JPS63312390A - Method for removing carbon of carbonization chamber of coke oven - Google Patents

Method for removing carbon of carbonization chamber of coke oven

Info

Publication number
JPS63312390A
JPS63312390A JP14975487A JP14975487A JPS63312390A JP S63312390 A JPS63312390 A JP S63312390A JP 14975487 A JP14975487 A JP 14975487A JP 14975487 A JP14975487 A JP 14975487A JP S63312390 A JPS63312390 A JP S63312390A
Authority
JP
Japan
Prior art keywords
carbon
carbonization chamber
amount
distribution
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14975487A
Other languages
Japanese (ja)
Other versions
JPH0765049B2 (en
Inventor
Kazutake Yagyu
柳生 和威
Toshihiko Sakai
俊彦 酒井
Toshio Kondo
近藤 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14975487A priority Critical patent/JPH0765049B2/en
Publication of JPS63312390A publication Critical patent/JPS63312390A/en
Publication of JPH0765049B2 publication Critical patent/JPH0765049B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B33/00Discharging devices; Coke guides
    • C10B33/08Pushers, e.g. rams
    • C10B33/10Pushers, e.g. rams for horizontal chambers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B43/00Preventing or removing incrustations
    • C10B43/02Removing incrustations
    • C10B43/04Removing incrustations by mechanical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details

Abstract

PURPOSE:To efficiently remove carbon in the titled carbonization chamber according to the amount of sticking carbon, by measuring the width of the carbonization chamber with light trigonometric measuring instruments at the ram head part of a pusher, analyzing and memorizing the distribution of the amount of the sticking carbon and controlling the quantity of jetting gas based on the obtained results. CONSTITUTION:The width of a carbonization chamber is measured with measuring instruments (5a) and (5b) using light trigonometry installed in the ram head part 62 of a pusher 6 of a carbonization chamber 1 of a coke oven and position where the measurement is made is simultaneously detected by a detector 12. The distribution of the amount of sticking carbon is analyzed by a change with time of data obtained by measuring the same carbonization chamber and analytical data as data of the carbonization chamber are memorized in a memory device 14. The quantity of a gas jetted from nozzles (10a) and (10b) provided in the ram part of the pusher for removing carbon is controlled on the memorized analytical data and the amount of the carbon to be removed is regulated to efficiently remove the carbon in the carbonization chamber 1 of the coke oven.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コークス炉の炭化室幅から、炭化室側壁各部
の付着カーボン厚さを測定し、測定デー夕に基づき噴射
ノズルからの空気噴射量を制御するコークス炉炭化室の
カーボン除去方法及びこれを実施する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention measures the thickness of carbon deposited on each part of the side wall of the coke oven from the width of the coke oven, and injects air from the injection nozzle based on the measurement data. The present invention relates to a carbon removal method in a coke oven carbonization chamber that controls the amount of carbon removal, and an apparatus for carrying out the method.

〔従来技術〕[Prior art]

一般にコークス炉は、炭化室に装入された石炭を、高温
下でコークスに乾留し、乾留したコークスを押出機で窯
の外へ排出したのち、装炭口から再び常温に近い石炭を
装入するといった、温度変化の大きい苛酷な条件下で操
業され、また築炉してから20年以上という長期間にわ
たって使用される。このような状況下にあっては、コー
クス炉の炭化室と燃焼室とを仕切る、レンガ等によって
構築された隔壁の、特に炭化室側壁面に、石炭を乾留す
る過程において炭化水素の分解により発生するカーボン
が付着・成長して厚く層を形成する。
In general, in a coke oven, coal charged in a carbonization chamber is carbonized into coke at high temperatures, and the carbonized coke is discharged from the kiln using an extruder. After that, coal at room temperature is charged again through the coal charging port. The furnace is operated under harsh conditions with large temperature changes, and is used for a long period of over 20 years after construction. Under these circumstances, the partition wall constructed of bricks, etc. that separates the carbonization chamber from the combustion chamber of a coke oven, especially on the side wall of the carbonization chamber, is exposed to the decomposition of hydrocarbons generated during the carbonization process of coal. Carbon adheres and grows to form a thick layer.

これを放置すると、コークスの押し詰りか発生して、隔
壁レンガに亀裂5目地切れ、欠損等の損傷を生し、また
燃焼室からの熱伝導率が低下するため、操業を中止して
付着したカーボンを空気による酸化作用で焼き落とさね
ばならなくなり、操業計画に狂いが生じる。従って、定
期的に壁面のカーボン焼き落しを行なうべく計画をたて
ればよいが、カーボンの壁面付着・成長する量及び状態
が一定ではないため、その焼き落しの頻度を予め決定す
ることは困難である。
If this is left untreated, coke will become clogged, causing damage such as cracks and chips to the bulkhead bricks. Also, the thermal conductivity from the combustion chamber will decrease, so operations will have to be stopped and the adhesion caused. The carbon must be burned off by the oxidation effect of the air, which throws off the operational plan. Therefore, it is best to make a plan to periodically burn off the carbon from the wall, but since the amount and condition of carbon adhering to and growing on the wall are not constant, it is difficult to determine the frequency of burning off in advance. .

このような問題点を解決すべく、付着カーボン量により
変化する炭化室幅を高温下にて測定し、壁面状態を推測
する装置が提案されている。例えば特開昭57−536
12号に開示される如く、炭化室から乾留されたコーク
スを押し出した後、コークス押出機のプッシャービーム
上または先端のラムへ・7ド近くに測定装置を設置し、
装置内からハネ等の付勢手段により細い棒状のガイドを
出し、ガイド先端に付設したローラを壁面に接触させ、
ガイド末端に設けた機構により、プッシャーから壁面ま
での距離を測定する装置が一般的である。
In order to solve these problems, an apparatus has been proposed that measures the width of the carbonization chamber, which changes depending on the amount of carbon deposited, at high temperatures and estimates the state of the wall surface. For example, JP-A-57-536
As disclosed in No. 12, after extruding the carbonized coke from the carbonization chamber, a measuring device is installed on the pusher beam of the coke extruder or near the ram at the tip,
A thin rod-shaped guide is taken out from within the device using a biasing means such as a spring, and a roller attached to the tip of the guide is brought into contact with the wall surface.
A device that measures the distance from the pusher to the wall using a mechanism provided at the end of the guide is common.

また、付着カーボンの総量と押出機の押出電流値との間
に一定の関係が見られる点に注目し、押出電流値が予め
定めた基準値を超えた際に、炭化室の上面または側面の
一部を外気に開放して装入車によりノズルを挿入して空
気等を噴射し、付着カーボンを焼き落とす方法が開示さ
れている(特開昭61−231086号)。
In addition, we focused on the fact that there is a certain relationship between the total amount of adhered carbon and the extrusion current value of the extruder, and when the extrusion current value exceeds a predetermined reference value, A method has been disclosed in which a part of the tube is opened to the outside air and a nozzle is inserted using a loading vehicle to inject air or the like to burn off the adhering carbon (Japanese Patent Laid-Open No. 61-231086).

ところで、壁面に付着するカーボンの成長速度は、壁面
の温度の影響が大きく、その壁面温度が均一ではない炭
化室では、付着するカーボンの厚さは均一ではない。ま
た、付着カーボンは発生ガスの燃焼室への漏れ込みを防
ぐ壁面レンガ目地のシール機能を有しており、このシー
ル機能を果たすべく全面均一に、且つ押し詰まりが発生
しない程度に厚さ約1〜3nのカーボンが壁面に付着し
ている状態が理想的である。
Incidentally, the growth rate of carbon adhering to the wall surface is greatly influenced by the temperature of the wall surface, and in a carbonization chamber where the wall surface temperature is not uniform, the thickness of the carbon adhering to the wall surface is not uniform. In addition, the adhered carbon has the function of sealing the wall brick joints to prevent generated gas from leaking into the combustion chamber, and in order to fulfill this sealing function, it is applied uniformly over the entire surface and to a thickness of about 1 cm to prevent clogging. The ideal state is that ~3n of carbon is attached to the wall surface.

しかし、特開昭61−231086号に開示される如く
、付着カーボンの総量に基づきカーボン焼き落としを均
一的に実行すると、焼き落とし後のカーボン残存量にば
らつきが生しるのみならず、焼き落としが過剰となって
壁面の地肌が露出する部分が生し、目地のシール機能が
果たされず、炭化室から燃焼室へのガス漏れによる黒煙
の発生を招く。
However, as disclosed in JP-A No. 61-231086, if carbon burn-off is performed uniformly based on the total amount of attached carbon, not only will there be variations in the amount of carbon remaining after burn-off, but also the burn-off Excessive carbonation causes the bare surface of the wall to become exposed, and the sealing function of the joints is not fulfilled, leading to the generation of black smoke due to gas leaking from the carbonization chamber to the combustion chamber.

従って、特開昭61−231084号では、炭化室内付
着カーボンの厚さが均一でない点に着目し、付着カーボ
ン量の分布を測定し、測定値に基づいてノズルからの空
気噴射量を調節する方法が開示されている。しかし付着
カーボン厚さを測定する装置及び測定方法に関しては、
適用可能な一般的装置名及び測定方法が例示されている
のみであって、具体的な開示は見られない。
Therefore, JP-A No. 61-231084 focuses on the fact that the thickness of the carbon deposited in the carbonization chamber is not uniform, measures the distribution of the amount of deposited carbon, and adjusts the amount of air jetted from the nozzle based on the measured value. is disclosed. However, regarding the equipment and method for measuring the thickness of deposited carbon,
Applicable general device names and measurement methods are only exemplified, without specific disclosure.

さらに、上記開示例では、空気噴射ノズルを、コークス
押出機とは別に設けた装入車により炭化室へ挿入する構
成であるため、装入車に空気噴射ノズルと挿入のための
機構を付加する必要があり、装置が大がかりとなる。し
かも、長手方向に3〜5個の装炭口という構成が一般的
な炭化室において、装炭口間の距離は2m以上あり、装
炭口と装炭口との間のカーボン焼き落としが充分に行わ
れ得ないといった問題点があった。
Furthermore, in the disclosed example, the air injection nozzle is inserted into the carbonization chamber by a charging car provided separately from the coke extruder, so the air injection nozzle and a mechanism for insertion are added to the charging car. This requires a large-scale device. Moreover, in a carbonization chamber that is generally configured with 3 to 5 coal charging ports in the longitudinal direction, the distance between the coal charging ports is 2 m or more, and carbon burning between the coal charging ports is sufficient. The problem was that it could not be carried out.

また、カーボン付着量を検出すべく炭化室幅を測定する
装置として、特開昭57−53612号の如きガイドを
用いた接触式の測定装置では、炭化室壁面のレンガに欠
落、目地切れ等の欠損があると、ガイドの先端部がこれ
らの凹部に引っかかり、または引っかかりの衝撃により
ガイドが変形して測定が不可能となる。また、ガイド先
端の接触子がローラでは、ローラ径より小さい幅寸法の
凹部等には入り込めず、それだけ測定の精度が低いとい
うことになる。
In addition, as a device for measuring the width of the carbonization chamber to detect the amount of carbon deposited, a contact type measuring device using a guide such as that disclosed in JP-A No. 57-53612 does not allow for defects such as chips or joint cuts in the bricks on the wall of the carbonization chamber. If there is a defect, the tip of the guide will get caught in these recesses, or the guide will be deformed by the impact of the catch, making measurement impossible. Further, if the contact at the tip of the guide is a roller, it cannot enter into a recess or the like having a width smaller than the roller diameter, which results in a correspondingly lower measurement accuracy.

また炭化室の隔壁は長期間の稼動により全体的に傾くこ
ともあり、炭化室幅が夫々の炭化室で異なることがある
。従って炭化室幅を精密に測定することによって直ちに
カーボン付着量が判明するわけではない。
Furthermore, the partition walls of the carbonization chambers may tilt as a whole due to long-term operation, and the widths of the carbonization chambers may differ between the respective carbonization chambers. Therefore, the amount of carbon deposited cannot be immediately determined by precisely measuring the width of the carbonization chamber.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はこのような問題点を解決するためになされたも
のであって、コークス炉の炭化室壁面に付着したカーボ
ンを、コークス乾留作業に支障なく、少ない設備で効果
的に燃焼除去する方法及びこれを実施する装置の提供を
目的とする。
The present invention has been made to solve these problems, and provides a method and a method for effectively burning off carbon adhering to the wall surface of the carbonization chamber of a coke oven without interfering with coke carbonization work and using a small amount of equipment. The purpose is to provide a device that implements this.

〔問題点を解決するための手段〕[Means for solving problems]

本発明方法は、コークス炉の炭化室壁面に付着するカー
ボン量の分布に応じてカーボン除去量を調整するカーボ
ン除去方法において、押出機ラムヘッド部に設置した光
三角法を用いた測定装置によって炭化室幅を測定すると
共に、測定した位置を検出し、同一の炭化室を測定した
データの時間的変化からカーボン付着量の分布を解析し
、解析したデータをこの炭化室におけるデータとして記
憶しておき、さらに記憶した該解析データに基づき、押
出機ラム部に設置したノズルから噴射するカーボン除去
用の気体噴射量を制御し、カーボン除去量を調整するこ
とを特徴とし、またコークス炉の炭化室壁面に付着する
カーボン量の分布に応じてカーボン除去量を調整するカ
ーボン除去装置であって、押出機ラム部に設置され、カ
ーボン除去用の気体を噴射するノズルと、押出機ラムヘ
ッド部に設置され、炭化室幅を測定する光三角法を用い
た幅測定装置と、炭化室幅の測定位置を検出する位置検
出器と、測定した炭化室幅と/jII定位置とからカー
ボン付着量の分布を解析する解析装置と、検出したカー
ボン付着量の分布を該炭化室における分布データとして
記憶しておく記憶装置と、記憶装置の分布データに基づ
きノズルからの気体噴射量を制御する噴射量制御器とを
備えたことを特徴とする。
The method of the present invention is a carbon removal method in which the amount of carbon removed is adjusted according to the distribution of the amount of carbon adhering to the wall surface of the carbonization chamber of a coke oven. In addition to measuring the width, the measured position is detected, the distribution of carbon adhesion amount is analyzed from the temporal change of data measured in the same carbonization chamber, and the analyzed data is stored as data for this carbonization chamber, Furthermore, based on the stored analysis data, the amount of carbon removal gas injected from a nozzle installed in the extruder ram is controlled to adjust the amount of carbon removed. This is a carbon removal device that adjusts the amount of carbon removed according to the distribution of the amount of attached carbon.It is installed in the extruder ram and has a nozzle that injects carbon removal gas, and a nozzle that is installed in the extruder ram head to remove carbonization. A width measurement device using optical triangulation that measures the chamber width, a position detector that detects the measurement position of the carbonization chamber width, and the distribution of carbon adhesion amount is analyzed from the measured carbonization chamber width and /jII fixed position. It includes an analysis device, a storage device that stores the detected distribution of carbon adhesion amount as distribution data in the carbonization chamber, and an injection amount controller that controls the amount of gas injected from the nozzle based on the distribution data in the storage device. It is characterized by:

本発明でいう同一炭化室を測定したデータの時間的変化
からのカーボン付着量分布の解析は、長時間カーボンを
焼き落としてほぼ完全にカーボンが除去された直後の炭
化室幅測定値を基準値とし、入力される測定値との差か
ら付着カーボン分布を測定する方法、あるいはコークス
の押出しの都度測定して得られる炭化室幅の測定値の時
間的変化からカーボン付着分布を測定する方法である。
In the present invention, the analysis of the carbon adhesion amount distribution based on the temporal change in the data measured in the same carbonization chamber is based on the carbonization chamber width measurement value immediately after carbon is almost completely removed by burning off the carbon for a long time. The carbonization chamber width measurement value is measured each time coke is extruded, and the carbonization chamber width is measured. .

〔作用〕 本発明方法は、押出機ラムヘッド部に設置した光三角法
を用いた測定装置によって炭化室幅を測定し、また位置
検出器が測定した位置を検出し、解析装置が炭化室幅を
測定したデータの時間的変化からカーボン付着量の分布
を解析し、記憶装置が、解析したデータを該炭化室に係
るデータとして記憶しておき、さらに噴射量制御器が、
記憶しである解析データに基づき、押出機ラムヘッド部
に設置したノズルから噴射するカーボン除去用の気体噴
射量を制御し、カーボン除去量を調整して壁面のカーボ
ン付着量を均一に保つ。
[Operation] In the method of the present invention, the width of the carbonization chamber is measured by a measurement device using optical triangulation installed in the ram head of the extruder, the measured position is detected by a position detector, and the analysis device measures the width of the carbonization chamber. Analyzing the distribution of carbon adhesion amount from temporal changes in the measured data, a storage device stores the analyzed data as data related to the carbonization chamber, and an injection amount controller,
Based on the memorized analysis data, the amount of carbon removal gas injected from a nozzle installed in the extruder ram head is controlled, and the amount of carbon removed is adjusted to maintain a uniform amount of carbon adhesion on the wall surface.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき詳述する
。第1図は本発明に係るコークス炉の正面断面図である
。図中1は炭化室であって、幅35〜55cIn、高さ
4〜7m、長さ10〜17mを有し、コークス炉は、こ
の炭化室1と耐火レンガ等からなる隔壁2を隔てて設け
られた燃焼室3とを交互に多数備える。炭化室1天井部
には、複数の装炭口11、11.・・・が設けられてお
り、各装炭口から投入された石炭が、燃焼室3から間接
的に熱せられて、十数時間を要し約1000℃まで昇温
する間に乾留が行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof. FIG. 1 is a front sectional view of a coke oven according to the present invention. In the figure, reference numeral 1 denotes a carbonization chamber, which has a width of 35 to 55 cIn, a height of 4 to 7 m, and a length of 10 to 17 m. A large number of combustion chambers 3 are provided alternately. A plurality of coal loading ports 11, 11. ... is installed, and the coal input from each coal charging port is indirectly heated from the combustion chamber 3, and carbonization is performed while the temperature rises to about 1000 degrees Celsius, which takes more than 10 hours. .

次に、第2図に示す炭化室1の側断面図の如く、乾留後
に残ったコークス4が、第2図右側のマシンサイドから
、そのラムヘッド62背面であって、炭化室1壁面のカ
ーボン除去位置に相当する高さの2箇所に、夫々炭化室
幅の測定装置5a、5bを、又ブツシャビーム61上で
あって、測定装置5a、5bによる測定高さに対応する
高さに、圧縮空気の噴射口を鉛直方向に複数列設したノ
ズル10a、10bを設置した押出機6によって、第2
図左側のコークサイドへ所定速度で押し出されるととも
に、押出機6に付設されたラムヘッド位置検出器12に
よってラムヘッド62の位置が検出され、測定装置5a
、5bによって炭化室1の幅、即ち炭化室両側の隔壁2
゜2間の距離、及び壁面状態が所定時間毎に検出され、
この検出値は、前述の如く検出されたラムヘッド62の
位置に対応付けられ、炭化室を特定する番号と共に、押
出機6に設置された記憶装置に記憶される。さらに、押
し出されたコークスは、コークサイドに沿って自在に走
行するガイド車7を介し、消火車8に投入されたのち消
火される。さらに、図示しないが炭化室1下部には、燃
料ガス及び空気の予熱と、燃焼後の排ガスの熱回収を行
う蓄熱室が設けられている。
Next, as shown in the side sectional view of the carbonization chamber 1 shown in FIG. 2, the coke 4 remaining after carbonization is removed from the machine side on the right side of FIG. Carbonization chamber width measuring devices 5a and 5b are placed at two locations corresponding to the heights of the carbonization chamber widths, and compressed air is placed on the bushing beam 61 at a height corresponding to the height measured by the measuring devices 5a and 5b. The second
The ram head 62 is pushed out at a predetermined speed to the coke side on the left side of the figure, and the position of the ram head 62 is detected by the ram head position detector 12 attached to the extruder 6, and the measuring device 5a
, 5b indicates the width of the carbonization chamber 1, that is, the partition walls 2 on both sides of the carbonization chamber.
The distance between ゜2 and the wall surface condition are detected at predetermined intervals,
This detected value is associated with the position of the ram head 62 detected as described above, and is stored in a storage device installed in the extruder 6 together with a number specifying the carbonization chamber. Furthermore, the extruded coke is put into a fire extinguishing truck 8 via a guide car 7 that freely travels along the coke side, and then extinguished. Furthermore, although not shown, a heat storage chamber is provided at the bottom of the carbonization chamber 1 for preheating the fuel gas and air and for recovering heat from the exhaust gas after combustion.

第3図はカーボン除去装置の構成を示すプロンク図であ
って、測定装置5a、5bにより測定した炭化室幅は、
ラムヘッド位置検出器12により検出されたラムへメト
位置のデータとともに、位置解析装置13に入力される
。位置解析装置13には、炭化室幅の基準値として長時
間のカーボン焼落しでほぼ完全にカーボンが除去された
直後の炭化室幅測定値が記憶されており、入力された測
定値と基準値との差から付着カーボン厚さを算出するこ
とができる。はぼ完全にカーボンが除去された状態での
炭化室幅測定値が無い炭化室についてはコークス押出し
のつど測定して得られる炭化室幅の分布の時間的変化か
ら、カーボンの付着量を推定する。
FIG. 3 is a Pronk diagram showing the configuration of the carbon removal device, and the width of the carbonization chamber measured by measuring devices 5a and 5b is as follows:
The data is input to the position analysis device 13 together with data on the ram head position detected by the ram head position detector 12 . The position analysis device 13 stores the carbonization chamber width measurement value immediately after carbon is almost completely removed by long-term carbon burning as a reference value for the carbonization chamber width, and the input measurement value and reference value are stored in the position analysis device 13. The deposited carbon thickness can be calculated from the difference. For carbonization chambers for which there is no measurement of the width of the carbonization chamber when carbon has been almost completely removed, the amount of carbon deposited is estimated from the temporal change in the distribution of the width of the carbonization chamber, which is obtained by measuring each time coke is extruded. .

このようにして得たカーボン付着量分布のデータを当該
炭化室を特定する番号と対応付けて記憶装置14に記憶
する。これらの解析データをノズル噴射量制御器15が
読み込み、ノズル10a、 10bに対する空気量、空
気圧を制御する。
The data on the carbon adhesion amount distribution thus obtained is stored in the storage device 14 in association with a number identifying the carbonization chamber. The nozzle injection amount controller 15 reads these analytical data and controls the air amount and air pressure for the nozzles 10a and 10b.

次に、ノズル10a、10bにつき詳述すれば、第4図
は、1個のノズル10の一部切欠斜視図であって、鉛直
方向に9個の噴射口101,101・・・を有し、これ
ら噴射口101,101・・・には、送られてくる圧縮
空気を噴射口101.101・・・へ均等に配分すべく
2段のバソファクンク102,103が設けられ、噴射
量の均一化を図っている。この1個のノズル10は、高
さ方向約300 mの範囲に対する空気噴射が可能であ
る。
Next, to explain the nozzles 10a and 10b in detail, FIG. 4 is a partially cutaway perspective view of one nozzle 10, which has nine injection ports 101, 101, . . . in the vertical direction. , these injection ports 101, 101... are provided with two-stage bath shocks 102, 103 in order to evenly distribute the compressed air sent to the injection ports 101, 101..., making the injection amount uniform. We are trying to This single nozzle 10 can spray air over a range of about 300 m in the height direction.

なお、ノズルの形状及び噴射口の数は、壁面に空気を均
一に噴射し得るものであれば、これに限るものではない
Note that the shape of the nozzle and the number of injection ports are not limited to these as long as they can uniformly inject air onto the wall surface.

さらに、ノズル10a、10bを設置する位置は、プッ
シャービーム61上に限らず、ラムヘッド62背面であ
ってもよい。
Furthermore, the position where the nozzles 10a and 10b are installed is not limited to the top of the pusher beam 61, but may be on the back surface of the ram head 62.

また、測定装置5a、5bは、いずれも第5図の正面断
面図及び第6図の側面断面図にその構成を示す如く外壁
51内、外二重箱構造に構成され、両箱間には炭化室1
の外部からプッシャービーム61に沿って配管された給
水管(図示省略)から冷却水が供給されて測定装置5a
、5bの内部を冷却する一方、この冷却水は、プッシャ
ービーム61に沿って配管された排水管(図示省略)へ
排出される。外壁51の相対する2面には、後述するミ
ラー55にて反射される光源54aからの出射光及び炭
化室内壁にて反射される反射光を通過させ得る高さ及び
大きさを有する石英ガラスからなる窓52.52が夫々
設けられ、これらの窓52.52は夫々窓材固定治具に
よって壁面に保持されている。また、これらの窓52.
52は、前述の如き高さ及び大きさを有し且つ外部から
の輻射熱の侵入を最小に抑え得る大きさが望ましい。さ
らに、プッシャービーム61に沿って配管された給気管
(図示省略)によって窒素ガスを炭化室1の外部から箱
の内部へ送り込み、内部を冷却する一方、窒素ガスは、
窓52.52周囲の間隙から外部へ排出される。
The measuring devices 5a and 5b are both constructed with a double box structure inside and outside the outer wall 51, as shown in the front cross-sectional view of FIG. 5 and the side cross-sectional view of FIG. Room 1
Cooling water is supplied from the outside of the measuring device 5a from a water supply pipe (not shown) installed along the pusher beam 61.
, 5b, while this cooling water is discharged to a drain pipe (not shown) arranged along the pusher beam 61. The two opposing surfaces of the outer wall 51 are made of quartz glass having a height and size that allows the light emitted from the light source 54a to be reflected by a mirror 55, which will be described later, and the reflected light reflected by the carbonized interior wall to pass through. Windows 52 and 52 are respectively provided, and these windows 52 and 52 are each held on the wall by a window material fixing jig. Moreover, these windows 52.
52 has the above-mentioned height and size, and preferably has a size that can minimize the intrusion of radiant heat from the outside. Furthermore, nitrogen gas is sent from the outside of the carbonization chamber 1 to the inside of the box through an air supply pipe (not shown) installed along the pusher beam 61 to cool the inside of the box.
It is discharged to the outside through the gap around the window 52.52.

また、内部に納められた測定機器は、正面及び側面が断
面コの字形を呈する固定枠53に固定され、固定枠53
は機器とともに外壁51内面の適宜の位置にバネ57.
57・・・によって弾力的に係止され、共振周波数は極
力低く抑えられ、測定装置5a、5bの振動による内部
機器の損傷を防ぐ。固定枠53上半部には、光源54a
及び検出器54bからなる1組の光学式距離計54が設
けられており、その構成は、光源54aがレーザ光を下
方へ出射すべく配されていると共に、検出器54bが、
測定対象からの反射光を入射し得る所定角度の傾きを有
して配されている。さらに、固定枠53の底部には、そ
の反射面である平面視及び背面視形状が長方形、また断
面形状が直角二等辺三角形であるミラー55が、この直
角を頂点として配設され、光源54aからの出射光を窓
52から外部へ反射するとともに、所要範囲内の測定対
象にて反射された光を入射し得る大きさを有する。また
、ミラー55は、図示しないシリンダの出没により、窓
52.52の鉛直方向へ摺動可能となっている移動台5
6に載置されている。さらに、本実施例では光源54a
として波長850nmのレーザ光を用い、ミラー55に
は、この波長の光を高い反射率にて反射し得る特殊ミラ
ーを用いる。また、鉛直方向の固定枠53において、窓
52とミラー55との間に介在する部分には、窓52と
同寸以上の透明窓57を設け、反射光を透過させる。
Further, the measuring equipment housed inside is fixed to a fixed frame 53 whose front and side surfaces have a U-shaped cross section.
The spring 57. is attached to an appropriate position on the inner surface of the outer wall 51 along with the equipment.
57..., the resonant frequency is suppressed as low as possible, and damage to internal equipment due to vibration of the measuring devices 5a, 5b is prevented. A light source 54a is provided in the upper half of the fixed frame 53.
A set of optical rangefinders 54 is provided, which includes a light source 54a that emits laser light downward, and a detector 54b that
It is arranged with an inclination of a predetermined angle to allow the reflected light from the measurement object to enter. Further, at the bottom of the fixed frame 53, a mirror 55, which is a reflecting surface, is rectangular in plan view and rear view, and has a right isosceles triangle in cross section, is disposed with the right angle as the apex. It has a size that allows it to reflect the emitted light from the window 52 to the outside and to allow the light reflected from the measurement object within a required range to enter. Further, the mirror 55 is mounted on a movable base 5 which is slidable in the vertical direction of the window 52, 52 by the protrusion and retraction of a cylinder (not shown).
It is placed on 6. Furthermore, in this embodiment, the light source 54a
A laser beam with a wavelength of 850 nm is used as the mirror 55, and a special mirror that can reflect light of this wavelength with high reflectance is used as the mirror 55. Further, in the fixed frame 53 in the vertical direction, a transparent window 57 having the same size or more as the window 52 is provided in a portion interposed between the window 52 and the mirror 55, and allows reflected light to pass through.

次に、このような構成の測定装置5a、5bを用いた距
離測定の原理を、第6図及び第9図に示す光路想定図に
従って説明する。光源54aからミラー55の反射面に
おける反射点R1までの距離l。、この反射点R1から
測定対象である両壁面までの距離を夫々1..12とす
ると、同一測定位置にてミラー55を測定対象の鉛直方
向へ摺動させることにより求まる再測定対象からの反射
光の検出器54bへの入射角から7!o+11及びp。
Next, the principle of distance measurement using the measuring devices 5a and 5b having such a configuration will be explained with reference to the optical path diagrams shown in FIGS. 6 and 9. Distance l from the light source 54a to the reflection point R1 on the reflection surface of the mirror 55. , the distances from this reflection point R1 to both wall surfaces to be measured are 1. .. 12, then 7! from the angle of incidence of the reflected light from the re-measured object onto the detector 54b, which is determined by sliding the mirror 55 in the vertical direction of the measured object at the same measurement position. o+11 and p.

+p2の値を三角法によって求め、これらの値から一定
値loを減算してi、 +7!2を算出すれば、対向す
る2測定対象間の距離が求まる。
By finding the value of +p2 by trigonometry and subtracting a constant value lo from these values to calculate i, +7!2, the distance between the two opposing measurement objects can be found.

以上の如き構成及び原理に基づく炭化室幅の測定方法を
説明する。測定装置5a、5bを、第2図に示す如く、
経験的に得られたカーボンが付着し易い高さに、夫々そ
の窓52.52を両隅壁2.2に向けて設置し、各配管
を通して冷却用の水及び窒素ガスを測定装置5a 、 
5bへ供給する。押出機6が、プッシャービーム61を
20m/m’in 、のスピードで炭化室1内へ進入せ
しめ、先端のラムヘッド62によって乾留コークスを押
し出す一方、測定装置5a、5bが0.2秒毎にミラー
55を摺動させ、両側の隔壁までの距離p1及びp2を
レーザ光を用いた三角法によって交互に検出する。従っ
て、11及び7!2の検出点は、厳密には対向する位置
ではないが、20m/min 、といった低スピードの
動きであれば、ミラー55が移動する0、2秒間、即ち
約70璽頂前進する間に大きくプッシャービーム61が
左右に動いて、411定中心線がずれ、両隅壁2.2へ
の距離の合計が炭化室幅を示し得なくなるといった懸念
はない。
A method for measuring the width of the carbonization chamber based on the configuration and principle as described above will be explained. The measuring devices 5a and 5b are as shown in FIG.
The windows 52 and 52 are installed facing both corner walls 2.2 at heights where carbon tends to adhere as determined by experience, and water and nitrogen gas for cooling are supplied through each pipe to a measuring device 5a,
5b. The extruder 6 causes the pusher beam 61 to enter the carbonization chamber 1 at a speed of 20 m/m'in, and the ram head 62 at the tip pushes out the carbonized coke, while the measuring devices 5a and 5b measure the mirror every 0.2 seconds. 55, and the distances p1 and p2 to the partition walls on both sides are alternately detected by trigonometry using laser light. Therefore, although the detection points 11 and 7!2 are not strictly opposite positions, if the movement is at a low speed of 20 m/min, the detection points 11 and 7! There is no concern that the pusher beam 61 moves left and right significantly while moving forward, causing the fixed center line 411 to shift, and the sum of the distances to both corner walls 2.2 not being able to indicate the width of the coking chamber.

以上のような光学式距離計を用いた測定装置5a。Measuring device 5a using the optical distance meter as described above.

5bでは、測定精度が0.1〜Q、5mmといった高精
度の距離測定が行なわれ、炭化室1の壁面状態が定量的
に捉えられ、その状況の推定が容易である。
5b, high-precision distance measurement is performed with a measurement accuracy of 0.1 to Q, 5 mm, and the wall condition of the carbonization chamber 1 can be quantitatively captured, making it easy to estimate the situation.

さらに、光学式測定装置では、反射光を利用して測定を
行なうため、測定装置の大きさに限界があれば、固定さ
れた検出器に入射し得る反射光の範囲も限られ、検出器
の検出可能範囲に応じて、測定可能範囲が定まる。従っ
て、レーザ光の測定精度が高ければ、壁面の付着カーボ
ン焼き落し後に、壁面レンガが露出している場合等は、
レンガの目地切れ、亀裂等の微細な変化点を測定すべく
レーザ光照射が行なわれ得るが、その深さが装置の測定
の測定能力を超えるものであれば、異常値となってあら
れれる。また、微細な凹部に限らず、レンガ欠落等によ
って生した四部であっても、その深さが測定能力を超え
るものであれば、装置は異常値を示す。これらの異常値
に対して、例えば目地切れ、亀裂等にはプラズマ溶射を
行ない、またレンガ欠落に対しては欠落部分の補充を行
なう等、その対処方法が異なる場合がある。従って、異
常値が発生した場合に、その測定点近傍の具体的状況を
把握することができれば、炭化室幅の測定のみならず、
炭化室1を保全する適切な処置を直ちに行なうことが可
能となる。そのため、壁面の具体的状況は小型TVカメ
ラ等によって撮像する構成とする。撮像の対象となる壁
面は800〜1000℃の温度を有するので特に光源を
用いなくても良好な画像を得ることができる。測定装置
5a、5bの大きさは、炭化室1の幅寸法によって制限
されるため、距離測定用のミラー55に反映される壁面
を撮像する構造を用いている。即ち、第9図に示す如く
、光源54aと検出器54bとの距離が200m。
Furthermore, since optical measurement devices perform measurements using reflected light, if there is a limit to the size of the measurement device, the range of reflected light that can enter a fixed detector is also limited, and the detector The measurable range is determined according to the detectable range. Therefore, if the measurement accuracy of the laser beam is high, if the wall brick is exposed after burning off the adhering carbon on the wall, etc.
Laser light irradiation can be performed to measure minute points of change such as joint cuts and cracks in bricks, but if the depth exceeds the measurement capability of the device, abnormal values may be obtained. In addition, the device will show an abnormal value if the depth exceeds its measurement ability, not only for minute depressions but also for pits caused by missing bricks, etc. Different methods may be used to deal with these abnormal values, such as plasma spraying for joint breaks, cracks, etc., and replenishment of missing bricks. Therefore, when an abnormal value occurs, if it is possible to understand the specific situation near the measurement point, it is possible to not only measure the width of the coking chamber but also to
Appropriate measures to preserve the carbonization chamber 1 can be taken immediately. Therefore, the concrete situation of the wall surface is imaged using a small TV camera or the like. Since the wall surface to be imaged has a temperature of 800 to 1000° C., a good image can be obtained without using a particular light source. Since the size of the measuring devices 5a and 5b is limited by the width dimension of the carbonization chamber 1, a structure is used that images the wall surface reflected on the mirror 55 for distance measurement. That is, as shown in FIG. 9, the distance between the light source 54a and the detector 54b is 200 m.

光源54bからミラー55における光の反射点R1まで
の距Mlt 7!oが1251である本実施例の光学式
距離計54では、反射点R2がら測定対象の壁面までの
距1ilI I12 =230 inを基準とすルト、
50mmノtJJlt変化に対して、反射点R2のミラ
ー55における水平方向変化量は10.2flといった
微小な値であり、且つ反射点R1は定点であって、距離
測定に用いる反射面は狭い範囲である。従って第5図、
第6図に示す如く、ミラー55の両面夫々に対して、反
射点R,,R2を含む、特殊ミラーを用いた距離測定用
のミラー55a、 55aの中IL’Lflt55bに
、JjJE用の通常ミラーを用いて、これらを同一平面
上に配する一方、中間部55bと小型TVカメラ等の撮
像装置59を対接して配し、ミラー中間部55bに投影
される壁面を幅測定と同時に撮影し、この画像を外部か
ら観察する。またVTRによって録画する等して測定終
了後に、状況検討を行なってもよい。
Distance Mlt from the light source 54b to the light reflection point R1 on the mirror 55 7! In the optical distance meter 54 of this embodiment in which o is 1251, the distance from the reflection point R2 to the wall surface to be measured is 1ilI I12 = 230 inches.
For a change of 50 mm in tJJlt, the amount of horizontal change in the mirror 55 at the reflection point R2 is a small value of 10.2fl, and the reflection point R1 is a fixed point, and the reflection surface used for distance measurement is a narrow range. be. Therefore, Figure 5,
As shown in FIG. 6, a regular mirror for JjJE is installed in IL'Lflt 55b in mirrors 55a and 55a for distance measurement using special mirrors, including reflection points R, , R2 on both sides of the mirror 55, respectively. is used to arrange these on the same plane, while placing an imaging device 59 such as a small TV camera or the like in opposition to the intermediate portion 55b, and photographing the wall surface projected onto the mirror intermediate portion 55b at the same time as measuring the width; Observe this image from the outside. Further, the situation may be examined after the measurement is completed, such as by recording on a VTR.

さらに、距! fi!I定用のレーザ光照射点と画像上
の相当位置とを対応付ける場合は、本実施例のレーザ光
が波長850 nmであって目視ではどの位置に当たっ
ているか分らないのでレーザ光とその光軸を一致させ、
または平行させて可視波長のレーザ光または白色光を投
光することにより、画像内における距離測定用のレーザ
光照射点を明確にさセることもできる。
Furthermore, distance! Fi! When associating the laser beam irradiation point for regular use with the corresponding position on the image, the laser beam and its optical axis must be aligned because the laser beam in this example has a wavelength of 850 nm and it is not possible to tell visually which position it is hitting. let me,
Alternatively, by projecting visible wavelength laser light or white light in parallel, it is also possible to clearly locate the laser light irradiation point for distance measurement in the image.

以上の如く測定を行なって炭化室■壁面の状況を炭化室
幅又は/及び画像から把握し、これに基づいて壁面カー
ボンの焼き落し及びプラズマ溶射を用いた壁面補修等を
行なう。
By performing the measurements as described above, the condition of the wall surface of the carbonization chamber is determined from the width of the carbonization chamber and/or from the image, and based on this, the wall surface is repaired by burning off the wall carbon and using plasma spraying.

なお、本実施例では、1組の距離計を用いて両壁面まで
の距離を交互に測定する構成としたが、第7図及び第8
図にその構成を示す如く、前述の光学式距離計54を2
台搭載し、各壁面の測定を同時に行う構成としてもよい
。その場合、ミラーは各壁面に対して夫々所定角度を有
する固定式のミラー55C,55Cとする。
In this example, the distance to both walls is alternately measured using one set of rangefinders, but as shown in Figs.
As shown in the figure, the above-mentioned optical distance meter 54 is
A configuration may also be adopted in which a stand is mounted and each wall surface is measured simultaneously. In that case, the mirrors are fixed mirrors 55C, 55C each having a predetermined angle with respect to each wall surface.

また、第7図及び第8図に示す如く距離計54を構成す
る光源54a及び検出器54bを鉛直方向へ摺動させf
Mる可変機構60を設ければ、距離計54にょり測定可
能な距離範囲が広がる。この可変機構60は、距離計5
4を1組搭載した本実施例の場合にも適用が可能である
Further, as shown in FIGS. 7 and 8, the light source 54a and the detector 54b constituting the distance meter 54 are slid in the vertical direction.
If the variable mechanism 60 is provided, the distance range that can be measured by the distance meter 54 will be expanded. This variable mechanism 60
It is also possible to apply this embodiment to the case in which one set of 4 is mounted.

さらに、本実施例ではレーザ光を用いた三角法により距
離を測定したが、レーザ光を強度変調して出射し、その
飛行時間に基づき距離を測定する方法またはその他の光
学的測距法を用いることも可能である。
Furthermore, in this example, the distance was measured by trigonometry using a laser beam, but a method in which the laser beam is intensity-modulated and emitted and the distance is measured based on its flight time, or other optical distance measurement methods may be used. It is also possible.

また、本実施例では、撮像用ミラーを距離測定用ミラー
の一部に設ける構成としたが、距離測定用ミラー近傍の
同一平面上であれば、別途設けてもよい。
Further, in this embodiment, the imaging mirror is provided as a part of the distance measuring mirror, but it may be provided separately as long as it is on the same plane near the distance measuring mirror.

さらに、本実施例では、光源からの光を反射するミラー
を摺動可能な構成としたが、第10図に示す如く、光源
54aからの出射光光軸から所定角度に回転し得る板状
の回転型両面ミラー55dを用いて反射光の方向を変え
る構成としても同様の効果が得られる。
Furthermore, in this embodiment, the mirror that reflects the light from the light source is configured to be slidable, but as shown in FIG. Similar effects can be obtained by using a configuration in which the rotating double-sided mirror 55d is used to change the direction of reflected light.

次に、本発明に係るカーボン除去方法につき説明する。Next, the carbon removal method according to the present invention will be explained.

即ち、コークス押出しは、20〜24時間毎に行われる
が、炭化室幅の測定を、押出機6がコークスを押し出す
期間、または押出し終了後にラムを初期位置に引戻す期
間に行い、測定したデータに基づき炭化室水平方向の付
着カーボン量分布の解析及び解析に基づく形状作図は、
押出機6が次の炭化室へ移動する間に行う。全炭化室に
対するコークス押出し及び炭化室幅測定を終了し、次の
コークス押出しを行う際に、炭化室単位にて、解析デー
タに基づき、付着カーボン量が所定量以上の壁面に対し
て、付着カーボン量に応した量。
That is, although coke extrusion is performed every 20 to 24 hours, the width of the coking chamber is measured during the period when the extruder 6 pushes out the coke, or during the period when the ram is pulled back to the initial position after extrusion is completed, and the measured data is Based on this, the analysis of the distribution of the amount of adhering carbon in the horizontal direction of the carbonization chamber and the drawing of the shape based on the analysis are as follows.
This is carried out while the extruder 6 is moving to the next carbonization chamber. After completing coke extrusion and carbonization chamber width measurement for all carbonization chambers, when performing the next coke extrusion, the amount of adhered carbon on the wall surface of each carbonization chamber is greater than a predetermined amount based on the analytical data. Quantity according to quantity.

圧力の空気をノズル10a、10bから噴射し、カーボ
ンを焼き落とす。従って周期的に繰り返されるコークス
押出しの際に、測定と除去が交互に行われ、測定と除去
との間には20〜24時間の時間差はあるが、20〜2
4時間で付着するカーボン量は、経験的に0.in程度
であることが知られており、時間遅れの影響は考えなく
てもよい。
Pressurized air is injected from nozzles 10a and 10b to burn off the carbon. Therefore, during coke extrusion that is repeated periodically, measurement and removal are performed alternately, and there is a time difference of 20 to 24 hours between measurement and removal.
Empirically, the amount of carbon deposited in 4 hours is 0. It is known that the time delay is about in, so there is no need to consider the influence of time delay.

なお、本実施例では、炭化室幅測定後のデータ解析を次
の炭化室への移動中に行うこととしたが、コークス押出
し期間に測定及び解析を行い、押出し終了後、ラムを引
戻す期間に、解析データに基づく空気の噴射を行ってカ
ーボンを焼き落としてもよい。
In this example, data analysis after measuring the coking chamber width was performed during movement to the next coking chamber, but the measurement and analysis was performed during the coke extrusion period, and after the end of extrusion, the data analysis was performed during the period when the ram was pulled back. Alternatively, air may be injected based on analytical data to burn off the carbon.

また、本実施例では、カーボンが付着し易い2箇所の高
さに対して測定装置及びノズルを設置したが、2箇所に
附るものではなく、設置する数を増し、より均一なカー
ボン付着量分布を実現することが可能である。
In addition, in this example, measuring devices and nozzles were installed at two heights where carbon is likely to adhere, but the number of installed nozzles was increased, rather than being attached to two positions, to achieve a more uniform amount of carbon adhesion. It is possible to realize the distribution.

〔効果〕〔effect〕

本発明方法は、付着カーボン量に応じてカーボンを除去
することが可能となって押詰まりを防止し、押詰まりに
より炉壁に加えられる圧力にて生ずる炉壁の段差、変形
の発生を防ぎ炉命の延長を図るとともに、壁面のカーボ
ン付着量を均一に保ち、隔壁レンガの目地をシールし、
炭化室から燃焼室へのガス漏れによる黒煙発生を防ぐと
いった優れた効果を奏する。
The method of the present invention makes it possible to remove carbon according to the amount of attached carbon, thereby preventing clogging, and preventing the occurrence of steps and deformation of the furnace wall caused by pressure applied to the furnace wall due to clogging. In addition to extending the lifespan, it maintains a uniform amount of carbon adhesion on the wall surface, seals the joints of partition wall bricks,
It has an excellent effect of preventing the generation of black smoke due to gas leakage from the carbonization chamber to the combustion chamber.

また、本発明装置は、コークス押出機に設置することに
より、炭化室壁面の長手方向に対し、万遍なくカーボン
除去が行えるとともに、除去装置の挿入に特別な設備を
必要とせず、生産効率を高めるといった優れた効果を奏
する。
Furthermore, by installing the device of the present invention in a coke extruder, carbon can be removed evenly from the longitudinal direction of the wall surface of the coking chamber, and no special equipment is required to insert the removal device, increasing production efficiency. It has an excellent effect of increasing

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るコークス炉の構成を示す概略図、
第2図は炭化室の側断面図、第3図は本発明装置の構成
を示すブロック図、第4図はノズルの一部切欠斜視図、
第5図乃至第8図は炭化室幅測定装置の概略構造を示す
断面図、第9図は測定の原理を示す光路想定図、第10
図は、他の実施例を示す図である。 1・・・炭化室 2・・・隔壁 4・・・コークス5a
、5b・・・測定装置 6・・・押出ill  10a
、IOb・・・ノズル 12・・・ラムヘッド位置検出
器 13・・・位置解析器14・・・記憶装置 15・
・・ノズル噴射量制御器61・・・フッシャービーム 
62・・・ラムヘッド 101・・・噴射口 特 許 出願人  住友金属工業株式会社 外1名代理
人 弁理士  河  野  登  夫第  1  図 簗  3  図 簗2図 第4図 第5図 55C 第7図 策6図 第  8  図
FIG. 1 is a schematic diagram showing the configuration of a coke oven according to the present invention,
FIG. 2 is a side sectional view of the carbonization chamber, FIG. 3 is a block diagram showing the configuration of the apparatus of the present invention, and FIG. 4 is a partially cutaway perspective view of the nozzle.
Figures 5 to 8 are cross-sectional views showing the schematic structure of the carbonization chamber width measuring device, Figure 9 is a conceptual diagram of the optical path showing the principle of measurement, and Figure 10.
The figure is a diagram showing another embodiment. 1... Carbonization chamber 2... Partition wall 4... Coke 5a
, 5b... Measuring device 6... Extrusion ill 10a
, IOb... Nozzle 12... Ram head position detector 13... Position analyzer 14... Storage device 15.
... Nozzle injection amount controller 61 ... Fusher beam
62... Ram head 101... Nozzle patent Applicant Sumitomo Metal Industries Co., Ltd. and one other representative Patent attorney Noboru Kono No. 1 Zukan 3 Zukan 2 Fig. 4 Fig. 5 Fig. 55C Fig. 7 Measure 6 Figure 8

Claims (1)

【特許請求の範囲】 1、コークス炉の炭化室壁面に付着するカーボン量の分
布に応じてカーボン除去量を調整するカーボン除去方法
において、押出機ラムヘッド部に設置した光三角法を用
いた測定装置によって炭化室幅を測定すると共に、測定
した位置を検出し、同一の炭化室を測定したデータの時
間的変化からカーボン付着量の分布を解析し、解析した
データをこの炭化室におけるデータとして記憶しておき
、さらに記憶した該解析データに基づき、押出機ラム部
に設置したノズルから噴射するカーボン除去用の気体噴
射量を制御し、カーボン除去量を調整することを特徴と
するコークス炉炭化室のカーボン除去方法。 2、コークス炉の炭化室壁面に付着するカーボン量の分
布に応じてカーボン除去量を調整するカーボン除去装置
であって、 押出機ラム部に設置され、カーボン除去用の気体を噴射
するノズルと、 押出機ラムヘッド部に設置され、炭化室幅を測定する光
三角法を用いた幅測定装置と、炭化室幅の測定位置を検
出する位置検出器と、 測定した炭化室幅と測定位置とからカーボン付着量の分
布を解析する解析装置と、 検出したカーボン付着量の分布を該炭化室における分布
データとして記憶しておく記憶装置と、 記憶装置の分布データに基づきノズルからの気体噴射量
を制御する噴射量制御器と を備えたことを特徴とするコークス炉炭化室のカーボン
除去装置。
[Claims] 1. A measuring device using optical triangulation installed in the ram head of an extruder in a carbon removal method that adjusts the amount of carbon removed according to the distribution of the amount of carbon adhering to the wall surface of the carbonization chamber of a coke oven. In addition to measuring the width of the carbonization chamber, the measured position is detected, and the distribution of carbon adhesion is analyzed from the temporal changes in the data measured for the same carbonization chamber, and the analyzed data is stored as data for this carbonization chamber. The coke oven carbonization chamber is characterized in that the amount of carbon removed is adjusted by controlling the amount of carbon removal gas injected from a nozzle installed in the extruder ram section based on the stored analysis data. Carbon removal method. 2. A carbon removal device that adjusts the amount of carbon removed according to the distribution of the amount of carbon adhering to the wall surface of the carbonization chamber of a coke oven, comprising a nozzle installed in the extruder ram section and injecting gas for carbon removal; A width measurement device installed in the extruder ram head section that uses optical triangulation to measure the carbonization chamber width, a position detector that detects the measurement position of the carbonization chamber width, and a carbon An analysis device that analyzes the distribution of the amount of carbon adhesion; a storage device that stores the distribution of the detected amount of carbon adhesion as distribution data in the carbonization chamber; and a control device that controls the amount of gas injected from the nozzle based on the distribution data in the storage device. A carbon removal device for a coke oven carbonization chamber, characterized by comprising an injection amount controller.
JP14975487A 1987-06-16 1987-06-16 Carbon removal method and apparatus for coke oven carbonization chamber Expired - Lifetime JPH0765049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14975487A JPH0765049B2 (en) 1987-06-16 1987-06-16 Carbon removal method and apparatus for coke oven carbonization chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14975487A JPH0765049B2 (en) 1987-06-16 1987-06-16 Carbon removal method and apparatus for coke oven carbonization chamber

Publications (2)

Publication Number Publication Date
JPS63312390A true JPS63312390A (en) 1988-12-20
JPH0765049B2 JPH0765049B2 (en) 1995-07-12

Family

ID=15482019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14975487A Expired - Lifetime JPH0765049B2 (en) 1987-06-16 1987-06-16 Carbon removal method and apparatus for coke oven carbonization chamber

Country Status (1)

Country Link
JP (1) JPH0765049B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195797A (en) * 1989-12-25 1991-08-27 Sumitomo Metal Ind Ltd Removal of carbon on wall of coke oven and equipment therefor
JPH06322374A (en) * 1993-05-11 1994-11-22 Nippon Kasei Chem Co Ltd Apparatus for automatically sweeping coal-charging port of coke oven
WO1995011950A1 (en) * 1993-10-29 1995-05-04 Sumitomo Heavy Industries, Ltd. Method and apparatus for repairing a coke oven
JP2007332382A (en) * 2001-10-09 2007-12-27 Kansai Coke & Chem Co Ltd Method for diagnosing coke oven carbonization chamber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195797A (en) * 1989-12-25 1991-08-27 Sumitomo Metal Ind Ltd Removal of carbon on wall of coke oven and equipment therefor
JPH06322374A (en) * 1993-05-11 1994-11-22 Nippon Kasei Chem Co Ltd Apparatus for automatically sweeping coal-charging port of coke oven
WO1995011950A1 (en) * 1993-10-29 1995-05-04 Sumitomo Heavy Industries, Ltd. Method and apparatus for repairing a coke oven
AU681915B2 (en) * 1993-10-29 1997-09-11 Kansai Netukagaku Kabushiki Kaisha Method and apparatus for repairing a coke oven
JP2007332382A (en) * 2001-10-09 2007-12-27 Kansai Coke & Chem Co Ltd Method for diagnosing coke oven carbonization chamber

Also Published As

Publication number Publication date
JPH0765049B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
JP4757408B2 (en) Coke furnace bottom irregularity measuring device, furnace bottom repair method and repair device
KR100312905B1 (en) Cork Furnace Repair Method and Device
US10571255B2 (en) Device for measuring a shape of a wall portion of a coke oven
US3501380A (en) Method and apparatus for measuring the temperature of coke oven walls
JP5987605B2 (en) Coke oven wall diagnosis method and coke oven wall repair method
JPH06299156A (en) Method for removing deposited carbon of carbonization chamber of coke oven
JPS63312390A (en) Method for removing carbon of carbonization chamber of coke oven
WO2003066775A1 (en) Furnace wall observation device and furnace wall shape measuring device
JP2001003058A (en) Method for inspection wall surface of coke oven carbonization chamber and wall surface inspection equipment
JPH0454208Y2 (en)
JP4073281B2 (en) Coke oven carbonization chamber wall thickness evaluation method
JP4023988B2 (en) Coke oven wall diagnosis method and apparatus
JP4188919B2 (en) Diagnostic equipment for coke oven carbonization chamber
JPS63191005A (en) Method and apparatus for measuring carbonization chamber width of coke furnace
JP4954688B2 (en) Coke oven carbonization chamber furnace wall displacement measurement system, and coke oven carbonization chamber furnace wall displacement measurement method
JP3978305B2 (en) Method for grasping displacement of coke oven chamber wall during operation
KR100709928B1 (en) Diagnostic apparatus and diagnostic method for carbonization chamber of coke oven
JP2001040359A (en) Process for operating coke oven
JP3282770B2 (en) Method for measuring damaged part of coke oven partition
JPS62288685A (en) Method for repairing furnace wall of coke oven
JP4817060B2 (en) Coking chamber width measuring device and measuring method for coke oven
JPH08100180A (en) Measuring of amount of coke shrinkage
JP4220800B2 (en) Method for identifying the trajectory of internal observation means for inspecting a coke oven carbonization chamber using an inspection apparatus for the coke oven carbonization chamber and an inspection method for the coke oven carbonization chamber
JP2002285163A (en) Method for checking damage of coke oven carbonizing chamber
JPS6234982A (en) Detection of position of sticking carbon on wall surface of coke oven