JPH0718688B2 - Method and apparatus for measuring carbonization chamber width of coke oven - Google Patents

Method and apparatus for measuring carbonization chamber width of coke oven

Info

Publication number
JPH0718688B2
JPH0718688B2 JP62024304A JP2430487A JPH0718688B2 JP H0718688 B2 JPH0718688 B2 JP H0718688B2 JP 62024304 A JP62024304 A JP 62024304A JP 2430487 A JP2430487 A JP 2430487A JP H0718688 B2 JPH0718688 B2 JP H0718688B2
Authority
JP
Japan
Prior art keywords
light
reflected
distance
wall surface
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62024304A
Other languages
Japanese (ja)
Other versions
JPS63191005A (en
Inventor
俊彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62024304A priority Critical patent/JPH0718688B2/en
Publication of JPS63191005A publication Critical patent/JPS63191005A/en
Publication of JPH0718688B2 publication Critical patent/JPH0718688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コークス炉の炭化室幅測定方法及びその装置
に関する。
Description: TECHNICAL FIELD The present invention relates to a method for measuring the width of a carbonization chamber of a coke oven and an apparatus therefor.

〔従来技術〕[Prior art]

一般にコークス炉は、炭化室に装入された石炭を、1200
℃に達する高温下でコークスに乾留し、乾留したコーク
スを押出し機で窯の外へ排出したのち、装炭口から再び
常温に近い石炭を装入するといった、温度変化の大きい
苛酷な条件下で操業され、また築炉してから20年以上と
いう長期間にわたって使用される。このような状況下に
あっては、コークス炉の炭化室とこれを間接的に加熱す
る燃焼室とを仕切る、レンガ等によって構築された隔壁
は、特に炭化室側面が、壁面への炭素付着,大きな温度
変化,押出し機等による外力が原因となり、劣化し易
い。この劣化を放置すると、隔壁レンガに亀裂,目地切
れ,欠損,脱落等の損傷が発生し、操業に支障をきたす
こととなる。
In general, a coke oven is used to feed coal loaded in a carbonization chamber to 1200
Under the severe conditions with large temperature changes, such as dry distillation of coke at a high temperature reaching ℃, discharging the dry distillation of coke to the outside of the kiln with an extruder, and then charging coal close to room temperature again from the charging port. It has been in operation and has been used for a long period of more than 20 years after being constructed. Under such circumstances, the partition wall constructed by bricks or the like for partitioning the carbonization chamber of the coke oven from the combustion chamber that indirectly heats the carbonization chamber has a carbonization chamber side surface, in particular, carbon deposition on the wall surface, It is prone to deterioration due to large temperature changes and external forces from extruders. If this deterioration is left as it is, the partition wall bricks will be damaged such as cracks, joint breaks, defects, and dropouts, which will hinder the operation.

また、石炭を乾留する過程において発生する炭素が、壁
面に付着・成長して厚く層を形成し、そのためにコーク
スの押し詰りが発生すると、操業を中止して付着した炭
素を焼き落とさねばならなくなり、操業計画に狂いが生
じる。従って、定期的に壁面の炭素焼き落しを行なうべ
く計画をたてればよいが、炭素の壁面付着・成長する量
及び状態が一定ではないため、その焼き落しの頻度を予
め決定することは困難である。
In addition, carbon generated during the carbonization of coal adheres and grows on the wall surface to form a thick layer, and when coke is clogged, the operation must be stopped and the adhered carbon must be burned off. , The operation plan goes wrong. Therefore, it is sufficient to make a plan to periodically burn off the carbon on the wall surface, but it is difficult to predetermine the frequency of the burnout because the amount and state of carbon that adheres and grows on the wall surface are not constant. .

このような問題点を解決すべく、炭化室幅を高温下にて
測定し、壁面状態を推測する方法が提案され、例えば特
開昭57-53612号に開示される如く、コークス押出し機の
プッシャービーム上または先端のプレート近くに測定装
置を設置し、装置内からバネ等の付勢手段により細い棒
状のガイドを出し、ガイド先端に付設したローラを壁面
に接触させ、ガイド末端に設けた機構により、プッシャ
ーから壁面までの距離を測定する方法が一般的である。
In order to solve such a problem, a method of measuring the width of the carbonization chamber at high temperature and estimating the wall surface state has been proposed. For example, as disclosed in JP-A-57-53612, the pusher of a coke extruder is proposed. A measuring device is installed on the beam or near the plate at the tip, a thin rod-shaped guide is taken out from inside the device by a biasing means such as a spring, and a roller attached to the tip of the guide is brought into contact with the wall surface, and a mechanism is provided at the end of the guide. A common method is to measure the distance from the pusher to the wall surface.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、前述の如きガイドを用いた接触式の測定方法
では、炭化室壁面のレンガに欠落,目地切れ等の欠損が
あると、ガイドの先端部がこれらの凹部に引っかかり、
または引っかかりの衝撃によりガイドが変形して測定が
不可能となる。また、ガイド先端の接触子がローラで
は、ローラ径より小さい幅寸法の凹部等には入り込め
ず、それだけ測定の精度が低いということになる。
However, in the contact-type measuring method using the guide as described above, when the brick on the wall surface of the carbonization chamber is missing or has a defect such as a joint loss, the tip of the guide is caught in these recesses,
Or, the impact of being caught causes the guide to be deformed, making measurement impossible. Further, if the contactor at the tip of the guide is a roller, it cannot enter into a recess or the like having a width smaller than the roller diameter, which means that the measurement accuracy is low.

本発明はこのような問題点を解決するためになされたも
のであって、コークスの押出しの際に押し詰りを防止し
得る高い測定精度を実現すると共に測定装置の損傷を軽
減し、測定位置近傍の壁面状況を監視するコークス炉の
炭化室幅測定方法及び装置の提供を目的とする。
The present invention has been made to solve such a problem, and realizes high measurement accuracy that can prevent clogging during extrusion of coke, reduces damage to the measurement device, and reduces the vicinity of the measurement position. It is an object of the present invention to provide a method and a device for measuring the width of a coking furnace in a coke oven, which monitors the wall surface condition of the steel.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るコークス炉の炭化室幅測定方法は、光源か
ら所定方向へ光を出射し、その出射光を反射面にて反射
し、反射した光を炭化室の一の壁面の第1測定点へ投射
し、第1測定点からの反射光を前記反射面に入射し、そ
の入射光に基づき所定点から第1測定点までの第1距離
を検出する一方、前記反射面の方向を変化させて光源か
らの光を反対方向に反射し、反射した光を炭化室の他の
壁面における前記第1測定点と対向する第2測定点へ投
射し、第2測定点からの反射光を位置を変化させた反射
面に入射し、その入射光に基づき所定点から第2測定点
までの第2距離を検出し、さらに第1距離と第2距離と
に基づいて、第1測定点から第2測定点までの炭化室幅
を算出することを特徴とする。
A method for measuring the width of a carbonization chamber of a coke oven according to the present invention includes emitting light in a predetermined direction from a light source, reflecting the emitted light on a reflecting surface, and reflecting the reflected light at a first measurement point on one wall surface of the carbonizing chamber. The reflected light from the first measurement point is incident on the reflection surface, and the first distance from the predetermined point to the first measurement point is detected based on the incident light, while changing the direction of the reflection surface. Light from the light source is reflected in the opposite direction, the reflected light is projected to the second measurement point on the other wall surface of the carbonization chamber, which is opposite to the first measurement point, and the reflected light from the second measurement point is positioned. The second distance from the predetermined point to the second measurement point is detected based on the incident light, which is incident on the changed reflecting surface, and the second distance from the first measurement point is determined based on the first distance and the second distance. It is characterized in that the width of the carbonization chamber up to the measurement point is calculated.

〔作用〕[Action]

本発明方法は、光源から所定方向へ光を出射し、この光
を反射面にて反射して一方の炭化室壁面へ照射し、こん
壁面からの反射光を前記反射面にて反射し、所定点から
一方の壁面までの第1距離を検出する一方、反射面を移
動してその方向を変化させ、光源からの光を反射して前
記炭化室壁面と対向する他方の壁面における前記一方の
壁面の光照射点と対向する点へ照射し、この他方の壁面
から反射光を、方向を変化させた反射面にて反射し、所
定点から他方の壁面までの第2距離を検出し、さらに、
第1距離と第2距離とに基づきこの測定位置における炭
化室幅を算出する。また、これらの反射面と同一平面上
に撮像用反射面を設け、この撮像用反射面に反映された
測定位置近傍の像を撮像装置にて撮像する。
The method of the present invention emits light in a predetermined direction from a light source, reflects this light on a reflecting surface and irradiates one of the carbonization chamber wall surfaces, and reflects light reflected from this wall surface on the reflecting surface. While detecting the first distance from the fixed point to the one wall surface, the reflecting surface is moved to change the direction thereof, and the light from the light source is reflected to reflect the light from the light source to the other wall surface facing the carbonization chamber wall surface. Irradiating a point opposite to the light irradiation point, the reflected light from the other wall surface is reflected by the reflecting surface whose direction is changed, and the second distance from the predetermined point to the other wall surface is detected.
The carbonization chamber width at this measurement position is calculated based on the first distance and the second distance. Further, an imaging reflection surface is provided on the same plane as these reflection surfaces, and an image near the measurement position reflected on the imaging reflection surface is captured by the imaging device.

〔実施例〕〔Example〕

以下、本発明をその実施に使用する装置の図面に基づき
詳述する。第1図は本発明方法の実施状態を示す模式的
断面図であって、図中1はコークス炉、2は測定装置、
3は水冷ランス、4は台車を示している。
Hereinafter, the present invention will be described in detail with reference to the drawings of an apparatus used for carrying out the invention. FIG. 1 is a schematic sectional view showing an embodiment of the method of the present invention, in which 1 is a coke oven, 2 is a measuring device,
3 is a water cooling lance and 4 is a trolley.

コークス炉1は炭化室11と燃焼室12とをその間を仕切る
隔壁13を隔てて交互に夫々複数室備えており、各炭化室
11の上部に開口する装炭口11aから、台車4に支持され
た水冷ランス3を下降させ、水冷ランス3の先端に取り
付けられた測定装置2によって測定を行う。水冷ランス
3は台車4の前端に立設した昇降ガイド41に支持されて
おり、昇降ガイド41に沿って昇降される一方、軸心線回
りに回転せしめられるようになっている。また台車4
は、コークス炉1の上面に設けられたレール5に沿って
移動し、測定すべき炭化室11の装炭口11aから内部へ、
その先端に測定装置2を備えた水冷ランス3を下降させ
る。水冷ランス3とその先端の測定装置2とは必ずしも
炭化室11の中央部に入れる必要はない。
The coke oven 1 is provided with a plurality of carbonization chambers 11 and combustion chambers 12 alternately with a partition wall 13 separating the carbonization chambers 12 from each other.
The water cooling lance 3 supported by the carriage 4 is lowered from the coal charging port 11a opened at the upper part of the 11, and the measurement is performed by the measuring device 2 attached to the tip of the water cooling lance 3. The water-cooling lance 3 is supported by an elevating guide 41 which is erected at the front end of the bogie 4, and is moved up and down along the elevating guide 41 while being rotated around the axis. Again dolly 4
Is moved along the rail 5 provided on the upper surface of the coke oven 1, and is moved from the charging port 11a of the carbonization chamber 11 to be measured to the inside,
A water cooling lance 3 having a measuring device 2 at its tip is lowered. The water cooling lance 3 and the measuring device 2 at the tip of the water cooling lance 3 do not necessarily have to be placed in the central portion of the carbonization chamber 11.

測定装置2は、第2図の正面断面図及び第3図の側面断
面図にその構成を示す如く外壁21が内,外二重箱構造に
構成され、両箱間には水冷ランス3の内部を貫通する給
水管31から冷却水が供給されて測定装置2の内部を冷却
する一方、この冷却水は、その構造が内,外二重筒構造
となっている水冷ランス3の両筒間を利用した排水導路
32へ排出される。外壁21の相対する2面には、後述する
ミラー25にて反射される光源23からの出射光及び炭化室
内壁にて反射される反射光を通過させ得る高さ及び大き
さを有する石英ガラスからなる窓22,22が夫々設けら
れ、これらの窓22,22は夫々窓材固定治具によって壁面
に保持されている。また、これらの窓22,22は、前述の
如き高さ及び大きさを有し且つ外部からの輻射熱の侵入
を最小に抑え得る大きさが望ましく、本実施例ではその
大きさを、縦35mm,横150mmとした。
The measuring apparatus 2 has an outer wall 21 having an inner and outer double box structure as shown in the front sectional view of FIG. 2 and the side sectional view of FIG. Cooling water is supplied from a penetrating water supply pipe 31 to cool the inside of the measuring device 2, while this cooling water uses a space between both cylinders of a water cooling lance 3 whose structure is an inner and outer double cylinder structure. Drainage conduit
It is discharged to 32. On the two opposite surfaces of the outer wall 21, from a quartz glass having a height and a size capable of passing the emitted light from the light source 23 reflected by the mirror 25 described later and the reflected light reflected by the carbonized inner wall The windows 22 and 22 are provided respectively, and the windows 22 and 22 are held on the wall surface by the window material fixing jigs. Further, these windows 22 and 22 desirably have a height and a size as described above and can minimize the invasion of radiant heat from the outside, and in the present embodiment, the size thereof is 35 mm in length, The width was 150 mm.

また、測定装置2の上壁内面には、光源23及び検出器24
からなる1組の光学式距離計が設けられており、その構
成は、光源23がレーザ光を下方へ出射すべく配されてい
ると共に、検出器24が、測定対象からの反射光を入射し
得る所定角度の傾きを有して配されている。さらに、測
定装置2の内部底面には、その反射面である平面視及び
背面視形状が長方形、また断面形状が直角二等辺三角形
であるミラー25が、この直角を頂点として配設され、光
源23からの出射光を窓22から外部へ反射するとともに、
所要範囲内の測定対象にて反射された光を入射し得る大
きさを有する。また、ミラー25は、図示しないシリンダ
の出没により、窓22,22の鉛直方向へ摺動可能となって
いる。さらに、本実施例では光源23として波長850nmの
レーザ光を用い、ミラー25には、この波長の光を高い反
射率にて反射し得る特殊ミラーを用いる。
The light source 23 and the detector 24 are provided on the inner surface of the upper wall of the measuring device 2.
Is provided so that the light source 23 is arranged to emit the laser light downward, and the detector 24 makes the reflected light from the measurement object incident. It is arranged with an inclination of a predetermined angle to obtain. Further, on the inner bottom surface of the measuring device 2, a mirror 25 having a rectangular shape in a plan view and a rear view and a cross-sectional shape of an isosceles right triangle, which is a reflection surface, is arranged with the right angle as a vertex, and the light source 23 The light emitted from is reflected from the window 22 to the outside,
It has such a size that the light reflected by the measuring object within the required range can be incident. Further, the mirror 25 is slidable in the vertical direction of the windows 22, 22 due to the cylinder not shown coming and going. Further, in the present embodiment, laser light having a wavelength of 850 nm is used as the light source 23, and the mirror 25 is a special mirror capable of reflecting light of this wavelength with high reflectance.

次に、このような構成の測定装置2を用いた距離測定の
原理を、第4図,第5図に示す光学式距離計の模式図及
び第6図に示す光路想定図に従って説明する。光源23か
らミラー25の反射面における反射点R1までの距離l0,こ
の反射点R1から測定対象である両壁面までの距離を夫々
l1,l2とすると、所定距離l0+l1及びl0+l2における検
出器24への反射光の入射角を基準値として設置してお
き、同一測定位置にてミラー25を測定対象の鉛直方向へ
摺動させることにより求まる両測定対象からの反射光の
検出器24への入射角と夫々の基準値との変化量からl0
l1及びl0+l2の値を三角法によって求め、これらの値か
ら一定値l0を減算してl1+l2を算出すれば、対向する2
測定対象間の距離が求まる。
Next, the principle of distance measurement using the measuring device 2 having such a configuration will be described with reference to the schematic diagrams of the optical rangefinders shown in FIGS. 4 and 5 and the optical path assumption diagram shown in FIG. The distance l 0 from the light source 23 to the reflection point R 1 on the reflection surface of the mirror 25, and the distance from this reflection point R 1 to both wall surfaces to be measured, respectively.
If l 1 and l 2 are set, the incident angle of the reflected light on the detector 24 at the predetermined distances l 0 + l 1 and l 0 + l 2 is set as a reference value, and the mirror 25 is set at the same measurement position. From the amount of change between the incident angle of the reflected light from both measurement objects on the detector 24 and the respective reference values, which is obtained by sliding in the vertical direction, l 0 +
If the values of l 1 and l 0 + l 2 are obtained by trigonometry, and a constant value l 0 is subtracted from these values to calculate l 1 + l 2 , then the values of 2
The distance between the measurement targets is obtained.

即ち、台車4はコークス炉1上面のレール5上を移動し
て、測定を行なうべき炭化室11の装炭口11aから、測定
装置2をその先端に付設した水冷ランス3を、昇降ガイ
ド41に沿って下降させる。測定装置2が測定位置に定ま
れば、ミラー25またはミラー27を一方へ摺動させて所定
点から一方壁面の測定点までの距離を前述の三角法に基
づいて算出し、さらに同一位置にてミラー25又はミラー
27を他方へ摺動させて、前記所定点から他方壁面におけ
る前記測定点と対向する点までの距離を三角法に基づい
て算出する。これら両算出値に基づいてその測定位置に
おける炭化室幅を決定する。水冷ランス3は細長い構造
物であるから、その先端の測定装置2は炉内で揺れるこ
とがあり、誤差の要因となる虞れがあるため、ミラー25
又は27の移動は高速で行い、幅,距離測定は約0.5秒程
度で行うのが望ましい。撮像装置26を備えている場合
は、距離測定と同時にミラー27の中央部27bに投影され
る測定点近傍の壁面を撮影する。さらに水冷ランス3を
一定ピッチで炭化室11の高さ方向へ上昇させつつ、同様
にして炭化室幅の測定及び/又は壁面の撮影を行なう。
That is, the carriage 4 moves on the rail 5 on the upper surface of the coke oven 1, and from the charging port 11a of the carbonization chamber 11 to be measured, the water cooling lance 3 with the measuring device 2 attached to the tip thereof is attached to the elevating guide 41. Down along. When the measuring device 2 is set at the measurement position, the mirror 25 or the mirror 27 is slid to one side to calculate the distance from the predetermined point to the measurement point on the one wall surface based on the trigonometry described above, and at the same position. Mirror 25 or mirror
Sliding 27 to the other side, the distance from the predetermined point to the point on the other wall surface facing the measurement point is calculated based on trigonometry. Based on these both calculated values, the width of the carbonization chamber at the measurement position is determined. Since the water cooling lance 3 is an elongated structure, the measuring device 2 at the tip of the water cooling lance 3 may sway in the furnace, which may cause an error.
Or, it is desirable that the movement of 27 is performed at high speed, and the width and distance are measured in about 0.5 seconds. When the imaging device 26 is provided, the wall surface near the measurement point projected on the central portion 27b of the mirror 27 is photographed at the same time as the distance measurement. Further, while raising the water cooling lance 3 in the height direction of the carbonization chamber 11 at a constant pitch, the width of the carbonization chamber is measured and / or the wall surface is photographed in the same manner.

以上のような光学式距離計を用いた測定装置2では、測
定精度が0.1〜0.5mmといった高精度の距離測定が行なわ
れ、炭化室11の壁面状態が定量的に捉えられ、その状況
の推定が容易である。
In the measuring device 2 using the optical distance meter as described above, high-accuracy distance measurement with a measurement accuracy of 0.1 to 0.5 mm is performed, the wall surface state of the carbonization chamber 11 is quantitatively captured, and the estimation of the situation is performed. Is easy.

さらに、光学式測定装置では、反射光を利用して測定を
行なうため、測定装置の大きさに限界があれば、固定さ
れた検出器に入射し得る反射光の範囲も限られ、検出器
の検出可能範囲に応じて、測定可能範囲が定まる。従っ
て、レーザ光の測定精度が高ければ、壁面の付着炭素焼
き落し後に、壁面レンガが露出している場合等は、レン
ガの目地切れ、亀裂等の微細な変化点を測定すべくレー
ザ光照射が行なわれ得るが、その深さが装置の測定の測
定能力を超えるものであれば、異常値となってあらわれ
る。また、微細な凹部に限らず、レンガ欠落等によって
生じた凹部であっても、その深さが測定能力を超えるも
のであれば、装置は異常値を示す。これらの異常値に対
して、例えば目地切れ,亀裂等にはプラズマ溶射を行な
い、またレンガ欠落に対しては欠落部分の補充を行なう
等、その対処方法が異なる場合がある。従って、.異常
値が発生した場合に、その測定点近傍の具体的状況を把
握することができれば、適切な処置を直ちに行なうこと
が可能となる。そのため、壁面の具体的状況は小型TVカ
メラ等によって撮像する構成とする。第7図及び第8図
は、このような測定装置2の構成を示す断面図である。
撮像の対象となる壁面は800〜1000℃の温度を有するの
で特に光源を用いなくても良好な画像を得ることができ
る。測定装置2の大きさは装炭口11aの大きさによって
制限があるため、距離測定用のミラー27に反映される壁
面を撮像する構造を用いている。即ち、第6図に示す如
く、光源23と検出器24との距離が200mm,光源23からミラ
ー27における光の反射点R1までの距離l0が125mmである
本実施例の光学式距離計では、反射点R2から測定対象の
壁面までの距離l2=230mmを基準とすると、50mmの距離
変化に対して、反射点R2のミラー27における水平方向変
化量は10.2mmといった微小な値であり、且つ反射点R1
定点であって、距離測定に用いる反射面は狭い範囲であ
る。従って第7図,第8図に示す如く、ミラー27の両面
夫々に対して、反射点R1,R2を含む、特殊ミラーを用い
た距離測定用のミラー27a,27aの中間部27bに、撮像用の
通常ミラーを用いて、これらを同一平面上に配する一
方、中間部27bと小型TVカメラ等の撮像装置26を対接し
て配し、ミラー中間部27bに投影される壁面を撮影し、
この画像を外部から観察する。またVTRによって録画す
る等して測定終了後に、状況検討を行なってもよい。さ
らに、距離測定用のレーザ光照射点と画像上の相当位置
とを対応付ける場合は、本実施例のレーザ光が波長850n
mなので目視ではどの位置に当たっているか分らないの
でレーザ光とその光軸を一致させ、または平行させて可
視波長のレーザ光または白色光を投光することにより、
画像内における距離測定用のレーザ光照射点を明確にさ
せることもできる。
Further, in the optical measuring device, since the measurement is performed by using the reflected light, if the size of the measuring device is limited, the range of the reflected light that can enter the fixed detector is also limited, and the detector The measurable range is determined according to the detectable range. Therefore, if the measurement accuracy of the laser light is high, after the carbon burned on the wall surface, if the wall brick is exposed, laser light irradiation is performed to measure fine change points such as joint breakage and cracks of the brick. This can be done, but if the depth exceeds the measurement capability of the instrument's measurement, it will appear as an outlier. Further, not only the minute concave portion but also the concave portion caused by the lack of bricks, etc., shows an abnormal value if the depth thereof exceeds the measurement capability. For these abnormal values, for example, plasma spraying may be performed on joint breaks, cracks, etc., and for missing bricks, the missing parts may be replenished. Therefore ,. When an abnormal value occurs, if it is possible to grasp the specific situation in the vicinity of the measurement point, it is possible to take appropriate measures immediately. Therefore, the concrete condition of the wall surface is configured to be imaged by a small TV camera or the like. FIG. 7 and FIG. 8 are sectional views showing the configuration of such a measuring device 2.
Since the wall surface to be imaged has a temperature of 800 to 1000 ° C., a good image can be obtained without using a light source. Since the size of the measuring device 2 is limited by the size of the coal charging port 11a, a structure for imaging the wall surface reflected on the distance measuring mirror 27 is used. That is, as shown in FIG. 6, the distance between the light source 23 and the detector 24 is 200 mm, and the distance l 0 from the light source 23 to the light reflection point R 1 on the mirror 27 is 125 mm. Then, with reference to the distance l 2 = 230mm from the reflection point R 2 to the wall surface of the measurement object, the horizontal change amount of the reflection point R 2 at the mirror 27 is 10.2mm, which is a minute value for a 50mm distance change. And the reflection point R 1 is a fixed point, and the reflection surface used for distance measurement is a narrow range. Therefore, as shown in FIGS. 7 and 8, on both sides of the mirror 27, in the middle portion 27b of the mirrors 27a, 27a for distance measurement using special mirrors, which include the reflection points R 1 and R 2 , While using a normal mirror for imaging, these are arranged on the same plane, the middle part 27b and the image pickup device 26 such as a small TV camera are arranged in contact with each other, and the wall surface projected on the mirror middle part 27b is photographed. ,
This image is observed from the outside. In addition, the situation may be examined after the measurement is completed, such as recording with a VTR. Furthermore, when associating the laser light irradiation point for distance measurement with the corresponding position on the image, the laser light of this embodiment has a wavelength of 850n.
Since it is m, it is not possible to know which position is hit by visual inspection, so by aligning the laser light and its optical axis, or by collimating them and projecting a laser light of visible wavelength or white light,
It is also possible to make clear the laser irradiation point for distance measurement in the image.

以上のような構成の測定装置2を先端に付設した水冷ラ
ンス3を一定ピッチで炭化室11の高さ方向へ移動させな
がら、所定距離毎に測定を行なって炭化室11壁面の状況
を炭化室幅又は/及び画像から把握し、これに基づいて
壁面炭素の焼き落しまたはプラズマ溶射を用いた壁面補
修等を行なう。
The condition of the wall surface of the carbonization chamber 11 is measured by measuring every predetermined distance while moving the water cooling lance 3 attached to the tip of the measuring device 2 having the above-described configuration in the height direction of the carbonization chamber 11 at a constant pitch. Based on the width and / or the image, the carbon of the wall surface is burned off or the wall surface is repaired using plasma spraying.

なお、本実施例では、光源からの光を反射するミラーを
摺動可能な構成としたが、第9図に示す如く、光源23か
らの出射光光軸から所定角度に回転し得る板状の回転型
両面ミラー28を用いて反射光の方向を変える構成として
も同様の効果が得られる。
Although the mirror for reflecting the light from the light source is slidable in this embodiment, as shown in FIG. 9, it has a plate-like shape that can rotate at a predetermined angle from the optical axis of the light emitted from the light source 23. The same effect can be obtained by using the rotary double-sided mirror 28 to change the direction of reflected light.

また、本実施例ではレーザ光を用いた三角法により距離
を測定したが、レーザ光を強度変調して出射し、その飛
行時間に基づき距離を測定する方法またはその他の光学
的測距法を用いることも可能である。
Further, in the present embodiment, the distance is measured by the trigonometric method using the laser light, but the method of measuring the distance based on the flight time of the laser light which is intensity-modulated and emitted, or another optical distance measuring method is used. It is also possible.

さらに、本実施例では、撮像用ミラーを距離測定用ミラ
ーの一部に設ける構成としたが、距離測定用ミラー近傍
の同一平面上であれば、別途設けてもよい。
Further, in this embodiment, the imaging mirror is provided in a part of the distance measuring mirror, but it may be separately provided as long as it is on the same plane near the distance measuring mirror.

〔効果〕〔effect〕

本発明方法及び装置は、非接触式の光学式距離計を用い
ることにより、炭化室幅を高精度に測定して、コークス
押出しの際の押詰りを防ぐと共に、非接触手段による測
定であるため、測定装置の損傷も軽減できるという優れ
た効果を奏する。また、光を対向する両壁面の相対向す
る点に照射し得る反射面を1つの反射鏡の位置変化によ
って実現することで、測定装置の小型化を図り、狭い装
炭口からの装置装入を可能にするという優れた効果を奏
する。さらに、小型TVカメラ等の撮像装置を備えて、光
を照射した点及びその近傍の壁面状況を具体的に把握す
ることによって、測定値に異常値が発生した際の対処を
速やかに行ない得る構成とする一方、壁面撮影を反射鏡
に反映された像に対して行なうことにより、撮像用の窓
増設を不要とすると共に、像を反映させる反射鏡を距離
測定用の反射鏡の一部に設けることによって反射鏡の増
設をも不要とし、測定装置の多機能小型化を可能とする
という優れた効果を奏する。
The method and apparatus of the present invention, by using a non-contact optical rangefinder, to measure the width of the carbonization chamber with high accuracy, to prevent clogging during coke extrusion, and because it is a measurement by non-contact means The excellent effect that damage to the measuring device can also be reduced. In addition, by realizing the reflecting surface that can irradiate the opposite points on both wall surfaces facing each other by changing the position of one reflecting mirror, the measuring device can be downsized, and the device can be loaded from a narrow charging port. It has the excellent effect of enabling Furthermore, by providing an image pickup device such as a small TV camera, and by specifically grasping the point of light irradiation and the wall surface condition in the vicinity thereof, it is possible to promptly deal with abnormal values in the measured values. On the other hand, by performing wall surface imaging on the image reflected on the reflecting mirror, it is not necessary to add an additional window for imaging, and a reflecting mirror for reflecting the image is provided in a part of the reflecting mirror for distance measurement. As a result, it is not necessary to add a reflecting mirror, and it is possible to achieve the excellent effect of enabling a multifunctional downsizing of the measuring device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施態様を示す模式的断面図、第
2図,第3図は本発明方法の実施に使用する測定装置の
概略構成図、第4図,第5図,第6図は本発明に係る距
離測定方法の原理を示す図、第7図,第8図,第9図は
本発明方法を実施する他の測定装置の概略構成図であ
る。 1…コークス炉、2…測定装置、11…炭化室、22…窓、
23…光源、24…検出器、25…ミラー、26…撮像装置、27
…ミラー
FIG. 1 is a schematic cross-sectional view showing an embodiment of the method of the present invention, FIGS. 2 and 3 are schematic configuration diagrams of a measuring apparatus used for carrying out the method of the present invention, FIGS. 4, 5, and 6. The drawings are diagrams showing the principle of the distance measuring method according to the present invention, and FIGS. 7, 8, and 9 are schematic configuration diagrams of other measuring devices for carrying out the method of the present invention. 1 ... Coke oven, 2 ... Measuring device, 11 ... Carbonization chamber, 22 ... Window,
23 ... Light source, 24 ... Detector, 25 ... Mirror, 26 ... Imaging device, 27
…mirror

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光源から所定方向へ光を出射し、その出射
光を反射面にて反射し、反射した光を炭化室の一の壁面
の第1測定点へ投射し、第1測定点からの反射光を前記
反射面に入射し、その入射光に基づき所定点から第1測
定点までの第1距離を検出する一方、前記反射面の方向
を変化させて光源からの光を反対方向に反射し、反射し
た光を炭化室の他の壁面における前記第1測定点と対向
する第2測定点へ投射し、第2測定点からの反射光を位
置を変化させた反射面に入射し、その入射光に基づき所
定点から第2測定点までの第2距離を検出し、さらに第
1距離と第2距離とに基づいて、第1測定点から第2測
定点までの炭化室幅を算出することを特徴とするコーク
ス炉の炭化室幅測定方法。
1. A light source emits light in a predetermined direction, the emitted light is reflected by a reflecting surface, and the reflected light is projected to a first measurement point on one wall surface of the carbonization chamber. Of the reflected light is incident on the reflecting surface, and the first distance from the predetermined point to the first measurement point is detected based on the incident light, while the direction of the reflecting surface is changed so that the light from the light source is directed in the opposite direction. Reflected, projected the reflected light to the second measurement point facing the first measurement point on the other wall surface of the carbonization chamber, and the reflected light from the second measurement point is incident on the reflection surface whose position has been changed, The second distance from the predetermined point to the second measurement point is detected based on the incident light, and the carbonization chamber width from the first measurement point to the second measurement point is calculated based on the first distance and the second distance. A method for measuring the width of a carbonization chamber in a coke oven, comprising:
【請求項2】光源からの光を炭化室の相対向する壁面へ
投射し、壁面からの反射光に基づき炭化室幅を測定する
コークス炉の炭化室幅測定装置であって、光源からの光
を出射し、その反射光に基づき距離を算出する距離計
と、反射面の方向を変えて光源からの出射光を反射して
対向する各壁面の相対向する点へ夫々投射し、またこれ
ら壁面の相対向する点からの反射光を距離計へ反射する
反射鏡と、距離計の冷却手段と、該反射鏡と同一平面上
に撮像用反射面を設け、該撮像用反射面で反射された相
対向する壁面の相対向する光入射点及びその近傍の映像
を撮影する撮像装置とを備えたことを特徴とするコーク
ス炉の炭化室幅測定装置。
2. A coking oven width measuring device for a coke oven, which projects light from a light source onto opposite wall surfaces of a carbonizing chamber and measures the width of the carbonizing chamber based on the reflected light from the wall surfaces. And the distance meter that calculates the distance based on the reflected light, and changes the direction of the reflecting surface to reflect the light emitted from the light source and project it to the opposite points of each facing wall surface. A reflecting mirror that reflects light reflected from the opposite points to the range finder, cooling means of the range finder, and a reflecting surface for imaging on the same plane as the reflecting mirror, and the light is reflected by the reflecting surface for imaging. A coke oven width measuring device for a coke oven, comprising: an image capturing device for capturing an image of a light incident point on a wall surface facing each other and a light incident point on the wall surface facing each other.
JP62024304A 1987-02-03 1987-02-03 Method and apparatus for measuring carbonization chamber width of coke oven Expired - Lifetime JPH0718688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62024304A JPH0718688B2 (en) 1987-02-03 1987-02-03 Method and apparatus for measuring carbonization chamber width of coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62024304A JPH0718688B2 (en) 1987-02-03 1987-02-03 Method and apparatus for measuring carbonization chamber width of coke oven

Publications (2)

Publication Number Publication Date
JPS63191005A JPS63191005A (en) 1988-08-08
JPH0718688B2 true JPH0718688B2 (en) 1995-03-06

Family

ID=12134433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62024304A Expired - Lifetime JPH0718688B2 (en) 1987-02-03 1987-02-03 Method and apparatus for measuring carbonization chamber width of coke oven

Country Status (1)

Country Link
JP (1) JPH0718688B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990051985A (en) * 1997-12-20 1999-07-05 이구택 Carbon automatic measuring device with carbonization chamber
JP5458262B2 (en) * 2009-09-03 2014-04-02 国立大学法人佐賀大学 Strain measuring method, strain measuring apparatus and program
CN114525144B (en) * 2021-09-10 2024-07-19 上海梅山钢铁股份有限公司 Device for realizing accurate centering of coke pushing rod of coke pushing vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115160A (en) * 1978-02-27 1979-09-07 Sumitomo Metal Ind Method and device for measuring abraded form of refractory material lined on furnace or kettle
JPS5783155U (en) * 1980-11-06 1982-05-22

Also Published As

Publication number Publication date
JPS63191005A (en) 1988-08-08

Similar Documents

Publication Publication Date Title
CA1239534A (en) Apparatus for measuring wear in the lining of refractory furnaces
JP2003041258A (en) Measuring device of unevenness of coke oven bottom, oven bottom-repairing method and repairing apparatus
US3501380A (en) Method and apparatus for measuring the temperature of coke oven walls
US9709384B2 (en) Device for monitoring fouling deposits in a pulverized coal furnace
KR100720660B1 (en) Method and apparatus for measuring melt level
AU2003201914B2 (en) Furnace wall observation device and furnace wall shape measuring device
JPH0718688B2 (en) Method and apparatus for measuring carbonization chamber width of coke oven
JP3895928B2 (en) Wall surface observation device
JP2001003058A (en) Method for inspection wall surface of coke oven carbonization chamber and wall surface inspection equipment
JP4023988B2 (en) Coke oven wall diagnosis method and apparatus
JPH0454208Y2 (en)
JPH01145514A (en) Distance measuring apparatus for furnace observation
KR101262200B1 (en) Apparatus for diagnosing inside wall of heating chamber
JP4954688B2 (en) Coke oven carbonization chamber furnace wall displacement measurement system, and coke oven carbonization chamber furnace wall displacement measurement method
JP3978305B2 (en) Method for grasping displacement of coke oven chamber wall during operation
JP4188919B2 (en) Diagnostic equipment for coke oven carbonization chamber
JPS63312390A (en) Method for removing carbon of carbonization chamber of coke oven
JP4220800B2 (en) Method for identifying the trajectory of internal observation means for inspecting a coke oven carbonization chamber using an inspection apparatus for the coke oven carbonization chamber and an inspection method for the coke oven carbonization chamber
JP3962173B2 (en) Coke oven wall observation device
KR100709928B1 (en) Diagnostic apparatus and diagnostic method for carbonization chamber of coke oven
JP2000336370A (en) Method and system for inspecting inside of oven status
JPH0745666B2 (en) Coke oven furnace wall repair method
JP4687166B2 (en) Coke oven furnace wall shape measuring method and apparatus
JPS62298703A (en) Detecting apparatus of deposited matter
JPH05180623A (en) Method and apparatus for measuring width of carbonizing chamber of coke oven