C., which is considerably higher than the melting point of Kovar (about 1550 ° C.) that is often used as a lead wire. Therefore, it is necessary to sufficiently melt the lead wire and bond it to the electrode. However, since the molybdenum electrode hardly melts, there is a possibility that sufficient bonding strength cannot be obtained as a result. Further, if a temperature at which the molybdenum electrode is sufficiently melted is applied, an excessively high temperature is applied to the lead wire, making bonding difficult. In addition, when a lead wire with a double structure filled with copper is used inside the outer tube made of Kovar, the melting point of copper is even lower at about 1080 ° C, so the internal copper melts first and flows out during welding. There is also a problem of end. Copper is used as a heat dissipation means to release the heat generated by the electrode to the outside of the glass tube when the lamp is used. However, if copper flows out, a hollow portion not filled with copper is generated inside the outer tube made of Kovar, resulting in a decrease in heat dissipation performance. Leads to.

第三に、モリブデンやニオブは一般に高価であり、これらを基材とした電極はニッケル製の電極に比べてコストアップになりやすい。   Thirdly, molybdenum and niobium are generally expensive, and electrodes based on these are likely to be costly compared to nickel electrodes.

本発明の目的は、以上の問題点に鑑みて、耐スパッタ性と製作性に優れ、かつ経済的な冷陰極蛍光ランプを提供することである。   In view of the above problems, an object of the present invention is to provide a cold cathode fluorescent lamp which is excellent in sputtering resistance and manufacturability and is economical.

本発明の冷陰極蛍光ランプは、気密に封止された内部空間に少なくとも希ガスと水銀ガスとが封入され、内壁面に蛍光体層が形成されたガラス管と、内部空間に配置され、一端に底面部が、他端に開口部が形成され、開口部同士が対向するように配置された、一対の筒状電極と、一端が底面部に接合され、他端がガラス管の外部に引き出されたリード線と、を有している。筒状電極は、ニッケルまたはニッケル合金を基材とし、チタンが添加された材料によって形成されている。チタンの混合比は0.01〜1.55重量%である。 The cold cathode fluorescent lamp of the present invention includes a glass tube in which at least a rare gas and a mercury gas are sealed in an airtightly sealed internal space, and a phosphor layer is formed on the inner wall surface, and is disposed in the internal space. A pair of cylindrical electrodes, one end is joined to the bottom surface, and the other end is drawn out of the glass tube. Lead wires. The cylindrical electrode is made of a material having nickel or a nickel alloy as a base material to which titanium is added. The mixing ratio of titanium is 0.01 to 1.55% by weight.

ニッケルまたはニッケル合金を基材とした材料に添加されたチタンは、外部から酸素を取り込み、酸化物の形で結晶粒界に偏析しやすい性質がある。スパッタリングは粒子同士の結合力の弱い結晶粒界から選択的に生じる傾向があるため、結晶粒界の粒子同士の結合をチタンで強化することによって、耐スパッタ性能が向上する。本発明の冷陰極蛍光ランプはまた、融点の低いニッケルまたはニッケル合金を基材としているので、リード線との接合の際の加熱を低温度でおこなうことができ、製作性が向上する。さらに、本発明の冷陰極蛍光ランプは、ニッケルまたはニッケル合金を基材としているので、筒状電極への加工性が良好であり、材料コストの抑制にも有効である。 Titanium added to a material based on nickel or a nickel alloy has the property of taking oxygen from the outside and easily segregating at the grain boundaries in the form of oxides. Sputtering tends to occur selectively from crystal grain boundaries where the bonding force between the grains is weak. Therefore, strengthening the bonds between grains at the grain boundaries with titanium improves the sputtering resistance. Since the cold cathode fluorescent lamp of the present invention is based on nickel or a nickel alloy having a low melting point, heating at the time of joining with the lead wire can be performed at a low temperature, and the manufacturability is improved. Furthermore, since the cold cathode fluorescent lamp of the present invention uses nickel or a nickel alloy as a base material, the processability to a cylindrical electrode is good, and it is also effective in suppressing material costs.

リード線は、外周部が導電体で形成され、内部に銅または銅合金が充填された2層構造を有していてもよい。   The lead wire may have a two-layer structure in which an outer peripheral portion is formed of a conductor and is filled with copper or a copper alloy.

本発明の電極は、冷陰極蛍光ランプに用いられる筒状の電極であって、一端に底面部が、他端に開口部が備えられ、ニッケルまたはニッケル合金を基材とし、チタンが添加された材料によって形成されている。チタンの混合比は0.01〜1.55重量%である。 The electrode of the present invention is a cylindrical electrode used for a cold cathode fluorescent lamp, having a bottom surface at one end and an opening at the other end, made of nickel or a nickel alloy as a base material, and added with titanium. It is made of material. The mixing ratio of titanium is 0.01 to 1.55% by weight.

本発明の電極ユニットは、上記の電極と、一端が電極の底面部に接合されたリード線とを有している。   The electrode unit of the present invention has the above electrode and a lead wire having one end joined to the bottom surface of the electrode.

リード線は、外周部が導電体で形成され、内部に銅または銅合金が充填された2層構造を有していてもよい。   The lead wire may have a two-layer structure in which an outer peripheral portion is formed of a conductor and is filled with copper or a copper alloy.

以上説明したように、本発明の冷陰極蛍光ランプは、ニッケルの結晶粒界の結合力を改善した材料を有しているので、従来のニッケル材を上回る耐スパッタ特性が実現される。また、製作性や経済性にも優れており、本発明の目的を十分達成することが可能である。   As described above, the cold cathode fluorescent lamp of the present invention has a material with improved bonding strength of nickel crystal grain boundaries, so that the spatter resistance superior to that of conventional nickel materials is realized. Moreover, it is excellent in manufacturability and economy, and the object of the present invention can be sufficiently achieved.

以下、本発明の冷陰極蛍光ランプの第1の実施形態について、図面を参照しながら詳細に説明する。本発明の冷陰極蛍光ランプは、液晶パネルのバックライトとしての用途に好適なものであるが、他の用途の冷陰極蛍光ランプにも適用できる。図1は、冷陰極ランプの第1の実施形態の構造概略を示す断面図である。   Hereinafter, a first embodiment of a cold cathode fluorescent lamp of the present invention will be described in detail with reference to the drawings. The cold cathode fluorescent lamp of the present invention is suitable for use as a backlight of a liquid crystal panel, but can also be applied to cold cathode fluorescent lamps for other uses. FIG. 1 is a sectional view showing a schematic structure of a first embodiment of a cold cathode lamp.

冷陰極蛍光ランプ1は、硼・珪酸ガラスによって形成されたガラス管2の両端が封止ガラス(ビードガラス3)で気密に封止されて構成されている。ガラス管2の外径は、1.5〜6.0mmの範囲内、好ましくは1.5〜5.0mmの範囲内である。ガラス管2の材料は、鉛ガラス、ソーダガラス、低鉛ガラスなどでもよい。   The cold cathode fluorescent lamp 1 is configured such that both ends of a glass tube 2 made of borosilicate glass are hermetically sealed with sealing glass (bead glass 3). The outer diameter of the glass tube 2 is in the range of 1.5 to 6.0 mm, preferably in the range of 1.5 to 5.0 mm. The material of the glass tube 2 may be lead glass, soda glass, low lead glass, or the like.

ガラス管2の内壁面4には、そのほぼ全長に亙って不図示の蛍光体層が設けられている。蛍光体層を構成する蛍光体は、ハロリン酸塩蛍光体や希土類蛍光体などの既存または新規の蛍光体から、冷陰極蛍光ランプ1の目的や用途に応じて適宜選択することができる。さらに、蛍光体層は、2種類以上の蛍光体が混合されてなる蛍光体によって構成することもできる。   The inner wall surface 4 of the glass tube 2 is provided with a phosphor layer (not shown) over almost the entire length thereof. The phosphor constituting the phosphor layer can be appropriately selected from existing or new phosphors such as halophosphate phosphors and rare earth phosphors according to the purpose and application of the cold cathode fluorescent lamp 1. Furthermore, the phosphor layer can be composed of a phosphor in which two or more kinds of phosphors are mixed.

内壁面4で囲まれたガラス管2の内部空間5には、アルゴン、キセノン、ネオン等の希ガスおよび水銀が所定量封入され、内部圧力は大気圧の数十分の一程度に減圧されている。   A predetermined amount of rare gas such as argon, xenon, neon and mercury is sealed in the internal space 5 of the glass tube 2 surrounded by the inner wall surface 4, and the internal pressure is reduced to about several tenths of atmospheric pressure. Yes.

ガラス管2の長手方向両端には、一対の電極ユニット6が設けられている。各電極ユニット6は、筒状電極7と、筒状電極7の底面部8に接合されたリード線9とから構成されている。各電極ユニット6の筒状電極7は、ガラス管2の内部空間5の長手方向端部よりもやや内側の位置に、当該筒状電極7の開口部10と他方の電極ユニット6の開口部10同士が対向するように配置されている。各リード線9は、その一端が対応する筒状電極7の底面部8に溶接され、他端がビードガラス3を貫通してガラス管2の外部に引き出されている。リード線9は、コバール等の導電性材料で作られる。   A pair of electrode units 6 are provided at both longitudinal ends of the glass tube 2. Each electrode unit 6 includes a cylindrical electrode 7 and a lead wire 9 bonded to the bottom surface portion 8 of the cylindrical electrode 7. The cylindrical electrode 7 of each electrode unit 6 has an opening 10 of the cylindrical electrode 7 and an opening 10 of the other electrode unit 6 at a position slightly inside the longitudinal end of the internal space 5 of the glass tube 2. They are arranged so that they face each other. One end of each lead wire 9 is welded to the bottom surface portion 8 of the corresponding cylindrical electrode 7, and the other end penetrates the bead glass 3 and is drawn out of the glass tube 2. The lead wire 9 is made of a conductive material such as Kovar.

図2は、冷陰極蛍光ランプ1が備える電極ユニット6を示す拡大斜視図である。電極ユニット6を構成している筒状電極7は、長手方向の一方が開口部10として開口し、他方が底面部8によって閉塞された筒状部23を備えている。筒状電極7は、金属板を円筒状(カップ状)にプレスして成形される。リード線9は、一方の端面12が筒状電極7の底面部8に溶接されている。   FIG. 2 is an enlarged perspective view showing the electrode unit 6 included in the cold cathode fluorescent lamp 1. The cylindrical electrode 7 constituting the electrode unit 6 includes a cylindrical portion 23 that is open as one opening portion 10 in the longitudinal direction and is closed by the bottom surface portion 8 on the other side. The cylindrical electrode 7 is formed by pressing a metal plate into a cylindrical shape (cup shape). One end surface 12 of the lead wire 9 is welded to the bottom surface portion 8 of the cylindrical electrode 7.

筒状電極7は、ニッケルまたはニッケル合金を基材として、脱酸素作用を有する金属(以下、添加物質という。)が添加された材料によって形成されている。添加物質にはチタン、ジルコニウム、ハフニウムが含まれる。チタンの混合比は0.01〜2.0重量%が好ましく、ジルコニウムの混合比は0.05〜1.1重量%が好ましく、ハフニウムの混合比は0.05〜1.1重量%が好ましい。各混合比の上限は、主として筒状電極7の製作性に依存する。すなわち、これ以上の混合比になると、材料が硬くなり円筒状へのプレス成形が難しくなる。各混合比の下限は、詳細は後述するが、耐スパッタ性能が十分得られるという観点から設定した。   The cylindrical electrode 7 is formed of a material to which a metal having a deoxidizing action (hereinafter referred to as an additive substance) is added using nickel or a nickel alloy as a base material. Additive materials include titanium, zirconium, and hafnium. The mixing ratio of titanium is preferably 0.01 to 2.0% by weight, the mixing ratio of zirconium is preferably 0.05 to 1.1% by weight, and the mixing ratio of hafnium is preferably 0.05 to 1.1% by weight. . The upper limit of each mixing ratio mainly depends on the manufacturability of the cylindrical electrode 7. That is, when the mixing ratio is higher than this, the material becomes hard and it becomes difficult to press-mold into a cylindrical shape. Although the lower limit of each mixing ratio will be described in detail later, it was set from the viewpoint that sufficient anti-sputtering performance can be obtained.

一実施例の組成は、ニッケル99.7%、チタン0.05%、マンガン0.15%で、その他の不純物(炭素、けい素、銅、硫黄、マグネシウム、鉄)0.1%であった。また、ニッケルには0.01%程度の微量のコバルトを含んでいる。   The composition of one example was nickel 99.7%, titanium 0.05%, manganese 0.15%, and other impurities (carbon, silicon, copper, sulfur, magnesium, iron) 0.1%. . Nickel contains a trace amount of cobalt of about 0.01%.

ここで、これらの金属を混合することで筒状電極7の耐スパッタ性能が向上する理由について、図3を参照して説明する。以下、チタンを例に説明するが、ジルコニウム、ハフニウムについても同様である。ニッケルまたはニッケル合金は、一般に多結晶構造をとり、結晶Gの境界面に結晶粒界Bが形成される。結晶粒界Bは粒子間の結びつきが弱いため、スパッタリングの影響を受けやすく、スパッタリングは主に結晶粒界Bから発生し、結晶Gの内部に徐々に広がっていく。モリブデンやニオブの場合も、酸化されると、結晶粒界Bから著しくスパッタリングが進行する。これらの物質は、前述したとおり、いったん酸化されると還元されにくいため、耐スパッタ性能を回復させることは難しい。   Here, the reason why the sputtering resistance of the cylindrical electrode 7 is improved by mixing these metals will be described with reference to FIG. Hereinafter, titanium will be described as an example, but the same applies to zirconium and hafnium. Nickel or a nickel alloy generally has a polycrystalline structure, and a grain boundary B is formed at the boundary surface of the crystal G. Since the crystal grain boundary B is weakly connected with each other, the crystal grain boundary B is easily affected by sputtering. Sputtering mainly occurs from the crystal grain boundary B and gradually spreads inside the crystal G. Also in the case of molybdenum or niobium, when it is oxidized, sputtering proceeds remarkably from the grain boundary B. As described above, since these substances are not easily reduced once oxidized, it is difficult to recover the sputtering resistance.

これに対し、本発明は、チタンの脱酸素特性を利用したものである。すなわち、ニッケルへの添加物は、結晶粒界Bに偏析しやすい傾向があり、チタンも例外ではない。そして、チタンを結晶粒界Bに十分偏析させ、外部からの酸素を取り込むことによって結晶粒界Bでの結晶同士の結合力が向上し、電極の耐スパッタ性能が向上するのである。前述した混合比の最小値は、耐スパッタ性能の向上のために十分な量のチタンが結晶粒界Bに分布するための必要量である。   In contrast, the present invention utilizes the deoxygenation characteristics of titanium. That is, the additive to nickel tends to segregate at the grain boundary B, and titanium is no exception. Then, by sufficiently segregating titanium to the crystal grain boundary B and taking in oxygen from the outside, the bonding force between the crystals at the crystal grain boundary B is improved, and the sputter resistance of the electrode is improved. The minimum value of the mixing ratio described above is a necessary amount for a sufficient amount of titanium to be distributed at the grain boundaries B for improving the sputtering resistance performance.

ここで、耐スパッタ性能がどの程度向上したかを検証するため、試料を作製してスパッタ性能を確認した。試験では、ニッケルにチタン、ジルコニウム、ハフニウムを別々に添加し、添加量(重量%)を変えた複数の試料を作製し、耐スパッタ性能と、加工性を評価した。評価は純ニッケルとの相対比較とし、良好な順に◎、○、△、×とした。純ニッケルの耐スパッタ性能はあまり良好ではないため△とし、加工性は良好であるため◎とした。耐スパッタ性能は電極のスパッタ量を目視にて判定し、スパッタ量の少ない順に、◎、○、△とした。加工性はカップ状の電極への成形性を、成形された形状の精度、欠陥の有無等を総合的に勘案して判定し、良好な順に◎、○、△、×とした。加工性の×は実用に適しない程度の加工性しかない状態であり、△以上を合格とした。また、耐スパッタ性能が△の試料は、純ニッケルと比べたメリットがないので不採用とした。このようにして各試料の評価を行ない、表1に示す結果を得た。良好な耐スパッタ性能と加工性が両立する試料はNo2〜5、8,11,12であった(表中網掛けで示す。)。このように、ニッケルにチタン、ジルコニウム、ハフニウムを添加物質として添加した電極の耐スパッタ性能は、従来のニッケル製の(添加物質のない)電極と比べて大きく向上していることが確認され、特にチタンを0.05重量%添加した試料は、耐スパッタ性能、加工性ともに極めて良好であった。   Here, in order to verify how much the sputter resistance performance has improved, a sample was prepared and the sputter performance was confirmed. In the test, titanium, zirconium, and hafnium were separately added to nickel, and a plurality of samples with different addition amounts (% by weight) were prepared to evaluate the spatter resistance and workability. Evaluation was made as a relative comparison with pure nickel. Since the sputter resistance of pure nickel is not very good, it was marked as Δ, and because workability was good, it was marked as ◎. The spatter resistance was determined by visually observing the spatter amount of the electrode, and marked as ◎, ○, Δ in order of increasing spatter amount. The workability was determined by taking into consideration the moldability of the cup-shaped electrode in consideration of the accuracy of the molded shape, the presence or absence of defects, etc. A cross mark of workability is a state having only a workability that is not suitable for practical use. In addition, a sample with a sputtering resistance Δ was not adopted because it has no merit compared with pure nickel. Thus, each sample was evaluated and the result shown in Table 1 was obtained. Samples having both good sputtering resistance and workability were Nos. 2 to 5, 8, 11, and 12 (shown by shading in the table). As described above, it was confirmed that the sputtering resistance performance of the electrode in which titanium, zirconium, and hafnium were added to nickel as additive materials was greatly improved compared to the conventional nickel-made electrode (without additive materials). The sample to which 0.05% by weight of titanium was added had extremely good spatter resistance and workability.

Figure 0003990406
Figure 0003990406

本発明の冷陰極蛍光ランプは、このように耐スパッタ性能が向上しているだけでなく、製作性の改善も可能である。筒状電極7は、ニッケルまたはニッケル合金を基材とし、かつ添加物質の混合比は小さいため、融点はニッケルの融点(1455℃)とほぼ同等である。これは、リード線9の材料であるコバールの融点(1550℃)ともほぼ同等であるため、筒状電極7にリード線9を溶接して固定する場合に、両者が同程度に軟化し、相互に溶け込み合い、間に合金層を作って強固に固定される。これに対して、モリブデンやニオブなどの高融点金属からなる電極の場合、リード線9を溶融させて固定するほかなく、接着強度や接着手順の面で制約が生じやすかった。本発明は、このような問題点も同時に解決することができる。さらに、本発明の冷陰極蛍光ランプは、添加物質の混合比が小さいため、コストへの影響を最小に抑えることができる。すなわち、本発明の冷陰極蛍光ランプは、大半がニッケルまたはニッケル合金で作られるので、コストもニッケルまたはニッケル合金の電極と大差なく、経済的な冷陰極蛍光ランプを提供することが可能となる。   The cold cathode fluorescent lamp of the present invention not only has improved spatter resistance as described above, but also can improve manufacturability. Since the cylindrical electrode 7 is made of nickel or a nickel alloy as a base material and the mixing ratio of the additive substances is small, the melting point is substantially equal to the melting point of nickel (1455 ° C.). This is almost the same as the melting point (1550 ° C.) of Kovar, which is the material of the lead wire 9, so when the lead wire 9 is welded and fixed to the cylindrical electrode 7, both soften to the same extent, It melts into each other and forms an alloy layer between them to secure it firmly. On the other hand, in the case of an electrode made of a refractory metal such as molybdenum or niobium, there is no choice but to melt and fix the lead wire 9 and there is a tendency for restrictions in terms of adhesion strength and adhesion procedure. The present invention can solve such problems at the same time. Furthermore, since the cold cathode fluorescent lamp of the present invention has a small mixing ratio of the additive substances, the influence on the cost can be minimized. That is, most of the cold cathode fluorescent lamp of the present invention is made of nickel or a nickel alloy, so that it is possible to provide an economical cold cathode fluorescent lamp without much difference in cost from the nickel or nickel alloy electrode.

次に、本発明の冷陰極蛍光ランプの第2の実施形態について説明する。本実施形態の冷陰極蛍光ランプは、リード管の構成が異なり、他の部分については第1の実施形態と同様である。そこで、リード管の構成についてのみ説明し、第1の実施形態と同一の構成部分については説明を省略する。   Next, a second embodiment of the cold cathode fluorescent lamp of the present invention will be described. The cold cathode fluorescent lamp of this embodiment has a different configuration of the lead tube, and the other parts are the same as those of the first embodiment. Therefore, only the configuration of the lead tube will be described, and the description of the same components as those in the first embodiment will be omitted.

図4に示すように、本例の冷陰極蛍光ランプが備える電極ユニット6bを構成するリード線9bは、コバールからなる外側部33の内部に銅(Cu)または銅合金からなる内側部32が挿入された多層構造(2層構造)を有している。内側部32は電極から発生する熱の放熱のために設けられている。多層構造部の先は、ニッケル鉄合金の周りを銅で被覆したジュメット34が結合されており、ジュメット34を介して、電源装置(図示せず)に接続される。   As shown in FIG. 4, in the lead wire 9b constituting the electrode unit 6b included in the cold cathode fluorescent lamp of this example, the inner part 32 made of copper (Cu) or a copper alloy is inserted into the outer part 33 made of Kovar. Has a multilayer structure (two-layer structure). The inner portion 32 is provided for radiating heat generated from the electrodes. At the tip of the multilayer structure portion, a jumet 34 in which a nickel iron alloy is covered with copper is coupled, and the multi-structure portion is connected to a power supply device (not shown) via the jumet 34.

筒状電極7は第1の実施形態と同様、ニッケルまたはニッケル合金を基材として、チタン、ジルコニウム、ハフニウム等の脱酸素作用を有する金属が添加された材料で形成されている。したがって、耐スパッタ性能に関しては、第1の実施形態とまったく同様である。また、筒状電極7の融点はニッケルの融点と同程度であり、リード線9bの接合に過度の高温を必要としないので、溶接時の熱によってリード線9bの内側部32が過熱され、銅が外部に吹き出してしまう可能性が低減される。このため、リード線9bの放熱性が十分に確保される。   As in the first embodiment, the cylindrical electrode 7 is made of a material to which nickel or a nickel alloy is used as a base material and a metal having a deoxidizing action such as titanium, zirconium, hafnium, or the like is added. Accordingly, the sputter resistance is exactly the same as in the first embodiment. Further, the melting point of the cylindrical electrode 7 is about the same as that of nickel, and an excessively high temperature is not required for joining the lead wire 9b. Therefore, the inner portion 32 of the lead wire 9b is overheated by heat during welding, and the copper Is likely to blow out to the outside. For this reason, the heat dissipation of the lead wire 9b is sufficiently ensured.

以上、本発明を実施形態に即して説明したが、本発明は上記の実施形態に限定されないことはもちろんであって、様々な変形が可能である。たとえば、添加物質としてチタン、ジルコニウム、ハフニウムを列挙したが、これらを複数種組み合わせて用いることもできる。   While the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made. For example, titanium, zirconium, and hafnium are listed as additive substances, but a plurality of these may be used in combination.

また、スパッタリングされやすい部位は筒状電極の筒状部23の底面部8側の部分であるため、この部分だけに脱酸素作用を有する金属を混合してもよく、この部分での混合比を高めてもよい。   Moreover, since the part which is easy to be sputtered is the part on the bottom face part 8 side of the cylindrical part 23 of the cylindrical electrode, a metal having a deoxidizing action may be mixed only in this part, and the mixing ratio in this part is set. May be raised.

本発明の冷陰極蛍光ランプの第1の実施形態を示す模式的断面図である。1 is a schematic cross-sectional view showing a first embodiment of a cold cathode fluorescent lamp of the present invention. 図1に示す電極ユニットの拡大斜視図である。It is an expansion perspective view of the electrode unit shown in FIG. 本発明の耐スパッタ性改善効果を説明するための金属組織の概念図である。It is a conceptual diagram of the metal structure for demonstrating the sputter | spatter resistance improvement effect of this invention. 本発明の冷陰極蛍光ランプの第2の実施形態を示す模式的断面図である。It is typical sectional drawing which shows 2nd Embodiment of the cold cathode fluorescent lamp of this invention.

符号の説明Explanation of symbols

1 冷陰極蛍光ランプ
2 ガラス管
3 ビードガラス
4 内壁面
5 内部空間
6,6b 電極ユニット
7 筒状電極
8 底面部
9,9b リード線
23 筒状部
DESCRIPTION OF SYMBOLS 1 Cold cathode fluorescent lamp 2 Glass tube 3 Bead glass 4 Inner wall surface 5 Internal space 6, 6b Electrode unit 7 Cylindrical electrode 8 Bottom part 9, 9b Lead wire 23 Cylindrical part

Claims (7)

気密に封止された内部空間に少なくとも希ガスと水銀ガスとが封入され、内壁面に蛍光体層が形成されたガラス管と、
前記内部空間に配置され、一端に底面部が、他端に開口部が形成され、該開口部同士が対向するように配置された、一対の筒状電極と、
一端が前記底面部に接合され、他端が前記ガラス管の外部に引き出されたリード線と、
を有し、
前記筒状電極は、ニッケルまたはニッケル合金を基材とし、チタンが添加された材料によって形成され、
前記チタンの混合比は0.01〜1.55重量%である、
冷陰極蛍光ランプ。
A glass tube in which at least rare gas and mercury gas are sealed in an airtightly sealed internal space, and a phosphor layer is formed on the inner wall surface;
A pair of cylindrical electrodes disposed in the internal space, having a bottom portion at one end and an opening at the other end, the openings being disposed to face each other;
A lead wire having one end joined to the bottom surface and the other end drawn out of the glass tube;
Have
The cylindrical electrode has a base material made of nickel or a nickel alloy, and is formed of a material to which titanium is added ,
The titanium mixing ratio is 0.01 to 1.55% by weight.
Cold cathode fluorescent lamp.
前記チタンは、前記基材の結晶粒界に酸化物の形で偏析している、請求項1に記載の冷陰極蛍光ランプ。   The cold cathode fluorescent lamp according to claim 1, wherein the titanium is segregated in the form of an oxide at a grain boundary of the base material. 前記リード線は、外周部が導電体で形成され、内部に銅または銅合金が充填された2層構造を有する、請求項1または2に記載の冷陰極蛍光ランプ。 The lead wire is outer peripheral portion is formed of a conductive material, having a two-layer structure in which copper or copper alloy is filled in the cold cathode fluorescent lamp according to claim 1 or 2. 冷陰極蛍光ランプに用いられる筒状の電極であって、
一端に底面部が、他端に開口部が備えられ、ニッケルまたはニッケル合金を基材とし、チタンが添加された材料によって形成され、
前記チタンの混合比は0.01〜1.55重量%である、
電極。
A cylindrical electrode used in a cold cathode fluorescent lamp,
A bottom part is provided at one end, an opening is provided at the other end, and the base is nickel or a nickel alloy, and is formed of a material to which titanium is added ,
The titanium mixing ratio is 0.01 to 1.55% by weight.
electrode.
前記チタンは、前記基材の結晶粒界に酸化物の形で偏析している、請求項に記載の電極。 The electrode according to claim 4 , wherein the titanium is segregated in the form of an oxide at a grain boundary of the base material. 請求項またはに記載の電極と、
一端が前記電極の前記底面部に接合されたリード線と、
を有する電極ユニット。
An electrode according to claim 4 or 5 , and
A lead wire having one end bonded to the bottom surface of the electrode;
An electrode unit.
前記リード線は、外周部が導電体で形成され、内部に銅または銅合金が充填された2層構造を有する、請求項に記載の電極ユニット。 The electrode unit according to claim 6 , wherein the lead wire has a two-layer structure in which an outer peripheral portion is formed of a conductor and is filled with copper or a copper alloy.
JP2005042557A 2005-02-18 2005-02-18 Cold cathode fluorescent lamp, electrode, and electrode unit Expired - Fee Related JP3990406B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005042557A JP3990406B2 (en) 2005-02-18 2005-02-18 Cold cathode fluorescent lamp, electrode, and electrode unit
TW095104043A TW200634890A (en) 2005-02-18 2006-02-07 Cold cathode fluorescent lamp, electrode, and electrode unit
CNB2006100076307A CN100530514C (en) 2005-02-18 2006-02-15 Cold-cathode fluorescent lamp, electrode and electrode unit
KR1020060015853A KR100779433B1 (en) 2005-02-18 2006-02-17 Cold cathode fluorescent lamp, electrode, and electrode unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042557A JP3990406B2 (en) 2005-02-18 2005-02-18 Cold cathode fluorescent lamp, electrode, and electrode unit

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007037736A Division JP2007128918A (en) 2007-02-19 2007-02-19 Cold-cathode fluorescent lamp, electrode, and electrode unit
JP2007037735A Division JP2007128917A (en) 2007-02-19 2007-02-19 Cold-cathode fluorescent lamp, electrode, and electrode unit

Publications (2)

Publication Number Publication Date
JP2006228615A JP2006228615A (en) 2006-08-31
JP3990406B2 true JP3990406B2 (en) 2007-10-10

Family

ID=36923514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042557A Expired - Fee Related JP3990406B2 (en) 2005-02-18 2005-02-18 Cold cathode fluorescent lamp, electrode, and electrode unit

Country Status (4)

Country Link
JP (1) JP3990406B2 (en)
KR (1) KR100779433B1 (en)
CN (1) CN100530514C (en)
TW (1) TW200634890A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634516B2 (en) * 2005-05-25 2011-02-16 住友電気工業株式会社 Electrode material
JP4464951B2 (en) * 2006-11-24 2010-05-19 住友電気工業株式会社 Electrode member for cold cathode fluorescent lamp
JP4945803B2 (en) * 2008-02-20 2012-06-06 Necライティング株式会社 Cold cathode fluorescent lamp
JP4612727B2 (en) * 2009-04-13 2011-01-12 住友電気工業株式会社 Lead

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767965A (en) * 1985-11-08 1988-08-30 Sanyo Electric Co., Ltd. Flat luminescent lamp for liquid crystalline display
TW200405383A (en) * 2002-07-19 2004-04-01 Matsushita Electric Ind Co Ltd Low-voltage discharge lamp and backlight device using the same
JP2004071276A (en) * 2002-08-05 2004-03-04 Nec Lighting Ltd Cold cathode lamp and electronic apparatus using cold cathode lamp

Also Published As

Publication number Publication date
JP2006228615A (en) 2006-08-31
KR20060093073A (en) 2006-08-23
CN100530514C (en) 2009-08-19
CN1822306A (en) 2006-08-23
TW200634890A (en) 2006-10-01
KR100779433B1 (en) 2007-11-26
TWI306617B (en) 2009-02-21

Similar Documents

Publication Publication Date Title
JP4464951B2 (en) Electrode member for cold cathode fluorescent lamp
JP2004356098A (en) Cold-cathode fluorescent lamp equipped with molybdenum electrode
JP3990406B2 (en) Cold cathode fluorescent lamp, electrode, and electrode unit
JP2007128918A (en) Cold-cathode fluorescent lamp, electrode, and electrode unit
JP2007073407A (en) Cold cathode fluorescent lamp, electrode unit and their manufacturing method
JP2007128917A (en) Cold-cathode fluorescent lamp, electrode, and electrode unit
JP4546524B2 (en) Electrode, electrode manufacturing method, and cold cathode fluorescent lamp
JP2008251268A (en) Electrode mount and cold-cathode fluorescent lamp using this
JP4267039B2 (en) Cold cathode fluorescent lamp
JP2006140129A (en) Electrode member, lead wire for sealing, and cold cathode fluorescent lamp
JP2006012612A (en) Cold cathode fluorescent lamp, cylindrical electrode, and electrode unit
JP2008521176A (en) Cold cathode fluorescent lamp
KR20080077590A (en) Cold cathode fluorescent lamp and method of manufacturing the same
JP4452934B2 (en) Cold cathode fluorescent lamp
JP4945803B2 (en) Cold cathode fluorescent lamp
JP2007080777A (en) Electrode, electrode unit, and cold cathode lamp
CN201576648U (en) Electrode member for cold cathode fluorescent lamp
JP2009245813A (en) Electrode member for cold cathode, and cold cathode discharge lamp
JP2009110801A (en) Cold cathode fluorescent lamp

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees