JP4236360B2 - Reinforced underground continuous wall, seismic building and method for reinforcing underground continuous wall - Google Patents

Reinforced underground continuous wall, seismic building and method for reinforcing underground continuous wall Download PDF

Info

Publication number
JP4236360B2
JP4236360B2 JP36642599A JP36642599A JP4236360B2 JP 4236360 B2 JP4236360 B2 JP 4236360B2 JP 36642599 A JP36642599 A JP 36642599A JP 36642599 A JP36642599 A JP 36642599A JP 4236360 B2 JP4236360 B2 JP 4236360B2
Authority
JP
Japan
Prior art keywords
underground continuous
continuous wall
wall
reinforced
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36642599A
Other languages
Japanese (ja)
Other versions
JP2001182049A (en
Inventor
義夫 武内
章博 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP36642599A priority Critical patent/JP4236360B2/en
Publication of JP2001182049A publication Critical patent/JP2001182049A/en
Application granted granted Critical
Publication of JP4236360B2 publication Critical patent/JP4236360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建造物の耐震補強に関し、より詳細には補助地中連続壁で補強した補強地中連続壁、該補強地中連続壁により補強された耐震建造物及び地中連続壁の補強方法に関する。
【0002】
【従来の技術】
地中連続壁は、これまで耐震壁、合成壁、二方向耐側圧壁、壁杭等に多用されており、現在に至るまで数多くが施工されている。
【0003】
図4には、従来の地中連続壁を用いた建造物を示す。図4(a)は、建造物の縦断面図を示し、図4(b)は、この建造物の耐震補強等のために用いられる地中連続壁の横断面図を示す。図4(a)に示された建造物は、地上に構築された地上建造物40と、図4(b)に示されるように地下室41を4方向から構築する地中連続壁42とから構成されている。図4(a)に示されるように、地中連続壁42の天端42aは、地上建造物40に連結され、この地中連続壁42は、天端42aから地盤43を通して鉛直方向へと延ばされて、下端42bが、支持層44へと根入れされて、地上構造物40を補強している。
【0004】
図5は、従来の地中連続壁を用いた別の建造物を示した図である。図4と同様に図5(a)は、建造物の縦断面図であり、図5(b)は、地中連続壁の横断面図である。図5(a)に示された建造物は、地上に構築されたフーチング、耐圧盤や地中梁といった構造体50と、図5(b)に示される断面形状を有する地中連続壁51とから構成されている。地中連続壁51の天端51aは、構造体50に連結され、この地中連続壁51は、天端51aから地盤52を通して鉛直方向へと延ばされて、下端51bが、支持層53へと根入れされていて、図4で示された建造物と同様に、構造体50やこの構造体50上に構築される建造物を補強している。
【0005】
上述したように、地中連続壁は、上部構造を支持するための基礎として多く使用されている。しかしながら、大地震、例えばレベル2の大地震により基礎構造が被害を受けると、上部建造物の傾斜・倒壊といった被害に直結する。このため、従来の地中連続壁の耐震性を向上させ、さらに建造物の耐震性を向上させる必要がある。また、新設される地中連続壁の補強ばかりではなく、既設の地中連続壁についても耐震補強を行うことができればよりいっそう、大地震時の建造物の被害を低減させることができる。
【0006】
基礎の地盤側に設けられる耐震構造体の耐震性を向上させるための試みとして従来では、杭頭部を補強した杭が提案されている。このような補強が行われた杭を図6に示す。この耐震補強としては、既製杭や、場所打ち杭60の耐震補強のため、既製杭や場所打ち杭60といった円筒形の耐震構造体の杭頭部61に鋼管62を接続し、杭頭部61と鋼管62とを互いに付着させることにより曲げ剛性を向上させたSC杭が提案されている。このようなSC杭を用いることにより、大地震時に杭頭部へと加えられる曲げ応力に対する耐力が得られている。
【0007】
地中連続壁についても大地震時は、地表面付近において大きな曲げ応力が加えられる。このため、上述したようなSC杭のように壁頭部の曲げ剛性を向上させることが望ましい。しかしながら、これまでのところ地中連続壁は、特開平11−269895号公報、特開平11−148143号公報、特開平11−107295号公報において開示されているように、杭等によって耐震補強された構造物の周囲に単独で設置され、構造物の周囲について地盤変形抑制領域を形成させるために用いられているいるのみであり、地中連続壁自体の耐震補強についてはほとんど検討されていないのが現状である。地中連続壁を単に上部の建造物の基礎として用いるばかりではなく、地中連続壁を地盤変形抑制領域を形成させるために用いる場合であっても地中連続壁を、特に大地震時の大きな曲げ応力の加えられる部分について補強を行うことにより、よりいっそう大地震時の上部の建造物の耐震性を向上させることが可能となる。
【0008】
また、壁頭部を特に多重構造として補強することにより補強地中連続壁の曲げ剛性を向上すれば、地中連続壁に対しての地盤変形抑制領域をさらに形成することが可能となり、地中連続壁を用いて耐震補強と同時に地盤の液状化に対して対処することが可能となる。
【0009】
さらには、新設される地中連続壁ばかりではなく、既設の地中連続壁についても適用できる地中連続壁の補強方法があれば、効果的な地中連続壁の耐震補強及び地盤の液状化対策を提供することが可能となる。
【0010】
また、地中連続壁の強度を効果的に向上させることができれば、地中連続壁の壁厚を低減でき、また鉄筋量を低減させることができるため、より低コストで経済的な地中連続壁による耐震補強が可能となる。
【0011】
したがってこれまで、地中連続壁を耐震補強することにより、地中連続壁を用いた建造物における耐震性をよりいっそう向上させ、地盤の液状化対策にも対応できる補強地中連続壁、該地中連続壁を用いた耐震建造物が望まれており、さらには、新設、既設を問わず地中連続壁の補強を可能とする地中連続壁の補強方法が強く望まれていた。
【0012】
【発明が解決しようとする課題】
したがって本発明は、地中連続壁を耐震補強することにより、地中連続壁を用いた建造物における耐震性をよりいっそう向上させ、地盤の液状化対策にも対応でき、さらには、新設、既設を問わず補強が可能な補強地中連続壁、該地中連続壁を用いた耐震建造物、及び地中連続壁の補強方法を提供するものである。
【0013】
【課題を解決するための手段】
本発明の上記目的は、本発明の補強地中連続壁、耐震建造物及び地中連続壁の補強方法を提供することにより達成される。
【0014】
すなわち、本発明の請求項1の発明によれば、地盤中に延設された地中連続壁と、該地中連続壁に沿って離間して該地中連続壁よりも根入れ深さが浅く構築される補助地中連続壁と、上記地中連続壁と上記補助地中連続壁とをそれぞれの壁頭部で連結する基礎構造体とからなる補強地中連続壁が提供される。
【0015】
本発明の請求項2の発明によれば、上記補助地中連続壁は、鋼板、鉄筋コンクリート板、又はプレキャストコンクリート板で構築されていることを特徴とする補強地中連続壁が提供される。
【0016】
本発明の請求項3の発明によれば、地盤中に延設された地中連続壁と、該地中連続壁に沿って離間して該地中連続壁よりも根入れ深さが浅く構築される補助地中連続壁と、上記地中連続壁と上記補助地中連続壁とをそれぞれの壁頭部で連結する基礎構造体とを備える耐震建造物が提供される。
【0017】
本発明の請求項4の発明によれば、上記補助地中連続壁は、鋼板、鉄筋コンクリート板、又はプレキャストコンクリート板で構築されていることを特徴とする耐震建造物が提供される。
【0018】
本発明の請求項5の発明によれば、地盤中に延設する地中連続壁から離間して、該地中連続壁に沿って該地中連続壁よりも根入れ深さが浅く補助地中連続壁を構築し、上記地中連続壁及び上記補助地中連続壁の壁頭部を基礎構造体により連結することを特徴とする地中連続壁の補強方法が提供される。
【0019】
本発明の請求項6の発明によれば、上記補助地中連続壁は、鋼板、鉄筋コンクリート板、又はプレキャストコンクリート板で構築されていることを特徴とする地中連続壁の補強方法が提供される。
【0020】
【発明の実施の形態】
以下、本発明を図面をもって詳細に説明する。図1は、本発明の補強地中連続壁の構成を示した斜視図である。図1に示した補強地中連続壁は、コンクリート等で構築された地中連続壁1と、この地中連続壁1から離間して延設された補助地中連続壁2a,2bと、地中連続壁1の天端1aに一体化され、さらに補助地中連続壁2a,2bの天端に連結された基礎構造体3とから構成されている。この補助地中連続壁2a,2bは、地中連続壁1よりも根入れ深さが浅くなるようにして構築されている。さらに、地中連続壁1と、補助地中連続壁2a,2bとの間には、クリアランスが形成され、地中連続壁1と補助地中連続壁2a,2bとの間には、地盤4が存在しているのが示されている。
【0021】
図1に示す本発明の補強地中連続壁に用いられる補助地中連続壁2a,2bは、例えば鋼板、鉄筋コンクリート(RC)板、プレキャストコンクリート(PC)板から形成することができる。これらの補助地中連続壁2a,2bの材質は、互いに同じでも異なっていても良い。
【0022】
また図1においては、上述した補助地中連続壁2a,2bの天端は、本発明の補強地中連続壁において壁頭部、すなわち、地中連続壁1の天端1aに隣接して一体とされた基礎構造体3により地中連続壁1へと連結され、補助地中連続壁が全体として一体に構築されているのが示されている。補助地中連続壁2a,2bは、図1中では、地中連続壁1の長さにわたって配置されているのが示されているが、必ずしも地中連続壁1の全長にわたって配置されていなくとも、その一部に沿って配置されているだけでも良い。
【0023】
本発明の補強地中連続壁において用いられる補助地中連続壁2a,2bの地表面G.Lからの鉛直方向への長さは、図1に示されるように、地中連続壁1よりも浅く根入れされる。本発明においては、地中連続壁1の根入れ深さよりも浅ければ補助地中連続壁2a,2bの根入れ深さには特に制限はないが、施工時の取扱や、大規模地震の際の曲げモーメントが地中連続壁1の鉛直方向の長さにわたって地下約10m程度にまで影響することを考えれば、補助地中連続壁2a,2bを、地表面G.Lから地中連続壁1の深さ方向へと約5m〜約10m程度以下の根入れ深さで構築することもできる。
【0024】
また、このようにして用いられる補助地中連続壁2a,2bは、必要な長さにわたって長さ方向に一体となった補助地中連続壁2a,2bから構成することもできるし、必要な最終長さを得られるように複数の短尺の補助セグメントを連結させて構築することもできる。
【0025】
また図1に示される本発明の補強地中連続壁は、補助地中連続壁2a,2bが地中連続壁1の両側に配置されているのが示されている。しかしながら、本発明の補強地中連続壁においては、補助地中連続壁2a,2bを対として用いるのではなく、いずれか一方の側のみに用いることも可能である。
【0026】
本発明の上述した補強地中連続壁は、種々の工法により構築することができる。例えば、本発明の補強地中連続壁は、地中連続壁1を構築する際に上述の補助地中連続壁2a,2bの構築される部分を含めて周辺土壌を固定した後、まず地中連続壁1をコンクリート等を打設することにより構築し、次いで補助地中連続壁2a,2b用の掘削を行ってその掘削部へとコンクリート等を打設して補助地中連続壁2a,2bを構築する。次いで、本発明の補強地中連続壁は、地中連続壁1と補助地中連続壁2a,2bとを連結させるように基礎構造体3を構築することにより構築することができる。上述した地中連続壁1を構築する際の工法には特に制限はなく、具体的には例えば地中連続鉄筋コンクリート壁工法、ソイルセメント壁工法、泥水固化壁工法といった周知の工法を挙げることができる。
【0027】
本発明に用いる基礎構造体3は、種々の方法で形成することができ、プレキャストコンクリートとされていても良く、またコンクリートを場所打ちして形成することも可能である。地中連続壁1と、基礎構造体3との連結方法としては、種々の方法を挙げることができる。例えば、基礎構造体3としてプレキャストコンクリートを用いる場合には、地中連続壁1及び補助地中連続壁2a,2bの各天端部又はその付近にボルト、止め金具などを設け、基礎構造体3を構成させるプレキャストコンクリート板に設けた通孔や止め金具等により、各地中連続壁1,2a,2bと基礎構造体3とを連結することができる。また、基礎構造体3をコンクリートの場所打ちで形成する場合には、地中連続壁1,2a,2bの天端部にアンカー筋等を構築しておき、基礎構造体3の打設時にのみ込ませて一体化させることも可能である。
【0028】
また、本発明の補助地中連続壁2a,2bを構築する際に鉄筋コンクリートを用いる場合には、上述した地中連続壁1の構築方法のうち、適切な工法を用いて補助地中連続壁2a,2b内部に鉄筋をのみ込ませることにより構築することができる。さらに本発明において、鋼板やプレキャストコンクリート板を用いて補助地中連続壁2a,2bを構築する場合には、固定化された地盤4を鋼板やプレキャストコンクリート板を収容できるように掘削し、この後プレキャストコンクリート板を掘削部に挿入して必要に応じて埋め戻すといった工法を用いることも可能である。鋼板や、プレキャストコンクリート板により構築された補助地中連続壁2a,2bの基礎構造体3への連結についても上述した地中連続壁1について説明したと同様な方法により行うことができる。
【0029】
また、本発明の地中連続壁の補強方法は、上述したように地中連続壁を新設する際に用いることもできるが、既設の地中連続壁を補強するためにも適用することができる。
【0030】
既設の地中連続壁1の補強を行う場合には、まず、必要とされる場合には上部の建造物を取り壊して、地中連続壁1を露出させ、この地中連続壁1の両側部を地中連続壁1の両側部から離間させて所定幅だけ掘削し、鋼板、鉄筋コンクリート板、プレキャストコンクリート板等で上述した工法により補助地中連続壁2a,2bを構築した後、基礎構造体3を構築して、地中連続壁1と、補助地中連続壁2a,2bと基礎構造体3とを一体化させる。このようにすれば既設の地中連続壁1の壁頭部を補強することが可能となる。
【0031】
図2は、本発明の補強地中連続壁を用いた建造物の縦断面図を示した図である。図2に示されるように、地表面G.Lには、フーチング基礎、耐圧盤といった基礎構造体3が設けられている。また、図示しないものの基礎構造体3としては、地中梁を用いることもできる。この基礎構造体3の下側の地盤4中には、本発明の補強地中連続壁が構築されており、補強された地中連続壁1の天端1aが基礎構造体3へと連結され、地中連続壁1の下側端1bは、支持層5にまで根入れされていて、基礎構造体3及び基礎構造体3上に構築される図示しない建造物を補強している。また、図2では、補助地中連続壁2a,2bは、プレキャストコンクリート板又は鉄筋コンクリート板を用いて構築される実施例を示しており、補助地中連続壁2a,2bは、それぞれの天端部が基礎構造体3に一体化されているのが示されている。本発明によれば、上述した方法を用いて補強された補強地中連続壁により基礎構造体3が補強され、この基礎構造体3上に図示しない建造物を構築して、耐震性の向上した耐震建造物が構築される。
【0032】
以下図3を用いて本発明の補強地中連続壁の補強作用について詳細に説明する。図3は、本発明の補強地中連続壁に対してレベル2程度の大地震により加えられる応力を詳細に示した図である。本発明の補強地中連続壁は、図3に示されているように鋼板、鉄筋コンクリート板、プレキャストコンクリート板といった補助地中連続壁2a,2bにより補強されている。地中連続壁1と補助地中連続壁2a,2bとの間にはクリアランスが設けられており、大地震時に地中連続壁1と補助地中連続壁2a,2bとが異なった周期・振幅で独立して変形することが可能とされる。このように補助地中連続壁2a,2bを用いることにより、補助地中連続壁2a,2bのみで地中連続壁1に直接加えられる地震のエネルギーの大部分を吸収させることが可能となる。このため、地中連続壁1は、従来に増して地震のエネルギーから保護されることになる。
【0033】
さらに図3を参照すると、大地震により上部建造物からの慣性力が補強地中連続壁に作用すると、図3に示されるように、壁頭部に最大の曲げモーメントFbendが発生する。この曲げモーメントFbendが地中連続壁1の強度を上回る場合には、従来の地中連続壁1は破壊されてしまい、それに伴って上部建造物が傾斜したり、倒壊する。しかしながら本発明の補強地中連続壁は、壁頭部が地中連続壁1の壁頭部両側に設けられた補助地中連続壁2a,2bにより保持されているので、地震のエネルギーはまず、補助地中連続壁2a,2bにより吸収される。この結果、建物荷重を支持する地中連続壁1へと直接加えられるエネルギーが低減でき、地中連続壁1自体が破壊しないように保護性が向上できる。地中連続壁1が上述したように保護されるため、地中連続壁1により補強された建造物は、大地震に際して地中連続壁1の破壊により生じる倒壊・傾斜を免れることができることになる。また、補助地中連続壁2a,2bは、基礎構造体3と共に地中連続壁1に対する地盤変形抑制領域を形成させて、地盤4の液状化を抑制し、よりいっそう大地震時の建造物の倒壊を防止することを可能とする。
【0034】
さらに、本発明の補強地中連続壁に用いられる補助地中連続壁2a,2bは、地中連続壁1から地盤4中へとそのクリアランス分だけ厚さ方向に突出し、さらに根入れ深さ分だけ延在しているので、基礎構造体3と一体となってFbendが加えられることによる壁頭部の揺動に対応した上下動に対し、ストッパとして機能して、よりいっそう壁頭部の変位を小さくすることを可能とする。このようにして地下連続壁1に加えられる曲げモーメントFbendによる曲げ変形及び面外方向への剪断力FOPS(Out-Of-Plane-Shear)により生じる面外への剪断変形の影響を低減することが可能となる。
【0035】
さらに、補強地中連続壁に加えられる面内方向の剪断力FIPS(In-Plane-Shear)についても、補助地中連続壁2a,2bが基礎構造体3により地中連続壁1に一体化されているため、面内方向に対してもストッパとして機能し、面内方向への剪断力FIPSによる面内方向への剪断変形も抑制できることになる。補助地中連続壁1を地中連続壁1の特に一部に沿って配置させる場合には、地中連続壁1に継手部6が設けられているのであれば、補助地中連続壁2a,2bを継手部6に沿った部分に構築することも可能である。地中連続壁1の継手部6に沿って補助地中連続壁2a,2bを構築することにより、特に地中連続壁1の継手部6の剪断変形及び曲げ変形を抑制することが可能となる。
【0036】
【発明の効果】
これまで説明したように、本発明の補強地中連続壁によれば、大地震時に最も応力が加えられる部分が補強された高強度の地中連続壁を提供することができる。
【0037】
また、本発明の補強地中連続壁によれば、壁頭部を補強することにより補強地中連続壁の曲げ剛性を向上することができるので建造物の耐震性を向上することが可能となる。
【0038】
さらに、本発明の補強地中連続壁によれば、周辺地盤を拘束することによる地盤変形抑制領域を形成することが可能となり、地下連続壁を用いた地盤の液状化対策を提供することが可能となる。
【0039】
また、本発明の補強地中連続壁を用いた耐震建造物によれば、大地震時に最も応力が加えられる部分が補強された高強度の地中連続壁を用いて耐震補強されているので、耐震性を向上できると共に、地盤変形抑制領域を形成することが可能となり、地中連続壁を用いた地盤の液状化に高い耐久性を付与することができる。
【0040】
さらに、本発明の地中連続壁の補強方法は、新設される地中連続壁ばかりではなく、既設の地中連続壁についても補助地中連続壁を接着、接合等するすることにより適用でき、効果的な地中連続壁の耐震補強及び地盤の液状化対策を提供することができる。
【0041】
また、本発明の補強地中連続壁によれば、地中連続壁の強度を全体として向上させることが可能となるので、地中連続壁の壁厚や鉄筋量を減少させることが可能となり、より経済的に地中連続壁による耐震補強が可能となる。
【0042】
これまで、本発明を図面に示された実施例をもって詳細に説明してきたが、本発明においては、寸法、形状、材料、施工手順について、本発明の効果が得られる限り、いかなるものでも用いることができることはいうまでもないことである。
【図面の簡単な説明】
【図1】本発明の補強地中連続壁を示した斜視図。
【図2】本発明の補強地中連続壁を用いた建造物を示した図。
【図3】本発明の補強地中連続壁の作用を示した図。
【図4】従来の地中連続壁を用いた建造物を示した図。
【図5】従来の地中連続壁を用いた建造物を示した図。
【図6】従来の杭頭部が補強された杭を示した図。
【符号の説明】
1…地中連続壁
1a…天端
1b…下側端
2a,2b…補助地中連続壁
3…基礎構造体
4…地盤
5…支持層
6…耐震壁連結部
G.L…地表面
40…地上建造物
41…地下室
42…地中連続壁
43…地盤
44…支持層
50…構造体
51…地中連続壁
52…地盤
53…支持層
60…杭
61…杭頭部
62…鋼管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to seismic reinforcement of a building, and more particularly, a reinforced underground continuous wall reinforced with an auxiliary underground continuous wall, an earthquake resistant building reinforced with the continuous underground continuous wall, and a method of reinforcing the underground continuous wall. About.
[0002]
[Prior art]
Up to now, underground continuous walls have been widely used for earthquake-resistant walls, composite walls, two-way lateral pressure-resistant walls, wall piles, etc., and many have been constructed so far.
[0003]
FIG. 4 shows a conventional building using underground continuous walls. Fig.4 (a) shows the longitudinal cross-sectional view of a building, FIG.4 (b) shows the cross-sectional view of the underground continuous wall used for seismic reinforcement etc. of this building. The building shown in FIG. 4A is composed of an above-ground building 40 constructed on the ground and an underground continuous wall 42 that constructs the basement 41 from four directions as shown in FIG. 4B. Has been. As shown in FIG. 4A, the top end 42a of the underground continuous wall 42 is connected to the ground structure 40, and the underground continuous wall 42 extends from the top end 42a through the ground 43 in the vertical direction. Thus, the lower end 42 b is embedded in the support layer 44 and reinforces the ground structure 40.
[0004]
FIG. 5 is a view showing another building using a conventional underground continuous wall. 5A is a longitudinal sectional view of the building, and FIG. 5B is a transverse sectional view of the underground continuous wall as in FIG. The building shown in FIG. 5A includes a structure 50 such as a footing, a pressure platen, and an underground beam built on the ground, and an underground continuous wall 51 having a cross-sectional shape shown in FIG. It is composed of The top end 51 a of the underground continuous wall 51 is connected to the structure 50, the underground continuous wall 51 is extended in the vertical direction from the top end 51 a through the ground 52, and the lower end 51 b to the support layer 53. As in the building shown in FIG. 4, the structure 50 and the building built on the structure 50 are reinforced.
[0005]
As described above, the underground continuous wall is often used as a foundation for supporting the superstructure. However, if the foundation structure is damaged by a large earthquake, for example, a level 2 earthquake, it directly leads to damage such as tilting or collapse of the superstructure. For this reason, it is necessary to improve the earthquake resistance of the conventional underground continuous wall and further improve the earthquake resistance of the building. Moreover, not only the newly installed underground continuous wall but also the existing underground continuous wall can be seismically strengthened, the damage to buildings during a large earthquake can be further reduced.
[0006]
Conventionally, piles with reinforced pile heads have been proposed as an attempt to improve the earthquake resistance of the earthquake resistant structure provided on the ground side of the foundation. FIG. 6 shows a pile subjected to such reinforcement. As the seismic reinforcement, a steel pipe 62 is connected to a pile head 61 of a cylindrical seismic structure such as a ready-made pile or a cast-in-place pile 60 for the seismic reinforcement of the ready-made pile or cast-in-place pile 60. An SC pile has been proposed in which the bending rigidity is improved by attaching the steel pipe 62 and the steel pipe 62 to each other. By using such an SC pile, the yield strength against bending stress applied to the pile head during a large earthquake is obtained.
[0007]
A large bending stress is applied to the underground continuous wall near the ground surface during a large earthquake. For this reason, it is desirable to improve the bending rigidity of a wall head like SC pile as mentioned above. However, so far, the underground continuous wall has been seismically reinforced by piles or the like as disclosed in JP-A-11-269895, JP-A-11-148143, and JP-A-11-107295. It is installed alone around the structure and is only used to form a ground deformation suppression area around the structure, and there has been little investigation into seismic reinforcement of the underground continuous wall itself. Currently. The underground continuous wall is not only used as the foundation of the upper building, but even when the underground continuous wall is used to form a ground deformation suppression region, By reinforcing the portion to which the bending stress is applied, it becomes possible to improve the earthquake resistance of the upper structure in the event of a larger earthquake.
[0008]
In addition, if the bending rigidity of the reinforced underground continuous wall is improved by reinforcing the wall head as a multiple structure, it becomes possible to further form a ground deformation suppression region for the underground continuous wall. It is possible to cope with liquefaction of the ground simultaneously with seismic reinforcement using a continuous wall.
[0009]
Furthermore, if there is a method of reinforcing the underground continuous wall that can be applied not only to the newly installed underground continuous wall but also to the existing underground continuous wall, effective seismic reinforcement of the underground continuous wall and liquefaction of the ground It is possible to provide countermeasures.
[0010]
Moreover, if the strength of the underground continuous wall can be effectively improved, the wall thickness of the underground continuous wall can be reduced and the amount of reinforcing bars can be reduced. Seismic reinforcement by walls is possible.
[0011]
Therefore, the reinforced underground continuous wall that can further improve the earthquake resistance of the building using the underground continuous wall and cope with the liquefaction of the ground by seismically reinforcing the underground continuous wall. There has been a demand for an earthquake-resistant building using a middle continuous wall, and there has been a strong demand for a method of reinforcing the underground continuous wall that enables reinforcement of the underground continuous wall regardless of whether it is newly installed or existing.
[0012]
[Problems to be solved by the invention]
Therefore, the present invention can further improve the earthquake resistance of the building using the underground continuous wall by seismically reinforcing the underground continuous wall, and can cope with liquefaction countermeasures for the ground. The present invention provides a reinforced underground continuous wall that can be reinforced regardless of the above, an earthquake-resistant building using the underground continuous wall, and a method for reinforcing the underground continuous wall.
[0013]
[Means for Solving the Problems]
The above object of the present invention is achieved by providing the reinforced underground continuous wall, seismic building, and method of reinforcing the underground continuous wall of the present invention.
[0014]
That is, according to the invention of claim 1 of the present invention, the underground continuous wall extending in the ground and the depth of penetration from the underground continuous wall are spaced apart along the underground continuous wall. Provided is a reinforced underground continuous wall comprising a shallow underground continuous wall constructed shallowly and a foundation structure that connects the underground continuous wall and the auxiliary underground continuous wall at respective wall heads.
[0015]
According to invention of Claim 2 of this invention, the said underground underground continuous wall is constructed | assembled with the steel plate, the reinforced concrete board, or the precast concrete board, The reinforcement underground continuous wall characterized by the above-mentioned is provided.
[0016]
According to the invention of claim 3 of the present invention, the underground continuous wall extending in the ground, and the construction is made so as to be spaced along the underground continuous wall and have a deeper penetration depth than the underground continuous wall. There is provided an earthquake resistant building comprising a sub-continuous underground continuous wall, and a foundation structure that connects the underground continuous wall and the auxiliary underground continuous wall at respective wall heads.
[0017]
According to invention of Claim 4 of this invention, the said underground underground continuous wall is built with the steel plate, the reinforced concrete board, or the precast concrete board, The earthquake-resistant building characterized by the above-mentioned is provided.
[0018]
According to the invention of claim 5 of the present invention, the auxiliary ground is spaced from the underground continuous wall extending in the ground and has a shallower depth along the underground continuous wall than the underground continuous wall. A method for reinforcing an underground continuous wall is provided, wherein an intermediate continuous wall is constructed, and the wall heads of the underground continuous wall and the auxiliary underground continuous wall are connected by a foundation structure.
[0019]
According to the sixth aspect of the present invention, there is provided a method for reinforcing an underground continuous wall, wherein the auxiliary underground continuous wall is constructed of a steel plate, a reinforced concrete plate, or a precast concrete plate. .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a configuration of a reinforced underground continuous wall according to the present invention. The reinforced underground continuous wall shown in FIG. 1 includes an underground continuous wall 1 constructed of concrete or the like, auxiliary underground continuous walls 2a and 2b extending away from the underground continuous wall 1, The base structure 3 is integrated with the top end 1a of the middle continuous wall 1 and is connected to the top ends of the sub ground continuous walls 2a and 2b. These auxiliary underground continuous walls 2 a and 2 b are constructed so that the depth of penetration is shallower than the underground continuous wall 1. Further, a clearance is formed between the underground continuous wall 1 and the auxiliary underground continuous walls 2a and 2b, and the ground 4 is provided between the underground continuous wall 1 and the auxiliary underground continuous walls 2a and 2b. Is shown to exist.
[0021]
The auxiliary underground continuous walls 2a and 2b used for the reinforcing underground continuous wall of the present invention shown in FIG. 1 can be formed of, for example, a steel plate, a reinforced concrete (RC) plate, or a precast concrete (PC) plate. The material of these auxiliary underground continuous walls 2a and 2b may be the same as or different from each other.
[0022]
In FIG. 1, the top ends of the above-described auxiliary underground continuous walls 2 a and 2 b are integrally adjacent to the top of the wall, that is, the ceiling end 1 a of the underground continuous wall 1 in the reinforced underground continuous wall of the present invention. It is shown that the substructure continuous wall is integrally constructed as a whole by being connected to the underground continuous wall 1 by the foundation structure 3 made to be. In FIG. 1, the auxiliary underground continuous walls 2 a and 2 b are shown to be arranged over the length of the underground continuous wall 1, but the auxiliary underground continuous walls 2 a and 2 b are not necessarily arranged over the entire length of the underground continuous wall 1. It may be arranged only along a part thereof.
[0023]
Ground surface G. of auxiliary underground continuous walls 2a and 2b used in the reinforcing underground continuous wall of the present invention. As shown in FIG. 1, the length from L in the vertical direction is deeper than the underground continuous wall 1. In the present invention, if the depth of the underground continuous wall 1 is shallower than that of the underground continuous wall 1, the depth of the underground underground walls 2a, 2b is not particularly limited. Considering that the bending moment at the time affects the underground continuous wall 1 up to about 10 m below the vertical length, the auxiliary underground continuous walls 2a and 2b are connected to the ground surface G. It can also be constructed with a penetration depth of about 5 m to about 10 m or less from L to the depth direction of the underground continuous wall 1.
[0024]
Further, the auxiliary underground continuous walls 2a and 2b used in this way can be constituted by the auxiliary underground continuous walls 2a and 2b integrated in the length direction over a necessary length, and the final required. It can also be constructed by connecting a plurality of short auxiliary segments so as to obtain a length.
[0025]
Further, the reinforced underground continuous wall of the present invention shown in FIG. 1 shows that the auxiliary underground continuous walls 2a and 2b are arranged on both sides of the underground continuous wall 1. However, in the reinforced underground continuous wall of the present invention, the auxiliary underground continuous walls 2a and 2b are not used as a pair, but can be used only on one side.
[0026]
The above-mentioned reinforced underground continuous wall of the present invention can be constructed by various methods. For example, the reinforced underground continuous wall according to the present invention, after constructing the underground continuous wall 1, after fixing the surrounding soil including the part where the above-described auxiliary underground continuous walls 2 a and 2 b are constructed, The continuous wall 1 is constructed by placing concrete or the like, and then excavating the auxiliary underground continuous walls 2a and 2b and placing concrete or the like into the excavated portion to provide the auxiliary underground continuous walls 2a and 2b. Build up. Next, the reinforced underground continuous wall of the present invention can be constructed by constructing the foundation structure 3 so as to connect the underground continuous wall 1 and the auxiliary underground continuous walls 2a and 2b. There is no restriction | limiting in particular in the construction method at the time of constructing the underground continuous wall 1 mentioned above, For example, well-known construction methods, such as an underground continuous reinforced concrete wall construction method, a soil cement wall construction method, and a muddy water solidification wall construction method, can be mentioned. .
[0027]
The foundation structure 3 used in the present invention can be formed by various methods, may be precast concrete, or may be formed by cast-in concrete. Various methods can be cited as a method of connecting the underground continuous wall 1 and the foundation structure 3. For example, when precast concrete is used as the foundation structure 3, bolts, fasteners, etc. are provided at or near the top ends of the underground continuous wall 1 and the auxiliary underground continuous walls 2a, 2b. The continuous walls 1, 2a, 2b and the foundation structure 3 can be connected to each other by through holes, stoppers, or the like provided in the precast concrete plate that constitutes. In addition, when the foundation structure 3 is formed by concrete cast-in-place, anchor bars or the like are constructed at the top ends of the underground continuous walls 1, 2a, 2b, and are inserted only when the foundation structure 3 is placed. It is also possible to integrate them.
[0028]
Moreover, when using reinforced concrete when constructing the auxiliary underground continuous walls 2a and 2b of the present invention, among the above-described underground continuous wall 1 construction methods, an auxiliary underground continuous wall 2a is used. , 2b can be constructed by inserting only the reinforcing bars. Further, in the present invention, when the auxiliary underground continuous walls 2a and 2b are constructed using a steel plate or a precast concrete plate, the fixed ground 4 is excavated so as to accommodate the steel plate or the precast concrete plate. It is also possible to use a method of inserting a precast concrete plate into the excavation part and backfilling as necessary. The connection of the underground underground continuous walls 2a, 2b constructed of a steel plate or a precast concrete plate to the foundation structure 3 can also be performed by the same method as described for the underground continuous wall 1 described above.
[0029]
In addition, the underground continuous wall reinforcing method of the present invention can be used when newly installing an underground continuous wall as described above, but can also be applied to reinforce an existing underground continuous wall. .
[0030]
When reinforcing the existing underground continuous wall 1, first, if necessary, the upper building is demolished to expose the underground continuous wall 1, and both sides of the underground continuous wall 1 are exposed. Are separated from both sides of the underground continuous wall 1 and excavated by a predetermined width. After the auxiliary underground continuous walls 2a and 2b are constructed by the above-described method using steel plates, reinforced concrete plates, precast concrete plates, etc., the foundation structure 3 Is constructed, and the underground continuous wall 1, the auxiliary underground continuous walls 2a and 2b, and the foundation structure 3 are integrated. In this way, the wall head of the existing underground continuous wall 1 can be reinforced.
[0031]
FIG. 2 is a view showing a longitudinal sectional view of a building using the reinforced underground continuous wall of the present invention. As shown in FIG. L is provided with a foundation structure 3 such as a footing foundation and a pressure platen. In addition, although not shown, the foundation structure 3 may be an underground beam. In the ground 4 below the foundation structure 3, the reinforced underground continuous wall of the present invention is constructed, and the top end 1 a of the reinforced underground continuous wall 1 is connected to the foundation structure 3. The lower end 1 b of the underground continuous wall 1 is embedded in the support layer 5 and reinforces the foundation structure 3 and a building (not shown) constructed on the foundation structure 3. Moreover, in FIG. 2, the auxiliary underground continuous walls 2a and 2b have shown the Example constructed | assembled using a precast concrete board or a reinforced concrete board, and the auxiliary underground continuous walls 2a and 2b are each top end parts. Is integrated into the substructure 3. According to the present invention, the foundation structure 3 is reinforced by the reinforced underground continuous wall reinforced using the above-described method, and a building (not shown) is constructed on the foundation structure 3 to improve the earthquake resistance. A seismic building is constructed.
[0032]
Hereinafter, the reinforcing action of the reinforced underground continuous wall of the present invention will be described in detail with reference to FIG. FIG. 3 is a diagram showing in detail the stress applied to the reinforced underground continuous wall of the present invention by a large earthquake of level 2 or so. As shown in FIG. 3, the reinforced underground continuous wall of the present invention is reinforced by auxiliary underground continuous walls 2a and 2b such as a steel plate, a reinforced concrete plate, and a precast concrete plate. Clearance is provided between the underground continuous wall 1 and the auxiliary underground continuous walls 2a and 2b, and the period and amplitude of the underground continuous wall 1 and the auxiliary underground continuous walls 2a and 2b differ during a large earthquake. It is possible to transform independently. By using the auxiliary underground continuous walls 2a and 2b in this way, it is possible to absorb most of the energy of the earthquake directly applied to the underground continuous wall 1 only by the auxiliary underground continuous walls 2a and 2b. For this reason, the underground continuous wall 1 will be protected from the energy of an earthquake more than before.
[0033]
Further, referring to FIG. 3, when the inertial force from the upper building acts on the reinforced underground continuous wall due to a large earthquake, the maximum bending moment F bend is generated at the wall head as shown in FIG. When this bending moment F bend exceeds the strength of the underground continuous wall 1, the conventional underground continuous wall 1 is destroyed, and accordingly, the upper building is inclined or collapses. However, since the reinforced underground continuous wall of the present invention is held by the auxiliary underground continuous walls 2a and 2b provided on both sides of the wall head of the underground continuous wall 1, the energy of the earthquake is It is absorbed by the auxiliary underground continuous walls 2a and 2b. As a result, the energy directly applied to the underground continuous wall 1 that supports the building load can be reduced, and the protection can be improved so that the underground continuous wall 1 itself is not destroyed. Since the underground continuous wall 1 is protected as described above, the building reinforced by the underground continuous wall 1 can avoid the collapse / inclination caused by the destruction of the underground continuous wall 1 in the event of a large earthquake. . In addition, the auxiliary underground continuous walls 2a and 2b, together with the foundation structure 3, form a ground deformation suppression region for the underground continuous wall 1, thereby suppressing the liquefaction of the ground 4, and the structure of the building at the time of an even greater earthquake. It is possible to prevent collapse.
[0034]
Further, the auxiliary underground continuous walls 2a and 2b used for the reinforced underground continuous wall of the present invention protrude in the thickness direction from the underground continuous wall 1 into the ground 4 by the clearance, and further, the depth of the penetration depth. Therefore, it functions as a stopper against the vertical movement corresponding to the rocking of the wall head due to the addition of F bend integrated with the foundation structure 3, so that the wall head It is possible to reduce the displacement. In this way, the influence of the bending deformation caused by the bending moment F bend applied to the underground continuous wall 1 and the shearing force F OPS (Out-Of-Plane-Shear) in the out-of-plane direction is reduced. It becomes possible.
[0035]
Furthermore, with respect to in-plane shear force FIPS (In-Plane-Shear) applied to the reinforced underground continuous wall, the auxiliary underground continuous walls 2a and 2b are integrated into the underground continuous wall 1 by the foundation structure 3. Therefore, it functions as a stopper in the in-plane direction, and the shear deformation in the in-plane direction by the shear force F IPS in the in- plane direction can be suppressed. In the case where the auxiliary underground continuous wall 1 is arranged along a part of the underground continuous wall 1, if the joint portion 6 is provided on the underground continuous wall 1, the auxiliary underground continuous wall 2a, It is also possible to construct 2b in a part along the joint part 6. By constructing the auxiliary underground continuous walls 2 a and 2 b along the joint portion 6 of the underground continuous wall 1, it is possible to particularly suppress shear deformation and bending deformation of the joint portion 6 of the underground continuous wall 1. .
[0036]
【The invention's effect】
As explained so far, according to the reinforced underground continuous wall of the present invention, it is possible to provide a high-strength underground continuous wall in which a portion to which stress is most applied during a large earthquake is reinforced.
[0037]
Further, according to the reinforced underground continuous wall of the present invention, it is possible to improve the flexural rigidity of the reinforced underground continuous wall by reinforcing the wall head, so that the earthquake resistance of the building can be improved. .
[0038]
Furthermore, according to the reinforced underground continuous wall of the present invention, it is possible to form a ground deformation suppression region by restraining the surrounding ground, and it is possible to provide a countermeasure for ground liquefaction using the underground continuous wall. It becomes.
[0039]
In addition, according to the earthquake-resistant building using the reinforced underground continuous wall of the present invention, the portion to which stress is most applied during a large earthquake is reinforced with earthquake resistance using the high-strength underground continuous wall reinforced, While improving earthquake resistance, it becomes possible to form a ground deformation suppression region, and high durability can be imparted to the liquefaction of the ground using the underground continuous wall.
[0040]
Furthermore, the method of reinforcing the underground continuous wall of the present invention can be applied not only by newly installing the underground continuous wall, but also by bonding, joining, etc. the auxiliary underground continuous wall to the existing underground continuous wall, It can provide effective seismic reinforcement for underground continuous walls and countermeasures for liquefaction of ground.
[0041]
Further, according to the reinforced underground continuous wall of the present invention, it becomes possible to improve the strength of the underground continuous wall as a whole, so it becomes possible to reduce the wall thickness and the amount of reinforcing bars of the underground continuous wall, Seismic reinforcement by underground continuous walls is possible more economically.
[0042]
The present invention has been described in detail with reference to the embodiments shown in the drawings. However, in the present invention, any dimension, shape, material, and construction procedure can be used as long as the effects of the present invention can be obtained. It goes without saying that it is possible.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a reinforced underground continuous wall according to the present invention.
FIG. 2 is a view showing a building using a reinforced underground continuous wall according to the present invention.
FIG. 3 is a diagram showing the action of a reinforced underground continuous wall according to the present invention.
FIG. 4 is a view showing a building using a conventional underground continuous wall.
FIG. 5 is a view showing a building using a conventional underground continuous wall.
FIG. 6 is a view showing a conventional pile reinforced with a pile head.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Underground continuous wall 1a ... Top end 1b ... Lower end 2a, 2b ... Auxiliary underground continuous wall 3 ... Foundation structure 4 ... Ground 5 ... Support layer 6 ... Earthquake-resistant wall connection part G. L ... Ground surface 40 ... Ground building 41 ... Basement 42 ... Underground continuous wall 43 ... Ground 44 ... Support layer 50 ... Structure 51 ... Underground continuous wall 52 ... Ground 53 ... Support layer 60 ... Pile 61 ... Pile head 62 ... Steel pipe

Claims (6)

地盤中に延設された地中連続壁と、該地中連続壁に沿って該地中連続壁よりも根入れ深さが浅く構築される補助地中連続壁と、前記地中連続壁と前記補助地中連続壁とをそれぞれの壁頭部で連結する基礎構造体とからなる補強地中連続壁であって、前記地中連続壁と前記補助地中連続壁との間にクリアランスが設けられる、補強地中連続壁And extended by the underground continuous wall in the ground, an auxiliary underground continuous wall embedment depth than該地during continuous wall along the continuous wall during該地is constructed shallow, and the underground continuous wall A reinforced underground continuous wall comprising a foundation structure that connects the auxiliary underground continuous walls with respective wall heads , wherein a clearance is provided between the underground continuous wall and the auxiliary underground continuous wall. Reinforced underground continuous wall . 前記補助地中連続壁は、鋼板、鉄筋コンクリート板、又はプレキャストコンクリート板で構築されていることを特徴とする請求項1に記載の補強地中連続壁。  The reinforced underground continuous wall according to claim 1, wherein the auxiliary underground continuous wall is constructed of a steel plate, a reinforced concrete plate, or a precast concrete plate. 地盤中に延設された地中連続壁と、該地中連続壁に沿って該地中連続壁よりも根入れ深さが浅く構築される補助地中連続壁と、前記地中連続壁と前記補助地中連続壁とをそれぞれの壁頭部で連結する基礎構造体とを備える耐震建造物であって、前記地中連続壁と前記補助地中連続壁との間にクリアランスが設けられる、耐震建造物And extended by the underground continuous wall in the ground, an auxiliary underground continuous wall embedment depth than該地during continuous wall along the continuous wall during該地is constructed shallow, and the underground continuous wall An earthquake-resistant building comprising a foundation structure that connects the auxiliary underground continuous walls with respective wall heads, and a clearance is provided between the underground continuous wall and the auxiliary underground continuous wall. Seismic building . 前記補助地中連続壁は、鋼板、鉄筋コンクリート板、又はプレキャストコンクリート板で構築されていることを特徴とする請求項3に記載の耐震建造物。  The earthquake-resistant building according to claim 3, wherein the auxiliary underground continuous wall is constructed of a steel plate, a reinforced concrete plate, or a precast concrete plate. 地盤中に延設する地中連続壁との間にクリアランスを設けて、該地中連続壁に沿って該地中連続壁よりも根入れ深さが浅い補助地中連続壁を構築し、前記地中連続壁及び前記補助地中連続壁の壁頭部を基礎構造体により連結することを特徴とする地中連続壁の補強方法。Providing a clearance between the underground continuous wall extending into the ground, and constructing an auxiliary underground continuous wall having a shallower depth than the underground continuous wall along the underground continuous wall; A method for reinforcing an underground continuous wall, comprising connecting the underground continuous wall and a wall head of the auxiliary underground continuous wall by a foundation structure. 前記補助地中連続壁は、鋼板、鉄筋コンクリート板、又はプレキャストコンクリート板で構築されていることを特徴とする請求項5に記載の地中連続壁の補強方法。  The method of reinforcing an underground continuous wall according to claim 5, wherein the auxiliary underground continuous wall is constructed of a steel plate, a reinforced concrete plate, or a precast concrete plate.
JP36642599A 1999-12-24 1999-12-24 Reinforced underground continuous wall, seismic building and method for reinforcing underground continuous wall Expired - Lifetime JP4236360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36642599A JP4236360B2 (en) 1999-12-24 1999-12-24 Reinforced underground continuous wall, seismic building and method for reinforcing underground continuous wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36642599A JP4236360B2 (en) 1999-12-24 1999-12-24 Reinforced underground continuous wall, seismic building and method for reinforcing underground continuous wall

Publications (2)

Publication Number Publication Date
JP2001182049A JP2001182049A (en) 2001-07-03
JP4236360B2 true JP4236360B2 (en) 2009-03-11

Family

ID=18486761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36642599A Expired - Lifetime JP4236360B2 (en) 1999-12-24 1999-12-24 Reinforced underground continuous wall, seismic building and method for reinforcing underground continuous wall

Country Status (1)

Country Link
JP (1) JP4236360B2 (en)

Also Published As

Publication number Publication date
JP2001182049A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP4069509B2 (en) Construction method of reverse struts in the outer periphery of underground excavation space
JP6650257B2 (en) Mountain retaining structure and construction method thereof
JP3855198B2 (en) Seismic reinforcement structure for pile foundation structures
JP4456257B2 (en) Semi-fixed direct foundation and pile foundation structure of steel column
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP2001303584A (en) Structure for connecting head of foundation pile with footing
JP4236361B2 (en) Wall head reinforcement underground continuous wall, seismic building, and wall head reinforcement method for underground continuous wall
JP4236360B2 (en) Reinforced underground continuous wall, seismic building and method for reinforcing underground continuous wall
JP2004027727A (en) Foundation pile and construction method for foundation pile
JP4502442B2 (en) Seismic foundation, seismic building, and pile reinforcement method
JP2000328586A (en) Retaining wall
JP2003268770A (en) Earth retaining construction method and reinforcing structure of sheet pile used for this construction method
JP3963326B2 (en) Seismic reinforcement structure for bridge pier and its construction method
JPH1077644A (en) Earthquake resisting pile foundation construction method
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
JP3138317U (en) Building
JP5587725B2 (en) Reinforcement method for existing foundations for structures
JP6774774B2 (en) Pile foundation structure
KR102523155B1 (en) Connecting structure of middle girder and construction method thereof
KR101520771B1 (en) H-pile composited with v-shape steel plate and reinforced concrete for open cut construction
JP7536396B2 (en) Methods for reinforcing the foundation footing of existing bridge piers
JP5267242B2 (en) Pier foundation structure and bridge pier foundation construction method
KR20090098126A (en) Reinforcement
JPH08302689A (en) Construction method for skeleton of underground exterior wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

R150 Certificate of patent or registration of utility model

Ref document number: 4236360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term