JP4365238B2 - Foundation reinforcement method for structures - Google Patents
Foundation reinforcement method for structures Download PDFInfo
- Publication number
- JP4365238B2 JP4365238B2 JP2004047815A JP2004047815A JP4365238B2 JP 4365238 B2 JP4365238 B2 JP 4365238B2 JP 2004047815 A JP2004047815 A JP 2004047815A JP 2004047815 A JP2004047815 A JP 2004047815A JP 4365238 B2 JP4365238 B2 JP 4365238B2
- Authority
- JP
- Japan
- Prior art keywords
- foundation
- load
- additional
- pile
- reinforcing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 22
- 230000002787 reinforcement Effects 0.000 title description 19
- 230000036316 preload Effects 0.000 claims description 41
- 230000003014 reinforcing effect Effects 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 238000003780 insertion Methods 0.000 claims description 5
- 230000037431 insertion Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 3
- 238000010008 shearing Methods 0.000 claims description 3
- 239000011440 grout Substances 0.000 claims description 2
- 241000282819 Giraffa Species 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000009418 renovation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Landscapes
- Foundations (AREA)
Description
本発明は、構造物の基礎構造を増し杭によって補強する場合に、増し杭への鉛直荷重伝達を確実に行うことができる構造物の基礎補強方法に関するものである。 The present invention relates to a structure foundation reinforcing method capable of reliably transmitting a vertical load to an additional pile when the foundation structure of the structure is increased and reinforced by a pile.
例えば溶鉱炉などの大型構造物の改修に際し、構造物の重量が増大し、既設基礎の鉛直支持力が不足する場合には、基礎構造の補強が必要となる。
すなわち、既設基礎の支持力に余裕がなく、沈下の発生が許容できない場合には、上部鉛直荷重の増加分を的確に支持できるように基礎構造を補強する必要がある。
そのため、基礎構造の補強に関しては、従来から種々の対策が講じられている。
既設基礎に隣接して増し杭を設置し、基礎を拡大する方法もその一つである。
For example, when renovating a large structure such as a blast furnace, if the weight of the structure increases and the vertical supporting force of the existing foundation is insufficient, the foundation structure needs to be reinforced.
In other words, when there is no margin in the support capacity of the existing foundation and the occurrence of subsidence is unacceptable, it is necessary to reinforce the foundation structure so that the increase in the upper vertical load can be supported accurately.
For this reason, various measures have been taken for reinforcement of the foundation structure.
One method is to install additional piles adjacent to the existing foundation and expand the foundation.
ところで、増し杭による補強に際し、既設基礎と増し杭の剛性が大きく異なるような場合には、増し杭にいかに的確に荷重を伝達させるかが問題となる。 By the way, when reinforcing with the additional pile, if the rigidity of the existing foundation and the additional pile is greatly different, how to accurately transmit the load to the additional pile becomes a problem.
例えば、特許文献1には、既設基礎の外周に打設した増し杭をコンクリートにより既設基礎と一体化する際、新旧コンクリートの接合部におけるせん断耐力を確保する目的で鉄筋やスタッドを配置する方法を提案している。
しかしながら、特許文献1に開示の方法では、既設基礎杭と増し杭の剛性が大きく異なる場合には、上部鉛直荷重が増し杭にほとんど伝達されず、既設基礎側へ荷重の大半が流れることになり、十分な補強効果が得られない。
従って、既設基礎の支持力に余裕がない場合には、上部鉛直荷重の増加によって基礎が沈下する危険がある。
However, in the method disclosed in Patent Document 1, when the rigidity of the existing foundation pile and the additional pile is greatly different, the upper vertical load is increased and hardly transmitted to the pile, and most of the load flows to the existing foundation side. A sufficient reinforcing effect cannot be obtained.
Therefore, when there is no margin for the supporting capacity of the existing foundation, there is a risk that the foundation will sink due to an increase in the upper vertical load.
本発明は、上記の問題を有利に解決するもので、増し杭の剛性の大小、ひいては既設基礎杭との剛性比の違いの如何にかかわらず、増し杭に負担させるべき上部鉛直荷重を確実に伝達することができる構造物の基礎補強方法を提案することを目的とする。 The present invention advantageously solves the above problem, and ensures that the upper vertical load to be borne by the additional piles is ensured regardless of the rigidity of the additional piles and the difference in rigidity ratio with the existing foundation piles. It aims at proposing the foundation reinforcement method of the structure which can be transmitted.
さて、発明者らは、上記の問題を解決すべく鋭意研究を重ねた結果、既設基礎(及び上載設備)の自重を反力源とし、ジャッキ等により増し杭に予め所望の鉛直下向き荷重を載荷しておき、この状態で躯体を構築することにより、所期した目的が有利に達成されることの知見を得た。
本発明は、上記の知見に立脚するものである。
Now, as a result of intensive research to solve the above problems, the inventors have loaded the desired vertical downward load on the pile in advance by using the weight of the existing foundation (and the mounting equipment) as a reaction force source and increasing it with a jack or the like. In addition, the knowledge that the intended purpose was advantageously achieved by constructing the housing in this state was obtained.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
(1)構造物の既設基礎に隣接して増し杭を設置することによって、該構造物の基礎を補強する方法であって、
該既設基礎に隣接して増し杭を打設する第1工程と、
該増し杭の上方に既設基礎と一体化した増設基礎上部を構築する第2工程と、
該増設基礎上部を介し、該既設基礎の自重を反力源として増し杭に所定量のプレロード荷重を載荷する第3工程と、
該プレロード荷重を維持した状態で増設基礎下部を構築する第4工程
からなることを特徴とする構造物の基礎補強方法。
That is, the gist configuration of the present invention is as follows.
(1) A method of reinforcing the foundation of the structure by installing additional piles adjacent to the existing foundation of the structure,
A first step of driving an additional pile adjacent to the existing foundation;
A second step of constructing the upper part of the additional foundation integrated with the existing foundation above the additional pile;
A third step of adding a predetermined amount of preload load to the pile by increasing the weight of the existing foundation as a reaction force source through the upper part of the additional foundation;
A method for reinforcing a foundation of a structure, comprising a fourth step of constructing an additional foundation lower portion while maintaining the preload load.
(2)前記増設基礎上部と前記既設基礎との接合部に、プレロード時に発生するせん断力および曲げモーメントに抵抗する強度を有する補強部材を設置することを特徴とする上記(1)記載の構造物の基礎補強方法。 (2) The structure according to (1) above, wherein a reinforcing member having a strength that resists a shearing force and a bending moment generated during preloading is installed at a joint between the upper part of the additional foundation and the existing foundation. Foundation reinforcement method.
(3)前記プレロード荷重の載荷に際し、まずオイルポンプと挿入ジャッキの組み合わせによって増し杭にプレロード荷重を載荷し、このプレロード荷重が所定の値に到達した後、該プレロード荷重を機械式ジャッキに受け替え、そのまま躯体中に埋設することを特徴とする上記(1)または(2)記載の構造物の基礎補強方法。 (3) At the time of loading the preload load, first, a preload load is loaded on an additional pile by a combination of an oil pump and an insertion jack, and after the preload load reaches a predetermined value, the preload load is replaced with a mechanical jack. The method for reinforcing a foundation of a structure according to (1) or (2) above, wherein the structure is embedded in a housing as it is.
(4)前記増設基礎下部を構築する材料として、膨張コンクリートまたは無収縮グラウトのような無収縮仕様の材料を使用することを特徴とする上記(1),(2)または(3)記載の構造物の基礎補強方法。 (4) The structure according to (1), (2) or (3) above, wherein a material having no shrinkage specification such as expanded concrete or non-shrinkage grout is used as a material for constructing the lower part of the additional foundation. Basic reinforcement method for objects.
(5)前記プレロード荷重の載荷に際し、負荷荷重ステップを前記プレロード荷重まで増して行く段階で増し杭の変位、ひずみの測定を行うことにより、増し杭の鉛直支持力持性を確認しつつ行うことを特徴とする上記(1)〜(4)のいずれかに記載の構造物の基礎補強方法。 (5) When loading the preload load, by measuring the displacement and strain of the additional pile at the stage where the load load step is increased to the preload load, it is performed while checking the vertical bearing capacity of the additional pile. The method for reinforcing a foundation of a structure according to any one of (1) to (4), characterized in that it is characterized in that
本発明によれば、増し杭によって構造物の基礎構造を補強するに際し、構造物の既設基礎杭と増し杭との剛性が大きく異なる場合であっても、上部鉛直荷重の増加分を増し杭で的確に支持して、既設基礎の沈下を効果的に回避することができる。 According to the present invention, when reinforcing the foundation structure of the structure with the additional pile, even if the rigidity of the existing foundation pile and the additional pile of the structure is greatly different, the increase in the upper vertical load is increased by the pile. With proper support, settlement of the existing foundation can be effectively avoided.
以下、本発明を工程毎に具体的に説明する。
代表例として、溶鉱炉の基礎構造を補強する場合について述べる。
図1に、溶鉱炉の基礎を模式で示す。図中、番号1が既設基礎、2が補強部である。
この例では、既設基礎の周囲4ヶ所に補強部を設けた場合を示す。
Hereinafter, this invention is demonstrated concretely for every process.
As a representative example, the case where the foundation structure of a blast furnace is reinforced is described.
FIG. 1 schematically shows the basics of a blast furnace. In the figure, reference numeral 1 is an existing foundation, and 2 is a reinforcing portion.
In this example, the case where a reinforcement part is provided in four places around the existing foundation is shown.
(第1工程)
本発明では、まず、補強部2に増し杭3を打設する。図2にその状態を示す。増し杭3の本数については、既設基礎の鉛直支持力を補強する補強鉛直支持力(以下単に補強強度という)に対し、増し杭3でそれぞれ支持すべき荷重に応じて適宜定めれば良い。
この例では、各補強部2それぞれに5本の増し杭を打設する場合を示している。
(First step)
In the present invention, first, the pile 3 is placed on the reinforcing portion 2. FIG. 2 shows the state. About the number of the additional piles 3, what is necessary is just to determine suitably according to the load which should be supported with each additional pile 3 with respect to the reinforcement vertical support force (henceforth only reinforcement strength) which reinforces the vertical support force of an existing foundation.
In this example, the case where five additional piles are laid in each reinforcement part 2 is shown.
(第2工程)
次に、図3に示すように、既設基礎1のフーチング4の外周に孔を穿ち、鉄筋5を埋め込むいわゆる削孔鉄筋を設置する。
このように、補強部材として鉄筋5を使用することにより、後述するプレロード時に発生するせん断力および曲げモーメントに抵抗するに十分な強度を得ることができる。ここに、埋設する鉄筋の径および本数は、必要とされる補強強度に応じて適宜定めれば良い。
ついで、この部分をコンクリートで固めて増設基礎上部6を構築する。この状態を図4に示す。
(Second step)
Next, as shown in FIG. 3, a so-called drilled reinforcing bar is formed by making a hole in the outer periphery of the
As described above, by using the reinforcing bar 5 as the reinforcing member, it is possible to obtain a strength sufficient to resist a shearing force and a bending moment generated at the time of preload described later. Here, the diameter and the number of reinforcing bars to be embedded may be appropriately determined according to the required reinforcement strength.
Then, this part is solidified with concrete to construct the additional foundation
(第3工程)
次に、図5に示すように、上記した増設基礎上部6と打設した増し杭3との隙間にジャッキを装入し、既設基礎1の自重を反力源として増し杭3に所定量のプレロード荷重を載荷する。ここで、所定量のプレロード荷重とは、補強強度に応じて各増し杭3が負担すべきプレロード荷重のことである。
このプレロード荷重の載荷に際しては、オイルポンプと挿入ジャッキを組み合わせて、所定の値までプレロード荷重を載荷する。このようにして、増し杭に所定量のプレロード荷重が載荷された後は、図6に示すように、この荷重をネジの回転を利用するいわゆる機械式ジャッキであるキリンジャッキ7による支持に切り替え、挿入ジャッキは外部へ搬出する。
これにより、増し杭へのプレロード荷重はキリンジャッキ7のみによって支持されたことになる。
(Third step)
Next, as shown in FIG. 5, a jack is inserted into the gap between the above-mentioned additional foundation
When loading the preload load, the oil pump and the insertion jack are combined to load the preload load to a predetermined value. Thus, after a predetermined amount of preload load is loaded on the additional pile, as shown in FIG. 6, this load is switched to support by a giraffe jack 7 which is a so-called mechanical jack using rotation of a screw, The insertion jack is carried outside.
Thus, the preload load on the additional pile is supported only by the giraffe jack 7.
(第4工程)
この状態、すなわちプレロード荷重がキリンジャッキ7によって支持された状態で、このキリンジャッキ7ともども、増設基礎上部6と打設した増し杭3との隙間を無収縮仕様の材料である例えば膨張コンクリート等で固めて増設基礎下部8を構築する。この状態を図7に示す。
(4th process)
In this state, that is, in a state where the preload load is supported by the giraffe jack 7, both the giraffe jack 7 and the gap between the additional foundation
上記したように、本発明では、ジャッキによってプレロード荷重を増し杭に載荷したままコンクリートで固めることにより増設基礎下部8を構築するわけであるが、最終的なプレロード荷重の支持は機械式ジャッキであるネジの回転を利用する安価なキリンジャッキで行い、高価なオイルポンプや挿入ジャッキは繰り返し使用できるので、設備費もわずかで済む。
ここで機械式ジャッキとは、油圧等液圧媒体を使用せず、機械式結合で作動する、上記のネジの回転を利用したジャッキ類を指すものである。これらのジャッキであれば、コンクリート中に埋設施工してもプレロード荷重の支持は持続される。この点、液圧式ジャッキ類は高価なだけでなく、液洩れでプレロード荷重の支持の持続に問題を生じるおそれがある。
As described above, in the present invention, the preload load is increased by the jack, and the additional foundation
Here, the mechanical jack refers to a jack using the rotation of the above-mentioned screw that operates by mechanical coupling without using a hydraulic medium such as a hydraulic medium. With these jacks, the support of the preload load is maintained even if it is embedded in concrete. In this respect, the hydraulic jacks are not only expensive, but there is a risk that liquid leakage may cause a problem in sustaining the preload load.
また、増設基礎下部8を構築するための材料としては、無収縮性である膨張コンクリートや無収縮グラウドを用いることが好ましい。というのは、かかる無収縮性仕様の材料を用いることにより、プレロード荷重の抜け防止と同時に、増設基礎上部と増設基礎下部との一体化が有利に確保されるからである。
Moreover, as a material for constructing the additional foundation
なお、本発明では、増し抗には、プレロード荷重を載荷できさえすれば良いが、負荷荷重を前記プレロード荷重まで増して行く段階で、増し抗の変位、ひずみの測定を行うことにより、増し杭の鉛直支持力特性を確認しつつ基礎補強を行うことができる。
すなわち、−般的には膨大な設備費が必要なため、ごく一部の杭にしか実施できない載荷試験を、負荷荷重を前記プレロード荷重まで増して行く段階で、順次、増し杭の変位、ひずみの測定を行うことにより、同様な、載荷試験を全ての増し抗に行うことができ、補強工事の信頼性が高まる利点がある。
通常、杭の支持力設計は実際に負荷される荷重(設計荷重)に対して2〜3倍の安全率を乗じて行われる。これは地盤性状の設計条件とのずれ、不均一性により実杭の支持力は相当にばらつくことから採用される安全率である。そして施工後の抗に対しては、載荷試験等による支持力確認は通常は行われることがない。
本発明では、増設基礎上部と増し杭の間でプレロード荷重を加えることができるため、増し杭に対して、プレロード荷重載荷設備を用いて、プレロード荷重を加える過程で容易に載荷試験が行えるため、補強工事の信頼性が高まることになる。
In the present invention, it is only necessary to load a preload load for the increase resistance, but at the stage of increasing the load load to the preload load, by measuring the displacement and strain of the increase resistance, It is possible to reinforce the foundation while confirming the vertical bearing capacity characteristics.
In other words, because a large amount of equipment costs are required, a load test that can only be performed on a small number of piles is carried out in order to increase the load load up to the preload load. By performing the measurement, it is possible to perform the same loading test for all the reinforcements, and there is an advantage that the reliability of the reinforcement work is increased.
Usually, the pile bearing capacity design is performed by multiplying the load actually applied (design load) by 2 to 3 times the safety factor. This is a safety factor that is adopted because the bearing capacity of the actual piles varies considerably due to deviation from the design conditions of the ground properties and non-uniformity. And for the resistance after construction, the bearing capacity check by a loading test or the like is not normally performed.
In the present invention, since a preload load can be applied between the upper part of the additional foundation and the additional pile, a load test can be easily performed in the process of applying the preload load to the additional pile using the preload load loading equipment. The reliability of the reinforcement work will increase.
なお、負荷荷重を前記プレロード荷重まで増して行く段階で、増し杭の変位、ひずみの測定を行うとは、一般的な坑の載荷試験手順に相当するように5t〜20tピッチ程度の刻みで荷重を上げていき、その過程の必要な部分で、増し杭の変位、ひずみ測定を行うことである。普通の載荷試験では、杭の塑性域まで荷重を付加し、降伏荷重、極限荷重を求めるが、本発明の場合は目的が違うため、補強に必要な所定量のプレロード荷重を最終荷重とし、そのプレロード荷重に達した時点で増し抗の挙動が弾性を維持していれば、基礎として十分な信頼性を有することが確認できることになる。 In addition, when the load is increased to the preload load, the measurement of displacement and strain of the additional pile is performed in steps of about 5t to 20t pitch so as to correspond to a general mine loading test procedure. It is to measure the displacement and strain of the additional pile at the necessary part of the process. In a normal loading test, the load is applied to the plastic region of the pile, and the yield load and the ultimate load are obtained, but in the case of the present invention, the purpose is different, so a predetermined amount of preload load necessary for reinforcement is used as the final load. When the pre-load load is reached and the anti-resistance behavior maintains elasticity, it can be confirmed that the base has sufficient reliability.
本発明によれば、溶鉱炉などの大型構造物の改修に際し、上部鉛直荷重が増大する場合であっても、増し杭によって上部鉛直荷重の増加分を的確に支持することができるので、既設基礎が沈下する等の不具合は生じない。
また、本発明は、上記した溶鉱炉などの大型構造物の改修の場合だけでなく、橋脚、鉄塔およびタンクなどの基礎の補強にも有利に適合する。
According to the present invention, when the upper vertical load is increased when renovating a large structure such as a blast furnace, the increase in the upper vertical load can be accurately supported by the additional piles. There are no problems such as sinking.
Further, the present invention is advantageously adapted not only for the renovation of large structures such as the above-described blast furnaces but also for the reinforcement of foundations such as piers, steel towers and tanks.
1 既設基礎
2 補強部
3 増し杭
4 フーチング
5 鉄筋
6 増設基礎上部
7 キリンジャッキ
8 増設基礎下部
DESCRIPTION OF SYMBOLS 1 Existing foundation 2 Reinforcement part 3
Claims (5)
該既設基礎に隣接して増し杭を打設する第1工程と、
該増し杭の上方に既設基礎と一体化した増設基礎上部を構築する第2工程と、
該増設基礎上部を介し、該既設基礎の自重を反力源として増し杭に所定量のプレロード荷重を載荷する第3工程と、
該プレロード荷重を維持した状態で増設基礎下部を構築する第4工程
からなることを特徴とする構造物の基礎補強方法。 A method of reinforcing the foundation of the structure by installing additional piles adjacent to the existing foundation of the structure,
A first step of driving an additional pile adjacent to the existing foundation;
A second step of constructing the upper part of the additional foundation integrated with the existing foundation above the additional pile;
A third step of adding a predetermined amount of preload load to the pile by increasing the weight of the existing foundation as a reaction force source through the upper part of the additional foundation;
A method for reinforcing a foundation of a structure, comprising a fourth step of constructing an additional foundation lower portion while maintaining the preload load.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004047815A JP4365238B2 (en) | 2004-02-24 | 2004-02-24 | Foundation reinforcement method for structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004047815A JP4365238B2 (en) | 2004-02-24 | 2004-02-24 | Foundation reinforcement method for structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005240297A JP2005240297A (en) | 2005-09-08 |
JP4365238B2 true JP4365238B2 (en) | 2009-11-18 |
Family
ID=35022319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004047815A Expired - Lifetime JP4365238B2 (en) | 2004-02-24 | 2004-02-24 | Foundation reinforcement method for structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4365238B2 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5479905A (en) * | 1977-12-08 | 1979-06-26 | Sekisui House Kk | Method of horizontally returning tilted building |
JPH04365238A (en) * | 1991-06-13 | 1992-12-17 | Nec Corp | Device and method for duplexing communication processing |
JPH08296209A (en) * | 1995-04-26 | 1996-11-12 | Mitsubishi Heavy Ind Ltd | Method for reinforcing foundation part of elevated bridge |
JP2958426B2 (en) * | 1995-04-28 | 1999-10-06 | 鹿島建設株式会社 | Differential settlement correction method |
JP3032456B2 (en) * | 1995-11-24 | 2000-04-17 | 三井建設株式会社 | Method of pressing structure upward |
JP3071402B2 (en) * | 1996-10-21 | 2000-07-31 | 謙三 村上 | Lifting method of structure, jack engaging structure and bracket used in the method |
JP3711527B2 (en) * | 1998-01-08 | 2005-11-02 | 株式会社竹中工務店 | Reinforcement method of existing building foundation with slant pile |
JP4032711B2 (en) * | 2001-11-22 | 2008-01-16 | 株式会社大林組 | Foundation pile construction method and foundation pile constructed by this method |
-
2004
- 2004-02-24 JP JP2004047815A patent/JP4365238B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005240297A (en) | 2005-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7967531B2 (en) | Method of raising a building | |
JP5277174B2 (en) | Method and apparatus for testing load bearing capacity using a ring cell | |
US6923599B2 (en) | In-ground lifting system and method | |
KR20130114588A (en) | Method and apparatus for testing load-bearing capacity | |
JP4617315B2 (en) | Micropile and its construction method | |
JP4705497B2 (en) | Reinforcement method of pile foundation of existing building | |
JP4896949B2 (en) | Correction method of subsidence floor | |
JP5171391B2 (en) | Concrete girder support replacement method | |
JP2006104747A (en) | Pier stud connection structure and pier stud connecting method | |
JP2022078187A (en) | Foundation construction method by pressing-in durable block for repairing foundation | |
JP5207047B2 (en) | Seismic reinforcement method for existing foundation and seismic reinforcement structure for existing foundation | |
Mickovski et al. | Construction and testing of self-drilled soil nails | |
Xu et al. | Flexural behavior on a novel socket joint connecting precast piles: A full-size experimental evaluation | |
JP4365238B2 (en) | Foundation reinforcement method for structures | |
JP4373824B2 (en) | Joining method of cast-in-place pile and steel pipe column | |
McNamara et al. | A field trial of a reusable, hollow, cast-in-situ pile | |
JP6757003B2 (en) | Construction method of double pipe pile and double pipe pile | |
JP2008291601A (en) | Pile head joining structure | |
JP3171490U (en) | Inclination correction structure of solid foundation with falling wall | |
JP4722691B2 (en) | Repair method for soil concrete in existing structures | |
JP2007169898A (en) | Pile foundation structure for restraining unequal settlement and its construction method | |
Lindsay et al. | Testing of self-drilled hollow bar soil nails | |
JP2020066875A (en) | Foundation pile, foundation structure, structural body, and installation method of foundation pile | |
JP2005248428A (en) | Foundation structure for construction | |
AU2021105623A4 (en) | A method for constructing a micro-piling in bridge foundation over an area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061003 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090820 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4365238 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130828 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130828 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130828 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |