JP4358812B2 - Self-balancing type pull-out prevention device for pipe joints. - Google Patents

Self-balancing type pull-out prevention device for pipe joints. Download PDF

Info

Publication number
JP4358812B2
JP4358812B2 JP2005302002A JP2005302002A JP4358812B2 JP 4358812 B2 JP4358812 B2 JP 4358812B2 JP 2005302002 A JP2005302002 A JP 2005302002A JP 2005302002 A JP2005302002 A JP 2005302002A JP 4358812 B2 JP4358812 B2 JP 4358812B2
Authority
JP
Japan
Prior art keywords
tube
joint
pipe
rigid member
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005302002A
Other languages
Japanese (ja)
Other versions
JP2007107702A (en
Inventor
光男 伊藤
義雄 増田
真二 野島
Original Assignee
伊藤鉄工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊藤鉄工株式会社 filed Critical 伊藤鉄工株式会社
Priority to JP2005302002A priority Critical patent/JP4358812B2/en
Priority to CNB2006100640376A priority patent/CN100425900C/en
Publication of JP2007107702A publication Critical patent/JP2007107702A/en
Application granted granted Critical
Publication of JP4358812B2 publication Critical patent/JP4358812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joints Allowing Movement (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)

Description

本発明は、円筒形の管体外面と、円錐形の継手内面とにより形成された楔形断面形状の空間に、管体外面及び継手内面に食い込みうる剛体部材を複数個周方向へほぼ均等に配置した構成を有する管継手における自己平衡型引き抜き防止装置に関するものである。   In the present invention, a plurality of rigid members that can bite into the outer surface of the tube body and the inner surface of the joint are arranged substantially evenly in the circumferential direction in a space having a wedge-shaped cross section formed by the outer surface of the cylindrical tube body and the inner surface of the conical joint. The present invention relates to a self-balancing type pull-out prevention device for a pipe joint having the above-described configuration.

例えば、建築物の排水システムに使用される排水管の管継手装置には、ゴムパッキングで管体を強く締め付けて把持する第1の方法や、実開平7−19690号に示されているグリップ部材により管体を把持しそれを継手に接続する第2の方法、或いは実用新案登録第3099370号に示されている、継手のフランジと管体との間のゴムパッキングに剛体球を配置し、管体に引き抜き力が加わったときに管体表面に剛体球を押し付けて抜け止め力を発揮させる第3の方法等がある。これらの継手装置は、管体外面にゴムパッキングやグリップ部材、金属球等により一定の把持力を加え、その最大静摩擦力によって、管体の引き抜き力に対抗する効力を発生させるものである。   For example, in a pipe joint device for a drain pipe used in a building drainage system, a gripping member shown in Japanese Utility Model Publication No. 7-19690, or a first method for gripping a pipe body with rubber packing The second method of gripping the pipe body by the above method and connecting it to the joint, or a rigid sphere is arranged in the rubber packing between the flange of the joint and the pipe body as shown in Utility Model Registration No. 3099370, There is a third method in which when a pulling force is applied to the body, a rigid sphere is pressed against the surface of the tube to exert a retaining force. In these joint devices, a constant gripping force is applied to the outer surface of the tube body by a rubber packing, a grip member, a metal ball, or the like, and an effect to counter the pulling force of the tube body is generated by the maximum static friction force.

図13、図14により、具体的に説明すると、第1の方法は、継手の本体とフランジとによって環状のゴムパッキングを管体外面に締め付け、把持力R1を生じるものであり、第2の方法は、第1の方法の把持力をさらに増加させるために管体を取り巻くグリップ部材を用いて締め付け、しっかり把持(把持力R2)するものである。第3の方法は、第1の方法におけるゴムパッキングとフランジの間に剛体球を数箇所挿入しておき、継手の本体とフランジをボルト・ナットで締め付けたときに、剛体球がフランジとゴムパッキングの圧力により管体表面に食い込み、把持力R3を発揮するものである。   More specifically, referring to FIGS. 13 and 14, the first method is to tighten the annular rubber packing to the outer surface of the tube by the joint body and the flange to generate the gripping force R <b> 1. Is to tighten and grip firmly (gripping force R2) using a grip member surrounding the tube in order to further increase the gripping force of the first method. The third method is to insert several rigid spheres between the rubber packing and the flange in the first method, and when the joint body and flange are tightened with bolts and nuts, the rigid sphere becomes the flange and rubber packing. It bites into the surface of the tubular body by the pressure of and exerts a gripping force R3.

従来の継手装置における管体抜け出しの力学的状況を考察すると、摩擦力fは、管体外面に垂直圧力としてかかる把持力R1〜R3のような加圧力Rに比例して発生し、その比例定数μは摩擦係数として定義される。管体に引き抜き力Fを加えて、f=μR<Fのとき、管体はΔlだけ抜け方向へ移動する。管径4インチの管体を外力Fニュートンで引っ張った時の継手装置からの管体の抜け量Lmmの実測値を図15に示す。   Considering the mechanical condition of tube disconnection in the conventional joint device, the frictional force f is generated in proportion to the applied force R such as the gripping forces R1 to R3 applied as vertical pressure to the outer surface of the tube, and its proportionality constant. μ is defined as the coefficient of friction. When a pulling force F is applied to the tubular body and f = μR <F, the tubular body moves in the removal direction by Δl. FIG. 15 shows an actual measurement value of the amount Lmm of the tubular body coming out of the joint device when the tubular body having a diameter of 4 inches is pulled with an external force F Newton.

1)図15に示すように最初、外力Fが増加しても抜け量Lの移動は微小Δlである。これはμが最大静摩擦係数のときであることを示す。管体が動き始めるに従いμは動摩擦係数に変化し、抜け量の増加は大きくなり、遂には脱落する。   1) As shown in FIG. 15, even if the external force F increases, the displacement L is moved by a minute Δl. This indicates that μ is the maximum coefficient of static friction. As the tube starts to move, μ changes to a dynamic friction coefficient, and the increase in the amount of slipping out increases and eventually falls off.

2)摩擦係数μは管体、ゴムパッキングの表面状態により異なる値になり、或いは加圧力Rも継手本体とフランジとのボルト、ナットの締め付け力のばらつきで変動するため、摩擦力f=μRもまた変動し、図15に示すように耐引き抜き力は製品により大きくばらつくことになる。   2) The friction coefficient μ varies depending on the surface condition of the tube body and rubber packing, or the pressure R also varies depending on the tightening force of the bolt and nut between the joint body and the flange, so the friction force f = μR is also Moreover, it fluctuates, and the pull-out force varies greatly depending on the product as shown in FIG.

3)従来の継手装置では、耐引き抜き力を発揮するメカニズムが、ゴムパッキングで管体に加えられた把持力に依存しているため、ゴムの劣化や変質が直接的に継手装置の性能(管が脱落しないこと、漏水しないこと)に影響する。従って長期間にわたり信頼性を維持することは困難である。   3) In the conventional joint device, the mechanism that exerts the pull-out resistance depends on the gripping force applied to the pipe body by the rubber packing, so that the deterioration or alteration of the rubber directly affects the performance of the joint device (pipe Does not fall off, does not leak water). Therefore, it is difficult to maintain reliability over a long period of time.

実開平7−19690号ACT 7-19690 実用新案登録第3099370号Utility model registration No. 3099370

本発明は前記の点に着目してなされたもので、その課題は、管継手において、管体に働く引き抜き力が把持力にフィードバックされる自己平衡型引き抜き防止装置を提供することである。また本発明の他の課題は破壊に到るまで管体を把持する管継手における自己平衡型引き抜き防止装置を提供することである。   The present invention has been made paying attention to the above points, and an object of the present invention is to provide a self-balancing type pull-out preventing device in which a pull-out force acting on a pipe body is fed back to a gripping force in a pipe joint. Another object of the present invention is to provide a self-balancing type pull-out prevention device for a pipe joint that holds a pipe body until it is broken.

前記の課題を解決するため、本発明は、円筒形の管体外面と、円錐形の継手内面とにより形成された楔形断面形状の空間に、管体外面及び継手内面に食い込みを生じうる剛体部材を複数個周方向へほぼ均等に配置し、剛体部材は、管体と継手とを引き抜く方向の外力が働いたときに、管体周方向の軸周りに回転して引き抜き方向へ移動可能な回転体に形成し、上記引き抜く方向の外力により剛体部材に回転を生じさせる条件として、楔形断面形状の空間において管体外面と継手内面とが形成する挟角2αを17度±7度とし、かつ、剛体部材の外径を管体外面と継手内面との最小隙間Δgの2倍以上となるように構成するという手段を講じたものである。   In order to solve the above-described problems, the present invention provides a rigid member capable of causing biting on the outer surface of the tube body and the inner surface of the joint in a space having a wedge-shaped cross section formed by the outer surface of the cylindrical tube body and the inner surface of the conical joint. The rigid member is rotated around the axis in the circumferential direction of the tube and can move in the withdrawal direction when an external force in the direction of pulling out the tube and the joint is applied. As a condition for forming the body and causing the rigid member to rotate by the external force in the pulling-out direction, the included angle 2α formed by the outer surface of the tubular body and the inner surface of the joint in a space having a wedge-shaped cross-section is set to 17 ° ± 7 °, and Means is provided to configure the outer diameter of the rigid member to be at least twice the minimum gap Δg between the outer surface of the tube and the inner surface of the joint.

本発明の原理
従来の管継手装置は、図14に示す把持力R1〜R3のような管体に掛かる加圧力Rが一定で、従って引き抜き力Fに対抗する摩擦力fも一定というのに対し、本発明は、管体に引き抜き力Fが加わり、その力が増大すると、そのFに比例して摩擦力fも増大する、自己平衡型把持力システムという動作原理で実現されていることを特徴とする。
Principle of the Invention In the conventional pipe joint device, the pressing force R applied to the pipe body such as the gripping forces R1 to R3 shown in FIG. 14 is constant, and therefore the frictional force f against the pulling force F is also constant. The present invention is realized by the operating principle of a self-balancing type gripping force system in which a pulling force F is applied to a pipe body, and when the force increases, the frictional force f increases in proportion to the F. And

本発明によれば、管体が外力で引っ張られたときの抜け量は従来の管継手装置に比べて数分の1から1/10以下となり、継手本体の破壊限界まで管体の脱落が発生しない画期的な新しい継手装置を提供することができる。なお、管体に対する引き抜き力は管体の外部から掛かるだけではなく、排水配管システムでは管内の水圧、あるいは水圧の脈動によっても発生する。   According to the present invention, the amount of pull-out when the pipe is pulled by an external force is a fraction to 1/10 or less than that of a conventional pipe joint device, and the pipe body is dropped to the fracture limit of the joint body. It is possible to provide a revolutionary new joint device. Note that the pulling force on the pipe body is not only applied from the outside of the pipe body but also generated by the water pressure in the pipe or the pulsation of the water pressure in the drainage piping system.

本発明は、図1ないし図12に示されている。継手本体は従来装置と同様で良い。管体外面の円筒形とフランジ内面の円錐形により楔形断面ABCを形成する楔形空間を構成するが、この楔形空間の中に、管体外面とフランジ内面に挟まれ、管外周上にほぼ均等に配列されるように、半径rで統一された球状回転体または円筒状回転体から成る剛体部材を複数個配置する。このとき断面の挟角∠ABC=2αとし、管体とフランジとの隙間は管体に沿うてΔgが保たれているものとする。   The present invention is illustrated in FIGS. The joint body may be the same as the conventional device. A wedge-shaped space that forms a wedge-shaped cross section ABC is formed by the cylindrical shape of the outer surface of the tube body and the conical shape of the inner surface of the flange. A plurality of rigid members made of a spherical rotating body or a cylindrical rotating body unified with a radius r are arranged so as to be arranged. At this time, it is assumed that the cross-sectional angle ∠ ABC = 2α, and the gap between the tube body and the flange is maintained at Δg along the tube body.

今図4において、管体の長さ方向に引き抜き力ΔFが加わると、管体とフランジに挟まれた回転体から成る剛体部材には、夫々との摩擦係数μ1、μ2により決定される回転トルクPが発生し、引き抜き力ΔFと同じ方向にΔlだけ移動する(コロの原理と類似)。剛体部材の中心OがO′に移動することにより、剛体部材の半径のうちΔr=Δlsinα分が円筒形の管体外面及び円錐形のフランジ内面に食い込み、夫々の面に対し加圧力Rの増分ΔRを発生させる。これはあたかも楔形断面形状の空間ABCの中に楔を力ΔKで打ち込んだとき、加圧力の増分ΔRとのあいだに、
ΔK=2ΔR(sinα+μcosα)
が成立するのと同じである。本発明の場合は、力ΔKは直接剛体部材に加えられないが、管体にかかる引き抜き力ΔFによって生ずる回転体から成る剛体部材の回転トルクで楔形断面形状の空間の内部に回転体から成る剛体部材が移動するので、あたかも打ち込まれたことと等価とみなすことができるからである。
In FIG. 4, when a pulling force ΔF is applied in the length direction of the tubular body, the rotational torque determined by the respective friction coefficients μ1 and μ2 is applied to the rigid member composed of the rotating body sandwiched between the tubular body and the flange. P is generated and moves by Δl in the same direction as the extraction force ΔF (similar to the roller principle). When the center O of the rigid member moves to O ′, Δr = Δlsinα of the radius of the rigid member bites into the outer surface of the cylindrical tube body and the inner surface of the conical flange, and the increment of the pressure R is applied to each surface. ΔR is generated. This is as if the wedge is driven with a force ΔK into the space ABC having a wedge-shaped cross section, between the increase ΔR of the pressing force,
ΔK = 2ΔR (sin α + μ cos α)
Is the same as In the case of the present invention, the force ΔK is not directly applied to the rigid member, but the rigid body made of a rotating body inside the space having a wedge-shaped cross section by the rotational torque of the rigid member made of the rotating body generated by the pulling force ΔF applied to the tube. This is because the member moves and can be regarded as equivalent to being driven.

即ち、a、bを定数とすれば、
Δl=aΔF (1)
ΔR=bΔr=bΔlsinα(2)
従って、ΔR/ΔF=absinα=一定 (3)
即ち、管体に引き抜き力Fが発生すると、その力により把持力となる加圧力Rが発生し、引き抜き力の増分ΔFに比例して(ΔFに平衡して)把持力となる加圧力Rの増分ΔRが発生する。ゴムパッキングで加えられる所期の把持力R1は既に加わっているものとする。
That is, if a and b are constants,
Δl = aΔF (1)
ΔR = bΔr = bΔlsin α (2)
Therefore, ΔR / ΔF = absin α = constant (3)
That is, when pulling force F is generated in the tube, generated pressing force R as a gripping force by the force, in proportion to the increment [Delta] F of the pull-out force (in equilibrium in [Delta] F) the gripping force of the pressure R An increment ΔR occurs. It is assumed that the desired gripping force R1 applied by the rubber packing has already been applied.

本発明の装置においては、以上詳述したようなメカニズムが働くことにより、引き抜き力Fが、回転体から成る剛体部材に回転トルクをへて把持力Rとしてフィードバックされることになり、引き抜くためには更に大きな力Fを必要とする、所謂自己平衡型(セルフ・バランシング型)機構を有しているので、管体の抜け出しが防止され、破壊に到るまで管体を把持し続けるという効果を奏する。   In the apparatus of the present invention, the pulling force F is fed back as a gripping force R to a rigid member made of a rotating body by the mechanism described in detail above. Has a so-called self-balancing mechanism that requires a larger force F, so that the tube can be prevented from coming out, and the tube can be held until it breaks. Play.

以下図面を参照して本発明をより詳細に説明する。図1〜6は、本発明の管継手における自己平衡型引き抜き防止装置10の1例を示すもので、符号11は管体、12はその外面、13は継手であり、本体14とフランジ15を有し、本体14のフランジ16とフランジ15との間に挿入されるゴム製のパッキング17を、両フランジ15、16に取り付けたボルト18、ナット19の締結により強く締め付けることができる。14aは継手本体側の傾斜内面、17aはゴムパッキングの係止端部を示す。   Hereinafter, the present invention will be described in more detail with reference to the drawings. 1 to 6 show an example of a self-balancing type pull-out preventing device 10 in a pipe joint according to the present invention. Reference numeral 11 denotes a pipe body, 12 denotes an outer surface thereof, 13 denotes a joint, and the main body 14 and the flange 15 are connected to each other. The rubber packing 17 inserted between the flange 16 and the flange 15 of the main body 14 can be strongly tightened by fastening bolts 18 and nuts 19 attached to both flanges 15 and 16. Reference numeral 14a denotes an inclined inner surface on the joint body side, and 17a denotes a locking end portion of the rubber packing.

管体11の外面12の円筒形と、継手13のフランジ15の内面12に形成されている円錐形とにより、楔形断面形状ABCを有する空間20を構成している。ゴム製のパッキング17は、管体外面12と継手内面21との間の上記空間20に入り込むテーパー状の保持部22を有しており、そこに回転体より成る剛体部材23が複数個周方向へほぼ均等に配置されている。なお保持部22は、薄肉部22aを有し、パッキング17の本体部分から或る程度自由に動き得るように設けられている。   The cylindrical shape of the outer surface 12 of the tube 11 and the conical shape formed on the inner surface 12 of the flange 15 of the joint 13 constitute a space 20 having a wedge-shaped cross section ABC. The rubber packing 17 has a tapered holding portion 22 that enters the space 20 between the outer surface 12 of the tube body and the inner surface 21 of the joint, and a plurality of rigid members 23 made of a rotating body are provided in the circumferential direction. Are arranged almost evenly. The holding portion 22 has a thin portion 22 a and is provided so as to be able to move to some extent from the main body portion of the packing 17.

また、図3、図4、図5において、点Aは継手内面21の点、点Bは継手内面21の延長線と管体外面12の交点、点Cは管体外面12の点であり、全ての点A、B、Cが管体11の中心を通る半径方向の同一面にある。またrは回転体である剛体部材23の半径、Δgは管体外面12と継手内面21との最小隙間を示す。図5は管体外面12と継手内面21とで形成された楔状空間20と、そこに配置された球状の剛体部材23の関係を模式的に表わしたものである。   3, 4, and 5, point A is a point on the joint inner surface 21, point B is an intersection of the extension line of the joint inner surface 21 and the tube outer surface 12, and point C is a point on the tube outer surface 12, All the points A, B, C are on the same plane in the radial direction passing through the center of the tube 11. Further, r is the radius of the rigid member 23 which is a rotating body, and Δg is the minimum gap between the pipe outer surface 12 and the joint inner surface 21. FIG. 5 schematically shows the relationship between the wedge-shaped space 20 formed by the tube outer surface 12 and the joint inner surface 21 and the spherical rigid member 23 arranged there.

実施例1(図1ないし図6参照)
本実施例は公称4インチの配管に適用される、管継手における自己平衡型引き抜き防止装置である。継手13の本体14、及びフランジ15は鋳鉄でつくられ、使用される管体11は配管用炭素鋼鋼管(SGP)である。回転体より成る鋼体部材23は使用される管体11の態様に応じて選択される。SGPより成る管体11の場合、その表面には防錆亜鉛鍍金があり、ころがり摩擦係数μ2は相対的に大きいので、回転体より成る剛体部材23は鋼製の球体とする。
Example 1 (see FIGS. 1 to 6)
This embodiment is a self-balancing type pull-out prevention device for pipe joints, which is applied to a nominal 4-inch pipe. The main body 14 and the flange 15 of the joint 13 are made of cast iron, and the pipe body 11 used is a carbon steel pipe (SGP) for piping. The steel body member 23 made of a rotating body is selected according to the mode of the tubular body 11 to be used. In the case of the tube body 11 made of SGP, there is a rust-proof zinc plating on the surface, and the rolling friction coefficient μ2 is relatively large, so the rigid member 23 made of a rotating body is a steel sphere.

管体外面12とフランジ部内面21とで構成される楔形空間20の挟角は2α=17度とし、鋼球より成る剛体部材23の半径はr=2.4mmとした。図6に鋼球の数を変えた場合の管体引き抜き力F(ニュートン)に対する管体の抜け長さ(mm)の実測値を示す。あわせて従来品の同一条件下での実測値も併記した。   The included angle of the wedge-shaped space 20 constituted by the tubular body outer surface 12 and the flange portion inner surface 21 was 2α = 17 degrees, and the radius of the rigid member 23 made of a steel ball was r = 2.4 mm. FIG. 6 shows an actual measurement value of the tube pull-out length (mm) with respect to the tube pull-out force F (Newton) when the number of steel balls is changed. In addition, the measured values of the conventional product under the same conditions are also shown.

鋼球数が3個、4個及び6個の場合、グラフにおいて、抜け量が約15mm近傍でデータが止まっているのは、管体11の引き抜きに連動して剛体部材23である鋼球が回転移動し、最後にフランジから脱落したことを示す。また、実施例の鋼球12個の場合、抜け量が15mm近傍まで達することなく12.5mmで終わっているのは60000Nで継手装置本体が破壊したことを示している。このグラフから次のことが言える。   When the number of steel balls is 3, 4 and 6, in the graph, the data stops when the amount of withdrawal is about 15 mm. The steel ball, which is the rigid member 23, is interlocked with the withdrawal of the tubular body 11. It indicates that it has been rotated and finally dropped from the flange. Further, in the case of 12 steel balls of the example, the fact that the slip-out amount does not reach the vicinity of 15 mm and ends at 12.5 mm indicates that the joint device body was broken at 60000N. The following can be said from this graph.

1)従来品に対し、本発明に係る装置において12個の鋼球を装備したものは、管体引き抜き力に対して5倍以上の耐力を持ち、画期的に改善された。60000Nで管体が脱落したのではなく、継手装置そのものの鋳物破壊が生じたのであり、このことは、継手の把持機構は未だ動作していたことを示す。   1) Compared with the conventional product, the device according to the present invention equipped with 12 steel balls has a proof strength of 5 times or more with respect to the pulling-out force of the tube, and has been improved dramatically. The pipe body did not fall off at 60000N, but the casting destruction of the joint device itself occurred, which indicates that the joint gripping mechanism was still operating.

2)実施例1における各測定値が管体引き抜き力Fに対して管体抜け量Lがほぼ直線、即ちΔF/Δl=一定ということは(1)式が成り立つことを示す。さらに鋼球1個あたりの微小変位に対する耐F力をΔPとすると、
ΔP=ΔF/Δl・n (4)
ここにn:鋼球の個数
2) The measured values in Example 1 indicate that the tube removal amount L is substantially a straight line with respect to the tube pull-out force F, that is, ΔF / Δl = constant indicates that the equation (1) holds. Furthermore, if the resistance to F against minute displacement per steel ball is ΔP,
ΔP = ΔF / Δl · n (4)
Where n is the number of steel balls

Figure 0004358812
Figure 0004358812

この結果は表1に示すようにΔPは約220ニュートン/mmで一定であり(3)式が成立すること、即ち楔形空間内での鋼球の回転により、管体抜け量Fの増加に対応した抗力(P:Rに比例)が自己平衡的に増加していることを示す。   As shown in Table 1, ΔP is constant at about 220 Newtons / mm, and the formula (3) is satisfied, that is, the steel ball rotates in the wedge-shaped space, which corresponds to an increase in the amount F of the tubular body. It shows that the drag force (P: proportional to R) increases in a self-equilibrium manner.

3)鋼球数の増加により抗力が増加するが、それは、管体とフランジ上にその荷重が分散されるためである。鋼球数が過少の場合は、鋼球の回転とともに荷重Rにより管体に凹みが生じ、遂にはフランジのエッジを破壊しながら脱管する。鋼球数を増加することにより荷重Rは管体上に分散され、継手鋳物の破壊限界以上の荷重にも耐えることができるようになる。これらのことは経験則から容易に理解されることである。   3) The drag increases with the number of steel balls because the load is distributed on the tube and the flange. When the number of steel balls is too small, the tube body is dented by the load R along with the rotation of the steel balls, and finally the tube is removed while breaking the flange edge. By increasing the number of steel balls, the load R is distributed on the tube, and can withstand loads exceeding the fracture limit of the joint casting. These can be easily understood from a rule of thumb.

実施例2
接続対象の管体24が硬質塩化ビニル(VP)の場合、管体表面が非常に平滑で、かつ変形しやすいので剛体部材として歯車状円筒部品が適している(図9A、B)。管体24のサイズが前記各例同様に4インチの場合、12個の円筒部品より成る剛体部材25を、図8A、Bに示すように、ゴムパッキング26のフランジ側外縁部に均等に設けられた凹み部27に挿入する。剛体部材25の個数は4インチ管を代表としてそれ以外のサイズの管体についても妥当する。
Example 2
When the pipe body 24 to be connected is hard vinyl chloride (VP), the surface of the pipe body is very smooth and easily deformed, so a gear-shaped cylindrical part is suitable as a rigid member (FIGS. 9A and 9B). When the size of the tube body 24 is 4 inches as in the above examples, the rigid member 25 made of 12 cylindrical parts is provided evenly on the flange side outer edge portion of the rubber packing 26 as shown in FIGS. 8A and 8B. Insert into the recess 27. The number of rigid members 25 is appropriate for pipes of other sizes, typically 4 inch pipes.

原理的には鋼球より成る剛体部材25の場合と同様であり、VP製管体24の引き抜きにより、剛体部材25の歯がVP製管体24表面に食い込み、回転トルクを確実なものとし、楔形空間20の中をフランジエッジ28に向かって移動する。かくして把持力は増大する。なお、ここに新たに示す符号以外の構成についてはこれまでのものと同じで良いので、符号を援用して詳細な説明を繰り返さない。図12に実施例2の引き抜き力Fに対するVP製管体24の抜け量の実測値を示す。図12により、従来の継手ではほとんど抗力がなかったのが格段に向上していることが理解される。また、実験後のVP製管体24の表面には、歯車状円筒部品より成る剛体部材25の歯のピッチが確実に痕跡を残していることから、理論どおりに回転していることが分かる。   The principle is the same as in the case of the rigid member 25 made of a steel ball. By pulling out the VP tubular body 24, the teeth of the rigid member 25 bite into the surface of the VP tubular body 24 to ensure the rotational torque. It moves in the wedge-shaped space 20 toward the flange edge 28. Thus, the gripping force increases. In addition, since it may be the same as that of the former thing about the structure other than the code | symbol newly shown here, a code | symbol is used and detailed description is not repeated. FIG. 12 shows measured values of the amount of the VP tubular body 24 with respect to the pulling force F of the second embodiment. From FIG. 12, it can be understood that the conventional joint has a markedly improved resistance. Moreover, since the pitch of the teeth of the rigid member 25 made of a gear-shaped cylindrical part surely leaves a trace on the surface of the VP pipe body 24 after the experiment, it can be seen that the VP pipe body 24 rotates according to theory.

本発明の成立に要求される諸条件
1)回転体である剛体部材の回転半径rと挟角α
図4において、管体とフランジとの間には均等にΔgの隙間が設けられている。一例として、4インチ炭素鋼鋼管の外形寸法Фp、フランジの内径寸法Фfは夫々、
Фp=114.3±0.8mm
Фf=117.4±0.5mm
従って、最大Δg=1/2×{最大Фf−最小Фp}=1/2×4.4mm、となる。
Conditions required for the establishment of the present invention 1) Rotational radius r and included angle α of a rigid member as a rotating body
In FIG. 4, Δg gaps are evenly provided between the tube and the flange. As an example, the outer dimension Фp of the 4-inch carbon steel pipe and the inner diameter Фf of the flange are respectively
Фp = 114.3 ± 0.8mm
Фf = 117.4 ± 0.5mm
Therefore, the maximum Δg = 1/2 × {maximum Фf−minimum Фp} = 1/2 × 4.4 mm.

ところで管体に引き抜き力が掛かるときは一様ではなく、管体が上下左右等に振られるのが実態である。従って考慮すべき最大ギャップは片側がゼロmmで、他の片方が、最大Δg×2=4.4mmとなる場合である。この場合でも回転体である剛体部材23、25は抜け落ちてはならない。即ち、
2r>最大Δg×2(=4.4mm) (5)
が必要である。剛体部材が前述の実施例1の鋼球の場合は2r=4.8mmであり、実施例2の歯車状円筒部品の場合は図9Aに示す歯車芯径2r′が4.5mmで、共に(5)式の条件を満たしている。
By the way, when the pulling force is applied to the tube body, it is not uniform, and the actual state is that the tube body is swung vertically and horizontally. Therefore, the maximum gap to be considered is the case where one side is zero mm and the other is the maximum Δg × 2 = 4.4 mm. Even in this case, the rigid members 23 and 25 which are rotating bodies should not fall off. That is,
2r> maximum Δg × 2 (= 4.4 mm) (5)
is required. In the case where the rigid member is the steel ball of Example 1 described above, 2r = 4.8 mm, and in the case of the gear-shaped cylindrical part of Example 2, the gear core diameter 2r ′ shown in FIG. 5) The condition of the formula is satisfied.

(5)式を満足する回転体である剛体部材23、25を内包するくさび空間ABCにおいて、図4で示す、フランジの内面の長さAB′は、
AB′≒r+(2r−Δg)/sin2α
即ち、 sin2α=(2r−Δg)/(AB′−r) (6)
挟角αを小さくするとAB′は長くなり、フランジは大型となるので継手装置の軽量化、小型化のためにはAB′を規定値に入れる必要がある。剛体部材23、25の半径が小さい方が回転による移動量が大きく、食い込みを生じやすいものとなる。
In the wedge space ABC containing the rigid members 23 and 25 which are rotating bodies satisfying the expression (5), the length AB ′ of the inner surface of the flange shown in FIG.
AB′≈r + (2r−Δg) / sin2α
That is, sin2α = (2r−Δg) / (AB′−r) (6)
If the included angle α is reduced, AB ′ becomes longer and the flange becomes larger. Therefore, in order to reduce the weight and size of the joint device, it is necessary to put AB ′ within a specified value. The smaller the radius of the rigid members 23 and 25, the larger the amount of movement due to rotation, and the more likely the biting occurs.

4インチ管の場合、
標準Δg=(117.4−114.3)/2=3.1mm
AB′を15及び20mmとした場合、実施例1、2の夫々につき(6)式及び挟角2αを求めると下表になる。ただし回転体が歯車状円筒部品より成る剛体部材の場合の半径rは歯車外接円の半径(この場合5.5mm、9A参照)を用いる。
For a 4 inch tube,
Standard Δg = (117.4-114.3) /2=3.1 mm
When AB ′ is 15 and 20 mm, the formula (6) and the included angle 2α are obtained as shown in the following table for each of Examples 1 and 2. However, when the rotating body is a rigid member made of a gear-shaped cylindrical part, the radius r of the gear circumscribed circle (refer to 5.5 mm, 9A in this case) is used.

Figure 0004358812
Figure 0004358812

挟角2αの最小値は(6)式で与えられる。一方、AB′をさらに短くすると挟角は開いてゆき、2α≧28度の場合は回転体は空転し、ΔRは発生しなくなる。 The minimum value of the included angle 2α is given by equation (6). On the other hand, if AB ′ is further shortened, the included angle is widened. If 2α ≧ 28 degrees, the rotating body idles and ΔR does not occur.

実験の結果から、実用的には
2α=17度±7度 (7)
にあることが望ましい。これは4インチ管の場合であるが、管径が大小異なっても(7)式の値は大きく変化しないことが確かめられている。
From the experimental results, it is practical
2α = 17 degrees ± 7 degrees (7)
It is desirable to be in This is a case of a 4-inch pipe, but it has been confirmed that the value of the expression (7) does not change greatly even if the pipe diameters are different.

2)回転体である剛体部材の保持機構
回転体である剛体部材が、まず鋼球の場合の保持機構を図3について考察すると、ゴムパッキング17に鋼球直径2rよりも小さい鋼球挿入穴29を、周方向へ均等に12個予め同時成形で形成しておき、鋼球を挿入するとゴムの弾性により自己保持されるようにする。この部分のゴムパッキングの厚みは、鋼球より成る剛体部材23の直径より薄く作られており、鋼球は管体11とフランジ15に確実に接触して回転するようになっている。
2) Holding Mechanism of Rigid Member that is Rotating Body Considering the holding mechanism in the case where the rigid member that is a rotating body is a steel ball with reference to FIG. 3, a steel ball insertion hole 29 smaller than the steel ball diameter 2r is formed in the rubber packing 17. 12 are formed in advance in the circumferential direction by simultaneous molding, and when a steel ball is inserted, it is self-held by the elasticity of rubber. The thickness of the rubber packing in this portion is made thinner than the diameter of the rigid member 23 made of a steel ball, and the steel ball rotates in contact with the tube 11 and the flange 15 with certainty.

同じく回転体である剛体部材が、歯車状円筒部品の場合の保持機構を図7について考察すると、歯車状円筒部品には中心穴25aを設け、支持軸30に支持されて回転し、図8Bに示すように12個の歯車状円筒部品より成る剛体部材25が、一本の円形支持軸30で連結されているようにする。そして図10Bに示すように管体24とゴムパッキング26の楔形空間20に入る外縁部に歯車状円筒部品より成る剛体部材25を挿入するための凹部27が外縁円周上に均等に12個設けられ、実際には、歯車状円筒部品より成る剛体部材25が回転してゆくに従い相互の間隔は短縮するので、図8Bのようにリング連結する場合は支持軸30の一部を開放しておく。   Considering the holding mechanism in the case where the rigid member, which is also a rotating body, is a gear-shaped cylindrical part with reference to FIG. 7, a central hole 25a is provided in the gear-shaped cylindrical part, and it is supported by the support shaft 30 and rotated. As shown, a rigid member 25 composed of 12 gear-shaped cylindrical parts is connected by a single circular support shaft 30. As shown in FIG. 10B, twelve concave portions 27 for inserting the rigid member 25 made of a gear-shaped cylindrical part are provided on the outer edge of the tube body 24 and the rubber packing 26 in the wedge-shaped space 20 equally on the outer edge circumference. Actually, the interval between the members decreases as the rigid member 25 made of a gear-shaped cylindrical part rotates. Therefore, when the ring connection is made as shown in FIG. 8B, a part of the support shaft 30 is opened. .

3)回転体である剛体部材23、25の形状について
本発明における回転体である剛体部材23、25は球状であれ、円筒状であれ、次の二つの要件を満たしているものをすべて含む。即ち、
a.管体11の引き抜き方向に向かって回転するもの、
b.回転体である剛体部材23、25と管体11との間の摩擦係数μ1、及びフランジとの間の摩擦係数μ2を共に増大せしめる構造及び表面処理を有するもの、
である。
3) About the shape of the rigid members 23 and 25 which are rotating bodies The rigid members 23 and 25 which are rotating bodies in the present invention include all those satisfying the following two requirements, whether spherical or cylindrical. That is,
a. Rotating in the direction of pulling out the tubular body 11,
b. A structure and a surface treatment that increase both the coefficient of friction μ1 between the rigid members 23 and 25, which are rotating bodies, and the tube 11, and the coefficient of friction μ2 between the flanges;
It is.

球形の場合、剛体部材の表面をミクロンレベルの微細な凹凸をつけたもの(所謂表面を荒らしたもの)も有効である。また金平糖様に鋼球表面に多数の突起(円錐型)を均一に表面に配置したもの(但し突起高さは球体直径の1/4以下が望ましい)も有効である。円筒形の場合、剛体部材の表面を荒らしたもの、鋸歯状形歯車構造のものも有効である。   In the case of a spherical shape, the surface of the rigid member provided with micron-level fine irregularities (so-called roughened surface) is also effective. In addition, it is also effective to arrange a large number of protrusions (conical shapes) on the surface of a steel ball uniformly like a confetti (however, the protrusion height is preferably ¼ or less of the sphere diameter). In the case of a cylindrical shape, those having a rough surface of a rigid member and a sawtooth gear structure are also effective.

以上の説明から、本発明の管継手における自己平衡型引き抜き防止装置として必要となる要件は、請求項1に記載したように、円筒形の管体外面と円錐形の継手内面とから成る楔形断面形状の空間に配置する剛体部材が、管体に働く引き抜き力によって回転を生じること、管体外面と継手内面の形成する挟角2αが17度±7度であること、そして剛体部材の外径が、管体外面と継手内面との最小間隙Δgの2倍以上であること、となる。これらの要件を満たす発明であることにより、引き抜き力によって剛体部材が摺動を起こし、動摩擦係数が支配する従来の装置から脱して、本発明の装置は破壊に到るまで脱管することがないという目的、効果を実現し得るものとなる。   From the above description, the requirements necessary for the self-balancing type pull-out preventing device in the pipe joint of the present invention are as follows. As described in claim 1, a wedge-shaped cross section comprising a cylindrical tubular body outer surface and a conical joint inner surface is provided. The rigid member disposed in the shape space is rotated by the pulling force acting on the tube, the included angle 2α formed by the outer surface of the tube and the inner surface of the joint is 17 ° ± 7 °, and the outer diameter of the rigid member Is at least twice the minimum gap Δg between the tube outer surface and the joint inner surface. By being an invention that satisfies these requirements, the rigid body member slides due to the pulling force, and the device of the present invention does not depilate until it breaks away from the conventional device in which the dynamic friction coefficient dominates. The purpose and effect can be realized.

本発明の説明において、管体のサイズは4インチ管になっているが、これは4インチ管がこの種の管体の代表とされているためである。そして4インチ管は、1インチ半の管から10インチ管までを代表するものとして取り扱って支障のないことが当業者間において了解されている。従って、本発明の装置が少なくとも1インチ半の管から10インチ管について適用されることは明らかである。   In the description of the present invention, the size of the tube is a 4-inch tube because the 4-inch tube is representative of this type of tube. It is understood by those skilled in the art that a 4 inch tube can be handled as a representative from a 1 inch half tube to a 10 inch tube without any problem. Thus, it is clear that the apparatus of the present invention applies for at least 1 inch and a half to a 10 inch tube.

本発明に係る管継手における自己平衡型引き抜き防止装置の全体を示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view which shows the whole self-balancing type | mold extraction prevention apparatus in the pipe joint which concerns on this invention. 図1の装置に使用する実施例1のパッキングの1例を示す斜視図。The perspective view which shows an example of the packing of Example 1 used for the apparatus of FIG. 図1の装置の要部拡大断面図。The principal part expanded sectional view of the apparatus of FIG. 本発明に係る装置の力学的メカニズムを解析するための説明図。Explanatory drawing for analyzing the mechanical mechanism of the apparatus which concerns on this invention. 管体外面と継手内面との間の円錐形の空間に剛体部材である球体を配置した状態を模式的に示す斜視図。The perspective view which shows typically the state which has arrange | positioned the spherical body which is a rigid member in the conical space between a pipe body outer surface and a coupling inner surface. 本発明の実施例1における鋼球数と変位を示すグラフ。The graph which shows the number of steel balls and displacement in Example 1 of this invention. 本発明の実施例2の装置の要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the apparatus of Example 2 of this invention. 図7の装置に使用する実施例2のパッキングの1例を示すもので、Aは斜視図、Bはパッキングに配置する剛体部材の1例を示す正面図。FIGS. 8A and 8B show an example of packing of Example 2 used in the apparatus of FIG. 7, wherein A is a perspective view, and B is a front view showing an example of a rigid member arranged in the packing. 図7の装置に使用する剛体部材を示すもので、Aは支軸で支えないタイプの斜視図、Bは支軸で支えるタイプの斜視図。The rigid member used for the apparatus of FIG. 7 is shown, A is a perspective view of the type which is not supported by a spindle, B is a perspective view of the type supported by a spindle. 図9Bの剛体部材をパッキングに取り付けた状態を示すもので,Aは正面方向の断面図、Bは側面方向の断面図。9B shows a state where the rigid body member of FIG. 9B is attached to the packing, A is a sectional view in the front direction, and B is a sectional view in the side direction. 実施例2の装置による抜け止め痕を示す斜視図。FIG. 6 is a perspective view showing a retaining mark by the apparatus according to the second embodiment. 本発明の実施例2のものの効果を示すグラフ。The graph which shows the effect of the thing of Example 2 of this invention. 従来の抜け止め装置の作用を示す正面図。The front view which shows the effect | action of the conventional retaining device. 図13と同様の装置の作用を示す縦断面図。FIG. 14 is a longitudinal sectional view showing the operation of the same device as FIG. 13. 図13、図14の装置による効果を示すグラフ。The graph which shows the effect by the device of Drawing 13 and Drawing 14.

符号の説明Explanation of symbols

10 本発明に係る管継手における自己平衡型引き抜き防止装置
11、24 管体
12 管体外面
13 継手
14 本体
15 フランジ
16 本体のフランジ
17、26 パッキング
18 ボルト
19 ナット
20 楔状の空間
21 継手内面
23 剛体部材である球体若しくは鋼球
25 剛体部材である歯車状円筒部品
26 連絡部材
27 凹み部
28 フランジエッジ
29 鋼球挿入穴


DESCRIPTION OF SYMBOLS 10 Self-balancing type pull-out prevention apparatus 11 and 24 pipe body 12 Pipe outer surface 13 Joint 14 Main body 15 Flange 16 Main body flange 17, 26 Packing 18 Bolt 19 Nut 20 Wedge-shaped space 21 Joint inner surface 23 Rigid body Sphere or steel ball as a member 25 Gear-shaped cylindrical part as a rigid member 26 Connecting member 27 Recessed portion 28 Flange edge 29 Steel ball insertion hole


Claims (3)

円筒形の管体外面と、円錐形の継手内面とにより形成された楔形断面形状の空間に、管体外面及び継手内面に食い込みを生じうる剛体部材を複数個周方向へほぼ均等に配置し、剛体部材は、管体と継手とを引き抜く方向の外力が働いたときに、管体周方向の軸周りに回転して引き抜き方向へ移動可能な回転体に形成し、上記引き抜く方向の外力により剛体部材に回転を生じさせる条件として、楔形断面形状の空間において管体外面と継手内面とが形成する挟角2αを17度±7度とし、かつ、剛体部材の外径を管体外面と継手内面との最小隙間Δgの2倍以上としたことを特徴とする管継手における自己平衡型引き抜き防止装置。 A plurality of rigid members that can bite into the outer surface of the tube body and the inner surface of the joint are arranged substantially uniformly in the circumferential direction in a wedge-shaped cross-sectional space formed by the outer surface of the cylindrical tube body and the inner surface of the conical joint. The rigid member is formed into a rotating body that rotates about the axis in the circumferential direction of the tube and moves in the pulling direction when an external force in the direction of pulling out the tube and the joint is applied. As a condition for causing the member to rotate, the included angle 2α formed by the outer surface of the tube and the inner surface of the joint in a wedge-shaped cross-sectional space is set to 17 ° ± 7 °, and the outer diameter of the rigid member is set to the outer surface of the tube and the inner surface of the joint. Self-equilibrium type pull-out prevention device for pipe joints, characterized in that the minimum gap Δg is 2 times or more. 剛体部材は、管体の周方向へ、12個均等な間隔で配置されている請求項1記載の管継手における自己平衡型引き抜き防止装置。 2. The self-balancing type pull-out prevention device for a pipe joint according to claim 1, wherein 12 rigid members are arranged at equal intervals in the circumferential direction of the pipe body. 剛体部材は、球体、円筒体又は歯車状円筒部品のどれかである請求項1又は2記載の管継手における自己平衡型引き抜き防止装置。

3. The self-balancing type pull-out prevention device for a pipe joint according to claim 1, wherein the rigid member is a sphere, a cylinder, or a gear-shaped cylindrical part.

JP2005302002A 2005-10-17 2005-10-17 Self-balancing type pull-out prevention device for pipe joints. Active JP4358812B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005302002A JP4358812B2 (en) 2005-10-17 2005-10-17 Self-balancing type pull-out prevention device for pipe joints.
CNB2006100640376A CN100425900C (en) 2005-10-17 2006-10-17 Self-balance type drawing prevention device for pipe joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302002A JP4358812B2 (en) 2005-10-17 2005-10-17 Self-balancing type pull-out prevention device for pipe joints.

Publications (2)

Publication Number Publication Date
JP2007107702A JP2007107702A (en) 2007-04-26
JP4358812B2 true JP4358812B2 (en) 2009-11-04

Family

ID=38033714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302002A Active JP4358812B2 (en) 2005-10-17 2005-10-17 Self-balancing type pull-out prevention device for pipe joints.

Country Status (2)

Country Link
JP (1) JP4358812B2 (en)
CN (1) CN100425900C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162897A1 (en) * 2011-06-03 2012-12-06 Ge Wenyu Taper locking ring with steel balls
CN102200210A (en) * 2011-06-03 2011-09-28 葛文宇 Steel ball tapered locking ring
CN102563276A (en) * 2012-01-10 2012-07-11 葛文宇 Biconical ring for articulated pipe fitting
WO2019082466A1 (en) 2017-10-25 2019-05-02 株式会社水道技術開発機構 Pipe joint and method for assembling pipe joint

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1219043A (en) * 1969-10-07 1971-01-13 Maschinefabriek V H Rogier Ner Gas-tight pipe coupling
GB2155577B (en) * 1984-03-13 1987-11-25 Owen Walmsley Pipe clamps/connectors
JPH0719690U (en) * 1993-09-09 1995-04-07 株式会社長谷川鋳工所 Pipe fitting device
DE4339361A1 (en) * 1993-10-06 1995-06-22 Manibs Spezialarmaturen Fluid tight connection for pipe
CN2498436Y (en) * 2000-05-16 2002-07-03 孟忠敏 Pressure-insistant sealed pipe connecting structure
JP2003014183A (en) * 2001-06-29 2003-01-15 Masabumi Minami Pipe coupling
JP3099370U (en) * 2003-07-22 2004-04-02 伊藤鉄工株式会社 Packing for flexible fittings

Also Published As

Publication number Publication date
JP2007107702A (en) 2007-04-26
CN1991228A (en) 2007-07-04
CN100425900C (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4358812B2 (en) Self-balancing type pull-out prevention device for pipe joints.
JP4101226B2 (en) Pipe fitting device for pressure drainage
JP4906973B1 (en) Pipe fitting
US7051806B2 (en) Internal slip connector
WO2015156198A1 (en) Pipe fitting
JP6300609B2 (en) Detachment prevention device
JP5057593B2 (en) Support device for non-average forces in pipes
EP3337988B1 (en) Device for mounting and dismantling a bearing collar on a pin bolt
JPH10245898A (en) Toroidal joint and clamping jig thereof
JP6832228B2 (en) Support equipment for rehabilitation pipes
JP2008115911A (en) Packing fastening device in pipe coupling
JP3132445U (en) Steel pipe support
JP3341695B2 (en) Hydraulic nut
KR200401075Y1 (en) Device for fixing form panel
JP2000176585A (en) Screw roll forming roller for thin-walled tube
JP2004138207A (en) Inner core for soft synthetic resin pipe joint
JP2006266479A (en) Pipe joint device for pressure feed drainage
JP2005003207A (en) Disengagement prevention device of pipe joint
JPH109461A (en) Connecting structure between connection flange part and different bore tubular body
JP7486786B2 (en) Pipe Fittings
US1108025A (en) Snake-puller.
JP4459593B2 (en) Non-average force support device and tube pressing method in non-average force support device
JP3828524B2 (en) Pipe fitting
JP6497363B2 (en) Steel pipe joints
KR20220112946A (en) Mechanical connecting structure of coated steel pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4358812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250