JP4368521B2 - 超音波音速測定装置およびその校正方法 - Google Patents

超音波音速測定装置およびその校正方法 Download PDF

Info

Publication number
JP4368521B2
JP4368521B2 JP2000401056A JP2000401056A JP4368521B2 JP 4368521 B2 JP4368521 B2 JP 4368521B2 JP 2000401056 A JP2000401056 A JP 2000401056A JP 2000401056 A JP2000401056 A JP 2000401056A JP 4368521 B2 JP4368521 B2 JP 4368521B2
Authority
JP
Japan
Prior art keywords
wave
delay time
ultrasonic
sound velocity
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000401056A
Other languages
English (en)
Other versions
JP2002202185A (ja
Inventor
賢治 川口
正範 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2000401056A priority Critical patent/JP4368521B2/ja
Publication of JP2002202185A publication Critical patent/JP2002202185A/ja
Application granted granted Critical
Publication of JP4368521B2 publication Critical patent/JP4368521B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波の音速測定方法及び装置に関し、特に、温度変化や伝送ケーブルの遅延等の環境変化に起因する測定値のずれを校正する方法と装置に関するものである。
【0002】
【従来の技術】
図9は、超音波音速測定装置が備えた超音波送受信装置を示す外観図である。超音波送受信部2aより所定距離の位置に反射板2bが設けられており、上記超音波送受信部2aと反射板2bとの間に試料が充填されるようになっている。この構造で、上記超音波送受信部2aに設けられた発振素子(図示せず)より送出された超音波が反射板2bで反射され、上記超音波送受信部2aに設けられた受信素子(図示せず)に受信されて電気信号に変換されるようになっている。
【0003】
上記超音波音速測定装置において試料中に超音波を伝播させると、その伝播周期Tと伝播距離Lとからc=L/Tとして音速を求めることができ、該音速に基づいて試料の物理量、例えば密度を算出することができるようになっている。
【0004】
この伝播周期Tを精度よく求めるための方法として、シングアラウンド法が広く知られている。
【0005】
シングアラウンド法は図10に示すようになっている。すなわち、起動トリガの入力で送信回路1201より駆動信号を発振させてセンサ600に入力するようになっている。このようにセンサ600に入力された駆動信号Sdはセンサ内で多重反射を繰り返されるが、ここでは主として第1回目の受信波が扱われる、このようにセンサ600より得られる受信波に基づいて受信波検出回路1203で新たなトリガを形成して、該トリガを上記送信回路1201に入力するようになっている。この場合は上記受信波検出回路1203の生成するパルスを周波数カウンタ1204に入力し、該周波数カウンタ1204で所定時間に得られる計数値に基づいて周期Tを算出することができるようになっている。
【0006】
【発明が解決しようとする課題】
上記シングアラウンド法は、電気系と音響系で構成されており、そのループを一周する周期Tに、真に超音波の試料中の伝播時間τ0 だけでなく、電気系での遅延時間τe も含まれることになる。
【0007】
上記この遅延時間τe は、例えば、音速が既知の標準液で上記時間τ0 を知り、時間T(=τ0 +τe )を求めることで算出可能である。しかし、電気系による遅延時間τeは、伝送ケーブル長の変更によって、大きく変化しまた、更に上記遅延時間τeは、温度変化によっても影響を受けるため、音速が既知の標準液を用いて校正しても温度変化とともに測定値がずれてしまう。
【0008】
そこで試料中の超音波の伝播時間τ0の代わりに基準となる一定時間τ10を設定することができれば、周期T(=τ10+τe)を測定することで上記遅延時間τe、が得られることになり、校正は可能となる。一定時間τ10を精度良く設定するには、一般に温度変化による影響の少ない水晶発振子の非常に安定した発振器が用いられるが、その発振は送信タイミングと非同期であり、送信タイミングから、その発振をカウントし、一定時間を生成しても最大で水晶発振の1周期分の誤差が生じてしまう。
【0009】
本願発明で必要としている精度は10-2m /sec のオーダであるので、発振周波数が数GHz 程度の発振素子を用いる必要がある。しかしながらこのような発振周波数をもつ水晶発振素子は現存しないので、逓倍回路と水晶発振素子との組み合わせで上記数GHz の信号を得ることになる。しかしながら、このような周波数の高い信号を用いようとすると、回路構成が大がかりとなり、コスト高となる欠点がある。
【0010】
また、多重反射のうち1回目および2回目の反射波が安定して得られれば、駆動信号発生から1回目までの測定周期(T1=τ0 +τe)および、駆動信号発生から2回目までの測定周期(T2=2×τ0 +τe )に基づいて,上記電気回路上での遅延時間τeを含まない伝播時間τ0を算出することは可能である。しかしながら、計測の対象となる試料の中には音波の減衰の大きな試料があり、2回目の反射波を検出することは難しく、従って、上記の方法では、上記遅れ時間τe を含まない伝播時間τ0を求めることが出来ないことが多い。
【0011】
【課題を解決するための手段】
本発明は上記目的を達成するために以下の手段を採用している。すなわち、本発明は、まず、超音波送信部より送信された超音波を超音波受信部で受信し、当該送信部と受信部の間に充填された試料中を伝播する超音波の伝播時間τ0に基づいて当該試料の音速を求める超音波音速測定装置を前提としている。
【0012】
超音波音速測定装置において、模擬受信波生成手段は、記超音波を送信するための送信駆動信号を所定の遅延時間τ10だけ遅延させた後に模擬受信波を生成する。次いで、演算手段が、上記遅延時間τ10と、上記遅延時間τ10と回路固有の遅延時間τeから成る周期Tとに基づいて回路固有の遅延時間τe を算出するようになっている。
【0013】
上記遅延時間τ10は特定の手段で計測されるようになっている。
【0014】
また、本発明は上記回路固有の遅延時間τe は、上記遅延時間τ10と、それと異なる遅延時間τ10'とに基づいても求めることができる。この方法を実現するために、上記装置において上記2つの遅延時間を求めることができる切替手段を備えた構成とする。
【0015】
上記の構成で、ケーブル長を含む遅延時間τeを求めることができる。しかしながらケーブル長さだけによる誤差を校正するのであれば以下のようにすることでもよい。
すなわち、上記装置は上記送信部と受信部の間に充填された試料中を伝播する超音波の伝播時間に対応する連続波を発生させ、この連続波の周期を計測することによって、当該試料の音速を求めるようになっている。そこで、この連続波を発振させるための基準になる信号をセンサー位置近傍まで伝送するための当該装置に使用される送信ケーブルとその送信ケーブルの先端から折り返すリターンケーブルとを備えるようにしている。
【0016】
上記、電気系の遅れτeを求める構成と、上記ケーブル長だけによる誤差を補正する構成は併用することができる。
【0017】
【発明の実施の形態】
(実施の形態1)
以下に本発明の実施の形態を図面に従って詳細に説明する。
【0018】
図1は、本発明が適用されたシングアラウンド法に基づく超音波音速測定装置の一例を示すブロック図であり、図2は図1に用いた模擬受信波発生回路のブロック図であり、更に、図3はタイムチャートである。
【0019】
センサ600は、超音波の送信部となる送信素子21と受信部となる受信素子22との間に試料が充填された状態で、送信回路601より送出される駆動信号Sd0 (図3(c))に基づいて、図3(a) に示すように超音波S0を送信素子21より発振する。ここで、送信回路601を起動したり、あるいは、送信素子21を起動するための遅延τe1が発生する。上記のように発生した超音波(以下「送信波」という)S0は、超音波送信素子21と所定距離をおいて試料中に設置した受信素子22で受け取られて、図3(a) に示すように受信波R0を形成する。ここで上記超音波送信素子21と受信素子22の送信波が多重反射を繰り返すことになるが、ここでは第1回目の受信波を扱うことにする。この受信波は受信回路603で増幅された後、検出回路604で整形されると、図3(b) に示す受信検出波Sr0 が得られる。ここでも、上記受信検出波Sr0 の発生までに、受信素子22で送信波を受け取ってから、受信波が受信回路603や、受信回路603と検出回路203間のケーブル等を経由するので所定の電気的な遅延時間τe2を経過してから上記受信検出波Sr0 が発生することになる。
【0020】
このように発生した受信検出波Sr0 に基づいて受信波検出回路604は自己に内蔵するタイマを起動し、所定の時間τe3が経過した時点で、送信回路601に次の駆動信号Sd10をだすように指示をする。これに基づいて送信回路601は次の駆動信号Sd10を出力し上記と同様の処理がなされることになる。尚、上記所定期間τe3とは、上記多重反射が減衰するに足る時間であり、この時間τe3も温度変化による影響を受ける。
【0021】
上記手順が繰り返されて連続する駆動信号の複数周期の時間をカウンタ611で計測することになる。このようにして得られた値から駆動信号Sdの1周期の時間Tmeas=τ0 +τe (τe =τe1+τe2+τe3)を算出する。
【0022】
このように、上記の構成では電気系と音響系とより構成され、駆動信号Sd0,Sd10・の周期Tmeasには、上記したように、装置の電気系に起因する遅延時間τe も含まれていることになり、駆動信号Sdの周期Tmeasと、音響系のみの伝播時間とでは、前者の方が上記遅延時間τe だけ長くなり、周期Tmeasを用いて音速を算出した場合は、正確に試料の音速を算出したことにはならない。従って、上記電気系の遅延時間を正確に検出する必要が生じることになる。
【0023】
そこで、図1に示す模擬受信信号生成回路を用いることによって、上記電気的な遅れを校正するようにしている。図2は上記模擬受信波生成回路の更に詳しいブロック図である。図1において、上記送信回路601とセンサ600間に選択回路100が挿入され、送信信号を模擬受信波生成回路200とセンサ600を選択的に入力するようになっている。更に、センサ600の出力側に当600と上記模擬受信波生成回路200より出力される模擬受信波を選択的に受信回路に入力するとともに、上記選択回路100に連動する選択回路110が備えられる。
【0024】
初期状態では模擬受信波生成回路200を構成するフリップフロップ201はリセットされており、以下のように入力される駆動信号Sd0 は当該フリップフロップを起動できる状態にある。
【0025】
この状態で、選択回路100が当該模擬受信波生成回路200側に接続され、選択回路110が模擬受信波生成回路200側に接続されると、スイッチ回路205はONとなる。ここで、上記送信信号を発生させるための駆動信号Sd(図3(e) )が送信回路601から出力され模擬受信波生成回路200を構成するフリップフロップ201にラッチされることによって、当該フリップフロップ201はセットされ次の駆動信号の入力は禁止される。このとき、フリップフロップ201が起動されるための、遅延時間τe1が存在する。ここでの遅延時間を上記選択回路100をセンサー600に接続した場合における、送信回路601を起動したり、あるいは、送信阻止21を起動するための遅延時間と同じにしているのは、ここでの遅延時間がケーブル長と送信回路601に大部分依存するためである。
【0026】
このようにフリップフロップ201が起動すると、当該フリップフロップ201の出力は遅延回路202に入力され、この遅延回路202で所定時間τd遅延されて出力される。この出力は自己の入力に返されて巡回し分周回路203に入力される。この分周回路203では上記遅延回路202の出力を所定分周比a(図3ではa=1)で分周して模擬受信波S100 (図3(d) )を生成するとともに、当該模擬受信波S100 はスイッチ回路205を介してフリップフロップ201のリセット端子に返される。これによって、フリップフロップ201はリセットされ、次の駆動信号Sdを受け入れ可能な状態となる。
【0027】
上記のように生成された模擬受信信号S100は上記選択回路110を介して受信回路603に入力される。以降、模擬受信波S100 が受信回路603を介して受信波検出回路604に入力されここで受信波検出信号(図3(f) )が生成され、再び送信回路601より次の駆動信号Sd(図3(e) )が形成される手順は上記と同じであり、また、次の駆動信号Sdが形成されるまでに、上記電気的な遅れτe2とタイマの設定時間τe3が存在することになる。
【0028】
このようにして生成される駆動信号Sdの周期をカウンタ611で計測することによって駆動信号Sdの周期Tref を得る。
【0029】
一方、上記の状態で上記選択回路100および選択回路110をセンサ600側に切り換えると、スイッチ回路205はOFFし、フリップフロップ201の出力はセットされたままとなり、上記模擬受信波生成回路200の遅延回路202では、自己が生成した信号を巡回させて上記遅延時間τdに対応する周期を持つ遅延連続波P200 を発生する。この遅延連続波P200を周波数測定回路621に入力し、遅延時間τ10(=a×τd)が測定されて演算回路614に入力される。演算回路614では上記周期Tref=τ10 +τe (τe =τe1+τe2+τe3)から時間τ10を引いて、電気系の遅延時間τe を求めることになる。
【0030】
上記において、遅延回路202の遅延時間τdはいくらでも構わない(ゼロでもよい)。 また、電気系の遅延時間τe を求める別の手段として、異なる2つの分周比aとbを分周回路203に設定し、aとbの比と上記のようにして得られる二通りの模擬受信波S100の測定周期T01とT02からτeを得ることができる。すなわち、
01=τ101+τe
02=τ102+τe
τ101/τ102=a/b
よりτe を得ることができる。
【0031】
この方法を実現するためには、図2に破線で示すように上記分周回路203の分周比を切り替え手段204で切り換えることで実現できることになる。尚この切替手段204の分周比の設定あるいは切替タイミング設定もこの装置全体を制御するCPUで制御されるようになっている。
【0032】
更に、上記選択回路の切り換えタイミングも上記CPUで制御するようになっている。
【0033】
(実施の形態2)
図5は本願出願人によって出願された、特願平11−159595に示す超音波音速測定装置の回路図であり、また、図6はそのタイムチャートである。本願発明を上記特願平11−159595に適用する場合は、上記のようにして得られる遅延時間τe を以下に説明する遅延回路6に設定することになる。尚、図5においてはセンサ600は反射型を用いているので、当該センサ600の発信素子への入力端子と受信素子からの出力端子は共通となる。従って、模擬受信信号S100を選択回路100を介して受信回路3に返す構造となっているので選択回路110は不要となる。
【0034】
まず、特願平11−159595の内容を簡単に説明する。
【0035】
超音波の送信部および受信部より構成される送受信部2aと反射板2bとの間に試料が充填された状態で、送信回路1による駆動に基づいて、図6(a) に示すように超音波S0,S10…が送受信部2aより発振される。この超音波(以下「送信波」という)S0,S10…は、超音波送受信部2aと所定距離をおいて試料中に設置した反射板2bで反射して超音波送受信部2aに返り、再び超音波送受信部2aで反射して超音波送受信部2a・反射板2b間で図6(a) に示すように多重反射波(R0,R1…),(R10,R11…) …を起こす。
【0036】
この多重反射波を超音波送受信部2aで受信し、受信回路3で増幅した後、検出回路4で整形すると、図6(b) に示す受信検出波Srが得られる。
【0037】
なお、検出回路4では、所定レベル以上の強度で検出した反射波のみを受信波として採用するようになっている。すなわち、図6の例では、第1回目の送信波S0に対する第1回目の反射波R0と第2回目の反射波R1が、また、第2回目の送信波S10 に対する第1回目の反射波R10 が、それぞれ所定レベル以上であったので受信検出波Sr0 Sr1 Sr10として採用されている。それに対し、第3回目の送信波S20 に対する反射波は、その全部が所定レベル以下であったので、全く受信検出波として採用されていない。
【0038】
ところで、上記のように反射波が所定レベル以下となる原因は、例えば、試料液中に泡等の障害物が発生する場合が考えられる。このように受信波が検出されない状態で以下に説明するPLL回路が作動すると、誤った測定値を得ることになる。そこで、本発明では、上記所定レベル以上の強度で検出した反射波のみを受信波として採用するようになっている。
【0039】
すなわち、上記受信検出波Srを所定時間τだけ受信波遅延回路5(第1の遅延回路)で遅延させることによって、図6(c) に示す遅延受信波LSrを得る。そして、該遅延受信波LSrは、PLL16の位相比較器8の比較信号として入力されるようになっている。
【0040】
一方、PLL16の局部発振器10の出力である発振波(送信タイミング用連続発振波)P0 は遅延回路6で所定時間τe すなわち電気系の遅延時間遅延され、更に、遅延回路7(第2の遅延回路=遅延回路6+遅延回路7)で所定時間τ遅延されて遅延連続発振波P20となり、上記位相比較器8の基準波として入力される。これによって、遅延受信波LSrの立ち上がりの位相と、遅延連続発振波P20の立ち上がりの位相とを比較した結果が位相比較器8から出力されるようになっている。
【0041】
また、上記検出回路4の出力はPLL16のゲート回路9に制御信号として入力され、これによって、受信検出波Srが出ているタイミングのみにおける位相比較器8での比較結果(すなわち、遅延受信波の立ち上がりと遅延連続発振波P20の立ち上がりとの位相差)が、ゲート回路9を通過し、局部発振器10での発振周波数に反映されるようになっている。
【0042】
すなわち、泡等の影響で受信検出波Srが得られていないときにはゲート回路9は閉じた状態となっているので、位相比較器8での比較結果は反映されない。ここで、上記ゲートが開いている時間は、上記比較結果が通過するに必要な時間ということになる。
【0043】
以上の構成によると、所定の間隔で送信される複数の送信波S0,S10…に対応して少なくとも1回の反射波があれば、上記多重反射の時間間隔に同期した連続発振波P0 を得ることができる。
【0044】
従って、上記連続発振波P0 の周期をカウンタ11で計測し、この周期と、上記温度測定回路13より得られる温度とに基づいて演算回路14が音速を算出する。
【0045】
その後、上記のように算出された音速は、プリンタ或いは表示画面等の出力手段15に出力されるようになっている。
【0046】
ここで、図6の例では、送信波S0に対して反射波R0,R1 、送信波S10 に対して反射波R10 が受信されているが、送信波S20 に対しては全く反射波が受信されていない様子を示している。このように試料液中の泡等の障害物によって受信波が検出されないときに、遅延連続発振波P20と、発生していない遅延受信波LSrとの比較結果を局部発振器10の発振周波数に反映すると、目的とする周波数を得ることができない。
【0047】
ところが、上記のように検出波を所定時間τだけ遅延させると、検出回路4(遅延させる前のタイミングを持った信号)よりゲート回路9に受信波の有無に基づいた制御信号が入力され、ゲート回路9の開閉が制御されるようになっている。しかも、反射波が検出されない状態では上記ゲート回路9は閉じた状態を維持しているので、遅延連続発振波P20と、発生していない遅延受信波LSrとの比較結果が局部発振器10の発振周波数に反映されることはない。
【0048】
また、上記したように、上記超音波の発振から第1回目の反射波R0,R10…が得られるまでの時間間隔と、第1回目の反射波R0,R10…を受信してから第2回目以降の反射波を受信するまでの時間間隔とでは、前者の方が上記電気系の遅延時間τe 大きくなっている。
【0049】
そこで、上記連続発振波遅延回路6での遅延時間は上記電気系の遅延時間τe に対応させ、また、分周回路12では、上記遅延時間τe 遅らせる以前の連続発振波P0 の立ち上がりを利用して駆動信号Sdを形成するようになっている。すなわち、駆動信号Sdの発生タイミングは、遅延されていない受信検出波Srに同期した連続発振波P10よりも上記遅延時間τe だけ早くなっている。
【0050】
以上のように本発明によれば、送信波毎に生じる多重受信波が気泡の存在により不規則に、また、たまにしか受信されないような状況であっても、受信波の有無を位相同期回路への入力以前に判定し、受信された信号にのみ位相同期をかけることによって、気泡の影響を殆ど受けない安定した測定が可能となる。
【0051】
ここで、選択回路100を模擬受信波発生回路200側に接続したときは、上記カウンタ11でその周期(T=τ10+τe )を測定し、実施形態1と同様の周波数測定回路621で、遅延時間τ10を測定することによりτeを求めることができる。また、電気系の遅延時間τe を求める別の手段として、実施形態1と同様に異なる2つの分周比を用いてτeを求めることができる。この値τeは上記遅延回路6に設定されることになる。ここで、タイマと組み合わせて上記選択回路100を例えば数分毎に上記模擬受信波発生回路200側に自動的に切り換えるようにすると、装置の自動校正をすることができることになる。
【0052】
これによって、電気系の遅延時間が常に自動的に校正されることになる。また、センサをケーブルで接続して測定するような場合であっても、模擬受信波発生回路をセンサの近くに配置することによって当該ケーブルによる信号の遅延も上記遅延回路6に設定される値に含ませることができることになる。
【0053】
図4は試料を純水(温度20℃)とするときの、上記特願平11−159595に示す超音波音速測定装置によって得られた環境温度−音速値(図4(b) )と、本発明の方法に基づいて得られた上記遅延時間を用いて、上記従来の方法で得られた値を校正したときの温度−音速値(図4(a) )の比較を示す図である。本発明による場合は温度依存性がなく、一定の値が得られていることが理解できる。
【0054】
尚、上記の切替手段204の分周比の設定あるいは切替タイミング設定、および、上記選択回路100の切り換えタイミングがこの装置全体を制御するCPUで制御される点は上記実施の形態1の場合と同じである。
(実施の形態3)
以上の構成においては電気系による信号の遅れには、センサ600までのケーブル長さによる信号の遅れを含むことになるが、特願平11−159595に示す超音波音速測定装置において、ケーブル長さによる信号の遅れだけを考える場合には、以下のような方法を用いることもできる。
【0055】
図7において、アンプ部300は、送信系は分周器12より下流部分、受信系は検出回路4より上流部分より構成される。また、制御部400は上記アンプ部300以外の部分より構成されることになる。ここで、制御部400とアンプ部300を結ぶケーブルCは、制御部400の局部発振器10の出力が、送信ケーブルCsを介して一旦上記アンプ部300の分周器12の入力端に至り、そこからリターンしてリターンケーブルCtを介して上記遅延回路6に入力されている。また、上記検出回路4の出力である受信検出波Srも受信ケーブルCrを介して受信波遅延回路5に入力されている。尚、温度測定回路13は減衰を考慮して図7ではアンプ部300に組み込まれているが、制御部400側に組み込まれてもよい。また、受信回路3、検出回路4も減衰を考慮しなくてよい場合には制御部400側に組み込まれてもよい。
【0056】
上記の構成において、上記受信検出波Srは上記局部発振器10よりの信号よりは当該ケーブル長さ分遅れた信号となるが、上記受信検出波と共に位相比較器に入力される局部発振器10よりの信号は上記送信ケーブルCsを介して一旦アンプ部300まで至った後、リターン信号となってリターンケーブルCtを介して遅延回路6に入力されることにより、上記受信検出波の遅れと同じ遅れを持った信号となっているのでケーブル長を考慮する必要がなくなることになる。
【0057】
図8は本実施の形態による校正結果を示すものである。本実施の形態のように差動ケーブルを用いた場合(図8(a) )にはケーブル長さによって測定結果は変化しないが、送信ケーブルCs、リターンケーブルCtを介さず直接遅延回路6に入力した場合には、測定結果はケーブル長さに依存することになる。
【0058】
また、本実施の形態は上記実施の形態2と組み合わすことによって、更に、有効に実行することができる。
【0059】
【発明の効果】
本発明によれば、電気回路上での遅れ時間を測定することにより、純粋に超音波が試料中を伝播する時間だけを測定することが可能となる。
そのため本体装置を交換しても特性が変わらないのでメンテナンス性が非常によく、又、本体の設置場所の移動によるケーブル長の変更や、環境温度の変化による影響を受けないので、データの信頼性が非常に高くなる。
【図面の簡単な説明】
【図1】本発明をシングアラウンド法に適用した場合のブロック図である。
【図2】図1、図5に使用した模擬受信波生成回路の更に詳しいブロック図である。
【図3】本発明の動作を説明するためのタイムチャートである。
【図4】本発明による測定結果を示すグラフである。
【図5】本発明をPLL法に適用した場合のブロック図である。
【図6】図5に示す場合のタイムチャートである。
【図7】ケーブル長による誤差を補正するためのブロック図である。
【図8】図7に示した回路による補正結果を示すグラフである。
【図9】超音波音速測定装置の構成を示す概念図である。
【図10】シングアラウンド法の概念を示す図である。
【符号の説明】
Sd 送信駆動信号
τ10 遅延時間
S100 模擬受信波
200 模擬受信波生成手段(模擬受信波生成回路)
τe 回路固有の遅延時間
Cs 送信ケーブル
Ct リターンケーブル

Claims (10)

  1. 超音波送信部より送信された超音波を超音波受信部で受信し、当該送信部と受信部の間に充填された試料中を伝播する超音波の伝播時間に対応する連続波を発生させ、連続波の周期を計測することによって、試料中の音速を求める超音波音速測定装置において、
    上記超音波を送信するための送信駆動信号を所定の遅延時間τ10だけ遅延させた後に模擬受信波を生成する模擬受信波生成手段と、
    上記遅延時間τ10と、上記遅延時間τ10と回路固有の遅延時間τeから成る周期Tとに基づいて回路固有の遅延時間τeを算出する演算手段とを備え
    前記遅延時間τ e だけ遅延させた発振信号により前記連続波を発生させることを特徴とする超音波音速測定装置。
  2. 超音波送信部より送信された超音波を超音波受信部で受信し、当該送信部と受信部の間に充填された試料中を伝播する超音波の伝播時間に対応する連続波を発生させ、連続波の周期を計測することによって、試料中の音速を求める超音波音速測定装置において、
    上記連続波を発振させるための基準になる信号を伝送するための当該装置に使用される送信ケーブルとその送信ケーブルの先端から折り返すリターンケーブルとを備え
    前記送信ケーブルと前記リターンケーブルとを経た信号と同期した前記連続波を発生させることを特徴とする超音波音速測定装置。
  3. 超音波送信部より送信された超音波を超音波受信部で受信し、当該送信部と受信部の間に充填された試料中を伝播する超音波の伝播時間に対応する連続波を発生させ、連続波の周期を計測することによって、試料中の音速を求める超音波音速測定装置において、
    上記超音波を送信するための送信駆動信号を所定の遅延時間τ10だけ遅延させた後に模擬受信波を生成する模擬受信波生成手段と、
    上記遅延時間τ10と、上記遅延時間τ10と回路固有の遅延時間τeから成る周期Tとに基づいて回路固有の遅延時間τeを算出する演算手段と、
    上記連続波を発振させるための基準になる信号を伝送するための当該装置に使用される送信ケーブルとその送信ケーブルの先端から折り返すリターンケーブルとを備えたことを特徴とする超音波音速測定装置。
  4. 上記遅延時間τ10を計測する手段を備えた請求項1又は3に記載の超音波音速測定装置。
  5. 上記遅延時間τ10と、異なる遅延時間τ10’とに切り換えのできる切替手段を備えた請求項1又は3に記載の超音波音速測定装置。
  6. 超音波送信部より送信された超音波を超音波受信部で受信し、当該送信部と受信部の間に充填された試料中を伝播する超音波の伝播時間に対応する連続波を発生させ、連続波の周期を計測することによって、試料中の音速を求める超音波音速測定方法において、
    上記超音波を送信するための送信駆動信号を所定の遅延時間τ10だけ遅延させた後に模擬受信波を生成しておき、
    上記遅延時間τ10と、上記遅延時間τ10と回路固有の遅延時間τeから成る周期Tとに基づいて回路固有の遅延時間τeを算出し、
    前記遅延時間τ e だけ遅延させた発振信号により前記連続波を発生させる超音波音速校正方法。
  7. 超音波送信部より送信された超音波を超音波受信部で受信し、当該送信部と受信部の間に充填された試料中を伝播する超音波の伝播時間に対応する連続波を発生させ、連続波の周期を計測することによって、試料中の音速を求める超音波音速測定方法において、
    上記連続波を発振させるための基準になる信号を、当該装置に使用される送信ケーブルを往復させるとともに、当該送信ケーブルを往復した信号と前記連続波とを同期させることを特徴とする超音波音速校正方法。
  8. 超音波送信部より送信された超音波を超音波受信部で受信し、当該送信部と受信部の間に充填された試料中を伝播する超音波の伝播時間に対応する連続波を発生させ、連続波の周期を計測することによって、試料中の音速を求める超音波音速測定方法において、
    上記超音波を送信するための送信駆動信号を所定の遅延時間τ10だけ遅延させた後に模擬受信波を生成しておき、
    上記遅延時間τ10と、上記遅延時間τ10と回路固有の遅延時間τeから成る周期Tとに基づいて回路固有の遅延時間τeを算出するとともに、
    上記連続波を発振させるための基準になる信号を、当該装置に使用される送信ケーブルを往復させることを特徴とする超音波音速校正方法。
  9. 上記遅延時間τ10を計測する時間計測処理を備えた請求項6又は8に記載の超音波音速校正方法。
  10. 上記遅延時間τ10と、異なる遅延時間τ10’とに切り換え処理ができる請求項6又は8に記載の超音波音速校正方法。
JP2000401056A 2000-12-28 2000-12-28 超音波音速測定装置およびその校正方法 Expired - Fee Related JP4368521B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401056A JP4368521B2 (ja) 2000-12-28 2000-12-28 超音波音速測定装置およびその校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401056A JP4368521B2 (ja) 2000-12-28 2000-12-28 超音波音速測定装置およびその校正方法

Publications (2)

Publication Number Publication Date
JP2002202185A JP2002202185A (ja) 2002-07-19
JP4368521B2 true JP4368521B2 (ja) 2009-11-18

Family

ID=18865545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401056A Expired - Fee Related JP4368521B2 (ja) 2000-12-28 2000-12-28 超音波音速測定装置およびその校正方法

Country Status (1)

Country Link
JP (1) JP4368521B2 (ja)

Also Published As

Publication number Publication date
JP2002202185A (ja) 2002-07-19

Similar Documents

Publication Publication Date Title
US5796009A (en) Method for measuring in a fluid with the aid of sing-around technique
WO2013172028A1 (ja) 流量計測装置
JP2009014715A (ja) 流量計の試験用の流れシミュレーション用回路
JP2002340642A (ja) 超音波流速計
JPS5856085B2 (ja) 超音波パルスによる厚みまたは異常個所の深さを測定する方法および装置
JP4368521B2 (ja) 超音波音速測定装置およびその校正方法
JPH1151725A (ja) 超音波流量計
JP3689973B2 (ja) 流量計測装置
JP3427762B2 (ja) 超音波流量計
JP3651124B2 (ja) 超音波計測装置およびこれを含む流れ計測装置
JP3436731B2 (ja) 超音波音速測定方法及び装置
US6422081B1 (en) Ultrasonic sound velocity measuring method and its apparatus
JP4319778B2 (ja) 超音波の絶対音速測定方法及び装置
JP2002286701A (ja) 超音波音速測定における測定値補正方法および超音波測定装置
JP3419341B2 (ja) 流量計測装置
JP4485641B2 (ja) 超音波流量計
JP4774618B2 (ja) 流量計測装置
JP7203352B2 (ja) 超音波流量計
Huber et al. Ultrasonic Flowmeter for Leakage Detection in Water Mains
JPS581372B2 (ja) チヨウオンパオンソクソクテイソウチ
JP2003202372A (ja) 距離測定装置及び距離測定方法
JP2008304283A (ja) 超音波流量計
JP2007232659A (ja) 超音波流量計
JP2750120B2 (ja) 超音波厚さ測定装置
JP2001281032A (ja) 超音波流量計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4368521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees