JP4362391B2 - Furnace wall shape measuring method and furnace wall shape measuring apparatus - Google Patents

Furnace wall shape measuring method and furnace wall shape measuring apparatus Download PDF

Info

Publication number
JP4362391B2
JP4362391B2 JP2004063450A JP2004063450A JP4362391B2 JP 4362391 B2 JP4362391 B2 JP 4362391B2 JP 2004063450 A JP2004063450 A JP 2004063450A JP 2004063450 A JP2004063450 A JP 2004063450A JP 4362391 B2 JP4362391 B2 JP 4362391B2
Authority
JP
Japan
Prior art keywords
furnace wall
shape
measuring
furnace
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004063450A
Other languages
Japanese (ja)
Other versions
JP2005249698A (en
Inventor
和公 山田
雅人 杉浦
道隆 境田
功 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004063450A priority Critical patent/JP4362391B2/en
Publication of JP2005249698A publication Critical patent/JP2005249698A/en
Application granted granted Critical
Publication of JP4362391B2 publication Critical patent/JP4362391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、コークス炉炭化室等の高温の炉室内における炉壁形状の変化を迅速かつ容易に測定するための炉壁形状測定方法及び装置に関するものである。   The present invention relates to a furnace wall shape measuring method and apparatus for quickly and easily measuring a change in a furnace wall shape in a high temperature furnace chamber such as a coke oven carbonization chamber.

コークス炉の炭化室をはじめとする高温の炉室においては、炉室を構成する炉壁が耐火物で構成され、該耐火物の劣化状況を的確に把握することが必要である。特にコークス炉の炭化室は、過酷な条件下で通常20年以上の長期間にわたって連続操業されるものであり、炭化室を構成する耐火煉瓦は熱的、化学的および機械的要因によって徐々に劣化する。そのため耐火煉瓦の劣化に起因して炉壁に凹凸が発生することによるコークスの押し詰まりが生じたり、耐火煉瓦が脱落したりする。このような耐火煉瓦の脱落などの事故が生じるとその補修は困難であり、操業に著しい影響が及ぼされる。従って、炭化室内の特に炉壁を構成する耐火煉瓦の状況を常時把握しておくことは、コークス炉操業管理上極めて重要である。   In a high-temperature furnace chamber such as a coking furnace carbonization chamber, the furnace wall constituting the furnace chamber is made of a refractory material, and it is necessary to accurately grasp the deterioration state of the refractory material. In particular, the carbonization chamber of a coke oven is operated continuously for a long period of 20 years or more under severe conditions, and the refractory bricks constituting the carbonization chamber gradually deteriorate due to thermal, chemical and mechanical factors. To do. Therefore, coke clogging occurs due to unevenness in the furnace wall due to deterioration of the refractory brick, or the refractory brick falls off. If such an accident such as falling off of a refractory brick occurs, it is difficult to repair, and the operation is significantly affected. Therefore, it is extremely important for coke oven operation management to keep track of the state of refractory bricks that constitute the furnace wall in the carbonization chamber.

コークス炉炭化室内に挿入し、炉内高さ方向複数箇所について測定装置と炉壁との間隔を測定し、測定を行いつつ測定装置を炉の奥行き方向に移動する方法が知られている。測定装置と炉壁との間隔測定値に基づいて、炉内の高さ方向及び奥行き方向の全域について炉壁の凹凸を測定することができる。   A method is known that is inserted into a coke oven carbonization chamber, measures the distance between the measuring device and the furnace wall at a plurality of locations in the furnace height direction, and moves the measuring device in the depth direction of the furnace while performing the measurement. Based on the measured distance between the measuring device and the furnace wall, the unevenness of the furnace wall can be measured for the entire area in the height direction and the depth direction in the furnace.

特許文献1には、リニアイメージカメラ、レーザー光源、鏡面を備えるコークス炉壁面観察装置が記載されている。リニアイメージカメラは、鏡面に映った高さ方向に延びる直線状の視野において炉壁の像を観察することができ、レーザー光源から射出したレーザービームを同じく鏡面に反射させて壁面斜め方向から照射する。壁面に形成されたレーザースポットをリニアイメージカメラで撮影する。壁面に窪みがあると窪みの深さ分、レーザースポットの位置がずれるので、このずれ量から表面の凹凸を知ることができる。炭化室内の観察装置を前進させながら撮影を行うことにより、炉壁の全体にわたって、壁面の凹凸情報を得ることができる。特許文献1に記載のものは、4台のリニアイメージカメラによって炭化室炉壁の高さ方向全長をカバーし、16台のレーザー投光器を用いて高さ方向16箇所の炉壁凹凸を評価することができる。   Patent Document 1 describes a coke oven wall surface observation apparatus including a linear image camera, a laser light source, and a mirror surface. The linear image camera can observe the image of the furnace wall in a linear visual field extending in the height direction reflected on the mirror surface, and the laser beam emitted from the laser light source is also reflected from the mirror surface and irradiated from the diagonal direction of the wall surface. . The laser spot formed on the wall is photographed with a linear image camera. If there is a dent on the wall surface, the position of the laser spot is displaced by the depth of the dent, so the surface irregularities can be known from this deviation. By performing imaging while advancing the observation device in the carbonization chamber, it is possible to obtain unevenness information on the wall surface over the entire furnace wall. The one described in Patent Document 1 covers the entire length in the height direction of the carbonization chamber furnace wall with four linear image cameras, and evaluates the furnace wall irregularities at 16 points in the height direction using 16 laser projectors. Can do.

コークス炉炭化室は炉内温度が1000℃と高温であるので、測定装置は大がかりな水冷構造になるが、炉の奥行き方向が16mと長いので、炭化室の一方の端部から挿入した測定装置を炉底部で接触支持することなく炉の最奥まで移動することは困難である。特許文献1に記載のものについては、測定装置の炉内挿入部分にシューを設け、シューを炭化室底部に接触させつつ炉内移動を行っている。このため、測定装置の炉内移動時に、測定装置が炉幅方向に蛇行したり、あるいは傾斜することを避けられない。測定装置が蛇行したり傾斜すると、それによって測定装置と壁面との距離が変化するので、距離測定によって壁面の形状を測定することが困難となる。   The coke oven carbonization chamber has a high temperature inside the furnace of 1000 ° C, so the measuring device has a large water cooling structure, but the depth direction of the furnace is as long as 16 m, so the measuring device inserted from one end of the carbonization chamber It is difficult to move to the innermost part of the furnace without supporting it at the bottom of the furnace. As for the device described in Patent Document 1, a shoe is provided in the in-furnace insertion portion of the measuring device, and the in-furnace movement is performed while the shoe is in contact with the bottom of the carbonization chamber. For this reason, when the measuring apparatus moves in the furnace, it is inevitable that the measuring apparatus meanders or tilts in the furnace width direction. If the measuring device meanders or tilts, the distance between the measuring device and the wall surface changes accordingly, making it difficult to measure the shape of the wall surface by distance measurement.

特許文献2においては、コークス炉壁面までの距離を測定する距離測定器を先端に搭載したランスと、ランスをコークス炉に対して挿入/退出させる駆動手段とを備えるコークス炉壁面の観察装置において、ランスの先端から後端方向に延びる耐熱性線材と、耐熱性線材の偏向角を検出する手段を備えたものが記載されている。耐熱性線材の偏向角から、ランス先端部が左右にどれだけ触れているかを検出することができる。高さ方向に2組の耐熱性線材を配置すれば、ランス先端部の傾斜を検出することもできる。これにより、ランス先端の距離測定器の絶対位置を求めることができるので、距離測定器を搭載したランス先端部がたとえ蛇行や傾斜をしたとしても、距離測定器測定データに位置補正を行って炉壁形状を正確に把握することが可能となる。   In Patent Document 2, in a coke oven wall surface observation apparatus including a lance having a distance measuring device for measuring a distance to a coke oven wall surface and a driving means for inserting / removing the lance with respect to the coke oven, A heat-resistant wire extending from the front end of the lance toward the rear end and a means for detecting the deflection angle of the heat-resistant wire are described. From the deflection angle of the heat resistant wire, it is possible to detect how much the tip of the lance touches the left and right. If two sets of heat-resistant wires are arranged in the height direction, the inclination of the lance tip can also be detected. As a result, the absolute position of the distance measuring device at the tip of the lance can be obtained, so even if the tip of the lance equipped with the distance measuring device meanders or tilts, the position data is corrected and the furnace is corrected. It is possible to accurately grasp the wall shape.

コークス炉炭化室は、左右の炉壁がほぼ平行に配置されており、健全時における左右の炉壁間の距離は正確に把握することができる。従って、左右の炉壁間の距離(炉幅)を測定し、測定した炉幅と健全時における炉幅とを比較すれば、炉壁損傷部を検出することが可能である。また、炉幅測定であれば、炉幅測定器が炉内で蛇行したり傾斜したりしてもその影響を受けずに測定を行うことができる。例えば特許文献3に記載の炉幅測定装置が知られている。   In the coke oven carbonization chamber, the left and right furnace walls are arranged almost in parallel, so that the distance between the left and right furnace walls in a healthy state can be accurately grasped. Therefore, if the distance between the left and right furnace walls (furnace width) is measured and the measured furnace width is compared with the furnace width at the time of soundness, it is possible to detect a damaged furnace wall. Further, in the case of the furnace width measurement, even if the furnace width measuring device meanders or tilts in the furnace, the measurement can be performed without being affected by the influence. For example, a furnace width measuring device described in Patent Document 3 is known.

特開2000−266475号公報JP 2000-266475 A 特開平9−279147号公報JP-A-9-279147 特開2002−213922号公報JP 2002-213922 A

特許文献3に記載されたような、左右壁間の炉幅を測定して炉壁の変形状況を推定する方法では、左右どちらの炉壁が変形しているのかを判別することができない。また、この技術は炉壁のある一点の高さでの奥行き方向の炉壁プロフィルを測定する技術であり、炉壁変形状況についての3次元形状を把握することができない。   In the method of measuring the furnace width between the left and right walls and estimating the deformation state of the furnace wall as described in Patent Document 3, it is impossible to determine which of the left and right furnace walls is deformed. In addition, this technique is a technique for measuring a furnace wall profile in the depth direction at a certain height of the furnace wall, and the three-dimensional shape of the furnace wall deformation state cannot be grasped.

前述のとおり、炭化室炉内に挿入した測定装置は、炉内で蛇行や傾斜の発生が避けられない。図9(a)は、炭化室の奥行き方向に垂直な断面を取り出した図である。炭化室炉壁7の高さ方向全長にわたってレーザー距離計13を配置し、測定装置と炉壁7との距離を測定しようとしている。レーザー距離計13を収納した測定筒11の下部にはシュー16が配置され、炭化室の炉底18は測定装置とシュー16を介して接触している。図において、蛇行21と傾斜22が発生している状況を示している。   As described above, the measuring device inserted into the carbonization chamber furnace cannot avoid the occurrence of meandering or tilting in the furnace. Fig.9 (a) is the figure which took out the cross section perpendicular | vertical to the depth direction of a carbonization chamber. A laser distance meter 13 is arranged over the entire length in the height direction of the carbonization chamber furnace wall 7 to measure the distance between the measuring device and the furnace wall 7. A shoe 16 is disposed below the measuring tube 11 in which the laser distance meter 13 is housed, and a furnace bottom 18 of the carbonization chamber is in contact with the measuring device via the shoe 16. In the figure, a state in which meandering 21 and inclination 22 occur is shown.

炉壁との距離を測定して炉壁の変形状況を評価する方法において、特許文献2に記載のように、ランス先端から後端方向に延びる耐熱性線材と、その線材の偏向角を検出する手段を備えたものについては、これによってランス先端部の蛇行と傾斜の程度をある程度は把握することができる。しかし、コークス炉炭化室は奥行きが16mに及ぶため、耐熱性線材の偏向角のみからの検出では十分な精度を上げることが困難となる。   In a method of measuring the distance from the furnace wall and evaluating the deformation state of the furnace wall, as described in Patent Document 2, a heat-resistant wire extending from the lance tip to the rear end and a deflection angle of the wire are detected. For those equipped with means, it is possible to grasp to some extent the degree of meandering and inclination of the lance tip. However, since the coke oven carbonization chamber has a depth of 16 m, it is difficult to increase the accuracy by detecting only the deflection angle of the heat-resistant wire.

本発明は、測定装置の蛇行や傾斜に影響されることなく、正確に炉壁の変形状況を把握することのできる炉壁形状測定方法及び装置を提供することを目的とする。   An object of the present invention is to provide a furnace wall shape measuring method and apparatus capable of accurately grasping the state of deformation of the furnace wall without being affected by meandering or inclination of the measuring apparatus.

炉壁との距離測定手段を備えた測定装置は、水冷の測定筒などに収納されており、十分な剛性を有している。従って、たとえ測定装置が炉内で蛇行21や傾斜22をしたとしても、測定した炉壁プロフィル6それ自体の形状は炉壁7そのものの形状を保持している。図9(b)のような炉壁7の形状を有するとき、炉壁プロフィル6としては図9(c)のようなプロフィルを得る必要がある。これに対し、測定装置が蛇行したときは、図9(d)に示すように炉壁プロフィル6の形状を維持しつつ測定装置と炉壁との距離が全体として長くなったり短くなったりする。測定装置が傾斜したときは、図9(e)に示すように炉壁プロフィル6の形状を維持しつつ測定装置に対して傾斜した像として得られる。   The measuring device provided with a means for measuring the distance to the furnace wall is housed in a water-cooled measuring tube or the like and has sufficient rigidity. Therefore, even if the measuring device has meandering 21 and inclination 22 in the furnace, the shape of the measured furnace wall profile 6 itself maintains the shape of the furnace wall 7 itself. When having the shape of the furnace wall 7 as shown in FIG. 9B, it is necessary to obtain the profile as shown in FIG. 9C as the furnace wall profile 6. On the other hand, when the measuring apparatus meanders, the distance between the measuring apparatus and the furnace wall becomes longer or shorter as a whole while maintaining the shape of the furnace wall profile 6 as shown in FIG. 9 (d). When the measuring device is tilted, an image tilted with respect to the measuring device is obtained while maintaining the shape of the furnace wall profile 6 as shown in FIG.

炉壁形状測定装置を用いて検出しようとしている炉壁形状異常は、レンガの陥没や局部的なカーボン付着などであり、炉壁表面全体から見ると局部的な凹凸発生として現れる。局部的な凹凸の発生箇所以外については、基本的に健全時の炉壁形状が保持されていることが多い。   A furnace wall shape abnormality to be detected using the furnace wall shape measuring device is a depression of a brick or local carbon adhesion, and appears as local unevenness when viewed from the entire furnace wall surface. Except for the location of local irregularities, the shape of the furnace wall in a healthy state is basically maintained in many cases.

一方、本発明が測定の対象とする炉壁の形状については、コークス炉炭化室をはじめとして、健全時の炉壁形状が既知である。コークス炉炭化室であれば、健全時の炉壁形状は平面である。ここで、測定装置の距離測定箇所の配列方向3における健全時の炉壁断面形状を基準形状5とする。コークス炉炭化室であれば、基準形状5は直線となる。   On the other hand, regarding the shape of the furnace wall to be measured by the present invention, the shape of the furnace wall in a healthy state including the coke oven carbonization chamber is known. In the case of a coke oven carbonization chamber, the shape of the furnace wall when sound is flat. Here, the normal furnace wall cross-sectional shape in the arrangement direction 3 of the distance measurement locations of the measuring device is defined as a reference shape 5. In the case of a coke oven carbonization chamber, the reference shape 5 is a straight line.

測定した炉壁プロフィル6において、局部的な凹凸発生箇所以外は健全時の炉壁形状が保持されているのであるから、測定した炉壁プロフィル6のうち最も多くの測定点の上に乗るように基準形状5を当てはめれば、基準形状5は測定した炉壁プロフィル6のうち健全時の炉壁形状が保持された部分に合致させることができる。その上で、当てはめた基準形状5と炉壁プロフィル6との不一致部分が、局部的な凹凸の発生箇所であるとして把握することができる。   In the measured furnace wall profile 6, the shape of the furnace wall in a healthy state is maintained except for the portion where the local unevenness is generated, so that it is placed on the most measurement points in the measured furnace wall profile 6. If the reference shape 5 is applied, the reference shape 5 can be matched with a portion of the measured furnace wall profile 6 where the furnace wall shape at the time of soundness is maintained. In addition, it is possible to grasp that the mismatched portion between the fitted reference shape 5 and the furnace wall profile 6 is a location where local irregularities are generated.

本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)健全時の炉壁形状が既知である炉壁の形状を測定する方法であって、測定装置上に3箇所以上の距離測定箇所2を配列し、前記距離測定箇所の配列方向3と異なる方向4に測定装置を移動しつつ、各距離測定箇所2における測定装置と炉壁7との距離を同時に測定し、健全時の炉壁形状であって距離測定箇所の配列方向3における断面形状を基準形状5とし、前記距離測定で得られる計測した炉壁プロフィル6に最も良く合致するように基準形状5を当てはめ、当てはめた基準形状5と計測した炉壁プロフィル6との差異をもって炉壁形状変化とすることにより、測定装置の蛇行や傾斜に影響されない炉壁形状測定を行うことを特徴とする炉壁形状測定方法。
(2)健全時の炉壁形状が平面である炉壁の形状を測定する方法であって、距離測定箇所2を炉の高さ方向に炉壁に沿って配列し、測定装置を移動する方向4は炉の奥行き方向の炉壁に沿う方向であり、基準形状5は直線であることを特徴とする上記(1)に記載の炉壁形状測定方法。
(3)計測した炉壁プロフィル6に最も良く合致するように基準形状5を当てはめるに際し、ハフ変換によって基準形状5を検出することを特徴とする上記(1)又は(2)に記載の炉壁形状測定方法。
(4)鏡面32と、画像撮像装置31と、光ビーム発生装置33とを有し、鏡面32に映る炉壁の像を画像撮像装置31で撮像し、画像撮像装置31と異なった位置に配置した光ビーム発生装置33から発生した光ビーム34を鏡面32に反射させて炉壁の画像撮像装置31の視野36範囲内に照射し、炉壁に照射する光ビーム照射位置(ビームスポット35)が距離測定箇所2に該当し、炉壁に照射され画像撮像装置で撮像された光ビームの照射位置に基づいて測定装置と炉壁との距離を測定することを特徴とする上記(1)乃至(3)のいずれかに記載の炉壁形状測定方法。
(5)コークス炉炭化室の炉壁形状を測定することを特徴とする上記(1)乃至(4)のいずれかに記載の炉壁形状測定方法。
This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) A method for measuring the shape of a furnace wall in which the shape of the furnace wall in a healthy state is known, wherein three or more distance measurement points 2 are arranged on a measuring device, and the arrangement direction 3 of the distance measurement points is While moving the measuring device in different directions 4, the distance between the measuring device and the furnace wall 7 at each distance measuring point 2 is measured at the same time. Is the reference shape 5, and the reference shape 5 is fitted so as to best match the measured furnace wall profile 6 obtained by the distance measurement, and the furnace wall shape has a difference between the applied reference shape 5 and the measured furnace wall profile 6. A furnace wall shape measurement method characterized by performing a furnace wall shape measurement that is not affected by meandering or tilting of the measuring device .
(2) A method for measuring the shape of a furnace wall having a flat furnace wall shape in a healthy state, in which the distance measurement points 2 are arranged along the furnace wall in the height direction of the furnace, and the measuring device is moved. 4 is a direction along the furnace wall in the depth direction of the furnace, and the reference shape 5 is a straight line.
(3) The furnace wall according to (1) or (2) above, wherein when the reference shape 5 is applied so as to best match the measured furnace wall profile 6, the reference shape 5 is detected by Hough transform. Shape measurement method.
(4) The mirror surface 32, the image pickup device 31, and the light beam generation device 33 are provided. The image of the furnace wall reflected on the mirror surface 32 is picked up by the image pickup device 31 and arranged at a position different from the image pickup device 31. The light beam 34 generated from the generated light beam generator 33 is reflected on the mirror surface 32 and irradiated within the field of view 36 of the image pickup device 31 on the furnace wall, and a light beam irradiation position (beam spot 35) for irradiating the furnace wall is obtained. It corresponds to the distance measurement point 2 above, wherein the measuring the distance between the measuring device and the furnace wall on the basis of the irradiation position of the imaged light beam in the imaging apparatus is irradiated onto the oven wall (1) to ( The furnace wall shape measuring method according to any one of 3).
(5) The furnace wall shape measuring method according to any one of (1) to (4), wherein the furnace wall shape of the coke oven carbonization chamber is measured.

(6)健全時の炉壁形状が平面である炉壁の形状を測定する装置であって、測定装置上に3箇所以上の距離測定箇所2を炉の高さ方向に炉壁に沿って配列し、炉の奥行き方向の炉壁に沿う方向に測定装置を移動しつつ、各距離測定箇所2における測定装置と炉壁との距離を距離測定装置8で同時に測定して信号処理装置9に入力し、信号処理装置9は、距離測定結果に基づいて計測した炉壁プロフィル6を求め、さらに計測した炉壁プロフィル6に最も良く合致するように基準直線5aを当てはめ、当てはめた基準直線5aと計測した炉壁プロフィル6との差異をもって炉壁形状変化とすることにより、測定装置の蛇行や傾斜に影響されない炉壁形状測定を行うことを特徴とする炉壁形状測定装置。
(7)計測した炉壁プロフィル6に最も良く合致するように基準直線5aを当てはめるに際し、ハフ変換によって基準直線5aを検出することを特徴とする上記(6)に記載の炉壁形状測定装置。
(8)鏡面32と、画像撮像装置31と、光ビーム発生装置33とを有し、鏡面32に映る炉壁7の像を画像撮像装置31で撮像し、画像撮像装置31と異なった位置に配置した光ビーム発生装置33から発生した光ビーム34を鏡面32に反射させて炉壁の画像撮像装置31の視野36範囲内に照射し、炉壁に照射する光ビーム照射位置(ビームスポット35)が距離測定箇所2に該当し、距離測定装置8は、炉壁7に照射され画像撮像装置31で撮像された光ビームの照射位置に基づいて測定装置と炉壁との距離を測定することを特徴とする上記(6)又は(7)に記載の炉壁形状測定装置。
(9)コークス炉炭化室の炉壁形状を測定することを特徴とする上記(6)乃至(8)のいずれかに記載の炉壁形状測定装置。
(6) An apparatus for measuring the shape of a furnace wall having a flat furnace wall shape when sound, and arranging three or more distance measurement points 2 on the measuring device along the furnace wall in the height direction of the furnace The distance between the measurement device and the furnace wall at each distance measurement point 2 is simultaneously measured by the distance measurement device 8 and input to the signal processing device 9 while moving the measurement device along the furnace wall in the depth direction of the furnace. Then, the signal processing device 9 obtains the measured furnace wall profile 6 based on the distance measurement result, and further fits the reference straight line 5a so as to best match the measured furnace wall profile 6, and measures the fitted reference straight line 5a. A furnace wall shape measuring apparatus that performs a furnace wall shape measurement that is not affected by meandering or inclination of the measuring apparatus by making a furnace wall shape change with a difference from the furnace wall profile 6.
(7) The furnace wall shape measuring apparatus according to (6), wherein the reference straight line 5a is detected by Hough transformation when the reference straight line 5a is applied so as to best match the measured furnace wall profile 6.
(8) The mirror surface 32, the image capturing device 31, and the light beam generating device 33 are provided. The image of the furnace wall 7 reflected on the mirror surface 32 is captured by the image capturing device 31, and is located at a position different from that of the image capturing device 31. The light beam 34 generated from the arranged light beam generator 33 is reflected by the mirror surface 32 and irradiated within the field of view 36 of the image pickup device 31 on the furnace wall, and the light beam irradiation position (beam spot 35) for irradiating the furnace wall There corresponds to the distance measuring portion 2, the distance measuring device 8, to measure the distance between the measuring device and the furnace wall on the basis of the irradiation position of the imaged light beam in the image pickup device 31 is irradiated to the furnace wall 7 The furnace wall shape measuring apparatus according to (6) or (7), characterized in that it is characterized in that
(9) The furnace wall shape measuring apparatus according to any one of (6) to (8), wherein the furnace wall shape of the coke oven carbonization chamber is measured.

本発明は、健全時の炉壁形状であって距離測定箇所の配列方向における断面形状を基準形状とし、計測した炉壁プロフィルに最も良く合致するように基準形状を当てはめ、当てはめた基準形状と計測した炉壁プロフィルとの差異をもって炉壁形状変化とすることにより、たとえ形状測定装置が炉内において蛇行や傾斜をしたとしても、その影響を除去した上で局部的な凹凸の発生箇所を的確に把握することができる。   The present invention is a furnace wall shape at the time of soundness, and a cross-sectional shape in the arrangement direction of distance measurement points is set as a reference shape, and the reference shape is applied so as to best match the measured furnace wall profile, and the applied reference shape and measurement are applied. By making the furnace wall shape change with the difference from the furnace wall profile, even if the shape measuring device meanders or tilts in the furnace, the influence of local unevenness is accurately removed after removing the influence. I can grasp it.

コークス炉炭化室の炉壁形状を測定するための装置として、図2に示すものを例にとって説明を行う。図2(a)は炭化室内に配置された測定装置の横断面図であり、(b)はB−B矢視断面図である。測定装置は、炭化室17の奥行きと同程度の長さを有するランス12と、ランス先端に設置された測定筒11を有する。測定筒11は、水冷二重構造とし、高さは炭化室17の高さよりやや低い高さで直立する。測定筒11の内部にはレーザー距離計13を高さ方向に片側で40個配置し、レーザー距離計13が面する測定筒11の部分には観察窓14が配置される。測定筒11を炭化室内部に挿入し、高さ方向40箇所について測定装置と炉壁との距離を同時に測定することができる。即ち、レーザー距離計13が距離測定装置8を構成する。炭化室の一方の端部から測定装置を炭化室内に挿入し、炭化室内の奥行き方向を移動方向4として順次移動することにより、炭化室奥行き方向の全範囲について距離測定を行うことができる。ランス12の先端下部にはシュー16が設けられ、シュー16が炭化室の炉底18に接地しつつ炭化室内を移動することとなる。   As an apparatus for measuring the furnace wall shape of the coke oven carbonization chamber, the apparatus shown in FIG. 2 will be described as an example. Fig.2 (a) is a cross-sectional view of the measuring apparatus arrange | positioned in a carbonization chamber, (b) is a BB arrow sectional drawing. The measuring device has a lance 12 having a length approximately the same as the depth of the carbonization chamber 17 and a measuring cylinder 11 installed at the tip of the lance. The measuring tube 11 has a water-cooled double structure, and the height stands upright at a height slightly lower than the height of the carbonization chamber 17. Forty laser distance meters 13 are arranged on one side in the height direction inside the measuring tube 11, and an observation window 14 is arranged in the portion of the measuring tube 11 facing the laser distance meter 13. The measuring cylinder 11 can be inserted into the inside of the carbonization chamber, and the distance between the measuring device and the furnace wall can be measured simultaneously at 40 points in the height direction. That is, the laser distance meter 13 constitutes the distance measuring device 8. By inserting a measuring device from one end of the carbonization chamber into the carbonization chamber and sequentially moving the depth direction in the carbonization chamber as the movement direction 4, distance measurement can be performed for the entire range in the carbonization chamber depth direction. A shoe 16 is provided at the lower end of the tip of the lance 12, and the shoe 16 moves within the carbonization chamber while being in contact with the furnace bottom 18 of the carbonization chamber.

レーザー距離計13を配置した位置が本発明の距離測定箇所2に該当する。また、レーザー距離計13を配列した垂直方向が距離測定箇所の配列方向3となる。健全時の炭化室炉壁7は平面である。ここで本発明において、健全時の炉壁形状であって距離測定箇所の配列方向3における断面形状を基準形状5としている。より具体的には、炉壁7と垂直な平面であって距離測定箇所の配列方向3を含む面を考え、この平面で切られた健全時の炉壁表面の形状が基準形状5である。健全時の炭化室炉壁は平面であるから、距離測定箇所の配列方向3、即ち垂直方向における健全時の炉壁断面形状(基準形状5)は直線となる。   The position where the laser distance meter 13 is disposed corresponds to the distance measurement point 2 of the present invention. The vertical direction in which the laser rangefinders 13 are arranged is the arrangement direction 3 of the distance measurement points. The coking chamber furnace wall 7 in a healthy state is flat. Here, in the present invention, the shape of the furnace wall in a healthy state and the cross-sectional shape in the arrangement direction 3 of the distance measurement locations is the reference shape 5. More specifically, a plane perpendicular to the furnace wall 7 and including the arrangement direction 3 of the distance measurement locations is considered, and the shape of the furnace wall surface in a healthy state cut by this plane is the reference shape 5. Since the coking chamber furnace wall at the time of soundness is a plane, the cross section shape (reference shape 5) at the time of soundness in the arrangement direction 3 of the distance measurement locations, that is, the vertical direction, is a straight line.

炭化室炉内に挿入された測定装置を用い、炉内の奥行き方向に移動しながら40個のレーザー距離計13によって測定装置と炉壁との距離を測定する。距離測定結果を用いて、信号処理装置9において計測した炉壁プロフィル6が算出される。測定装置はシュー16で炭化室炉底18に接触しながら進行するので、炭化室炉底18の凹凸の影響を受け、実際には、測定装置は蛇行21や左右への傾斜22を繰り返しながら進行することとなる。その結果、計測した炉壁プロフィル6は蛇行21や傾斜22の影響を強く受け、図1(a)に示すような3次元の炉壁プロフィル6が得られることとなる。   Using a measuring device inserted in the carbonization chamber furnace, the distance between the measuring device and the furnace wall is measured by 40 laser distance meters 13 while moving in the depth direction in the furnace. The furnace wall profile 6 measured in the signal processing device 9 is calculated using the distance measurement result. Since the measuring device advances while contacting the carbonization chamber furnace bottom 18 with the shoe 16, it is affected by the unevenness of the carbonization chamber furnace bottom 18, and actually the measuring device advances while repeating meandering 21 and inclination 22 to the left and right. Will be. As a result, the measured furnace wall profile 6 is strongly influenced by the meandering 21 and the inclination 22, and a three-dimensional furnace wall profile 6 as shown in FIG. 1A is obtained.

この炉壁プロフィル6について、炉の奥行き方向各位置毎に、炉の垂直方向の炉壁プロフィル6を抜き出すことができる。図1(b)のプロット(■)がそれである。この垂直方向の炉壁プロフィル6に基準形状5である直線を当てはめる。直線を当てはめるに際しては、炉壁プロフィル6を構成する測定点のうち、より多くの測定点に近接するように当てはめを行う。通常の炉壁プロフィル6においては、測定点の大部分は健全時の炉壁形状をそのまま維持している。一部の領域でのみレンガの陥没で凹形状になっていたり、逆にカーボン付着で凸形状となっている。従って、より多くの測定点に近接するように直線の当てはめを行った結果として、その直線が健全時の炉壁形状に近似しており、その直線から離れたところに位置している測定点が、炉壁凹凸の発生部位であることが明らかとなる。即ち、当てはめた基準形状5と計測した炉壁プロフィル6との差異をもって炉壁形状変化とすることができる。   With respect to the furnace wall profile 6, the furnace wall profile 6 in the vertical direction of the furnace can be extracted for each position in the depth direction of the furnace. This is the plot (■) in FIG. A straight line as the reference shape 5 is applied to the vertical furnace wall profile 6. When fitting the straight line, the fitting is performed so as to be closer to more measurement points among the measurement points constituting the furnace wall profile 6. In the normal furnace wall profile 6, most of the measurement points maintain the furnace wall shape when healthy. Only in some areas, it is concave due to the depression of the brick, or conversely due to carbon adhesion. Therefore, as a result of fitting a straight line so as to be closer to more measurement points, the straight line approximates the shape of the furnace wall in a healthy state, and measurement points located away from the straight line are It becomes clear that this is a site where the furnace wall irregularities are generated. In other words, the furnace wall shape can be changed by the difference between the fitted reference shape 5 and the measured furnace wall profile 6.

基準形状の当てはめによって健全時の炉壁形状を推定し、測定装置の蛇行や傾斜の傾向を有効に消去するためには、距離測定箇所2の個数は最低3箇所は必要であり、多ければ多いほど好ましい。距離測定箇所2が10箇所以上あるとより好ましい。20箇所以上であればさらに好ましい。   In order to estimate the shape of the furnace wall in a healthy state by fitting the reference shape and effectively eliminate the tendency of the meandering and tilting of the measuring device, the number of distance measurement points 2 is required to be at least three, and more is more The more preferable. More preferably, there are 10 or more distance measurement points 2. More preferably, the number is 20 or more.

炉壁プロフィルに基準形状を当てはめるに際して、適切なアルゴリズムを採用することができれば、自動的に当てはめを行うことができるので好ましい。本発明においては、ハフ変換(Hough変換)によって基準形状5の検出を行うこととすると、最も良好な結果を得ることができる。ハフ変換とは、直線や円などのパラメータで表現できる図形を画像中から自動検出するときなどに利用されるための手法である。   When applying the reference shape to the furnace wall profile, it is preferable if an appropriate algorithm can be adopted, since it can be automatically applied. In the present invention, the best result can be obtained if the reference shape 5 is detected by the Hough transform. The Hough transform is a technique used for automatically detecting a figure that can be expressed by parameters such as a straight line and a circle from an image.

図8(a)に示すような、x−y平面における一つの直線(y=ax+b)を考える。この直線に原点から垂線を下ろし、その長さをρ、x軸とのなす角をθとすれば、
ρ=xcosθ+ysinθ
とあらわすことができる。すなわち、ρ−θ平面における1点(ρ、θ)がわかれば、x−y平面における一つの直線が定まることになる。ここで、点(ρ、θ)を直線y=ax+bのハフ変換と呼ぶ。また、x−y平面の一点(x0、y0)を通る傾きの異なる直線の集まりは、ρ−θ平面では、
ρ=x0cosθ+y0sinθ
という曲線で表現することができる。このときの図8(a)に示す3点の各点(P1、P2、P3)を通る直線群の軌跡をρ−θ平面に描くと図8(b)のようになる。もし、この3点が同一直線上に乗っているとすれば、3点に対応するρ−θ平面上の軌跡は1点で交わることになる。
Consider one straight line (y = ax + b) in the xy plane as shown in FIG. If a perpendicular is drawn from the origin to this straight line, its length is ρ, and the angle formed with the x axis is θ,
ρ = x cos θ + ysin θ
It can be expressed. That is, if one point (ρ, θ) on the ρ-θ plane is known, one straight line on the xy plane is determined. Here, the point (ρ, θ) is called a Hough transform of a straight line y = ax + b. A collection of straight lines having different inclinations passing through one point (x 0 , y 0 ) on the xy plane is
ρ = x 0 cos θ + y 0 sin θ
It can be expressed by the curve. At this time, when the locus of the straight line group passing through each of the three points (P 1 , P 2 , P 3 ) shown in FIG. 8A is drawn on the ρ-θ plane, it is as shown in FIG. 8B. If these three points are on the same straight line, the locus on the ρ-θ plane corresponding to the three points intersects at one point.

この原理を利用して与えられたx−y平面上の点群から直線を検出することができる。すなわち、n個の点に対してρ−θ平面上ではn個の曲線が描かれ、このうち、m個の曲線が1点で交わっていれば、このm個の曲線に対応するx−y平面上のm個の点は同一直線上にあるということになる。ハフ変換の特徴は、直線状の点群が途中で切断されている場合や、雑音が存在する場合でも比較的良好な結果を得ることができる点である。代表的な適用対象として、画像から直線を抽出する処理が知られている。   Using this principle, a straight line can be detected from a given point group on the xy plane. That is, n curves are drawn on the ρ-θ plane for n points, and if m curves intersect at one point, xy corresponding to these m curves. This means that m points on the plane are on the same straight line. A feature of the Hough transform is that a relatively good result can be obtained even when a linear point group is cut off in the middle or when noise exists. As a typical application target, a process of extracting a straight line from an image is known.

図1(b)に示す例では、炉壁プロフィルの測定結果にハフ変換を適用して直線の検出を行った結果、極めて良好に基準形状としての直線が検出されていることがわかる。ちなみに、図1(b)の点線は最小二乗法によって求めた直線であるが、炉壁凹凸の存在によって引きずられ、健全な炉壁形状部分を検出できていないことがわかる。   In the example shown in FIG. 1B, it is found that a straight line as a reference shape is detected very well as a result of detecting a straight line by applying the Hough transform to the measurement result of the furnace wall profile. Incidentally, the dotted line in FIG. 1 (b) is a straight line obtained by the least square method, but it is dragged by the presence of the furnace wall irregularities, and it can be seen that a healthy furnace wall shape portion cannot be detected.

炉の垂直方向に多数の距離測定箇所を配列することのできる好ましい実施の形態について図3〜5に基づいて説明する。   A preferred embodiment in which a number of distance measurement points can be arranged in the vertical direction of the furnace will be described with reference to FIGS.

この実施の形態では、左右の炉壁が近接しているコークス炉炭化室17を想定している。そして画像撮像装置31をその光軸が炉壁7と略平行になるように配置し、画像撮像装置31の光軸方向に鏡面32を配置する。鏡面32の角度は炉壁表面に対して略45°程度の角度とすると良い。これにより、画像撮像装置31からは、炉壁7に正対した画像を鏡面32に映して撮像することができる。コークス炉炭化室は左右の炉壁間が近接しているので、鏡面32についても炉幅方向は短い幅を有するものとなる。炉幅方向と直角の方向が鏡面32の長手方向である。そして鏡面32の長手方向が距離測定箇所の配列方向3と一致する。距離測定箇所2を炉の高さ方向に配列する場合には、鏡面32の長手方向を炉の高さ方向とすることとなる。   In this embodiment, a coke oven carbonization chamber 17 in which the left and right furnace walls are close to each other is assumed. Then, the image pickup device 31 is arranged so that the optical axis thereof is substantially parallel to the furnace wall 7, and the mirror surface 32 is arranged in the optical axis direction of the image pickup device 31. The angle of the mirror surface 32 is preferably about 45 ° with respect to the furnace wall surface. As a result, the image capturing apparatus 31 can capture and capture an image directly facing the furnace wall 7 on the mirror surface 32. Since the left and right furnace walls are close to each other in the coke oven carbonization chamber, the mirror surface 32 also has a short width in the furnace width direction. The direction perpendicular to the furnace width direction is the longitudinal direction of the mirror surface 32. The longitudinal direction of the mirror surface 32 coincides with the arrangement direction 3 of the distance measurement points. When the distance measurement points 2 are arranged in the height direction of the furnace, the longitudinal direction of the mirror surface 32 is set to the height direction of the furnace.

この実施の形態は光ビーム発生装置33を有する。光ビーム発生装置33としてはレーザー光源を用いると好ましい。光ビーム発生装置33から照射する光ビーム34は、炉壁と略平行になる方向に照射し、鏡面32で反射させ、画像撮像装置31の視野36範囲内にある炉壁表面に照射する。光ビーム34の照射位置に当たる炉壁表面をここではビームスポット35と呼ぶ。   This embodiment has a light beam generator 33. A laser light source is preferably used as the light beam generator 33. The light beam 34 emitted from the light beam generator 33 is irradiated in a direction substantially parallel to the furnace wall, reflected by the mirror surface 32, and applied to the furnace wall surface within the range of the visual field 36 of the image pickup device 31. The furnace wall surface that hits the irradiation position of the light beam 34 is called a beam spot 35 here.

以降の説明では、理解を容易にするために、鏡面と炉壁との間における光路のみに着目し、鏡面が存在しないときに同様の光路を形成することのできる仮想の位置に仮想の画像撮像装置31xと仮想の光ビーム発生装置33xを配置した図面にて説明を行う。   In the following description, for ease of understanding, attention is paid only to the optical path between the mirror surface and the furnace wall, and virtual image capturing is performed at a virtual position where a similar optical path can be formed when there is no mirror surface. The description will be made with reference to the drawings in which the device 31x and the virtual light beam generating device 33x are arranged.

図4(a)のB−B矢視図である図4(b)に示すように、炉壁表面に垂直な面であって鏡面の長手方向を含む面を想定すると、撮像される炉壁7表面、鏡面32、仮想の画像撮像装置31x、仮想の光ビーム発生装置33xはすべてこの想定面内に含まれる。1台の画像撮像装置31xの視野36範囲内において、光ビーム発生装置33xを複数台用いることができる。図4の例では4台の光ビーム発生装置33xを配置している。   As shown in FIG. 4B, which is a BB arrow view of FIG. 4A, a furnace wall that is imaged assuming a plane that is perpendicular to the furnace wall surface and includes the longitudinal direction of the mirror surface. The seven surfaces, the mirror surface 32, the virtual image capturing device 31x, and the virtual light beam generating device 33x are all included in the assumed plane. A plurality of light beam generators 33x can be used within the field of view 36 of one image pickup device 31x. In the example of FIG. 4, four light beam generators 33x are arranged.

光ビーム発生装置33は、距離測定箇所の配列方向3(この場合は炉の高さ方向)において画像撮像装置31と異なった位置に配置される。その結果として、炉壁表面のビームスポット35位置から(鏡面32を通して)見たとき、画像撮像装置31と光ビーム発生装置33とは異なった方向に見えることとなる。逆に画像撮像装置31からみると、図4(b)において、炉壁正常位置41でのビームスポット35aが見えるビームスポット撮像方向43と、炉壁後退位置42でのビームスポット35bが見えるビームスポット撮像方向44とが異なった方向になっていることから明らかである。そのため、鏡面32と炉壁7表面との間の距離が変化すると、画像撮像装置31から(鏡面32を通して)見たときのビームスポット35の位置が変化することとなる。従って、画像撮像装置31で撮像した画像データにおいて、ビームスポット35の位置を抽出して画像処理を行えば、各ビームスポット毎に鏡面と炉壁表面との距離を算出することが可能となる。各ビームスポット位置が本発明の距離測定箇所2であるから、即ち、各距離測定箇所2における測定装置と炉壁との距離を測定できることとなる。図3(a)に示す例では、距離測定装置8において距離算出のための画像処理を行う。   The light beam generator 33 is arranged at a position different from the image pickup device 31 in the arrangement direction 3 of the distance measurement points (in this case, the height direction of the furnace). As a result, when viewed from the position of the beam spot 35 on the furnace wall surface (through the mirror surface 32), the image pickup device 31 and the light beam generation device 33 appear in different directions. On the contrary, when viewed from the image pickup device 31, in FIG. 4B, the beam spot imaging direction 43 in which the beam spot 35a at the furnace wall normal position 41 can be seen and the beam spot in which the beam spot 35b at the furnace wall retreat position 42 can be seen. This is clear from the fact that the imaging direction 44 is different. Therefore, when the distance between the mirror surface 32 and the furnace wall 7 surface changes, the position of the beam spot 35 when viewed from the image pickup device 31 (through the mirror surface 32) changes. Therefore, if the position of the beam spot 35 is extracted from the image data captured by the image capturing device 31 and image processing is performed, the distance between the mirror surface and the furnace wall surface can be calculated for each beam spot. Since each beam spot position is the distance measurement location 2 of the present invention, that is, the distance between the measurement device and the furnace wall at each distance measurement location 2 can be measured. In the example shown in FIG. 3A, the distance measuring device 8 performs image processing for distance calculation.

図3に示す例では、炭化室の高さ方向に4台の画像撮像装置31を配置し、4台の画像撮像装置31の撮像範囲は炉壁7の高さ方向全域をカバーすることができる。各画像撮像装置毎に4台の光ビーム発生装置33を用いて4箇所の距離測定を行うことができ、合計で炉壁7の高さ方向に16箇所の距離測定を同時に行うことができる。画像撮像装置31と光ビーム発生装置33は水冷の測定筒11の中に配置され、測定筒11は炭化室内において直立させる。この測定筒11は、炭化室の奥行きと同程度の長さを有するランス12の先端に配置される。炭化室17の一方の端部から測定装置を炭化室内に挿入し、順次炭化室内を奥行き方向に移動することにより、炭化室奥行き方向の全範囲について距離測定を行うことができる。ランス12の先端下部にはシュー16が設けられ、シュー16が炭化室の炉底18に接地しつつ炭化室内を移動することとなる。   In the example shown in FIG. 3, four image capturing devices 31 are arranged in the height direction of the carbonization chamber, and the image capturing range of the four image capturing devices 31 can cover the entire height direction of the furnace wall 7. . Four light beam generators 33 can be used for each image pickup device, and four distances can be measured, and a total of sixteen distances can be measured in the height direction of the furnace wall 7 in total. The image pickup device 31 and the light beam generating device 33 are arranged in a water-cooled measuring tube 11, and the measuring tube 11 is set upright in the carbonization chamber. The measuring cylinder 11 is disposed at the tip of a lance 12 having a length comparable to the depth of the carbonization chamber. By inserting a measuring device into the carbonization chamber from one end of the carbonization chamber 17 and sequentially moving the carbonization chamber in the depth direction, distance measurement can be performed for the entire range in the depth direction of the carbonization chamber. A shoe 16 is provided at the lower end of the tip of the lance 12, and the shoe 16 moves within the carbonization chamber while being in contact with the furnace bottom 18 of the carbonization chamber.

図3に示す例では、画像撮像装置31の視野36を線状もしくはスリット状としている。このため、撮像素子としては、最も一般的には一次元に受光素子を配列したリニア素子を用いることができる。あるいは、通常の二次元撮像素子を用い、その全視野のうちのスリット状の特定の視野の画像のみを用いることとしてもよい。また、鏡面32については、ミラー管37の表面に左右の壁面それぞれを写す鏡面(32a、32b)を有し、画像撮像装置31と光ビーム発生装置33との光軸をいずれの鏡面に合致させるかによって、左右いずれかの炉壁との距離を測定することができる。図3(c)において画像撮像装置31は光軸38aの方向を向き、炉壁7aの視野36aを撮像している。光軸の向きを変えて光軸38bの方向とすれば、炉壁7bの視野36bを撮像することができる。   In the example shown in FIG. 3, the field of view 36 of the image pickup device 31 is linear or slit-shaped. For this reason, a linear element in which light receiving elements are arranged one-dimensionally can be used as the imaging element. Or it is good also as using a normal two-dimensional image sensor and using only the image of a slit-shaped specific visual field out of the whole visual field. Further, the mirror surface 32 has mirror surfaces (32a, 32b) that project the left and right wall surfaces on the surface of the mirror tube 37, and the optical axes of the image pickup device 31 and the light beam generating device 33 are matched to any mirror surface. Depending on whether or not, the distance to the left or right furnace wall can be measured. In FIG.3 (c), the image pick-up device 31 faces the direction of the optical axis 38a, and is imaging the visual field 36a of the furnace wall 7a. If the direction of the optical axis is changed to the direction of the optical axis 38b, the visual field 36b of the furnace wall 7b can be imaged.

画像撮像装置31の視野36が線状もしくはスリット状であると同時に、ビームスポット35が点状であるとすると、ごく僅かな光軸のずれによって、ビームスポット35が画像撮像装置の視野36から外れてしまうこととなる。これに対し、ビームスポット35として画像撮像装置視野長手方向と直角の方向に幅を有するビームスポットを採用すれば、わずかな光軸のずれではビームスポット35が視野36から外れることがなく、常に正常に距離測定を行うことが可能となる。   Assuming that the field of view 36 of the image pickup device 31 is linear or slit-like and the beam spot 35 is point-like, the beam spot 35 deviates from the field of view 36 of the image pickup device due to a slight optical axis shift. Will end up. On the other hand, if a beam spot having a width in the direction perpendicular to the longitudinal direction of the field of view of the image pickup device is adopted as the beam spot 35, the beam spot 35 will not deviate from the field of view 36 with a slight deviation of the optical axis. It becomes possible to perform distance measurement.

図5に示す例では、画像撮像装置31の視野36は2次元の拡がりを有しており、左右それぞれの炉壁表面を写す2枚の鏡面(32a、32b)を視野内に捉えており、1台の画像撮像装置31で同時に左右の炉壁7を撮像することができる例である。光ビーム発生装置33についても、左右それぞれの炉壁にビームスポット35を形成するように配置されている。また、画像撮像装置31が炉壁のある程度広い奥行き方向の視野36を有しているので、画像撮像装置31と光ビーム発生装置33の光軸がわずかにずれた程度では撮像視野36からビームスポット35が外れることがない。そのため、ビームスポット35が点状であっても常に良好な距離測定を行うことができる。   In the example shown in FIG. 5, the field of view 36 of the image pickup device 31 has a two-dimensional extension, and two mirror surfaces (32a, 32b) that represent the left and right furnace wall surfaces are captured in the field of view. In this example, the left and right furnace walls 7 can be simultaneously imaged by a single image capturing device 31. The light beam generator 33 is also arranged so as to form beam spots 35 on the left and right furnace walls. In addition, since the image pickup device 31 has a field of view 36 in the depth direction of the furnace wall that is somewhat wide, the beam spot from the image pickup view of the image pickup device 36 is only slightly shifted between the optical axes of the image pickup device 31 and the light beam generator 33. 35 does not come off. Therefore, even if the beam spot 35 is point-like, a good distance measurement can always be performed.

以上の説明では、基準形状が直線である場合について説明を行ってきた。コークス炉炭化室の炉壁表面の形状が平面であり、結果として基準形状が直線になるからである。一方、本発明は、基準形状が直線以外の形状、例えば円形である場合にも適用することができる。例えば断面形状が円形であるトンネルの内壁について、本発明を用いて炉壁形状変化を測定することが可能である。ハフ変換を用いる場合において、基準形状の円形の直径が既知である場合も未知である場合も適用が可能である。直径が既知である場合の方が良好な変換を行うことができる。   In the above description, the case where the reference shape is a straight line has been described. This is because the shape of the coke oven carbonization chamber surface is a flat surface, and as a result, the reference shape is a straight line. On the other hand, the present invention can also be applied when the reference shape is a shape other than a straight line, for example, a circle. For example, for the inner wall of a tunnel having a circular cross-sectional shape, the furnace wall shape change can be measured using the present invention. In the case of using the Hough transform, the present invention can be applied both when the circular diameter of the reference shape is known and unknown. A better conversion can be performed when the diameter is known.

実際のコークス炉炭化室(炉高6m、奥行き長さ16m)に測定装置を挿入して得られたプロフィルデータに対して本発明方法を適用した。炉壁形状測定装置としては、図3に記載のものと同様の装置を用いた。画像撮像装置31は炉高方向に4台配置され、各画像撮像装置毎に光ビーム発生装置33として11台のレーザー光源を配置し、距離測定箇所2は合計で炉高方向に片側44箇所となった。   The method of the present invention was applied to profile data obtained by inserting a measuring device into an actual coke oven carbonization chamber (furnace height 6 m, depth length 16 m). As the furnace wall shape measuring apparatus, an apparatus similar to that shown in FIG. 3 was used. Four image pickup devices 31 are arranged in the furnace height direction, eleven laser light sources are arranged as light beam generators 33 for each image pickup device, and distance measurement points 2 are 44 points on one side in the furnace height direction in total. became.

図6(a)は、炉壁7に陥没23が存在する箇所を切り出した実測炉壁プロフィル6データである。測定装置の蛇行や傾斜が存在しているため、このままでは正確な陥没損傷状況はわからない。   FIG. 6A shows measured furnace wall profile 6 data obtained by cutting out a portion where the depression 23 exists in the furnace wall 7. Since there are meandering and tilting of the measuring device, the exact state of the collapsed damage cannot be known as it is.

炉壁プロフィル6に対して、信号処理装置9においてハフ変換の手法により基準直線5aを検出し、その基準直線5aと炉壁プロフィル6の差異をもって炉壁凹凸とした。結果を図6(b)に示す。測定装置の蛇行、傾斜の影響が除去され、陥没23の存在位置がはじめて明らかになった。   For the furnace wall profile 6, the signal processing device 9 detected the reference straight line 5 a by the Hough transform method, and the difference between the reference straight line 5 a and the furnace wall profile 6 was used as the furnace wall unevenness. The results are shown in FIG. The influence of the meandering and tilting of the measuring device was removed, and the location of the depression 23 became clear for the first time.

比較として、基準直線の検出に最小二乗法を用いた結果を図6(c)に示す。陥没23の上下に擬似的な凸変形25(カーボン付着以外でこの規模の凸変形が発生することはない)が出現し、このため陥没部は深さが小さく演算されている。このように、最小二乗法を用いたのでは正確な炉壁診断ができないことが明らかである。   As a comparison, FIG. 6C shows the result of using the least square method for detecting the reference straight line. A pseudo convex deformation 25 (a convex deformation of this scale does not occur except for carbon adhesion) appears above and below the depression 23, and therefore the depression is calculated to have a small depth. Thus, it is clear that accurate furnace wall diagnosis cannot be performed using the least square method.

炉壁プロフィルの計測結果及び基準形状の当てはめ状況を示す図であり、(a)は3次元で表示した炉壁プロフィル(縦軸は凹凸測定量、横軸は炭化室の高さ方向と炉奥行き方向)であり、(b)は凹凸量に基準形状の当てはめを行った結果を示す図である。It is a figure which shows the measurement result of a furnace wall profile, and the fitting condition of a reference | standard shape, (a) is the furnace wall profile displayed in three dimensions (a vertical axis is an uneven | corrugated measured amount, a horizontal axis is the height direction of a carbonization chamber, and a furnace depth. (B) is a diagram showing the result of fitting the reference shape to the unevenness amount. 本発明の炉壁形状測定装置を示す図であり、(a)は炭化室内に配置された状況を示す断面図、(b)はB−B矢視断面図である。It is a figure which shows the furnace wall shape measuring apparatus of this invention, (a) is sectional drawing which shows the condition arrange | positioned in a carbonization chamber, (b) is BB arrow sectional drawing. 本発明の炉壁形状測定装置を示す図であり、(a)は炭化室内に配置された状況を示す断面図、(b)は部分拡大図、(c)はC−C矢視断面図である。It is a figure which shows the furnace wall shape measuring apparatus of this invention, (a) is sectional drawing which shows the condition arrange | positioned in a carbonization chamber, (b) is a partial enlarged view, (c) is CC arrow sectional drawing. is there. 本発明の炉壁形状測定方法を説明する図であり、(a)は画像撮像装置、鏡面、炉壁の関係を示す平面断面図、(b)はB−B矢視図である。It is a figure explaining the furnace wall shape measuring method of this invention, (a) is plane sectional drawing which shows the relationship between an imaging device, a mirror surface, and a furnace wall, (b) is a BB arrow line view. 本発明の炉壁形状測定方法を説明する図であり、(a)は画像撮像装置、鏡面、炉壁の関係を示す平面断面図、(b)は光ビーム発生装置、鏡面、炉壁の関係を示す平面断面図、(c)は斜視図である。It is a figure explaining the furnace wall shape measuring method of this invention, (a) is plane sectional drawing which shows the relationship between an imaging device, a mirror surface, and a furnace wall, (b) is the relationship between a light beam generator, a mirror surface, and a furnace wall. (C) is a perspective view. 炉壁プロフィルの凹凸状況を等高線図で示したものであり、(a)は基準形状の当てはめを行う前の測定データ、(b)はハフ変換による基準形状の当てはめを行ったものである。The contour of the furnace wall profile is shown by a contour map, where (a) shows measurement data before fitting a reference shape, and (b) shows a fitting of a reference shape by Hough transformation. 炉壁プロフィルの凹凸状況を等高線図で示したものであり、最小二乗法によって基準形状への当てはめを行ったものである。The contour of the furnace wall profile is shown in a contour map, and is applied to the reference shape by the least square method. ハフ変換の原理を説明する図である。It is a figure explaining the principle of Hough conversion. 測定装置の蛇行や傾斜による影響を示す図であり、(a)は炉の奥行き方向に垂直な断面における測定装置を示す断面図であり、(b)は測定時の炉壁形状、(c)は蛇行や傾斜がない場合の炉壁プロフィル測定結果、(d)は蛇行が発生したときの炉壁プロフィル測定結果、(e)は傾斜が発生したときの炉壁プロフィル測定結果である。It is a figure which shows the influence by meandering and inclination of a measuring apparatus, (a) is sectional drawing which shows the measuring apparatus in a cross section perpendicular | vertical to the depth direction of a furnace, (b) is a furnace wall shape at the time of a measurement, (c) Is a furnace wall profile measurement result when there is no meandering or inclination, (d) is a furnace wall profile measurement result when meandering occurs, and (e) is a furnace wall profile measurement result when inclination occurs.

符号の説明Explanation of symbols

2 距離測定箇所
3 距離測定箇所の配列方向
4 移動方向
5 基準形状
5a 基準直線
6 炉壁プロフィル
7 炉壁
8 距離測定装置
9 信号処理装置
11 測定筒
12 ランス
13 レーザー距離計
14 観察窓
15 奥行き方向
16 シュー
17 炭化室
18 炉底
19 炉頂
21 蛇行
22 傾斜
23 陥没
24 カーボン付着
25 擬似的な凸形状
31 画像撮像装置
32 鏡面
33 光ビーム発生装置
34 光ビーム
35 ビームスポット
36 視野
37 ミラー管
38 光路
41 炉壁正常位置
42 炉壁後退位置
43 炉壁正常位置でのビームスポット撮像方向
44 炉壁後退位置でのビームスポット撮像方向
2 Distance measurement point 3 Arrangement direction of distance measurement point 4 Movement direction 5 Reference shape 5a Reference straight line 6 Furnace wall profile 7 Furnace wall 8 Distance measuring device 9 Signal processing device 11 Measuring tube 12 Lance 13 Laser rangefinder 14 Observation window 15 Depth direction 16 shoe 17 carbonization chamber 18 furnace bottom 19 furnace top 21 meandering 22 slope 23 depression 24 carbon adhesion 25 pseudo convex shape 31 image pickup device 32 mirror surface 33 light beam generator 34 light beam 35 beam spot 36 field of view 37 mirror tube 38 optical path 41 Furnace wall normal position 42 Furnace wall retracted position 43 Beam spot imaging direction at the furnace wall normal position 44 Beam spot imaging direction at the furnace wall retracted position

Claims (9)

健全時の炉壁形状が既知である炉壁の形状を測定する方法であって、測定装置上に3箇所以上の距離測定箇所を配列し、前記距離測定箇所の配列方向と異なる方向に測定装置を移動しつつ、各距離測定箇所における測定装置と炉壁との距離を同時に測定し、健全時の炉壁形状であって前記距離測定箇所の配列方向における断面形状を基準形状とし、前記距離測定で得られる計測した炉壁プロフィルに最も良く合致するように前記基準形状を当てはめ、当てはめた基準形状と計測した炉壁プロフィルとの差異をもって炉壁形状変化とすることにより、測定装置の蛇行や傾斜に影響されない炉壁形状測定を行うことを特徴とする炉壁形状測定方法。 A method for measuring the shape of a furnace wall in which the shape of the furnace wall during sound is known, wherein three or more distance measurement points are arranged on the measurement device, and the measurement device is arranged in a direction different from the arrangement direction of the distance measurement points. Measuring the distance between the measuring device and the furnace wall at each distance measurement location at the same time, using the cross-sectional shape in the arrangement direction of the distance measurement location as a reference shape, which is the shape of the furnace wall in a healthy state, and measuring the distance best fit the reference shape to conform to the furnace wall profile measured obtained by the furnace wall shape changes with the difference between the furnace wall profiles measured and fitted reference shape, meandering and the inclination of the measuring device A method for measuring a furnace wall shape, characterized in that the furnace wall shape measurement is performed without being influenced by the temperature. 健全時の炉壁形状が平面である炉壁の形状を測定する方法であって、前記距離測定箇所を炉の高さ方向に炉壁に沿って配列し、前記測定装置を移動する方向は炉の奥行き方向の炉壁に沿う方向であり、前記基準形状は直線であることを特徴とする請求項1に記載の炉壁形状測定方法。   A method for measuring the shape of a furnace wall having a flat furnace wall shape when sound, wherein the distance measurement points are arranged along the furnace wall in the height direction of the furnace, and the direction in which the measuring device is moved is a furnace The furnace wall shape measuring method according to claim 1, wherein the reference shape is a straight line. 前記計測した炉壁プロフィルに最も良く合致するように基準形状を当てはめるに際し、ハフ変換によって基準形状を検出することを特徴とする請求項1又は2に記載の炉壁形状測定方法。   3. The furnace wall shape measuring method according to claim 1, wherein the reference shape is detected by a Hough transform when applying the reference shape so as to best match the measured furnace wall profile. 鏡面と、画像撮像装置と、光ビーム発生装置とを有し、前記鏡面に映る炉壁の像を前記画像撮像装置で撮像し、前記画像撮像装置と異なった位置に配置した前記光ビーム発生装置から発生した光ビームを前記鏡面に反射させて炉壁の前記画像撮像装置視野範囲内に照射し、炉壁に照射する光ビーム照射位置が前記距離測定箇所に該当し、炉壁に照射され画像撮像装置で撮像された光ビームの照射位置に基づいて測定装置と炉壁との距離を測定することを特徴とする請求項1乃至3のいずれかに記載の炉壁形状測定方法。 The light beam generating device having a mirror surface, an image capturing device, and a light beam generating device, capturing an image of a furnace wall reflected on the mirror surface with the image capturing device, and disposing the image at a position different from the image capturing device. The light beam generated from the laser beam is reflected on the mirror surface and irradiated in the field of view of the image pickup device on the furnace wall, and the irradiation position of the light beam applied to the furnace wall corresponds to the distance measurement point, and the furnace wall is irradiated with the image. oven wall shape measuring method according to any one of claims 1 to 3, characterized in that for measuring the distance between the measuring device and the furnace wall on the basis of the irradiation position of the imaged light beam in an imaging device. コークス炉炭化室の炉壁形状を測定することを特徴とする請求項1乃至4のいずれかに記載の炉壁形状測定方法。   The furnace wall shape measuring method according to any one of claims 1 to 4, wherein a furnace wall shape of a coke oven carbonization chamber is measured. 健全時の炉壁形状が平面である炉壁の形状を測定する装置であって、測定装置上に3箇所以上の距離測定箇所を炉の高さ方向に炉壁に沿って配列し、炉の奥行き方向の炉壁に沿う方向に測定装置を移動しつつ、各距離測定箇所における測定装置と炉壁との距離を距離測定装置で同時に測定して信号処理装置に入力し、信号処理装置は、前記距離測定結果に基づいて計測した炉壁プロフィルを求め、さらに計測した炉壁プロフィルに最も良く合致するように基準直線を当てはめ、当てはめた基準直線と計測した炉壁プロフィルとの差異をもって炉壁形状変化とすることにより、測定装置の蛇行や傾斜に影響されない炉壁形状測定を行うことを特徴とする炉壁形状測定装置。 An apparatus for measuring the shape of a furnace wall having a flat furnace wall shape in a healthy state, wherein three or more distance measurement points are arranged along the furnace wall in the height direction of the furnace, While moving the measuring device in the direction along the furnace wall in the depth direction, the distance between the measuring device and the furnace wall at each distance measurement point is simultaneously measured by the distance measuring device and input to the signal processing device. Obtain the measured furnace wall profile based on the distance measurement result, and further fit the reference straight line so as to best match the measured furnace wall profile, and the furnace wall shape with the difference between the applied reference straight line and the measured furnace wall profile A furnace wall shape measuring apparatus that performs furnace wall shape measurement that is not affected by meandering or tilting of the measuring apparatus. 前記計測した炉壁プロフィルに最も良く合致するように基準直線を当てはめるに際し、ハフ変換によって基準直線を検出することを特徴とする請求項6に記載の炉壁形状測定装置。   7. The furnace wall shape measuring apparatus according to claim 6, wherein the reference straight line is detected by Hough transform when fitting the reference straight line so as to best match the measured furnace wall profile. 鏡面と、画像撮像装置と、光ビーム発生装置とを有し、前記鏡面に映る炉壁の像を前記画像撮像装置で撮像し、前記画像撮像装置と異なった位置に配置した前記光ビーム発生装置から発生した光ビームを前記鏡面に反射させて炉壁の前記画像撮像装置視野範囲内に照射し、炉壁に照射する光ビーム照射位置が前記距離測定箇所に該当し、前記距離測定装置は、炉壁に照射され画像撮像装置で撮像された光ビームの照射位置に基づいて測定装置と炉壁との距離を測定することを特徴とする請求項6又は7に記載の炉壁形状測定装置。 The light beam generating device having a mirror surface, an image capturing device, and a light beam generating device, capturing an image of a furnace wall reflected on the mirror surface with the image capturing device, and disposing the image at a position different from the image capturing device. The light beam generated from is reflected on the mirror surface and irradiated in the field of view of the image pickup device of the furnace wall, the light beam irradiation position irradiated on the furnace wall corresponds to the distance measurement location, and the distance measurement device is oven wall shape measuring apparatus according to claim 6 or 7, characterized in that for measuring the distance between the measuring device and the furnace wall on the basis of the irradiation position of the imaged light beam in the imaging apparatus is irradiated to the furnace wall. コークス炉炭化室の炉壁形状を測定することを特徴とする請求項6乃至8のいずれかに記載の炉壁形状測定装置。   The furnace wall shape measuring apparatus according to any one of claims 6 to 8, wherein a furnace wall shape of a coke oven carbonization chamber is measured.
JP2004063450A 2004-03-08 2004-03-08 Furnace wall shape measuring method and furnace wall shape measuring apparatus Expired - Fee Related JP4362391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063450A JP4362391B2 (en) 2004-03-08 2004-03-08 Furnace wall shape measuring method and furnace wall shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063450A JP4362391B2 (en) 2004-03-08 2004-03-08 Furnace wall shape measuring method and furnace wall shape measuring apparatus

Publications (2)

Publication Number Publication Date
JP2005249698A JP2005249698A (en) 2005-09-15
JP4362391B2 true JP4362391B2 (en) 2009-11-11

Family

ID=35030292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063450A Expired - Fee Related JP4362391B2 (en) 2004-03-08 2004-03-08 Furnace wall shape measuring method and furnace wall shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP4362391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535700B (en) * 2006-12-12 2012-02-15 大金工业株式会社 Pipe joint

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8311777B2 (en) * 2007-02-22 2012-11-13 Nippon Steel Corporation Coke oven wall surface evaluation apparatus, coke oven wall surface repair supporting apparatus, coke oven wall surface evaluation method, coke oven wall surface repair supporting method and computer program
JP5114669B2 (en) * 2008-03-05 2013-01-09 新日鐵住金株式会社 Evaluation method of furnace wall load during coke extrusion in coke oven.
JP5569332B2 (en) * 2010-10-20 2014-08-13 新日鐵住金株式会社 Coke oven wall surface state evaluation method, coke oven wall surface state evaluation apparatus, and computer program
JP5589894B2 (en) * 2011-02-25 2014-09-17 Jfeスチール株式会社 Shape measurement method
JP5867449B2 (en) * 2013-05-07 2016-02-24 Jfeスチール株式会社 Coke oven wall diagnosis method and coke oven wall repair method
CN106323203A (en) * 2015-06-29 2017-01-11 罗伯特·博世有限公司,香港 Surface flatness indicating method and device
JP6848304B2 (en) * 2016-09-28 2021-03-24 日本製鉄株式会社 Wall measurement method and wall surface measurement device for carbonization chamber of coke oven
CN106248005A (en) * 2016-10-16 2016-12-21 欧阳平 A kind of optical measurement flatness and the method for gradient

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535700B (en) * 2006-12-12 2012-02-15 大金工业株式会社 Pipe joint

Also Published As

Publication number Publication date
JP2005249698A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4362391B2 (en) Furnace wall shape measuring method and furnace wall shape measuring apparatus
EP2660558A1 (en) Furnace wall shape measuring device, furnace wall shape measuring system and furnace wall shape measuring method
WO2017115015A1 (en) Method and arrangement for analysing a property of a seam
JP6392044B2 (en) Position measuring device
JP3895928B2 (en) Wall surface observation device
JP2015127815A (en) Confocal microscope system, image processing method, and image processing program
JP5057848B2 (en) Method and apparatus for measuring refractive index of transparent film and method and apparatus for measuring film thickness of transparent film
JP2001003058A (en) Method for inspection wall surface of coke oven carbonization chamber and wall surface inspection equipment
JP4023988B2 (en) Coke oven wall diagnosis method and apparatus
KR101262200B1 (en) Apparatus for diagnosing inside wall of heating chamber
JP6543170B2 (en) Measuring device and measuring method
JP3981610B2 (en) Method and apparatus for observing inner wall of coke oven carbonization chamber
JP3978305B2 (en) Method for grasping displacement of coke oven chamber wall during operation
JP3962173B2 (en) Coke oven wall observation device
JP4797568B2 (en) Slab vertical crack detection method and apparatus
KR102062641B1 (en) Apparatus for measuring width of rolled steel plate
JP7047289B2 (en) Furnace wall repair system and furnace wall repair method
JP4687166B2 (en) Coke oven furnace wall shape measuring method and apparatus
JP4220800B2 (en) Method for identifying the trajectory of internal observation means for inspecting a coke oven carbonization chamber using an inspection apparatus for the coke oven carbonization chamber and an inspection method for the coke oven carbonization chamber
KR100709928B1 (en) Diagnostic apparatus and diagnostic method for carbonization chamber of coke oven
JPH0718688B2 (en) Method and apparatus for measuring carbonization chamber width of coke oven
JP6848304B2 (en) Wall measurement method and wall surface measurement device for carbonization chamber of coke oven
JP2003315035A (en) Oven wall shape measurement method in coke oven
JP2880229B2 (en) Fusion Reactor First Wall Shape Measurement System
JP2005337856A (en) Visual inspection apparatus and visual inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4362391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees