JP4352146B1 - Highly functional nitrifying bacteria and method for purifying urea or ammonia using the bacteria - Google Patents

Highly functional nitrifying bacteria and method for purifying urea or ammonia using the bacteria Download PDF

Info

Publication number
JP4352146B1
JP4352146B1 JP2008294605A JP2008294605A JP4352146B1 JP 4352146 B1 JP4352146 B1 JP 4352146B1 JP 2008294605 A JP2008294605 A JP 2008294605A JP 2008294605 A JP2008294605 A JP 2008294605A JP 4352146 B1 JP4352146 B1 JP 4352146B1
Authority
JP
Japan
Prior art keywords
bacteria
nitrification
bacterium
strain
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008294605A
Other languages
Japanese (ja)
Other versions
JP2010119937A (en
Inventor
史彦 武部
将泰 行方
菊江 広田
勳 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008294605A priority Critical patent/JP4352146B1/en
Application granted granted Critical
Publication of JP4352146B1 publication Critical patent/JP4352146B1/en
Publication of JP2010119937A publication Critical patent/JP2010119937A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

【課題】硝化能を有し、化学栄養独立栄養細菌と比較して生育速度が速くかつ保存・輸送特性に優れた新規細菌を提供する。
【解決手段】ブレビバチルス・エスピー(Brevibacillus sp.)に属し、かつ芽胞形成能及び硝化能を有する新規細菌。
【選択図】なし
[Problem] To provide a novel bacterium having nitrification ability, a growth rate faster than that of a chemotrophic autotrophic bacterium, and excellent storage and transport properties.
A novel bacterium belonging to Brevibacillus sp. And having spore-forming ability and nitrification ability.
[Selection figure] None

Description

本発明は、硝化作用を有する新規細菌及び当該新規細菌を含有する硝化用組成物、並びにこれらを用いた尿素又はアンモニアの浄化方法に関する。   The present invention relates to a novel bacterium having a nitrifying action, a composition for nitrification containing the novel bacterium, and a method for purifying urea or ammonia using these.

浄化槽の微生物相の早期立ち上げや、なんらかの要因で浄化槽中の良好な状態の微生物相が崩壊した場合の解決策の一つとして、有機物等の分解能に優れた微生物を含んだシーディング剤の投入という手段が考えられる(特許文献1、2及び非特許文献1)。これまでのシーディング剤使用の経験から、その効果として汚泥の減容化、硝化・脱窒能の促進が挙げられているが、それら効果の根拠となる個別の微生物の機能について詳しいことは解っていない。シーディング剤の効能については経験的に実証されているものの、シーディング剤を使用することにより、廃水処理にさらなるコストが負荷されることが問題として挙げられる。2005年5月に公布された浄化槽法の改正により、浄化槽設置後一定期間後義務付けられている水質検査の期間を短縮される項目が盛り込まれた。これは浄化槽の能力の向上や、効果的なシーディング剤が使われ始めたことによる。その一方では、浄化槽がより短期間に必要な能力を発揮することが求められることになり、その結果、安価で確実に効果を向上させることができるシーディング剤の供給が求められている。   Introducing seeding agent containing microorganisms with excellent resolving power such as organic matter as one of the solutions when the microflora in the septic tank is brought up early or when the microbiota in the septic tank collapses due to some factors Can be considered (Patent Documents 1 and 2 and Non-Patent Document 1). The experience of using seeding agents so far has suggested that sludge volume reduction and nitrification / denitrification ability are promoted. However, details of the functions of individual microorganisms that provide the basis for these effects are not known. Not. Although the effectiveness of the seeding agent has been empirically proven, the use of the seeding agent imposes additional costs on wastewater treatment. The amendment of the Septic Tank Law, which was promulgated in May 2005, included an item that shortened the period of water quality inspection that is required for a certain period after the septic tank was installed. This is due to improved septic tank capacity and the start of effective seeding agents. On the other hand, the septic tank is required to exhibit a necessary capability in a shorter period of time, and as a result, there is a demand for supply of a seeding agent that can reliably improve the effect at low cost.

一般的に硝化反応は好気条件下でニトロソモナス(Nitrosomonas)属細菌に代表されるアンモニア酸化細菌によってアンモニウムイオンが亜硝酸イオンに変換され、生成した亜硝酸イオンは同じく好気条件下でニトロバクター(Nitrobacter)属細菌に代表される亜硝酸酸化細菌によって硝酸イオンに変換されるものと考えられている(特許文献3及び4)。これら硝化反応に関与する細菌は化学栄養独立栄養細菌と呼ばれ、アンモニウムイオンや亜硝酸イオンから受け取った電子のみでエネルギー生産と炭酸ガスの固定を始めとした生合成反応を行っており、大腸菌のような代表的な従属栄養細菌と比較して、生育が極めて遅いのが特徴である。   In general, the nitrification reaction is carried out under the aerobic condition, ammonium ions are converted into nitrite ions by ammonia-oxidizing bacteria represented by bacteria of the genus Nitrosomonas. It is thought that it is converted into nitrate ions by nitrite-oxidizing bacteria represented by (Nitrobacter) genus bacteria (Patent Documents 3 and 4). Bacteria involved in these nitrification reactions are called chemotrophic autotrophic bacteria, which carry out biosynthetic reactions such as energy production and carbon dioxide fixation using only electrons received from ammonium ions and nitrite ions. Compared with such typical heterotrophic bacteria, it is characterized by extremely slow growth.

上記の通り、本来硝化反応を行うと考えられてきた細菌は生育が極めて遅いことから(非特許文献2及び3)、廃水処理設備の好気槽中で増殖し、安定した硝化反応を行うまでに時間がかかるものと考えられる。また別途培養して廃水処理施設の好気槽の立ち上げに投入することは可能であるが、培養に時間がかかることや、液体で運用することが望ましいと考えられることから、調整に時間がかかると共に、保存期間がある程度限られる、輸送の際には水も一緒に輸送しなければならない等、コスト面で好ましくない要因が存在する。   As described above, since bacteria originally considered to perform nitrification reaction grow very slowly (Non-Patent Documents 2 and 3), they grow in an aerobic tank of a wastewater treatment facility until stable nitrification reaction is performed. It is thought that it takes time. It is possible to cultivate separately and put it into the start-up of the aerobic tank of the wastewater treatment facility, but it takes time to cultivate and it is desirable to operate in liquid, so time is required for adjustment. In addition, there are factors that are undesirable in terms of cost, such as the storage period being limited to some extent, and water being transported together.

特開2002−316199号JP 2002-316199 A 特許公開2003−334598Patent Publication 2003-334598 特開2001−246397号JP 2001-246397 A 特開2006−346589号JP 2006-346589 A 微生物による環境改善 微生物製剤は役に立つのか 中村和憲著(2002年)p126Improving the environment with microorganisms Is microbial preparation useful? Kazunori Nakamura (2002) p126 日本微生物生態学会編 微生物の生態19 物質循環における微生物の役割 学会出版センター(1995) p21Japanese Society of Microbial Ecology Microbiology Ecology 19 The Role of Microorganisms in the Material Circulation Society Press Center (1995) p21 生物学的排水処理工学 北尾高嶺著 コロナ社(2003)p159Biological wastewater treatment engineering by Takao Kitao Corona (2003) p159

そこで本発明は、上述したような実情に鑑み、廃水等に含まれるアンモニアや尿素を速やかに硝化することができる新規細菌、特に、化学栄養独立栄養細菌と比較して生育速度が速い従属栄養細菌に属し、かつ保存・輸送特性に優れた新規細菌を提供すること、及びこれらを利用した尿素又はアンモニアの浄化方法を提供することを目的とする。   Therefore, in view of the above situation, the present invention is a novel bacterium capable of rapidly nitrifying ammonia and urea contained in wastewater, etc., in particular, a heterotrophic bacterium having a high growth rate compared to a chemotrophic autotrophic bacterium. It is an object of the present invention to provide a novel bacterium belonging to the above and having excellent storage and transport properties, and to provide a method for purifying urea or ammonia using them.

本発明者らは、上記目的を達成するため、家畜ふんや下水消化汚泥などを混合し、堆積一次発酵を行って作製したシーディング剤を分離源として上記特性を有する細菌を単離、同定すべく鋭意検討した結果、公知の細菌には分類されない新規細菌を単離、同定することができた。本発明は、かかる新規細菌が、従属栄養細菌であるブレビバチルス・エスピー(Brevibacillus sp.)に属し、かつ芽胞形成能と硝化能とを有するという知見に基づいている。   In order to achieve the above object, the present inventors isolate and identify bacteria having the above characteristics using a seeding agent prepared by mixing livestock dung and sewage digested sludge, etc., and carrying out sedimentary primary fermentation. As a result of intensive studies, it was possible to isolate and identify a novel bacterium that was not classified as a known bacterium. The present invention is based on the finding that such novel bacteria belong to the heterotrophic bacterium Brevibacillus sp. And have spore-forming ability and nitrification ability.

本発明に係る新規細菌は、ブレビバチルス・エスピー(Brevibacillus sp.)に属し、かつ芽胞形成能と硝化能とを有する。このような特性を有する硝化細菌として本発明者らが単離、同定した新規細菌のうち、ブレビバチルス・エスピー(Brevibacillus sp.)DA2株は、下記表1に記載する菌学的諸性質を有する。   The novel bacterium according to the present invention belongs to Brevibacillus sp. And has spore-forming ability and nitrification ability. Among the novel bacteria isolated and identified by the present inventors as nitrifying bacteria having such characteristics, the Brevibacillus sp. DA2 strain has the mycological properties described in Table 1 below. .

Figure 0004352146
Figure 0004352146

ブレビバチルス・エスピー(Brevibacillussp.)DA2株に関して、DNAを抽出し、PCR法により16S rRNA遺伝子を増幅し、得られた遺伝子の塩基配列をオートシークエンサーで解析し、ブラストサーチにより類似した塩基配列を調べた。その結果に基づき、類似した塩基配列と多重アラインメントを取り、得られた結果に基づき近隣結合法(neighbor-joining法)により系統樹を作成した。上記菌学的性質、及び16S rRNA遺伝子配列に基づく系統学解析で得られた系統樹(図1)に基づいて、ブレビバチルス・エスピー(Brevibacillus sp.)DA2株は、ブレビバチルス属に分類される新菌種として同定された。   Regarding Brevibacillus sp. DA2 strain, DNA is extracted, 16S rRNA gene is amplified by PCR, the base sequence of the obtained gene is analyzed with an auto sequencer, and similar base sequences are examined by blast search. It was. Based on the results, multiple alignments with similar base sequences were taken, and based on the obtained results, a phylogenetic tree was created by the neighbor-joining method. Based on the above mycological properties and the phylogenetic tree obtained by phylogenetic analysis based on the 16S rRNA gene sequence (FIG. 1), the Brevibacillus sp. DA2 strain is classified as a genus Brevibacillus. Identified as a new species.

なお、ブレビバチルス・エスピー(Brevibacillus sp.)DA2株は、2008年9月25日付で、独立行政法人 産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1 中央第6)に、受託番号FERM P-21693として寄託されている。   The Brevibacillus sp. DA2 strain was issued on September 25, 2008 at the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (1st, 1st East, 1-chome, Tsukuba, Ibaraki, Japan). ) Under the deposit number FERM P-21693.

本発明に係る細菌にはさらに、上記ブレビバチルス・エスピー(Brevibacillus sp.)DA2株の変異株も包含され、この変異株は親株と同様の特性、すなわち芽胞形成能及び硝化能を有する。   The bacterium according to the present invention further includes a mutant strain of the above-mentioned Brevibacillus sp. DA2 strain, and this mutant strain has the same characteristics as the parent strain, that is, spore-forming ability and nitrification ability.

本発明はまた、本発明に係る新規細菌を含有する硝化用組成物に関する。本発明に係る硝化用組成物に含有される細菌は、乾燥形態であってもよいし、固相担体に固定化された形態であってもよい。   The present invention also relates to a composition for nitrification containing the novel bacteria according to the present invention. The bacterium contained in the nitrification composition according to the present invention may be in a dry form or a form immobilized on a solid phase carrier.

本発明はさらに、本発明に係る新規細菌又は硝化用組成物と、尿素又はアンモニアを含む浄化対象物とを接触させることを含む尿素又はアンモニアの浄化方法に関する。   The present invention further relates to a method for purifying urea or ammonia, which comprises bringing the novel bacterium or nitrification composition according to the present invention into contact with a purification object containing urea or ammonia.

本発明によれば、ブレビバチルス・エスピー(Brevibacillus sp.)に属しかつ芽胞形成能と硝化能とを有する新規細菌、及び該新規細菌を含有する硝化用組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the novel bacterium which belongs to Brevibacillus sp. (Brevibacillus sp.) And has spore formation ability and nitrification ability, and the composition for nitrification containing this novel bacteria can be provided.

本発明に係る新規細菌は、これまで一般的に知られている独立栄養性の硝化細菌とは増殖機構そのものが異なる従属栄養性細菌のため、その増殖は迅速かつ安定的で、細菌製剤を作製するための時間を著しく短縮することができる。また本発明に係る新規細菌は芽胞形成能を有するため、培養菌体を乾燥形態の粉末やタブレットとして保存、輸送することができ、その管理や輸送にかかるコストを液体状の細菌製剤と比較して著しく低減することができる。   The novel bacterium according to the present invention is a heterotrophic bacterium having a different growth mechanism from that of the conventionally known autotrophic nitrifying bacterium, so that its growth is quick and stable, and a bacterial preparation is produced. It is possible to significantly shorten the time for Moreover, since the novel bacterium according to the present invention has a spore-forming ability, the cultured microbial cells can be stored and transported as a dry powder or tablet, and the cost for management and transportation is compared with that of a liquid bacterial preparation. Can be significantly reduced.

このような特徴を有する本発明に係る新規細菌及びこれを含有する硝化用組成物は、各種業界から排出されるアンモニアや尿素を含んだ廃水などの処理に広く利用可能である。   The novel bacterium according to the present invention having such characteristics and the nitrification composition containing the same can be widely used for treatment of waste water containing ammonia and urea discharged from various industries.

以下、本発明を詳細に説明する。
本発明に係る新規細菌は、ブレビバチルス・エスピー(Brevibacillus sp.)に属し、かつ芽胞形成能と硝化能とを有している。本明細書で使用する「硝化能」とは、特にアンモニウムイオンを亜硝酸イオンに酸化する能力をいう。
Hereinafter, the present invention will be described in detail.
The novel bacterium according to the present invention belongs to Brevibacillus sp. And has spore-forming ability and nitrification ability. As used herein, “nitrification ability” refers specifically to the ability to oxidize ammonium ions to nitrite ions.

本発明に係る新規細菌は、家畜ふんや脱水した下水消化汚泥などを混合し、堆積一次発酵を行って作製したシーディング剤から単離、同定することができる。   The novel bacteria according to the present invention can be isolated and identified from a seeding agent prepared by mixing livestock dung, dehydrated sewage digested sludge, etc., and performing sedimentary primary fermentation.

具体的な単離、同定手法としては、前記シーティング剤から細菌株を分離し、アンモニアを基質とした培地において分離株を培養し、亜硝酸生成活性を指標に高い亜硝酸生成活性を有する細菌株を分離し、その後場合により、分離菌体の分類学的位置の決定、芽胞形成能の評価等を行うことが挙げられる。   As a specific isolation and identification method, a bacterial strain is isolated from the sheeting agent, cultured in a medium using ammonia as a substrate, and a bacterial strain having a high nitrite production activity using nitrite production activity as an indicator. And then, depending on the case, determination of the taxonomic position of the isolated cells, evaluation of spore-forming ability, etc. may be mentioned.

亜硝酸生成活性は、例えば培養液中の亜硝酸イオンを検出することによって判定する。亜硝酸の検出には、Griess-romijn(GR)試薬であるGriess-romijnnitrite試薬を使用することができる。具体的には、培養液を遠心分離し、上清を試験管に回収してGR nitrite試薬を少量入れて混合後、静置して色の変化を観察することで、培養液中の亜硝酸イオンを検出することができる。亜硝酸イオンの量により、溶液は透明から薄桃、濃い赤色に呈色する。   Nitrite production activity is determined, for example, by detecting nitrite ions in the culture solution. For detection of nitrite, Griess-romijnnitrite reagent which is Griess-romijn (GR) reagent can be used. Specifically, the culture solution is centrifuged, the supernatant is collected in a test tube, a small amount of GR nitrite reagent is added and mixed, and then left to stand to observe the color change. Ions can be detected. Depending on the amount of nitrite ions, the solution turns from clear to light peach and dark red.

その他、亜硝酸の検出は、例えば下記実施例に記載されるナフチルエチレンジアミン法によって行うことができる。この手法は、亜硝酸窒素が酸性溶液中で芳香族第一アミン(スルファニル酸等)と反応して生ずるアゾ化合物に芳香族アミン類(ナフチルエチレンジアミン等)を加えてカップリングさせることで生じるジアゾ化合物の赤色の吸光度を測定することで、亜硝酸窒素の濃度を検出する方法である。   In addition, nitrous acid can be detected by, for example, the naphthylethylenediamine method described in the following examples. This method is a diazo compound produced by adding aromatic amines (such as naphthylethylenediamine) to an azo compound produced by reacting nitrogen nitrite with an aromatic primary amine (such as sulfanilic acid) in an acidic solution. In this method, the concentration of nitrogen nitrite is detected by measuring the red absorbance of the nitrous acid.

分離菌体の分類学的位置の決定は、当業者に公知の手法を定法に従って行えばよく、特別な方法を用いる必要はない。例えば、分離菌体の16S RNA遺伝子の配列情報に基づく系統学的解析によって行うことができる。   The taxonomic position of the isolated microbial cell may be determined according to a standard method known to those skilled in the art, and it is not necessary to use a special method. For example, it can be performed by phylogenetic analysis based on the sequence information of the 16S RNA gene of the isolated bacterial cell.

分離菌体の芽胞形成能の評価は、決定された分類学的位置に基づいて行ってもよいし、ストレス環境下で芽胞形成の有無を芽胞染色法(Wirtz法、例えばSchaeffer Fulton's modification of Wirtz method SCHAEFFER, A, B., and FULTON, M. 1933. A SIMPLIFIED MRTHOD OF STAINING ENDOSPORS. SCIENCE77:194を参照)による顕微鏡観察によって確認することによって行ってもよい。なお、この場合に使用することができるストレス環境として、高温、毒性化合物への曝露、無栄養環境、低湿度環境などを挙げることができる。特に、低湿度環境を使用することが好ましい。   Evaluation of the spore-forming ability of the isolated cells may be performed based on the determined taxonomic position, or the presence or absence of spore formation under a stress environment may be determined by a spore staining method (Wirtz method such as Schaeffer Fulton's modification of Wirtz method SCHAEFFER, A, B., and FULTON, M. 1933. A SIMPLIFIED MRTHOD OF STAINING ENDOSPORS. SCIENCE 77: 194). In addition, examples of the stress environment that can be used in this case include high temperature, exposure to toxic compounds, no-nutrition environment, and low humidity environment. In particular, it is preferable to use a low humidity environment.

その他、分離菌体を上記表1に記載する菌学的諸性質について評価することによって本発明に係る新規細菌を単離、同定してもよい。表1に示す菌学的諸性質は、本願発明者らが単離、同定した新規細菌のうち、ブレビバチルス・エスピー(Brevibacillus sp.)DA2株と命名されかつFERM P-21693として寄託された細菌のものである。   In addition, the novel bacterium according to the present invention may be isolated and identified by evaluating the isolated bacterial cells for various mycological properties described in Table 1 above. Among the new bacteria isolated and identified by the inventors of the present application, the bacteriological properties shown in Table 1 are those named as Brevibacillus sp. DA2 strain and deposited as FERM P-21693 belongs to.

したがって、本発明の硝化細菌は、例えばブレビバチルス・エスピー(Brevibacillus sp.)DA2株、及び芽胞形成能と硝化能とを有するその変異株を包含する。本発明に係る細菌の変異株は、当業者に公知の変異処理により前記DA2株から誘導されたものであり、例えばかかる変異処理として、これに限定されるものではないが、親株に対し、紫外線、放射線(例えばγ線)等の照射、メチルニトロソウレアなどの変異原性化学物質を接触させる方法、N-メチル-N’-ニトロ-N-ニトロソグアニジン(NTG)処理、エチルメタンスルホン酸 (EMS)処理などが挙げられる。ただし、本発明の変異株は、上記特性を有し、かつ亜硝酸生成活性に関して、野生型と同等か又はそれを上回る活性を有するものが好ましい。   Therefore, the nitrifying bacteria of the present invention include, for example, the Brevibacillus sp. DA2 strain and mutants thereof having spore-forming ability and nitrifying ability. The mutant strain of the bacterium according to the present invention is derived from the DA2 strain by a mutation treatment known to those skilled in the art.For example, the mutation treatment is not limited thereto, but the parent strain , Irradiation with radiation (eg gamma rays), contact with mutagenic chemicals such as methylnitrosourea, N-methyl-N'-nitro-N-nitrosoguanidine (NTG) treatment, ethyl methanesulfonic acid (EMS ) Treatment. However, the mutant strain of the present invention preferably has the above-mentioned characteristics and has an activity equivalent to or higher than that of the wild type with respect to nitrite production activity.

本発明に係る細菌は、生育速度が遅いと考えられていた従来公知の硝化細菌と異なり、生育速度が速いため、短期間で有効な硝化用組成物として調製することができる。   The bacterium according to the present invention can be prepared as an effective nitrifying composition in a short period of time because it has a high growth rate, unlike a conventionally known nitrifying bacterium which has been considered to have a low growth rate.

本発明に係る細菌を培養するのに適した液体培地の組成を下記に例示する:
普通ブイヨン(液体培地組成)
カゼインペプトン 10 g
肉エキス 5 g
塩化ナトリウム 5 g
蒸留水 1 L
(pH 7.0)
The composition of a liquid medium suitable for culturing bacteria according to the present invention is exemplified below:
Normal bouillon (liquid medium composition)
Casein peptone 10 g
Meat extract 5 g
Sodium chloride 5 g
Distilled water 1 L
(PH 7.0)

その他本発明に係る細菌の培養条件は、上記菌学的諸性質に基づき、当業者が適宜設定することができる。例えば、培養時の温度は16〜44℃の範囲とすることができ、pHは5.0〜8.0の範囲とすることができる。   In addition, culture conditions for the bacteria according to the present invention can be appropriately set by those skilled in the art based on the above-mentioned mycological properties. For example, the temperature during culture can be in the range of 16 to 44 ° C., and the pH can be in the range of 5.0 to 8.0.

本発明に係る硝化用組成物(以下、本発明の組成物ともいう)は、本発明の細菌を培養し、この培養物を遠心分離して菌体を回収し、生理食塩水を加えて適当な濃度となるように懸濁することによって調製することができる。また本発明の組成物は、必要に応じて当業者に公知の添加剤を含んでもよい。そのような添加剤として、これに限定されるものではないが、例えば細胞保護剤、pH調整剤等を挙げることができる。本発明の硝化用組成物中に含まれる上記細菌の濃度は、培養方法に応じて適宜選択し得るものであるが、好ましくは組成物100gあたり1x105細胞個数前後の含有を目安とすることができる。 The composition for nitrification according to the present invention (hereinafter also referred to as the composition of the present invention) is obtained by culturing the bacterium of the present invention, centrifuging the culture, collecting the cells, and adding physiological saline to It can be prepared by suspending so as to obtain a proper concentration. Moreover, the composition of this invention may also contain the additive well-known to those skilled in the art as needed. Examples of such additives include, but are not limited to, cytoprotective agents and pH adjusters. The concentration of the bacterium contained in the nitrification composition of the present invention can be appropriately selected depending on the culture method, but preferably contains about 1 × 10 5 cells per 100 g of the composition. it can.

本発明の組成物は、固体形態、半固体形態又は液体形態のいずれの形態で製剤化してもよい。本発明の組成物を液体製剤として調製する場合、例えば以下の手法によって調製することができる。すなわち、本発明の細菌を培養し、この培養物を遠心分離し、菌体を回収し、生理食塩水又は培地などの液体に適当な濃度となるように懸濁することにより調製することができる。   The composition of the present invention may be formulated in any form of solid form, semi-solid form or liquid form. When preparing the composition of this invention as a liquid formulation, it can prepare by the following methods, for example. That is, it can be prepared by culturing the bacterium of the present invention, centrifuging the culture, collecting the cells, and suspending them in a liquid such as physiological saline or a medium to obtain an appropriate concentration. .

本発明の硝化用組成物は、例えば粉末製剤、タブレットなどの固体形態、又はクリーム・ゼリー状製剤などの半固体形態で製剤化することが好ましい。そのような製剤は、液体製剤と比べて管理及び輸送に関連するコストを著しく低減することができ、また本発明の細菌が芽胞形成能を有するという性質上、乾燥形態でも活性を失わないからである。   The composition for nitrification of the present invention is preferably formulated in a solid form such as a powder preparation, a tablet, or a semi-solid form such as a cream-jelly preparation. Such formulations can significantly reduce the costs associated with management and transport compared to liquid formulations, and because the bacterium of the present invention has the ability to form spores, it does not lose activity even in dry form. is there.

粉末製剤は当業者に公知の手法によって調製することができる。例えば、本発明に係る細菌を培養し、この培養物を造粒乾燥や凍結乾燥等によって乾燥することで、粉末製剤とすることができる。例えば、培養液から菌体を遠心分離によって回収し、生理食塩水や新鮮な培地に懸濁した後、造粒乾燥や凍結乾燥等によって乾燥してもよい。pH調整剤や乾燥に対する保護剤などの添加剤は乾燥前に添加することができる。   Powder formulations can be prepared by techniques known to those skilled in the art. For example, the bacterium according to the present invention is cultured, and the culture can be dried by granulation drying, freeze drying, or the like to obtain a powder preparation. For example, the cells may be collected from the culture solution by centrifugation, suspended in physiological saline or a fresh medium, and then dried by granulation drying or freeze drying. Additives such as pH adjusters and protective agents against drying can be added before drying.

また、本発明の硝化用組成物は、上記細菌を固相担体に固定化して製造することができる。細菌を固定するための固相担体としては、細菌の固定に使用することのできるものであればいずれでも良く、特に限定されるものではない。例えば、アルギン酸、活性炭、珪藻土セラミック多孔体、軽石等を使用することができる。このような固相担体の形状としては、球状又は円柱状が好適であり、球状の場合、粒径は好ましくは0.3〜2.8mm程度であり、更に好ましくは0.3〜1.2mm程度である。細菌固定化は、当業者に公知の担体結合法(例えば物理吸着法、包括法など)など手法により行うことができる。   The nitrification composition of the present invention can be produced by immobilizing the bacteria on a solid phase carrier. The solid phase carrier for immobilizing bacteria is not particularly limited as long as it can be used for immobilizing bacteria. For example, alginic acid, activated carbon, diatomaceous earth ceramic porous body, pumice and the like can be used. As the shape of such a solid phase carrier, a spherical shape or a cylindrical shape is suitable, and in the case of a spherical shape, the particle size is preferably about 0.3 to 2.8 mm, more preferably about 0.3 to 1.2 mm. Bacteria immobilization can be performed by a method known to those skilled in the art, such as a carrier binding method (for example, physical adsorption method, inclusion method, etc.).

上記のようにして単離、同定した細菌は優れた硝化能を有するため、当該細菌又はこれを含有する硝化用組成物を用いることにより、アンモニア又は尿素の新規な廃水浄化方法を構築することができる。すなわち、上記細菌又は硝化用組成物を利用してアンモニア又は尿素を含む浄化対象物を浄化するものであれば処理態様の相違に拘らず全て本発明に係るアンモニア又は尿素の浄化方法(以下、本発明の浄化方法ともいう)に含まれる。   Since the bacterium isolated and identified as described above has excellent nitrification ability, a novel wastewater purification method for ammonia or urea can be constructed by using the bacterium or a nitrification composition containing the bacterium. it can. That is, as long as the purification object containing ammonia or urea is purified using the bacteria or nitrification composition, the ammonia or urea purification method according to the present invention (hereinafter referred to as the present invention) is used regardless of the difference in the treatment mode. Also referred to as purification method of the invention.

例えば、本発明の浄化方法の浄化対象物は、尿素又はアンモニアを含有するものであれば特に制限されず、例えば尿素又はアンモニアを含む廃水、土壌、汚泥、生ゴミ、家畜糞尿などを挙げることができる。   For example, the purification target of the purification method of the present invention is not particularly limited as long as it contains urea or ammonia, and examples thereof include waste water containing urea or ammonia, soil, sludge, garbage, livestock manure, and the like. it can.

例えば、本発明に係る細菌又は硝化用組成物と浄化対象物との接触は、細菌の培養液自体又は当該培養液中の湿菌体を浄化対象物に添加することによって、又は固定化担体に固定化された細菌を含む硝化用組成物に浄化対象物を供給することによって、行うことができる。その際、本発明の細菌の性質に基づき、浄化対象物の温度が16〜44℃程度の範囲であることが好ましく、pHが5.0〜8.0の範囲であることが好ましい。また、本発明に使用される細菌量に特に制限はなく、処理対象物中に含まれるアンモニア量、尿素量に応じて当業者は適宜設定することができる。   For example, the contact between the bacterium or the nitrification composition according to the present invention and the object to be purified is performed by adding the bacterial culture solution itself or wet cells in the culture solution to the object to be purified, or on the immobilized carrier. This can be done by supplying the purification object to the nitrification composition containing the immobilized bacteria. In that case, based on the property of the bacteria of this invention, it is preferable that the temperature of a purification target object is the range of about 16-44 degreeC, and it is preferable that pH is the range of 5.0-8.0. Moreover, there is no restriction | limiting in particular in the amount of bacteria used for this invention, Those skilled in the art can set suitably according to the ammonia amount and urea amount which are contained in a process target object.

以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.

[実施例1] 細菌株の分離
牛ふん、脱水下水消化汚泥、木材チップ、種堆肥を所定の割合で混合し、堆積一次発酵後の乾燥、篩い分けをし、1 mm以下にしたシーディング剤を三種類の汚水中で三週間集積培養を行い、細菌株を多数分離し、アンモニアを含んだ培地で分離株を培養後、亜硝酸生成活性を指標に、高い亜硝酸生成活性を有する細菌株を分離した。
[Example 1] Separation of bacterial strain A seeding agent prepared by mixing beef dung, dewatered sewage digested sludge, wood chips, seed compost at a predetermined ratio, drying and sieving after sedimentary primary fermentation, and reducing to 1 mm or less. After three weeks of enrichment culture in three types of sewage, isolate a large number of bacterial strains, culture the isolates in a medium containing ammonia, then use the nitrite production activity as an indicator to identify bacterial strains with high nitrite production activity. separated.

具体的には、まず、採取した汚水試料にシーディング剤を接種し、集積培養をおこなった。この間に亜硝酸の検出を行ったところ、培養3週間後に亜硝酸が検出されたことから、培養3週間後の本培養液から約80株の細菌株の分離を行った。亜硝酸の検出は、ナフチルエチレンジアミン法によって行った。第一液(スルファニル酸8 gを5N酢酸 1000 mlに溶解)および第二液(ナフチルエチレンジアミン5 gを5N酢酸 1000 mlに溶解)を等量混合し、5 mlの培養液に対し1 ml添加した。微生物の分離はアンモニアを含むGYP培地(1%グルコース、0.3%塩化アンモニウム、0.05%リン酸二水素カリウム、0.05%リン酸水素ナトリウム、1.5%寒天)およびYP培地(0.3%塩化アンモニウム、0.05%リン酸二水素カリウム、0.05%リン酸水素ナトリウム、1.5%寒天)でおこなった。この分離株にについてGYP培地およびYP培地のそれぞれ寒天を含まない液体培地で培養し、経時的に亜硝酸の生成を検出し、硝化能に優れた菌株としてDA2株選択した。   Specifically, first, a seeding agent was inoculated to the collected sewage sample, and accumulation culture was performed. During this period, nitrous acid was detected. Since nitrous acid was detected after 3 weeks of culture, about 80 bacterial strains were isolated from the main culture after 3 weeks of culture. Nitrous acid was detected by the naphthylethylenediamine method. Equal volume of 1st liquid (8 g of sulfanilic acid dissolved in 1000 ml of 5N acetic acid) and 2nd liquid (5 g of naphthylethylenediamine dissolved in 1000 ml of 5N acetic acid) were added, and 1 ml was added to 5 ml of culture medium. . Microorganisms were separated by GYP medium containing ammonia (1% glucose, 0.3% ammonium chloride, 0.05% potassium dihydrogen phosphate, 0.05% sodium hydrogen phosphate, 1.5% agar) and YP medium (0.3% ammonium chloride, 0.05% phosphorus). Potassium dihydrogen acid, 0.05% sodium hydrogen phosphate, 1.5% agar). The isolates were cultured in GYP medium and YP medium in liquid media not containing agar, and the production of nitrous acid was detected over time, and the DA2 strain was selected as a strain excellent in nitrification ability.

[実施例2] 分離菌株の分類
実施例1で分離した細菌株(DA2株)は、常法に従って分析したところ、上記表1の菌学的性質を有していた。
[Example 2] Classification of isolate strains The bacterial strain (DA2 strain) isolated in Example 1 had the mycological properties shown in Table 1 above when analyzed according to a conventional method.

このDA2株の帰属分類群の同定は、以下のようにして行った。まず分離した菌株(DA2株)を普通寒天斜面培地で27℃で1〜2日間培養し、光学顕微鏡及び電子顕微鏡で観察したところ、グラム染色陽性の桿菌であり芽胞を有し、運動性を示すことが判明した。また、得られた生理学的、生化学的性状検査結果は、Shida et al. (1996) Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst.Bacteriol. 46, 939-946 に記載されているブレビバチルス属細菌の性質と一致していた。   Identification of the taxonomic group of this DA2 strain was performed as follows. First, the isolated strain (DA2 strain) was cultured on an ordinary agar slant medium at 27 ° C for 1-2 days, and observed with an optical microscope and an electron microscope. It has been found. In addition, the obtained physiological and biochemical property test results are shown in Shida et al. (1996) Proposal for two new genera, Brevibacillus gen. Nov. And Aneurinibacillus gen. Nov. Int. J. Syst. Bacteriol. 46, Consistent with the nature of Brevibacillus bacteria described in 939-946.

続いて、分離した菌株について、16S rRNA遺伝子配列に基づく分子系統学的解析を行った。培養したDA2株菌から常法によりDNAを抽出し、それを鋳型として16S rRNA遺伝子に特異的なプライマーを用いてPCRにより16S rRNA遺伝子断片を増幅し、次いでその塩基配列を自動シークエンサーを用いて解析した。得られた16S rRNA遺伝子断片の塩基配列について、配列データベースでのBLAST(ブラスト)サーチによる相同性検索を行い、細菌由来16S rRNAの類似配列を調べた。ヒットした類似配列とDA2株菌の16S rRNA遺伝子配列とのアラインメントをとり、近隣結合法により系統樹を作成したところ、この菌がブレビバチルス属に属することが示された(図1)。同属の細菌株の中でもブレビバチルス・チョウシネンシス(Brevibacillus choshinensis)およびブレビバチルス・フォルモサス(Brevibacillus formosus)に対して、それぞれ99.1%および98.9%の高い相同性を示した。さらに16S rRNA遺伝子配列に基づく系統分類学上の近縁種の代表株ブレビバチルス・チョウシネンシス(Brevibacillus choshinensis)NBRC 15518Tおよびブレビバチルス・フォルモサス(Brevibacillus formosus)NBRC 15716Tに対してDNA-DNA相同性を調べたところ、それぞれ25%および6%でいずれも同種と考えられる値である70%未満であったことからDA2株はいずれの菌株とも同一種でないことが示された。 Subsequently, the isolated strain was subjected to molecular phylogenetic analysis based on the 16S rRNA gene sequence. DNA is extracted from the cultured DA2 strain by a conventional method, and a 16S rRNA gene fragment is amplified by PCR using a primer specific for the 16S rRNA gene as a template, and then its base sequence is analyzed using an automatic sequencer did. The base sequence of the obtained 16S rRNA gene fragment was subjected to homology search by BLAST search in a sequence database, and similar sequences of bacteria-derived 16S rRNA were examined. An alignment between the hit similar sequence and the 16S rRNA gene sequence of the DA2 strain was made, and a phylogenetic tree was created by the neighborhood joining method, which showed that the bacterium belongs to the genus Brevibacillus (FIG. 1). Among the bacterial strains of the same genus, they showed high homology of 99.1% and 98.9%, respectively, with Brevibacillus choshinensis and Brevibacillus formosus. Furthermore, DNA-DNA homology to the phylogenetic related strains Brevibacillus choshinensis NBRC 15518 T and Brevibacillus formosus NBRC 15716 T based on 16S rRNA gene sequences When the sex was examined, it was shown that the DA2 strain was not the same species as any of the strains, since the values considered to be the same species at 25% and 6%, respectively, were less than 70%.

以上の結果から、実施例1で分離した菌株(DA2株)は、ブレビバチルス属(Brevibacillus)の新菌種に属するものとして同定された。本発明者らは、この分離した菌株を、ブレビバチルス・エスピー(Brevibacillus sp.)DA2株と名付けた。ブレビバチルス・エスピーDA2株は、2008年9月25日付で、独立行政法人 産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1 中央第6)に、受託番号FERM P-21693として寄託されている。   From the above results, the strain (DA2 strain) isolated in Example 1 was identified as belonging to a new strain of Brevibacillus. The present inventors named this isolated strain as the Brevibacillus sp. DA2 strain. Brevibacillus sp. DA2 was issued on September 25, 2008 at the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (1st, 1st East, 1st Street, Tsukuba City, Ibaraki, Japan). -Deposited as 21693.

[実施例3] 硝化実験
100 ml容バッフル付き三角フラスコにYP培地(ペプトン, 0.15%; 酵母エキス, 0.2%, pH 7.5)にそれぞれ0.3%の塩化アンモニウム、硫酸アンモニウム、尿素を添加した3種類の培地を作成し、それぞれにブレビバチルス・エスピー(Brevibacillus sp.)DA2株を接種し、27 ℃で120 rpmの振とう速度で培養し、培養1日目、3日目、6日目に亜硝酸の生成量を測定した。亜硝酸の定量はサンプル 10 mlにスルファニルアミド液 1 mlを添加後、混合し室温で15分放置し、次にナフチルエチレンジアミン溶液を1 ml添加後、混合し室温で20分放置後、分光光度計で540 nm の吸光値を測定することによって行った。
[Example 3] Nitrification experiment
Three types of culture media were prepared by adding 0.3% ammonium chloride, ammonium sulfate, and urea to YP medium (peptone, 0.15%; yeast extract, 0.2%, pH 7.5) in an Erlenmeyer flask with 100 ml baffle. Brevibacillus sp. DA2 strain was inoculated and cultured at a shaking speed of 120 rpm at 27 ° C., and the amount of nitrite produced was measured on the 1st, 3rd and 6th days of culture. For the determination of nitrous acid, add 1 ml of sulfanilamide solution to 10 ml of sample, mix and leave for 15 minutes at room temperature, then add 1 ml of naphthylethylenediamine solution, mix and leave for 20 minutes at room temperature, then spectrophotometer By measuring the absorbance value at 540 nm.

実験結果を図2に示す。図2において横軸は培養日数で、縦軸は亜硝酸の精製量である。また三角は尿素、四角は硫酸アンモニウム、ひし形は塩化アンモニウムを添加した培地による培養による結果である。培養開始1日目より尿素の分解によって生じる亜硝酸の生成量は塩化アンモニウム、硫酸アンモニウムを基質とした時の2倍以上であった。さらに3 〜 6 日後まで培養を続けた結果、尿素、硫酸アンモニウム、塩化アンモニウムの順に亜硝酸の生成量が多かった。   The experimental results are shown in FIG. In FIG. 2, the horizontal axis represents the number of culture days, and the vertical axis represents the amount of nitrous acid purified. Triangles are the results of culturing in a medium supplemented with urea, squares with ammonium sulfate, and diamonds with ammonium chloride. From the first day of culture, the amount of nitrous acid produced by the decomposition of urea was more than twice that of ammonium chloride and ammonium sulfate as substrates. As a result of further culturing until 3 to 6 days later, the amount of nitrous acid produced increased in the order of urea, ammonium sulfate, and ammonium chloride.

ブレビバチルス・エスピー(Brevibacillus sp.)DA2株の16S rRNA遺伝子に基づく系統的位置を示す図である。It is a figure which shows the systematic position based on 16S rRNA gene of Brevibacillus sp. (Brevibacillus sp.) DA2 strain | stump | stock. 異なるアンモニア関連化合物を基質とした場合における亜硝酸の生成量の経時的変化を示す図である。It is a figure which shows the time-dependent change of the production amount of nitrous acid when a different ammonia related compound is used as a substrate.

Claims (5)

ブレビバチルス・エスピー(Brevibacillus sp.)DA2株(FERM P-21693)、又は芽胞形成能及び硝化能を有するその変異株 Brevibacillus sp. DA2 strain (FERM P-21693), or a mutant thereof having spore-forming ability and nitrification ability . 請求項1記載の細菌を含有する硝化用組成物。 A composition for nitrification containing the bacterium according to claim 1 . 固体又は半固体形態である請求項2記載の硝化用組成物。 3. The nitrifying composition according to claim 2, which is in a solid or semi-solid form. 細菌は固相担体に固定化された形態である請求項2記載の硝化用組成物。 3. The nitrification composition according to claim 2, wherein the bacterium is in a form immobilized on a solid support. 請求項1記載の細菌、又は請求項24のいずれか1項記載の硝化用組成物と、尿素又はアンモニアを含む浄化対象物とを接触させることを特徴とする、尿素又はアンモニアの浄化方法。 Claim 1, wherein the bacteria or the nitrification composition according to any one of claims 2-4, wherein the contacting the cleaning object containing urea or ammonia purification process of urea or ammonia .
JP2008294605A 2008-11-18 2008-11-18 Highly functional nitrifying bacteria and method for purifying urea or ammonia using the bacteria Active JP4352146B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008294605A JP4352146B1 (en) 2008-11-18 2008-11-18 Highly functional nitrifying bacteria and method for purifying urea or ammonia using the bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294605A JP4352146B1 (en) 2008-11-18 2008-11-18 Highly functional nitrifying bacteria and method for purifying urea or ammonia using the bacteria

Publications (2)

Publication Number Publication Date
JP4352146B1 true JP4352146B1 (en) 2009-10-28
JP2010119937A JP2010119937A (en) 2010-06-03

Family

ID=41314391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294605A Active JP4352146B1 (en) 2008-11-18 2008-11-18 Highly functional nitrifying bacteria and method for purifying urea or ammonia using the bacteria

Country Status (1)

Country Link
JP (1) JP4352146B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864262A (en) * 2012-12-17 2014-06-18 马来西亚标准与工业研究公司 Method for processing colored waste water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196588A (en) * 2011-03-18 2012-10-18 Kurita Water Ind Ltd Water treatment method and ultrapure water production method
WO2014141406A1 (en) * 2013-03-13 2014-09-18 株式会社シティック Method for producing seeding agent

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169090A (en) * 1991-12-24 1993-07-09 Meidensha Corp Device for supplying nitrification bacteria in biological activated carbon treatment tower
JPH08141593A (en) * 1994-11-18 1996-06-04 Mitsubishi Heavy Ind Ltd Acceleration of nitration reaction of nitrifying bacteria
JPH10180281A (en) * 1996-12-27 1998-07-07 Takeda Chem Ind Ltd Microorganism immobilizing gel for water treatment
JP2003071479A (en) * 2001-08-31 2003-03-11 Yoji Nagahama Microbiological reactor and method for treating liquid containing nutrition source of microorganism using the same
JP2003219864A (en) * 2001-09-28 2003-08-05 Saburoku:Kk Thermophilic spawn pta-1773, and ecological environment- improving material, organic fertilizer, biological agrochemical, plant, feed/feed additive, animal, crude drug, water cleaning agent, soil cleaning agent, garbage treatment agent, compost fermentation-promoting agent/ deodorizer, modulating agent for phytoremediation, antimicrobial agent, fermented food, fermented drink, medicament and preparation for biodegradable plastic production
JP2003135060A (en) * 2001-10-31 2003-05-13 National Agricultural Research Organization METHOD FOR PRODUCING BOVINE INTERLEUKIN-1beta
JP2003190993A (en) * 2001-12-27 2003-07-08 Toyo Clean Kagaku Kk Biological treatment for sludge
JP4215467B2 (en) * 2002-08-23 2009-01-28 神奈川県 Algae and microcystin treatment agent and treatment method
JP2004129576A (en) * 2002-10-10 2004-04-30 Juzo Udaka Method for producing hyperthermostable endoglucanase
JP4631082B2 (en) * 2003-07-17 2011-02-16 財団法人新産業創造研究機構 Nitrification and denitrification method that simultaneously removes NH4 + and NO3- using microorganisms
JP2005118766A (en) * 2003-10-17 2005-05-12 Amc:Kk System for digesting organic matter sludge of septic tank
JP2005299364A (en) * 2004-04-15 2005-10-27 Amc:Kk Simplified light flushing type bio-toilet system
JP2005319395A (en) * 2004-05-10 2005-11-17 Sadayori Hoshina Decomposition method of high bod specimen, urea, ammonia, and nitrate
JP4654437B2 (en) * 2005-02-28 2011-03-23 国立大学法人九州工業大学 Novel microorganism and method for treating organic sludge using the same
JP2007105630A (en) * 2005-10-13 2007-04-26 Sumiju Kankyo Engineering Kk Method for treating organic waste water
JP4681576B2 (en) * 2007-04-06 2011-05-11 弘見 池知 Advanced sewage treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864262A (en) * 2012-12-17 2014-06-18 马来西亚标准与工业研究公司 Method for processing colored waste water

Also Published As

Publication number Publication date
JP2010119937A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
Bowman The methanotrophs—the families Methylococcaceae and Methylocystaceae
Fujitani et al. Isolation of sublineage I N itrospira by a novel cultivation strategy
CN105861359A (en) Heterotrophic nitrification-aerobic denitrification high temperature resisting strain for producing floc, and application thereof
Morales et al. Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP)
CN111117914B (en) Salt-tolerant heterotrophic aerobic nitrobacteria strain, culture method, bacterial liquid and application
Hernández-del Amo et al. Effects of high nitrate input in the denitrification-DNRA activities in the sediment of a constructed wetland under varying C/N ratios
JP4352146B1 (en) Highly functional nitrifying bacteria and method for purifying urea or ammonia using the bacteria
JPWO2008062557A1 (en) New microorganism capable of assimilating chlorinated, methylthiolated and methoxylated triazine pesticides
Terahara et al. An effective method based on wet-heat treatment for the selective isolation of Micromonospora from estuarine sediments
JP2008194023A (en) Microorganism decomposing polybrominated organic compound
CN107841478B (en) Bacillus strain for efficient broad-spectrum decoloration and degradation of active dye and application thereof
CN116891809B (en) Pseudomonas asiatica and microbial agent and application thereof
CN115386520B (en) Rhodococcus pyridine-philic RL-GZ01 strain and application thereof
Niu et al. Nitrification and denitrification processes in a zero-water exchange aquaculture system: characteristics of the microbial community and potential rates
Okubo et al. Distribution and capacity for utilization of lower fatty acids of phototrophic purple nonsulfur bacteria in wastewater environments
Hu et al. Identification of a denitrifying bacterium and verification of its anaerobic ammonium oxidation ability
CN111621437B (en) Otter escherichia coli LM-DK separated from oxidation pond of pig farm and application thereof
CN109593673B (en) Flavobacterium JX-1 and application thereof in sewage treatment
CN110468066B (en) Aerobic denitrifying strain and application thereof
Danial et al. Identification and enhanced hydrogen evolution in two alginate-immobilized strains of Brevundimonas diminuta isolated from sludge and waterlogged soil
KR102097670B1 (en) Microorganism preparation for water purification and manufacturing method thereof
AU2004326113B2 (en) Process for preparing microbial consortium useful as seeding material for BOD analysis of pulp and paper industrial wastewater
CN116004448B (en) Rhodococcus pyridine and microbial agent and application thereof
JP4227861B2 (en) A novel microorganism with polycyclic aromatic compound resolution
KR101008568B1 (en) Novel Aquitalea sp. 5YN1-3 strain for effective denitrification

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4352146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250