JP3711527B2 - Reinforcement method of existing building foundation with slant pile - Google Patents

Reinforcement method of existing building foundation with slant pile Download PDF

Info

Publication number
JP3711527B2
JP3711527B2 JP00199398A JP199398A JP3711527B2 JP 3711527 B2 JP3711527 B2 JP 3711527B2 JP 00199398 A JP00199398 A JP 00199398A JP 199398 A JP199398 A JP 199398A JP 3711527 B2 JP3711527 B2 JP 3711527B2
Authority
JP
Japan
Prior art keywords
pile
foundation
existing building
footing
piles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00199398A
Other languages
Japanese (ja)
Other versions
JPH11200382A (en
Inventor
英二 佐藤
典之 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP00199398A priority Critical patent/JP3711527B2/en
Publication of JPH11200382A publication Critical patent/JPH11200382A/en
Application granted granted Critical
Publication of JP3711527B2 publication Critical patent/JP3711527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、斜杭による既存建物基礎の補強方法の技術分野に属し、更に云えば、2本の斜杭からなる組杭を使用することにより、既存建物基礎を爾後的に補強する方法に関する。
【0002】
【従来の技術】
杭基礎建物の場合、杭は鉛直方向の荷重(建物の重量)と水平方向の荷重(地震力)の双方を負担して耐える必要がある。1980年代中頃以降に建設された建物の杭基礎は、双方の荷重を考慮した構造設計がなされているが、それ以前に建設された建物の杭基礎は、水平荷重に対する設計がなされていないのが一般的で、耐震性能が低い。
【0003】
また、地下水位が浅く緩い砂地盤は液状化現象を生じる可能性がある。液状化現象が発生すると、杭に対する地盤の抵抗は極めて小さくなるため、水平方向の荷重に対する抵抗が急激に低下することになる。この液状化現象についても、一般的には1990年代にならないと、その安定性の検討を行っていない。
よって、上述した年代以前の既存建物は、地震力に対する耐震性能及び液状化現象に対する安定性の見地から、その基礎を爾後的に補強することが強く要請される。
【0004】
次に、本出願人は、杭を鉛直線に対し傾斜させて地震力等の水平力に強く抵抗する斜杭工法を案出し、▲1▼特開平7−90830号公報、▲2▼特開平7−90860号公報、▲3▼特開平8−170346号公報にそれぞれ斜杭式人工地盤を開示している。前記▲2▼,▲3▼の公報には、2本の斜杭を平面的に180度向きを変えて対称的に配置すると共に、同斜杭の杭頭部同士を連結した組杭が開示されている。
【0005】
組杭は、図7に示したように、各斜杭1,1の軸方向抵抗力(R)に対して、F=2Rsinθの式で求められる水平方向の抵抗力(F)を期待できることを応用したものである。2本の斜杭1,1を平面的に対称的配置としていることから、1対の斜杭1,1の鉛直力は逆方向の向きで相殺され、安定した架構を形成する。また、各斜杭1,1に発生する応力は引張り応力や圧縮応力が主で、組杭の構造上の特性により、曲げモーメント(近似解はM=0)やせん断応力が小さいという利点がある。
【0006】
しかし、斜杭からなる組杭を既存建物に応用し、既存建物基礎を爾後的に補強する方法に係る先行技術は特に見当たらない。
【0007】
【本発明が解決しようとする課題】
本発明の目的は、2本の斜杭からなる組杭を既存建物の基礎近傍の地盤中に施工し、建物の鉛直荷重を同組杭の杭頭部にて支持させることより水平抵抗を増大させ、既存建物基礎の地震力に対する耐震性能を爾後的に向上することができ、且つ液状化現象に対する安定性を恒久的に維持することができる、斜杭による既存建物基礎の補強方法を提供することである。
【0008】
【課題を解決するための手段】
上記従来技術の課題を解決するための手段として、請求項1記載の発明に係る斜杭による既存建物基礎の補強方法は、既存建物の基礎近傍の地盤中に2本の斜杭を平面的に略180度向きを変えて対称的に配置して同斜杭の杭頭部同士を連結し組杭を施工し、前記組杭の杭頭部を連結した第1フーチングを施工し、その直上位置に既存建物の基礎と一体化した第2フーチングを施工し、前記第1フーチングと第2フーチングとの間に油圧ジャッキ、サポートジャッキを略鉛直に併設し、前記油圧ジャッキにより既存建物の基礎に作用している鉛直荷重の一部あるいは全部を前記組杭の杭頭部を連結した第1フーチングを施工し、その直上位置に既存建物の基礎と一体化した第2フーチングを施工し、前記第1フーチングと第2フーチングとの間に油圧ジャッキとサポートジャッキを略鉛直に併設し、前記油圧ジャッキにより既存建物の基礎に作用している鉛直荷重の一部あるいは全部を前記組杭に盛り替え、更にその盛り替え状態を前記サポートジャッキにより固定化し、その後、前記油圧ジャッキを取り外し、前記第1フーチングと第2フーチングとの間にコンクリートを打設して前記サポートジャッキを埋め殺すことより前記組杭の杭頭部と既存建物の基礎とを荷重の伝達が可能に剛結することを特徴とする。
【0009】
請求項2記載の発明は、請求項1に記載した斜杭による既存建物基礎の補強方法において、既存建物の基礎はフーチングであることを特徴とする。
【0010】
請求項3記載の発明は、請求項1に記載した斜杭による既存建物基礎の補強方法において、既存建物の基礎は基礎梁であることを特徴とする。
【0011】
【発明の実施の形態及び実施例】
本発明に係る斜杭による既存建物基礎の補強方法は、通例、図1及び図2に示したように、杭4を含む既存建物2の杭基礎3のうち、該既存建物2の外周部分のフーチング3aについて好適に実施される。但し、実施箇所は前記外周部分のフーチング3aに限らず、既存建物2の外周部分の基礎梁3bについても同様に好適に実施し得る。2本の斜杭からなる組杭A,Bは、同杭が傾いている垂直面内での抵抗力が非常に大きいという方向性を有することから、図2に示したように、建物の平面に関するX、Yの直交2方向に配置される。
【0012】
次に、本発明の補強方法を実施する施工工程について説明する。既存建物2の外周部分に位置する各フーチング3aの外側面近傍の地盤5を掘削し、該地盤中に2本の斜杭1,1を平面的に略180度向きを変えた対称的配置で構築する。そして、2本の斜杭1,1の杭頭部同士を連結して組杭A,Bとして施工する。しかる後、前記組杭A,Bの杭頭部と前記既存建物2のフーチング3aとを荷重の伝達が可能に剛結する。かくして、前記2本の斜杭1,1からなる組杭A,Bは、平面的に見ると既存建物2を取り囲むように配設される(図2)。
【0013】
なお、各斜杭1の傾斜角度θは、地震力等の水平力に強く抵抗するように、好ましくは水平面に対し65度ぐらいとされる。但し、傾斜角度θは前記の限りではなく、水平力に十分抵抗可能な範囲で設計される。この組杭(斜杭構造)は、地震力等の水平力に対して剛性が高いため水平変位が小さいという利点がある。また、斜杭1,1に発生する応力は引張り応力や圧縮応力が主で、組杭の構造上の特性により、曲げモーメントやせん断応力が小さいという利点がある。
【0014】
前記組杭の杭頭部と既存建物2のフーチング3aとを荷重の伝達が可能に剛結する手段と工程を、図3A,Bと図4A,Bに示した。先ず前記2本の斜杭1,1からなる組杭の杭頭部を連結した第1フーチング6を施工する。その直上位置に、既存建物2のフーチング3aと一体化した第2フーチング7を施工し、前記第1フーチング6と第2フーチング7との間に油圧ジャッキ8とサポートジャッキ9を略鉛直に併設する(図3A,B)。そして、前記油圧ジャッキ8の働きにより、既存建物2のフーチング3aに作用している鉛直荷重の一部あるいは全部を前記組杭に盛り替え、その盛り替え状態を前記サポートジャッキ9の働きにより固定化する。その後、前記油圧ジャッキ8は取り外して回収し(図4A,B)、前記第1フーチング6と第2フーチング7との間にコンクリート10を打設して前記サポートジャッキ9を埋め殺す(図4A,B参照)。コンクリート10が強度を発現することにより剛結状態は恒久化される。図中の符号3bは基礎梁、符号11は既存柱を示している。
【0015】
既存建物2の基礎3のフーチング3aに作用している鉛直荷重の一部あるいは全部を前記組杭に盛り替え負担させることにより、組杭は、図5に示し、[従来の技術]で説明した、F=2Rsinθの式で求められる水平方向の抵抗力(F)に、更に鉛直荷重Wtanθの大きさが加わるので、更に大きな水平抵抗力を有する組杭が実現されるのである。
【0016】
例えば、図2中の右側から左側方向へ作用するX方向の水平力Fに対しては、X方向に配置した2本の斜杭1,1で構成する組杭Aが効果的に抵抗し、曲げモーメントが低減された有利な支持状態を発現する。また、図2中のY方向へ作用する水平力F’に対しては、Y方向に設置された組杭Bが有効に抵抗する。かくして、既存建物2の全体に作用するX,Y2方向の水平力に対して、各々対抗する2種の組杭AとBが効果的に抵抗するので、既存建物2の基礎3の地震力に対する耐震性能を爾後的に向上することができる。同様に液状化現象に対する安定性を恒久的に維持することもできるのである。
【0017】
なお、上記実施例では、前記組杭A,Bの杭頭部と既存建物2の基礎3とを荷重の伝達が可能に剛結する手段として、既存建物の外周部分のフーチング3a毎に実施しているが、この限りでなく、一つ乃至複数おきに実施しても良い。また、既存建物の外周部に実施する場合に限らず、中庭等を有する建物では、もちろん内周部分の基礎についても実施できる。更に、図2中のX方向、Y方向の組杭A,Bの数は、組杭を構成する斜杭1の長さや杭径、斜杭1の傾斜角度等を方向別に好適に設置することにより必ずしも同じ数でなくても良い。
【0018】
その他、フーチング3aの間隔が短い場合や、斜杭1の長さが長い場合には、図6A,Bに示したように互い違いに斜杭1を配置し、斜杭同士が衝突しないように実施することも効果的である。
【0019】
【本発明が奏する効果】
本発明の斜杭による既存建物基礎の補強方法によれば、2本の斜杭からなる組杭を既存建物の基礎近傍の地盤中に施工し、建物の鉛直荷重を同組杭の杭頭部に伝達することより、既存建物基礎の水平抵抗を増大させることができる。よって、地震力等の水平荷重に十分抵抗し、既存建物基礎の地震力に対する耐震性能を爾後的に向上することができる。と同時に液状化現象に対する安定性をも恒久的に維持することができ、信頼性の高い既存建物基礎の補強方法を実現できる。
【図面の簡単な説明】
【図1】本発明に係る斜杭による既存建物基礎の補強方法を概略的に示した正面図である。
【図2】本発明に係る斜杭による既存建物基礎の補強方法を概略的に示した平面図である。
【図3】Aは、本発明に係る斜杭による既存建物基礎の補強方法の施工工程を示した正面図であり、Bは、同右側面図である。
【図4】Aは、本発明に係る斜杭による既存建物基礎の補強方法の施工完了状態を示した正面図であり、Bは、同右側面図である。
【図5】本発明における2本の斜杭からなる組杭の働きを示した模式図である。
【図6】Aは、その他の実施例に使用される組杭を示した正面図であり、Bは、同平面図である。
【図7】従来技術における2本の斜杭からなる組杭の働きを示した模式図である。
【符号の説明】
1 斜杭
2 既存建物
3 基礎
3a フーチング
3b 基礎梁
4 杭
5 地盤
6 第1フーチング
7 第2フーチング
8 油圧ジャッキ
9 サポートジャッキ
10 コンクリート
11 既存柱
12 新設フーチング
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a method for reinforcing an existing building foundation with diagonal piles, and more specifically, relates to a method for retrofitting an existing building foundation by using a group pile consisting of two diagonal piles.
[0002]
[Prior art]
In the case of a pile foundation building, the pile must bear and bear both a vertical load (building weight) and a horizontal load (seismic force). Pile foundations for buildings built after the mid-1980s have been designed to take account of both loads, but pile foundations for buildings built before that are not designed for horizontal loads. General and low earthquake resistance.
[0003]
In addition, sandy ground with a shallow groundwater level may cause liquefaction. When the liquefaction phenomenon occurs, the resistance of the ground to the pile becomes extremely small, so that the resistance to the load in the horizontal direction is rapidly reduced. Regarding this liquefaction phenomenon, its stability is generally not examined until the 1990s.
Therefore, existing buildings before the above-mentioned age are strongly required to reinforce their foundations from the viewpoint of seismic performance against seismic force and stability against liquefaction.
[0004]
Next, the present applicant has devised a slant pile construction method in which the pile is inclined with respect to the vertical line and strongly resists horizontal forces such as seismic force, and (1) JP-A-7-90830, (2) JP-A No. 7-90860 and {circle around (3)} Japanese Laid-Open Patent Publication No. 8-170346 disclose oblique pile type artificial ground, respectively. In the above publications (2) and (3), a set pile in which two diagonal piles are arranged symmetrically by changing the direction of the plane by 180 degrees and the pile heads of the diagonal piles are connected to each other is disclosed. Has been.
[0005]
As shown in FIG. 7, the assembled pile can expect the horizontal resistance force (F) obtained by the formula of F = 2Rsin θ with respect to the axial resistance force (R) of each slant pile 1, 1. It is applied. Since the two slant piles 1 and 1 are arranged symmetrically in a plane, the vertical force of the pair of slant piles 1 and 1 is offset in the opposite direction to form a stable frame. In addition, the stress generated in each slant pile 1, 1 is mainly tensile stress or compressive stress, and there is an advantage that bending moment (approximate solution is M = 0) and shear stress are small due to structural characteristics of the pile pile. .
[0006]
However, there is no prior art relating to a method of applying a group pile composed of diagonal piles to an existing building and reinforcing the existing building foundation in the future.
[0007]
[Problems to be solved by the present invention]
The purpose of the present invention is to increase horizontal resistance by constructing a group pile consisting of two diagonal piles in the ground near the foundation of an existing building and supporting the vertical load of the building on the pile head of the group pile Provide a method for reinforcing existing building foundations with diagonal piles, which can improve the seismic performance of existing building foundations against seismic forces and can maintain the stability against liquefaction phenomenon permanently. That is.
[0008]
[Means for Solving the Problems]
As a means for solving the problems of the prior art, the method for reinforcing an existing building foundation with a diagonal pile according to the invention described in claim 1 is a method of planarly arranging two diagonal piles in the ground near the foundation of the existing building. and applying a Kumikui by symmetrically arranged connecting the pile head ends of the piles by changing the substantially 180 degrees inward, and applying a first footing linked the pile head of the set piles, just above the A second footing integrated with the foundation of the existing building is installed at the position, and a hydraulic jack and a support jack are provided substantially vertically between the first footing and the second footing. The hydraulic jack serves as the foundation of the existing building. The first footing that connects the pile heads of the piles is applied to part or all of the acting vertical load, and the second footing that is integrated with the foundation of the existing building is installed immediately above the first footing. 1 footing and 2nd footing A hydraulic jack and a support jack are provided substantially vertically, and part or all of the vertical load acting on the foundation of the existing building is replaced with the above-mentioned piles by the hydraulic jack, and the rearrangement state is also supported by the support. After fixing with a jack, the hydraulic jack is removed, concrete is placed between the first footing and the second footing, and the support jack is buried to kill the pile head of the group pile and the existing building. load transfer and foundation can be characterized and rigid connection to Turkey.
[0009]
The invention according to claim 2 is the reinforcing method of the existing building foundation by the inclined pile according to claim 1, wherein the foundation of the existing building is a footing .
[0010]
The invention described in claim 3 is the reinforcement method of the existing building foundation by the slant pile described in claim 1, wherein the foundation of the existing building is a foundation beam.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIGS. 1 and 2, the method for reinforcing an existing building foundation with diagonal piles according to the present invention is generally applied to the outer peripheral portion of the existing building 2 in the pile foundation 3 of the existing building 2 including the pile 4. This is preferably implemented for the footing 3a. However, the implementation location is not limited to the footing 3a in the outer peripheral portion, but can be suitably applied to the foundation beam 3b in the outer peripheral portion of the existing building 2 as well. As shown in FIG. 2, the assembled piles A and B composed of two diagonal piles have a direction that the resistance force in the vertical plane where the piles are inclined is very large. Are arranged in two orthogonal directions of X and Y.
[0012]
Next, the construction process for implementing the reinforcing method of the present invention will be described. The ground 5 in the vicinity of the outer surface of each footing 3a located in the outer peripheral part of the existing building 2 is excavated, and the two slant piles 1 and 1 are symmetrically arranged in the ground with their directions changed by approximately 180 degrees. To construct. Then, the pile heads of the two diagonal piles 1, 1 are connected to each other and constructed as a pile pile A, B. After that, the pile heads of the group piles A and B and the footing 3a of the existing building 2 are rigidly connected so that a load can be transmitted. Thus, the piles A and B including the two oblique piles 1 and 1 are arranged so as to surround the existing building 2 when viewed in plan (FIG. 2).
[0013]
In addition, the inclination angle θ of each inclined pile 1 is preferably about 65 degrees with respect to the horizontal plane so as to strongly resist horizontal force such as seismic force. However, the inclination angle θ is not limited to the above, and is designed in a range that can sufficiently resist the horizontal force. This assembled pile (tilted pile structure) has the advantage that the horizontal displacement is small because of its high rigidity against horizontal forces such as seismic forces. Further, the stress generated in the inclined piles 1 and 1 is mainly tensile stress and compressive stress, and has an advantage that bending moment and shear stress are small due to structural characteristics of the pile pile.
[0014]
3A and 3B and FIGS. 4A and 4B show means and steps for rigidly connecting the pile heads of the assembled piles and the footings 3a of the existing building 2 so as to be able to transmit loads. First, the 1st footing 6 which connected the pile head of the pile which consists of the said 2 diagonal piles 1 and 1 is constructed. A second footing 7 integrated with the footing 3a of the existing building 2 is constructed at a position immediately above the hydraulic jack 8 and the support jack 9 between the first footing 6 and the second footing 7 in a substantially vertical position. (FIG. 3A, B). And, by the action of the hydraulic jack 8, part or all of the vertical load acting on the footing 3 a of the existing building 2 is replaced with the assembled pile, and the changed state is fixed by the action of the support jack 9. To do. Thereafter, the hydraulic jack 8 is removed and collected (FIGS. 4A and B), and concrete 10 is placed between the first footing 6 and the second footing 7 to bury the support jack 9 (FIGS. 4A and 4B). B). When the concrete 10 exhibits strength, the rigid state is made permanent. In the figure, reference numeral 3b indicates a foundation beam, and reference numeral 11 indicates an existing column.
[0015]
By placing part or all of the vertical load acting on the footing 3a of the foundation 3 of the existing building 2 on the assembled pile, the assembled pile is shown in FIG. 5 and described in [Prior Art]. Since the magnitude of the vertical load Wtanθ is further added to the horizontal resistance force (F) obtained by the equation of F = 2Rsinθ, a pile having a larger horizontal resistance force is realized.
[0016]
For example, for the horizontal force F in the X direction acting from the right side to the left side in FIG. 2, the pile pile A composed of the two diagonal piles 1, 1 arranged in the X direction effectively resists, An advantageous support state in which the bending moment is reduced is exhibited. Moreover, the pile pile B installed in the Y direction effectively resists the horizontal force F ′ acting in the Y direction in FIG. Thus, the two types of piles A and B that oppose each other against the horizontal force in the X and Y2 directions acting on the entire existing building 2 effectively resist the seismic force of the foundation 3 of the existing building 2. Seismic performance can be improved later. Similarly, stability against liquefaction can be maintained permanently.
[0017]
In addition, in the said Example, it implements for every footing 3a of the outer peripheral part of the existing building as a means to rigidly couple the pile heads of the said piles A and B and the foundation 3 of the existing building 2 so that a load can be transmitted. However, the present invention is not limited to this. In addition, the present invention is not limited to the outer peripheral portion of an existing building, but can be applied to the foundation of the inner peripheral portion in a building having a courtyard or the like. Furthermore, the number of the pile piles A and B in the X direction and the Y direction in FIG. 2 is preferably set according to the direction such as the length and pile diameter of the diagonal pile 1 and the inclination angle of the diagonal pile 1 constituting the pile pile. Therefore, the numbers are not necessarily the same.
[0018]
In addition, when the distance between the footings 3a is short or the length of the slant pile 1 is long, the slant piles 1 are alternately arranged as shown in FIGS. 6A and 6B so that the slant piles do not collide with each other. It is also effective to do.
[0019]
[Effects of the present invention]
According to the method for reinforcing an existing building foundation with a diagonal pile according to the present invention, a pile pile composed of two diagonal piles is constructed in the ground near the foundation of the existing building, and the vertical load of the building is applied to the pile head of the same pile. The horizontal resistance of the existing building foundation can be increased by transmitting to. Therefore, it can sufficiently resist the horizontal load such as seismic force and can improve the seismic performance against the seismic force of the existing building foundation. At the same time, the stability against the liquefaction phenomenon can be permanently maintained, and a highly reliable method of reinforcing an existing building foundation can be realized.
[Brief description of the drawings]
FIG. 1 is a front view schematically showing a method for reinforcing an existing building foundation using a diagonal pile according to the present invention.
FIG. 2 is a plan view schematically showing a method for reinforcing an existing building foundation using a diagonal pile according to the present invention.
FIG. 3A is a front view showing a construction process of a method for reinforcing an existing building foundation using diagonal piles according to the present invention, and B is a right side view thereof.
FIG. 4A is a front view showing a construction completion state of a method for reinforcing an existing building foundation using a diagonal pile according to the present invention, and FIG. 4B is a right side view thereof.
FIG. 5 is a schematic view showing the function of a group pile composed of two diagonal piles in the present invention.
FIG. 6A is a front view showing a pile pile used in another embodiment, and FIG. 6B is a plan view thereof.
FIG. 7 is a schematic diagram showing the function of a group pile composed of two diagonal piles in the prior art.
[Explanation of symbols]
1 diagonal pile 2 existing building 3 foundation 3a footing 3b foundation beam 4 pile 5 ground 6 first footing 7 second footing 8 hydraulic jack 9 support jack 10 concrete 11 existing column 12 newly installed footing

Claims (3)

既存建物の基礎近傍の地盤中に2本の斜杭を平面的に略180度向きを変えて対称的に配置して同斜杭の杭頭部同士を連結し組杭を施工し、前記組杭の杭頭部を連結した第1フーチングを施工し、その直上位置に既存建物の基礎と一体化した第2フーチングを施工し、前記第1フーチングと第2フーチングとの間に油圧ジャッキ、サポートジャッキを略鉛直に併設し、前記油圧ジャッキにより既存建物の基礎に作用している鉛直荷重の一部あるいは全部を前記組杭の杭頭部を連結した第1フーチングを施工し、その直上位置に既存建物の基礎と一体化した第2フーチングを施工し、前記第1フーチングと第2フーチングとの間に油圧ジャッキとサポートジャッキを略鉛直に併設し、前記油圧ジャッキにより既存建物の基礎に作用している鉛直荷重の一部あるいは全部を前記組杭に盛り替え、更にその盛り替え状態を前記サポートジャッキにより固定化し、その後、前記油圧ジャッキを取り外し、前記第1フーチングと第2フーチングとの間にコンクリートを打設して前記サポートジャッキを埋め殺すことより前記組杭の杭頭部と既存建物の基礎とを荷重の伝達が可能に剛結することを特徴とする、斜杭による既存建物基礎の補強方法。 Arranged symmetrically changed planarly approximately 180 degrees facing two oblique pile in the ground for foundation near the existing building by connecting the pile head ends of the piles and construction of Kumikui, the The first footing connecting the pile heads of the group pile is constructed, the second footing integrated with the foundation of the existing building is constructed at the position directly above, and the hydraulic jack between the first footing and the second footing, A support jack is installed substantially vertically, and the first footing that connects the pile heads of the assembled piles to the part or all of the vertical load acting on the foundation of the existing building is constructed by the hydraulic jack, and the position directly above A second footing that is integrated with the foundation of the existing building is installed, and a hydraulic jack and a support jack are provided substantially vertically between the first footing and the second footing. The hydraulic jack acts on the foundation of the existing building. Lead Part or all of the load is replaced by the pile, and the replacement state is fixed by the support jack. Thereafter, the hydraulic jack is removed, and concrete is driven between the first footing and the second footing. and set, characterized the set piles of the pile head and the existing rigidly the foundation to allow load transfer of the building to Turkey than killing fills the support jack, reinforcing the existing building foundation by Hasukui Method. 既存建物の基礎はフーチングであることを特徴とする、請求項1に記載した斜杭による既存建物基礎の補強方法。The method for reinforcing an existing building foundation by using a slant pile according to claim 1, wherein the foundation of the existing building is a footing. 既存建物の基礎は基礎梁であることを特徴とする、請求項1に記載した斜杭による既存建物基礎の補強方法。The method for reinforcing an existing building foundation with a slanted pile according to claim 1, wherein the foundation of the existing building is a foundation beam.
JP00199398A 1998-01-08 1998-01-08 Reinforcement method of existing building foundation with slant pile Expired - Fee Related JP3711527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00199398A JP3711527B2 (en) 1998-01-08 1998-01-08 Reinforcement method of existing building foundation with slant pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00199398A JP3711527B2 (en) 1998-01-08 1998-01-08 Reinforcement method of existing building foundation with slant pile

Publications (2)

Publication Number Publication Date
JPH11200382A JPH11200382A (en) 1999-07-27
JP3711527B2 true JP3711527B2 (en) 2005-11-02

Family

ID=11516999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00199398A Expired - Fee Related JP3711527B2 (en) 1998-01-08 1998-01-08 Reinforcement method of existing building foundation with slant pile

Country Status (1)

Country Link
JP (1) JP3711527B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365238B2 (en) * 2004-02-24 2009-11-18 Jfeスチール株式会社 Foundation reinforcement method for structures
JP4722540B2 (en) * 2005-04-27 2011-07-13 株式会社竹中工務店 Pile foundation structure
JP2007247308A (en) * 2006-03-17 2007-09-27 Takenaka Komuten Co Ltd Pulling-out bearing strength reinforcing for pile group comprised of inclined piles and structure constructed according to the same
JP4705497B2 (en) * 2006-03-27 2011-06-22 株式会社竹中工務店 Reinforcement method of pile foundation of existing building
JP5590446B2 (en) * 2010-05-27 2014-09-17 新日鐵住金株式会社 Foundation reinforcement method for structures
CN104179204B (en) * 2014-08-28 2016-01-20 山西钢铁建设(集团)有限公司 Building contiguous deep foundation ditch basis pile underpinning method
JP5864686B1 (en) * 2014-09-01 2016-02-17 株式会社ダイナミックデザイン Pile foundation
CN106638663B (en) * 2016-11-25 2018-11-20 天地科技股份有限公司 A kind of Subsidence Area high-voltage power transmission tower strengthening of foundation and whole rectification shift method
CN109339087B (en) * 2018-10-08 2023-10-27 贺州通号装配式建筑有限公司 Infrastructure system of low-rise building
KR102134927B1 (en) * 2019-07-04 2020-07-16 한국건설기술연구원 Pre-loading apparatus for foundation pile which can control pre-loading level and foundation reinforcing method therewith
JP2021055347A (en) * 2019-09-30 2021-04-08 大和ハウス工業株式会社 Foundation structure and construction method therefor
KR102173800B1 (en) * 2020-06-24 2020-11-04 한국건설기술연구원 Road transfer apparatus with rotation control unit on new foundation and foundation reinforcement method thereof

Also Published As

Publication number Publication date
JPH11200382A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JP3711527B2 (en) Reinforcement method of existing building foundation with slant pile
KR100956095B1 (en) Prestressed h-pile and soil retaining method for two rows pile using the same
WO2007058464A1 (en) Temporary soil sheathing apparatus
JP2000282469A (en) Cut-beam type earth retaining timbering and pit excavation method
JP4456257B2 (en) Semi-fixed direct foundation and pile foundation structure of steel column
JPH08144284A (en) Landslide protection wall timbering
JP3711528B2 (en) Reinforcement method of existing building foundation with slant pile
JP2003268770A (en) Earth retaining construction method and reinforcing structure of sheet pile used for this construction method
CN109469076B (en) Anchoring structure of deformation slope
JP2004003179A (en) Reinforcing structure for jacket structure and foundation structure using jacket structure
JP4236361B2 (en) Wall head reinforcement underground continuous wall, seismic building, and wall head reinforcement method for underground continuous wall
JP2001271499A (en) Temporary bearing construction method for existing building by steel batter brace member
JP3109038B2 (en) Underground skeleton structure and construction method
JP4502442B2 (en) Seismic foundation, seismic building, and pile reinforcement method
CN110528536A (en) A kind of combined support structure for the non-isometrical bicircular arcs foundation pit in stratum that makes a variation
JP2002047657A (en) Slope retention type building and its construction method
JP2002194748A (en) Foundation constructing method and building foundation structure
JP2987371B2 (en) Underground diaphragm wall
JP2000314133A (en) Horizontal load-bearing pile and method for arranging the same
JP7310081B2 (en) Foundation structure and foundation construction method
JP4236360B2 (en) Reinforced underground continuous wall, seismic building and method for reinforcing underground continuous wall
CN112711820B (en) Circular support rigidity calculation method
CN214462830U (en) House reinforcing structure
CN212053184U (en) Basement bearing structure
JP2006118161A (en) Aseismic reinforcing structure of pier and its construction method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees