JP4631082B2 - Nitrification and denitrification method that simultaneously removes NH4 + and NO3- using microorganisms - Google Patents

Nitrification and denitrification method that simultaneously removes NH4 + and NO3- using microorganisms Download PDF

Info

Publication number
JP4631082B2
JP4631082B2 JP2003275878A JP2003275878A JP4631082B2 JP 4631082 B2 JP4631082 B2 JP 4631082B2 JP 2003275878 A JP2003275878 A JP 2003275878A JP 2003275878 A JP2003275878 A JP 2003275878A JP 4631082 B2 JP4631082 B2 JP 4631082B2
Authority
JP
Japan
Prior art keywords
strain
ifo
nitrification
denitrification
pseudomonas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003275878A
Other languages
Japanese (ja)
Other versions
JP2005034783A (en
Inventor
健次 青木
慎治 竹中
周一郎 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Industry Research Organization NIRO
Original Assignee
New Industry Research Organization NIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Industry Research Organization NIRO filed Critical New Industry Research Organization NIRO
Priority to JP2003275878A priority Critical patent/JP4631082B2/en
Publication of JP2005034783A publication Critical patent/JP2005034783A/en
Application granted granted Critical
Publication of JP4631082B2 publication Critical patent/JP4631082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、微生物を利用して対象物中のアンモニウムイオン(NH4 +)と硝酸イオン(NO3 -)とを同時に除去する硝化・脱窒方法、同方法に使用する硝化・脱窒処理剤、及び同方法に利用可能な新規微生物株に関するものである。 The present invention is an ammonium ion of the object in utilizing microorganisms (NH 4 +) and nitrate ion (NO 3 -) at the same time nitrification-denitrification method for removing, nitrification and denitrification treatment agent used in the method , And a novel microbial strain that can be used in the method.

近年、産業の発展に伴い、環境汚染は地球規模へと拡大してきている。汚染物質は多種多様であり、その量も多量で汚染範囲も広がっている。環境浄化を物理的、化学的手法のみで行うことはエネルギーやコスト面から見ても有利とは言い難い。一方、生物、特に微生物は汚染物質を炭素源、窒素源、エネルギー源として分解・利用して生育することができるので、微生物を利用して環境浄化を行う方法がより効率的であると考えられる。微生物の分解能は生体反応を基盤としているので、物理的、化学的手法と比較して、温和な反応条件で汚染物質の処理を行うことが可能である。また、微生物を利用した環境浄化は、複雑な装置を必要とせず、副産物も少なく省エネルギーでできるので、物理的、化学的手法と比較してきわめて有利である。   In recent years, with industrial development, environmental pollution has expanded to the global scale. There are many types of pollutants, and the amount of pollutants is large and the range of pollution is widened. It is hard to say that it is advantageous from the viewpoint of energy and cost to carry out environmental purification using only physical and chemical methods. On the other hand, since organisms, especially microorganisms, can grow by decomposing and using pollutants as carbon sources, nitrogen sources, and energy sources, it is considered that the method of purifying the environment using microorganisms is more efficient. . Since the resolution of microorganisms is based on biological reactions, it is possible to treat contaminants under mild reaction conditions compared to physical and chemical methods. In addition, environmental purification using microorganisms is extremely advantageous compared to physical and chemical methods because it does not require complicated equipment and can reduce energy by-products.

現在、直面している環境問題の一つは工業排水、家庭排水、農地などから流入した窒素、リン、有機物の蓄積による河川、湖沼、内海の富栄養化である。近年、霞ケ浦、琵琶湖などの湖沼や東京港、伊勢湾などの内湾や瀬戸内海などでは、赤潮やアオコの発生など富栄養化による被害が多発している。富栄養化は窒素、リンなど、微生物の生育制限物質の濃度が上昇するため藻類などが繁殖し、光合成による有機物が蓄積され、水の色は緑色から褐色を呈する。また、微生物活動も旺盛になるため、有機物の分解速度が早く、溶存酸素の欠乏による魚介類の生育が阻害される。富栄養化を防止するためには、工業、生活排水などが湖沼などへ流入する前に処理し、窒素、リン、有機物などを除去することが必要である。特に窒素は、現在までに有効な除去法が確立されておらず、新しい窒素除去法の確立は緊急の課題となっている。   Currently, one of the environmental problems we face is eutrophication of rivers, lakes, and inland seas due to accumulation of nitrogen, phosphorus, and organic matter flowing from industrial wastewater, household wastewater, and farmland. In recent years, lakes such as Kasumigaura and Lake Biwa, inner harbors such as Tokyo Port and Ise Bay, and the Seto Inland Sea have suffered frequent damage due to eutrophication such as the occurrence of red tides and sea lions. Eutrophication increases the concentration of microbial growth-limiting substances such as nitrogen and phosphorus, so that algae grow, organic substances are accumulated by photosynthesis, and the color of water changes from green to brown. Moreover, since the microbial activity is also vigorous, the decomposition rate of organic matter is fast, and the growth of seafood is hindered by the lack of dissolved oxygen. In order to prevent eutrophication, it is necessary to treat industrial and domestic wastewater before flowing into lakes and the like to remove nitrogen, phosphorus, organic matter, and the like. Especially for nitrogen, an effective removal method has not been established so far, and establishment of a new nitrogen removal method has become an urgent issue.

現在、排水処理施設で行われている窒素の除去法としては、イオン交換法、逆浸透膜を用いたろ過法、アンモニアストリッピング法などの物理化学的処理法と、微生物を利用した硝化・脱窒プロセスである生物学的処理法とがある(後記の非特許文献1・2参照)。物理化学的処理法においては、コスト、環境へ及ぼす影響、使用した樹脂の再生方法の未確立などの問題点が指摘されている。このため、微生物を用いた生物学的処理法が広く利用されている。   Currently, nitrogen removal methods currently used in wastewater treatment facilities include physicochemical treatment methods such as ion exchange, filtration using reverse osmosis membranes, and ammonia stripping, as well as nitrification and desorption using microorganisms. There is a biological treatment method that is a nitrogen process (see Non-Patent Documents 1 and 2 below). In the physicochemical treatment method, problems such as cost, influence on the environment, and unestablished regeneration method of the used resin have been pointed out. For this reason, biological treatment methods using microorganisms are widely used.

微生物を用いた硝化・脱窒法は硝化菌(アンモニア酸化細菌、亜硝酸酸化細菌)と脱窒菌の作用により、排水中のNH4 +やNO2 -、NO3 -をN2として除去する方法である。この方法においては、硝化菌によりNH4 +はNO2 -を経てNO3 -に酸化され、生成したNO3 -は脱窒菌によりN2として大気中に還元される。硝化過程は一般に、好気条件で生育する化学合成独立栄養菌によってなされ、脱窒過程は嫌気条件で生育する脱窒菌によって行われる。したがって、現在行われている硝化・脱窒法では、少なくとも3種の微生物(硝化菌2、脱窒菌1)と2つの処理槽(好気槽、嫌気槽)が必要である。また、硝化菌は生育速度が非常に遅いため、処理に長時間要するなどの欠点が生じており、これらの問題を改善する新たな技術の開発が求められている。 Nitrification and denitrification using microorganisms nitrifying bacteria (ammonium oxidizing bacteria, nitrite oxidizing bacteria) by the action of the denitrifying bacteria, NH in the waste water 4 + and NO 2 -, NO 3 - in the method for removing a N 2 is there. In this method, NH 4 + by nitrifying bacteria NO 2 - through the NO 3 - is oxidized, the resulting NO 3 - is reduced to the atmosphere as N 2 by denitrificans. The nitrification process is generally performed by chemically synthesized autotrophic bacteria that grow under aerobic conditions, and the denitrification process is performed by denitrifying bacteria that grow under anaerobic conditions. Therefore, the current nitrification / denitrification method requires at least three types of microorganisms (nitrifying bacteria 2, denitrifying bacteria 1) and two treatment tanks (aerobic tank, anaerobic tank). In addition, since nitrifying bacteria have a very slow growth rate, there are disadvantages such as a long time required for treatment, and development of a new technique for improving these problems is demanded.

最近、NH4 +をNO2 -やNO3 -に酸化する好気性の従属栄養菌の存在が報告された(後記の非特許文献3参照)。また、好気条件で脱窒作用を示す微生物も見出された(後記の非特許文献4参照)。これらの微生物を排水処理に応用することができれば1つの処理槽で硝化・脱窒を行うことが可能である。しかし、これらの微生物の硝化能や脱窒能は、従来の微生物に比べて劣り、また、高濃度の窒素化合物条件下では生育しないことなどが報告されている(後記の非特許文献5〜7参照)。 Recently, the NH 4 + NO 2 - and NO 3 - presence of heterotrophic bacteria aerobic oxidation was reported (see below Non Patent Literature 3). Moreover, the microorganisms which show a denitrification action on aerobic conditions were also discovered (refer nonpatent literature 4 of the postscript). If these microorganisms can be applied to wastewater treatment, nitrification and denitrification can be performed in one treatment tank. However, it has been reported that the nitrification ability and denitrification ability of these microorganisms are inferior to those of conventional microorganisms, and that they do not grow under conditions of high concentrations of nitrogen compounds (non-patent documents 5 to 7 described later). reference).

また、チューブ状のゲルを作製して硝化菌と脱窒菌を固定化し、チューブ内に好気的および嫌気的環境を作り出し、硝化・脱窒プロセスを1つの処理槽で行うことが試みられている(後記の非特許文献8・9参照)。しかし、生育の遅い硝化菌を用いているため、根本的な解決には至っていない。   In addition, it has been attempted to produce a tube-shaped gel to immobilize nitrifying bacteria and denitrifying bacteria, create an aerobic and anaerobic environment in the tube, and perform the nitrification / denitrification process in a single treatment tank. (See Non-Patent Documents 8 and 9 below.) However, since a slow-growing nitrifying bacterium is used, no fundamental solution has been reached.

中村和憲, 微生物の環境保存への理解. In”環境と微生物” 産業図書, 東京, pp. 61-69(1998).Nakamura Kazunori, Understanding of environmental preservation of microorganisms. In “Environment and Microorganisms” Sangyo Tosho, Tokyo, pp. 61-69 (1998). 若松盈, 汚染物への対策-処理と処分. In ”環境講座 環境を考える”, eds 大学等廃棄物処理施設協議会環境教育部会, 科学新聞社,東京, pp. 145-147(1999).Satoshi Wakamatsu, Countermeasures against Contaminants-Treatment and Disposal. In "Environmental Lecture, Thinking about the Environment", eds University Waste Management Facility Council Environmental Education Subcommittee, Kagaku Shimbun, Tokyo, pp.145-147 (1999) Kuenen, J. G. and Robertson, L. A., Combined nitrification-denitrification processes. FEMS Microbiol. Rev., 15, 109-117 (1994).Kuenen, J. G. and Robertson, L. A., Combined nitrification-denitrification processes. FEMS Microbiol. Rev., 15, 109-117 (1994). Robertson, L. A. and Kuenen, J. G., Aerobic denitrification: a controversy revived. Arch. Microbiol., 139, 351-354 (1984).Robertson, L. A. and Kuenen, J. G., Aerobic denitrification: a controversy revived. Arch. Microbiol., 139, 351-354 (1984). Robertson, L. A. and Kuenen, J. G., Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek., 57, 139-152 (1990).Robertson, L. A. and Kuenen, J. G., Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Antonie van Leeuwenhoek., 57, 139-152 (1990). Yamada, T., Somiya, I., and Tsuno, H., Screening of aerobic denitrifying bacteria and their physiological characteristics. Gesuido Kyoukaishi., 30, 118-130 (1992).Yamada, T., Somiya, I., Tsuno, H., Screening of aerobic denitrifying bacteria and their physiological characteristics.Gesuido Kyoukaishi., 30, 118-130 (1992). Till, B. A., Weathers, L. J., and Alvarez, P. J. J., Fe(0)-Sopported autotrophic denitrification. Environ. Sci. Technol., 32, 634-639 (1998).Till, B. A., Weathers, L. J., and Alvarez, P. J. J., Fe (0) -Sopported autotrophic denitrification.Environ. Sci. Technol., 32, 634-639 (1998). Uemoto, H. and Saiki, H., Nitrogen removal reactor using packed gel envelopes containing Nitrosomonas europaea and Paracoccus denitrificans. Biotechnol. Bioeng., 67, 80-86 (2000).Uemoto, H. and Saiki, H., Nitrogen removal reactor using packed gel envelopes containing Nitrosomonas europaea and Paracoccus denitrificans. Biotechnol. Bioeng., 67, 80-86 (2000). Uemoto, H. and Saiki, H., Nitrogen removal by tubular gel containing Nitrosomonas europaea and Paracoccus denitrificans. Appl. Environ. Microbiol., 62, 4224-4228 (1996).Uemoto, H. and Saiki, H., Nitrogen removal by tubular gel containing Nitrosomonas europaea and Paracoccus denitrificans.Appl.Environ.Microbiol., 62, 4224-4228 (1996). Kim, Y., Yoshizawa, M., Takenaka, S., Murakami, S., and Aoki, K., Isolation and culture conditions of a Klebsiella pneumoniae strain that can utilize ammonium and nitrate ions simultaneously with controlled iron and molybdate ion concentrations. Biosci. Biotechnol. Biochem., 66, 996-1001 (2002)Kim, Y., Yoshizawa, M., Takenaka, S., Murakami, S., and Aoki, K., Isolation and culture conditions of a Klebsiella pneumoniae strain that can utilize ammonium and nitrate ions simultaneously with controlled iron and molybdate ion concentrations Biosci. Biotechnol. Biochem., 66, 996-1001 (2002)

本発明は、上述した従来の問題点に鑑みなされたものであり、本発明が解決しようとする課題は以下のとおりである。   The present invention has been made in view of the above-described conventional problems, and the problems to be solved by the present invention are as follows.

1.上述のように、排水中に含まれるアンモニア(NH4 +)や硝酸(NO3 -)などの窒素化合物は、湖沼や閉鎖性海域における富栄養化の主要な原因物質である。我が国では1985年より特定湖沼に対して、また、1993年より閉鎖性海域に対して排水中の窒素化合物の規制が行われているが、富栄養化の問題は解決されていない。このため、閉鎖性海域等に流入する排水中の窒素化合物、特にNH4 +とNO3 -の効率的な除去技術の開発は緊急を要する課題になっている。 1. As mentioned above, ammonia contained in the waste water (NH 4 +) and nitrate (NO 3 -) nitrogen compounds, such as the leading cause eutrophication in lakes and enclosed seas. In Japan, the regulation of nitrogen compounds in wastewater has been regulated for specific lakes since 1985 and for closed seas since 1993, but the problem of eutrophication has not been solved. For this reason, the development of an efficient removal technique for nitrogen compounds, particularly NH 4 + and NO 3 in wastewater flowing into closed seas, has become an urgent issue.

2.硝酸アンモニウム(硝安、NH4NO3)は、希土類酸化物の生産過程で副産物として生成する。生成したNH4NO3を含む工業排水は、一般にNH4NO3以外の物質を殆ど含まないが、微生物を活用したこのNH4NO3排水中の効率的な窒素除去法の開発も富栄養化対策として重要な課題の1つである。 2. Ammonium nitrate (ammonium, NH 4 NO 3 ) is produced as a by-product during the rare earth oxide production process. Industrial wastewater containing NH 4 NO 3 generally contains almost no substances other than NH 4 NO 3 , but the development of an efficient nitrogen removal method in this NH 4 NO 3 waste water utilizing microorganisms is also eutrophication. This is one of the important issues as a countermeasure.

3.従来の生物学的窒素除去法では、上述のように、少なくとも3種の微生物(硝化菌2、脱窒菌1)と2つの処理槽(好気槽、嫌気槽)を必要とする。NH4 +とNO3 -を同時に除去できる微生物を分離することができれば、処理槽1つで硝化・脱窒処理することができ、時間とコストの両面で有利である。 3. As described above, the conventional biological nitrogen removal method requires at least three kinds of microorganisms (nitrifying bacteria 2, denitrifying bacteria 1) and two treatment tanks (aerobic tank and anaerobic tank). If microorganisms capable of removing NH 4 + and NO 3 at the same time can be separated, nitrification and denitrification can be performed in one treatment tank, which is advantageous in terms of both time and cost.

4.本発明者はこれらの課題に鑑み、以前に、NH4 +とNO3 -を同時に除去する微生物(Klebsiella pneumoniae F-5-2株)を土壌から分離し、その特性等について報告した(上記非特許文献10参照)。本発明は、この研究をさらに進展させ、NH4 +とNO3 -を同時に除去する能力を有し、排水処理など産業上利用可能な他の微生物を見出すことをその課題とする。また、我が国において夏期はかなり高温になるため、高温条件下でも十分生育してNH4 +とNO3 -を除去することができ、かつ、常温下でも同様の生物活性を示すいわゆる耐熱性菌が得られれば、その実用性は高いものになる。そこで本発明は、このような耐熱性菌の探索・分離をもその課題とする。 4). In view of these problems, the present inventor previously isolated a microorganism (Klebsiella pneumoniae F-5-2 strain) that simultaneously removes NH 4 + and NO 3 from soil and reported on its characteristics and the like (not above). (See Patent Document 10). The present invention aims to further advance this research and to find other microorganisms that have the ability to remove NH 4 + and NO 3 simultaneously and can be used industrially, such as wastewater treatment. Further, since the summer becomes considerably high temperature in Japan, fully grown at high temperature conditions NH 4 + and NO 3 with - can be removed, and, so-called heat-resistant bacteria show similar biological activity at room temperature If obtained, its practicality will be high. Thus, the present invention also aims to search and isolate such heat-resistant bacteria.

本発明者は、上記の課題に鑑み、各地から土壌を採取して、NH4 +とNO3 -を同時に除去する能力を有する微生物を探索した結果、50℃という高温下においてもNH4 +とNO3 -を同時に除去し得る耐熱性菌としての性質をもった新規微生物株(後述のT-7-2株)を分離・同定すると共に、バチルス属、シュードモナス属、エンテロバクター属等に分類される保存株の中からもNH4 +とNO3 -を同時に除去する能力を有する菌株を見出し、本発明を完成させるに至った。
即ち、本発明は、産業上有用な発明として、以下のA)〜M)の発明を含むものである。
In view of the above problems, the present inventor collected soil from various locations and searched for microorganisms having the ability to simultaneously remove NH 4 + and NO 3 −, and as a result, NH 4 + and even at a high temperature of 50 ° C. NO 3 - together with separating and identifying novel microorganism strain (T-7-2 strain described later) which simultaneously has a property as a heat-resistant bacteria can be removed, Bacillus, Pseudomonas, are classified to the genus Enterobacter or the like that NH 4 + and NO 3 from among stocks - found a strain capable of removing at the same time and completed the present invention.
That is, the present invention includes the following inventions A) to M) as industrially useful inventions.

A) 以下の(a)〜(d)から選ばれる少なくとも1種類の微生物を用いて、対象物中のNH4 +とNO3 -とを同時に除去する硝化・脱窒方法。
(a)バチルス属に属する菌株
(b)シュードモナス属に属する菌株
(c)エンテロバクター属に属する菌株
(d)クレブシエラ・ニューモニエ(Klebsiella pneumoniae)IFO 3318株
A) A nitrification / denitrification method for simultaneously removing NH 4 + and NO 3 − in an object using at least one kind of microorganism selected from the following (a) to (d).
(A) a strain belonging to the genus Bacillus (b) a strain belonging to the genus Pseudomonas (c) a strain belonging to the genus Enterobacter (d) a strain Klebsiella pneumoniae IFO 3318

B) 上記(a)の菌株として、以下の(a1)〜(a3)から選ばれる少なくとも1種類の微生物を用いることを特徴とする、上記A)記載の硝化・脱窒方法。
(a1)バチルス・リケニフォルミス(Bacillus licheniformis)T-7-2株(FERM P-19418)
(a2)バチルス・ズブチルス(Bacillus subtilis)IFO 13719株
(a3)バチルス・ズブチルス(Bacillus subtilis)IFO 3022株
B) The nitrification / denitrification method according to A), wherein at least one microorganism selected from the following (a1) to (a3) is used as the strain of (a).
(A1) Bacillus licheniformis T-7-2 strain (FERM P-19418)
(A2) Bacillus subtilis IFO 13719 strain (a3) Bacillus subtilis IFO 3022 strain

C) 上記(b)の菌株として、以下の(b1)〜(b6)から選ばれる少なくとも1種類の微生物を用いることを特徴とする、上記A)記載の硝化・脱窒方法。
(b1)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 12689株
(b2)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 13738株
(b3)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 3080株
(b4)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 13130株
(b5)シュードモナス・フルオレセンス(Pseudomonas fluorescens)IFO 15833株
(b6)シュードモナス・デニトリフィカンス(Pseudomonas denitrificans)IFO 13301株
C) The nitrification / denitrification method according to A), wherein at least one microorganism selected from the following (b1) to (b6) is used as the strain (b).
(B1) Pseudomonas aeruginosa IFO 12689 (b2) Pseudomonas aeruginosa IFO 13738 (b3) Pseudomonas aeruginosa IFO 3080 (b4) Pseudomonas aeruginosa IFO 3080 (b4) 13130 strain (b5) Pseudomonas fluorescens IFO 15833 strain (b6) Pseudomonas denitrificans IFO 13301 strain

D) 上記(c)の菌株として、以下の(c1)〜(c2)から選ばれる少なくとも1種類の微生物を用いることを特徴とする、上記A)記載の硝化・脱窒方法。
(c1)エンテロバクター・エアロゲネス(Enterobacter aerogenes)IFO 13534株
(c2)エンテロバクター・クロアカエ(Enterobacter cloacae)IFO 13535株
D) The nitrification / denitrification method according to A), wherein at least one microorganism selected from the following (c1) to (c2) is used as the strain of (c).
(C1) Enterobacter aerogenes IFO 13534 strain (c2) Enterobacter cloacae IFO 13535 strain

E) 耐熱性の菌株を用いることを特徴とする、上記A)記載の硝化・脱窒方法。 E) The nitrification / denitrification method according to A) above, wherein a heat-resistant strain is used.

F) 排水処理などにおける水中の窒素除去、工場の排水処理その他無機物中の窒素除去、又は、糞尿その他有機物中の窒素除去に用いることを特徴とする、上記A)〜E)の何れかに記載の硝化・脱窒方法。 F) Any one of A) to E) above, which is used for removing nitrogen in water in wastewater treatment, etc., removing wastewater from factory wastewater and other inorganic substances, or removing nitrogen in manure and other organic substances. Nitrification and denitrification method.

G) 以下の(a)〜(d)から選ばれる少なくとも1種類の微生物を含有し、対象物中のNH4 +とNO3 -とを同時に除去する硝化・脱窒処理剤。
(a)バチルス属に属する菌株
(b)シュードモナス属に属する菌株
(c)エンテロバクター属に属する菌株
(d)クレブシエラ・ニューモニエ(Klebsiella pneumoniae)IFO 3318株
G) A nitrification / denitrification treatment agent that contains at least one kind of microorganism selected from the following (a) to (d), and simultaneously removes NH 4 + and NO 3 in the object.
(A) a strain belonging to the genus Bacillus (b) a strain belonging to the genus Pseudomonas (c) a strain belonging to the genus Enterobacter (d) a strain Klebsiella pneumoniae IFO 3318

H) 上記(a)の菌株として、以下の(a1)〜(a3)から選ばれる少なくとも1種類の微生物を含有することを特徴とする、上記G)記載の硝化・脱窒処理剤。
(a1)バチルス・リケニフォルミス(Bacillus licheniformis)T-7-2株(FERM P-19418)
(a2)バチルス・ズブチルス(Bacillus subtilis)IFO 13719株
(a3)バチルス・ズブチルス(Bacillus subtilis)IFO 3022株
H) The nitrification / denitrification agent as described in G) above, which contains at least one kind of microorganism selected from the following (a1) to (a3) as the strain of (a).
(A1) Bacillus licheniformis T-7-2 strain (FERM P-19418)
(A2) Bacillus subtilis IFO 13719 strain (a3) Bacillus subtilis IFO 3022 strain

I) 上記(b)の菌株として、以下の(b1)〜(b6)から選ばれる少なくとも1種類の微生物を含有することを特徴とする、上記G)記載の硝化・脱窒処理剤。
(b1)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 12689株
(b2)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 13738株
(b3)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 3080株
(b4)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 13130株
(b5)シュードモナス・フルオレセンス(Pseudomonas fluorescens)IFO 15833株
(b6)シュードモナス・デニトリフィカンス(Pseudomonas denitrificans)IFO 13301株
I) The nitrification / denitrification agent as described in G) above, which contains at least one kind of microorganism selected from the following (b1) to (b6) as the strain of (b).
(B1) Pseudomonas aeruginosa IFO 12689 (b2) Pseudomonas aeruginosa IFO 13738 (b3) Pseudomonas aeruginosa IFO 3080 (b4) Pseudomonas aeruginosa IFO 3080 (b4) 13130 strain (b5) Pseudomonas fluorescens IFO 15833 strain (b6) Pseudomonas denitrificans IFO 13301 strain

J) 上記(c)の菌株として、以下の(c1)〜(c2)から選ばれる少なくとも1種類の微生物を含有することを特徴とする、上記G)記載の硝化・脱窒処理剤。
(c1)エンテロバクター・エアロゲネス(Enterobacter aerogenes)IFO 13534株
(c2)エンテロバクター・クロアカエ(Enterobacter cloacae)IFO 13535株
J) The nitrification / denitrification agent as described in G) above, which contains at least one kind of microorganism selected from the following (c1) to (c2) as the strain of (c).
(C1) Enterobacter aerogenes IFO 13534 strain (c2) Enterobacter cloacae IFO 13535 strain

K) 耐熱性の菌株を含有することを特徴とする、上記G)記載の硝化・脱窒処理剤。 K) The nitrification / denitrification agent as described in G) above, which contains a heat-resistant strain.

L) 排水処理などにおける水中の窒素除去、工場の排水処理その他無機物中の窒素除去、又は、糞尿その他有機物中の窒素除去に用いることを特徴とする、上記G)〜K)の何れかに記載の硝化・脱窒処理剤。 L) In any one of the above G) to K), which is used for removing nitrogen in water in wastewater treatment, etc., removing wastewater in factories and other inorganic substances, or removing nitrogen in manure and other organic substances. Nitrification / denitrification treatment agent.

M) バチルス・リケニフォルミス(Bacillus licheniformis)T-7-2株(FERM P-19418)。 M) Bacillus licheniformis T-7-2 strain (FERM P-19418).

本発明によれば、NH4 +とNO3 -を同時に除去できる微生物を使用するため、処理槽一つで窒素化合物を処理できる。したがって、処理槽が二槽必要であった従来の方法に比べて、設備投資費用および運転費用ともコスト削減を図ることができ、処理時間を短縮でき、処理施設の規模も縮小することができる。また、耐熱性菌を使用した場合は、高温条件下での処理も可能になるので、処理可能条件が広がり、例えば気温変化の激しい屋外での窒素除去処理も可能になる。 According to the present invention, since a microorganism capable of simultaneously removing NH 4 + and NO 3 is used, a nitrogen compound can be treated in one treatment tank. Therefore, compared with the conventional method which required two processing tanks, both the capital investment cost and the operating cost can be reduced, the processing time can be shortened, and the scale of the processing facility can also be reduced. In addition, when heat-resistant bacteria are used, treatment under high temperature conditions is possible, so that the conditions for treatment are widened, and for example, nitrogen removal treatment outdoors where the temperature changes drastically becomes possible.

以下、本発明の実施の一形態について説明する。
本発明者は、各地より採取した土壌の中からNH4 +とNO3 -とを同時に除去する新規菌株を今回新たに分離し、その菌学的性質などについて詳細な検討を行った。その結果、この新規菌株はBacillus licheniformisに分類することが妥当と判断し、「バチルス・リケニフォルミスT-7-2株(Bacillus licheniformis strain T-7-2:以下、単にT-7-2株という。)」と命名した。このT-7-2株は、独立行政法人産業技術総合研究所、特許生物寄託センターにFERM P-19418として寄託されている。
Hereinafter, an embodiment of the present invention will be described.
The present inventor newly isolated a new strain that simultaneously removes NH 4 + and NO 3 from soil collected from various places, and performed detailed examinations on its bacteriological properties. As a result, it was judged that it was appropriate to classify this new strain as Bacillus licheniformis, and “Bacillus licheniformis strain T-7-2: hereinafter simply referred to as T-7-2 strain”. ) ". The T-7-2 strain has been deposited as FERM P-19418 at the National Institute of Advanced Industrial Science and Technology (AIST) and the Patent Biological Deposit Center.

上記T-7-2株は、50℃のような高温下においても、生育環境中のNH4 +とNO3 -を同時に除去する能力を有し、またそれより低温の例えば30℃においてもNH4 +とNO3 -を同時に除去する能力を有する(図2・図3参照。詳細は後述の実施例において説明する)。つまり、T-7-2株は、高温下においてのみ生育し、その生物活性を示すいわゆる高温菌とは異なり、高温・低温両条件下で生育する「耐熱性菌」であると考えられる。T-7-2株は、およそ25〜55℃(好ましくはおよそ30〜50℃)で生育し、かつNH4 +とNO3 -を同時に除去できるため、この菌株を排水処理などに利用する場合は、高温・低温両条件下、および温度変化の激しい条件下においても使用可能である。 The T-7-2 strain, even at high temperatures such as 50 ° C., the growth NH in the environment 4 + and NO 3 - at the same time have the ability to remove and NH also in its colder example 30 ° C. It has the ability to remove 4 + and NO 3 - at the same time (see FIGS. 2 and 3. The details will be described in the examples described later). In other words, the T-7-2 strain is considered to be a “heat-resistant bacterium” that grows only under high temperature and low temperature conditions, unlike so-called thermophilic bacteria that grow only under high temperature and exhibit its biological activity. The T-7-2 strain grows at approximately 25 to 55 ° C (preferably approximately 30 to 50 ° C) and can remove NH 4 + and NO 3 - at the same time. Can be used under both high temperature and low temperature conditions, and under severe temperature changes.

上記T-7-2株の分離法、およびその菌学的性質などについては、後述の実施例において説明するが、ここでは図1を参照してその分離法について簡単に説明する。   The separation method of the above T-7-2 strain and its bacteriological properties will be described in the following examples, but here, the separation method will be briefly described with reference to FIG.

まず、採取した土壌(Soil)を例えば0.8%塩化ナトリウム溶液に懸濁し、静置後、その上澄み適当量(例えば0.5ml)を0.1%硝酸アンモニウム(NH4NO3)液体培地を含む試験管に加える。培地は例えば下記表1に示す組成のものを使用する。但し、NH4NO3は水1,000ml当たり1.0gであり、FeSO4・7H2Oはこの場合0.5mMであるが、これより低濃度(例えば0.1mM)であってもよい。また、例えば濃度8μMとなるようNa2MoO4・2H2Oを加えてもよい。 First, the collected soil (Soil) is suspended in, for example, 0.8% sodium chloride solution, allowed to stand, and an appropriate amount of supernatant (eg, 0.5 ml) is added to a test tube containing 0.1% ammonium nitrate (NH 4 NO 3 ) liquid medium. . For example, a medium having the composition shown in Table 1 below is used. However, NH 4 NO 3 is 1.0 g per 1,000 ml of water, and FeSO 4 .7H 2 O is 0.5 mM in this case, but it may be a lower concentration (for example, 0.1 mM). Further, for example, may be added Na 2 MoO 4 · 2H 2 O to a concentration of 8 [mu] M.

Figure 0004631082
Figure 0004631082

その後、試験管をブチルゴム栓等で密封した後、50℃で静置培養する。数日間培養後、気泡の発生が盛んに見られた試料を0.1%硝酸アンモニウム固体培地に塗抹する。培地は、固形化のため寒天(Agar)を加える以外は上記の液体培地と同様の組成のものを使用すればよい。この固体培地において各試料を30℃、好気的条件で培養し、生育した菌株を次に0.1%硝酸アンモニウムを含む傾斜培養に移し、スクリューキャップで試験管を密栓後、再び50℃で培養し、良好な生育を示す菌株を選択する。本発明者は、このような方法により、30℃及び50℃でも0.1%硝酸アンモニウム培地において良好な生育を示すT-7-2株を得た。   Thereafter, the test tube is sealed with a butyl rubber stopper or the like and then incubated at 50 ° C. After culturing for several days, a sample in which bubbles are actively observed is smeared on a 0.1% ammonium nitrate solid medium. A medium having the same composition as the above liquid medium may be used except that agar is added for solidification. In this solid medium, each sample was cultured at 30 ° C. under aerobic conditions, and the grown strain was then transferred to a gradient culture containing 0.1% ammonium nitrate, and the test tube was sealed with a screw cap and cultured again at 50 ° C., A strain showing good growth is selected. The present inventor obtained the T-7-2 strain showing good growth in a 0.1% ammonium nitrate medium at 30 ° C. and 50 ° C. by such a method.

勿論、上記と異なる方法でT-7-2株あるいはこれと類似の性質をもつ菌株を土壌等から単離することは可能であるし、温度条件や各添加物の濃度条件など単離条件を様々に変更することにより、それぞれ異なる環境下でNH4 +とNO3 -を同時除去する菌株を得ることが可能である。例えば、上記の方法は50℃という高温においてもNH4 +とNO3 -を同時除去し得る耐熱性菌を得るため、50℃で培養する工程と30℃で培養する工程とを含んでいる。耐熱性菌を取得する目的でなければ、高温培養工程は必要ではない。勿論、培養時の温度は50℃、30℃以外の温度に設定してもよいし、その他の条件(例えば、培地中の鉄イオン(Fe2+)やモリブデン酸イオン(MoO4 2-)の濃度、炭素源の種類や濃度など)も目的に応じて任意に設定すればよい。 Of course, it is possible to isolate the T-7-2 strain or a strain with similar properties from soil etc. by a method different from the above, and the isolation conditions such as the temperature conditions and the concentration conditions of each additive can be selected. By making various changes, it is possible to obtain strains that simultaneously remove NH 4 + and NO 3 under different environments. For example, the above method includes a step of culturing at 50 ° C. and a step of culturing at 30 ° C. in order to obtain a thermostable bacterium capable of simultaneously removing NH 4 + and NO 3 even at a high temperature of 50 ° C. Unless it is the purpose of acquiring thermostable bacteria, a high temperature culture process is not necessary. Of course, the temperature is 50 ° C. during the culture may be set to a temperature other than 30 ° C., the other conditions (e.g., iron ions in the medium (Fe 2+) and molybdate ions (MoO 4 2-) The concentration, the type and concentration of the carbon source, etc.) may be arbitrarily set according to the purpose.

本発明者は、上記のように、NH4 +とNO3 -を同時除去する微生物株(即ち、T-7-2株)をバチルス(Bacillus)属からはじめて見出した。そこで、Bacillus属に分類される保存株のうち、NH4 +とNO3 -を同時除去する菌株が存在するかどうかを調査した(調査方法は後述の実施例において説明する)ところ、下記の2つの菌株にNH4 +とNO3 -を同時除去する性質が見出された。
1.バチルス・ズブチルス(Bacillus subtilis)IFO 13719株
2.バチルス・ズブチルス(Bacillus subtilis)IFO 3022株
As described above, the present inventor has first found a microorganism strain (ie, T-7-2 strain) that simultaneously removes NH 4 + and NO 3 from the genus Bacillus. Therefore, it was investigated whether among the stocks classified into the genus Bacillus, there was a strain that simultaneously removes NH 4 + and NO 3 (the investigation method will be described in Examples described later). One of NH to strain 4 + and NO 3 - were found property of simultaneously removing.
1. Bacillus subtilis IFO 13719 strain2. Bacillus subtilis IFO 3022

尚、これら菌株に付されている番号は、財団法人発酵研究所(IFO)の保存株番号である。上記2つの菌株のうち、IFO 3022株は、30℃及び45℃の両条件下でNH4 +とNO3 -を同時に除去できる耐熱性菌の性質を示した。したがって、T-7-2株と同様、このIFO 3022株についても高温下での利用が可能である。 In addition, the number attached | subjected to these strains is a preservation | save stock number of a foundation for fermentation (IFO). Of the above two strains, the IFO 3022 strain showed the property of a thermostable bacterium capable of simultaneously removing NH 4 + and NO 3 under both conditions of 30 ° C. and 45 ° C. Therefore, like the T-7-2 strain, the IFO 3022 strain can be used at high temperatures.

また同様の調査方法によって、既存のバチルス属菌の中からNH4 +とNO3 -を同時除去する性質をもった菌株を選択することが可能である。本発明は、このような菌株選択法により得られたバチルス属菌株を利用するものであってもよい。 Moreover, it is possible to select a strain having the property of simultaneously removing NH 4 + and NO 3 from existing Bacillus species by the same investigation method. The present invention may utilize a Bacillus genus strain obtained by such a strain selection method.

さらに上記と同様の調査方法によって、バチルス属以外の保存株についても調査した結果、下記のシュードモナス(Pseudomonas)属6株、エンテロバクター(Enterobacter)属2株、及びクレブシエラ(Klebsiella)属1株の計9つの菌株についてNH4 +とNO3 -を同時除去する性質が見出された。
1.シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 12689株
2.シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 13738株
3.シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 3080株
4.シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 13130株
5.シュードモナス・フルオレセンス(Pseudomonas fluorescens)IFO 15833株
6.シュードモナス・デニトリフィカンス(Pseudomonas denitrificans)IFO 13301株
7.エンテロバクター・エアロゲネス(Enterobacter aerogenes)IFO 13534株
8.エンテロバクター・クロアカエ(Enterobacter cloacae)IFO 13535株
9.クレブシエラ・ニューモニエ(Klebsiella pneumoniae)IFO 3318株
Further, as a result of investigating the conserved strains other than the genus Bacillus by the same investigation method as described above, a total of 6 Pseudomonas genera, 2 Enterobacter genera and 1 Klebsiella genera described below were obtained. Nine strains were found to simultaneously remove NH 4 + and NO 3 .
1. 1. Pseudomonas aeruginosa IFO 12689 strain 2. Pseudomonas aeruginosa IFO 13738 strain 3. Pseudomonas aeruginosa IFO 3080 strain 4. Pseudomonas aeruginosa IFO 13130 strain 5. Pseudomonas fluorescens IFO 15833 strain 6. Pseudomonas denitrificans IFO 13301 strain Enterobacter aerogenes IFO 13534 strain8. Enterobacter cloacae IFO 13535 strain9. Klebsiella pneumoniae IFO 3318 strain

本発明は、これら9つの菌株を利用するものであってもよいし、同様の菌株選択法により得られたシュードモナス属菌、エンテロバクター属菌、又はクレブシエラ属菌の菌株を利用するものであってもよい。   The present invention may use these nine strains, or use a strain of Pseudomonas, Enterobacter, or Klebsiella obtained by a similar strain selection method. Also good.

本発明の硝化・脱窒方法は、前記T-7-2株その他上述した少なくとも1種類の微生物株を用いて、対象物中のNH4 +とNO3 -とを同時に除去する方法であり、複数の種類の菌株を組み合わせて使用するものであってもよい。また、「NH4 +とNO3 -とを同時に除去する」とは、NH4 +およびNO3 -の両方を除去し得る微生物を用いて硝化・脱窒処理を行うことを意味する。 Nitrification and denitrification process of the present invention, using at least one microorganism strain wherein the other above T-7-2 strain, NH 4 + and NO 3 in the object - and are simultaneously process for removing, A plurality of types of strains may be used in combination. Further, “removing NH 4 + and NO 3 at the same time” means performing nitrification / denitrification using a microorganism that can remove both NH 4 + and NO 3 .

本発明の硝化・脱窒処理剤は、基本的に、前記T-7-2株その他上述した少なくとも1種類の微生物株を含むものであればよく、そのほかに、保護剤、PH調整剤、培地成分などを含むものであってもよい。   The nitrification / denitrification treatment agent of the present invention may basically contain any of the T-7-2 strain and at least one microbial strain described above, in addition to a protective agent, a PH adjuster, a medium. It may contain components and the like.

本発明は、排水処理(下水処理、廃水処理、汚水処理など広く含む意味)に有用であり、NH4 +とNO3 -を同時に除去できる微生物を使用するため、処理槽一つで窒素化合物を処理できる。したがって、処理槽が二槽必要であった従来の方法に比べて、低コスト化および処理時間の短縮を図ることができ、処理施設の規模も縮小することができる。また、耐熱性菌を使用した場合は、高温条件下での処理も可能になるので、処理可能条件が広がり、例えば気温変化の激しい屋外での処理、夏季期間中空調なしでの処理も可能になる。 The present invention is useful for wastewater treatment (meaning widely including sewage treatment, wastewater treatment, sewage treatment, etc.) and uses microorganisms that can remove NH 4 + and NO 3 - at the same time. It can be processed. Therefore, compared with the conventional method which required two processing tanks, cost reduction and processing time can be shortened, and the scale of a processing facility can also be reduced. In addition, when heat-resistant bacteria are used, processing under high-temperature conditions is possible, so the conditions that can be processed are widened, for example, processing outdoors where the temperature changes drastically, and processing without air conditioning during the summer season. Become.

また本発明は、工場の排水処理その他無機物中の窒素除去、家畜などの糞尿処理、汚泥処理、その他有機物中の窒素除去に利用可能であり、さらには、水族館やイカ・タコなど魚介類の養殖場における水中の窒素(特にアンモニア)除去にも利用可能である。このように、本発明は産業上幅広く利用できる。   In addition, the present invention can be used for wastewater treatment in factories, removal of nitrogen in inorganic substances, excreta treatment of livestock, sludge treatment, and removal of nitrogen in other organic substances, and also for aquaculture such as aquariums, squid and octopus. It can also be used to remove nitrogen (especially ammonia) from water in the field. Thus, the present invention can be widely used in industry.

本発明において微生物を使用する際の使用条件(使用温度、培地組成、培養条件(例えば好気性、嫌気性のいずれにするか)など)は特に限定されるものではなく、使用する微生物の性質・特徴に応じて窒素除去に最適な使用条件を選択すればよい。   The use conditions (use temperature, medium composition, culture conditions (for example, aerobic or anaerobic), etc.) when using microorganisms in the present invention are not particularly limited, and the nature of the microorganism used What is necessary is just to select the optimal use conditions for nitrogen removal according to the characteristics.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれら実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.

〔実施例A:NH4 +とNO3 -を同時に除去する耐熱性菌の分離、その菌学的性質および同菌を用いたNH4 +とNO3 -の同時除去試験〕
(A−1)耐熱性菌の分離
各地から採取した土壌1gを9mlの0.8%(w/v)塩化ナトリウム溶液に懸濁し、静置後、上澄1mlを7mlの硝酸アンモニウム液体培地(培地の組成は前記表1参照)を含む試験管に加えた。ブチルゴム栓で密封した後、50℃で静置培養した。数日間培養後、気泡の発生が盛んに見られた試料を硝酸アンモニウム固体培地(培地の組成は下記表2参照)に塗抹した。これら各試料を30℃、好気的条件で培養し、生育した菌株を硝酸アンモニウム固体培地を含むスラント(傾斜培養)に移し、スクリューキャップで試験管を密栓後、再び50℃で培養し、良好な生育を示す菌株を選択した。その結果、30℃及び50℃でも同培地において良好な生育を示すT-7-2株を得た(図1参照)。
[Example A: Isolation of thermotolerant bacteria that simultaneously remove NH 4 + and NO 3 , their bacteriological properties, and simultaneous removal test of NH 4 + and NO 3 using the same bacteria]
(A-1) Isolation of heat-resistant bacteria 1 g of soil collected from various places was suspended in 9 ml of 0.8% (w / v) sodium chloride solution, allowed to stand, and then 1 ml of supernatant was added to 7 ml of ammonium nitrate liquid medium (medium composition) Were added to the test tube containing Table 1 above). After sealing with a butyl rubber stopper, static culture was performed at 50 ° C. After culturing for several days, a sample in which generation of bubbles was actively observed was smeared on a solid ammonium nitrate medium (see Table 2 below for the composition of the medium). Each of these samples was cultured at 30 ° C under aerobic conditions, and the grown strain was transferred to a slant (gradient culture) containing ammonium nitrate solid medium. After sealing the test tube with a screw cap, it was cultured again at 50 ° C. A strain showing growth was selected. As a result, T-7-2 strain showing good growth in the same medium was obtained even at 30 ° C. and 50 ° C. (see FIG. 1).

Figure 0004631082
Figure 0004631082

(A−2)T-7-2株の菌学的性質とその同定
上記方法により分離したT-7-2株(以下、本菌という。)の菌学的性質について調査した結果を以下に示す。
(A-2) Mycological properties of T-7-2 strain and its identification The results of investigation on the mycological properties of T-7-2 strain (hereinafter referred to as the present fungus) isolated by the above method are as follows. Show.

(1)形態的性質
本菌の栄養細胞の大きさは0.64×1.6〜3.2μmで桿菌である。多形性は見られない。
本菌は運動性を示す。本菌は周鞭毛を有する。
本菌は肉汁寒天培地で2日培養すると栄養細胞のほぼ中央部に胞子を形成する。本菌の胞子はDorner法を用いて染色すると赤色に染まる。胞子の形はほぼ楕円状で、その大きさは0.6×0.8μmである。
(1) Morphological properties The size of the vegetative cell of this bacterium is 0.64 × 1.6 to 3.2 μm and is a gonococcus. There is no polymorphism.
The fungus exhibits motility. This bacterium has periflagellum.
When this bacterium is cultured on a broth agar medium for 2 days, a spore is formed in the central part of the vegetative cell. Spores of this bacterium are stained red when stained using the Dorner method. The spore shape is almost elliptical, and its size is 0.6 × 0.8 μm.

(2)各種培養条件における性状
本菌は肉汁寒天培地やグルコースを炭素源及びエネルギー源、硝酸アンモニウムを窒素源とする合成培地などに良く生育する。
本菌は肉汁液体培地において、〜55℃で生育する。
本菌は肉汁寒天平板培養において、コロニーの形状は不規則円形であり、コロニーの表面隆起の状態は台状を示し、コロニーの周縁は波状であり、コロニー表面の形状は粗面である。また、コロニーの表面は鈍い光沢があり、バター状である。コロニーの色は植菌数日後は白灰色であるが、1週間後には褐色に変化する。
本菌は肉汁液体培養において、綿状又は羊毛状を示す。
本菌は肉汁ゼラチン穿刺培養において嚢状に生育し、ゼラチンを液化する。
本菌はリトマス・ミルクを用いた培養において、酸性を示し、培養液は凝固する。
(2) Properties under various culture conditions The bacterium grows well in a broth agar medium, a synthetic medium using glucose as a carbon source and energy source, and ammonium nitrate as a nitrogen source.
The fungus grows at ˜55 ° C. in a broth liquid medium.
In this culture, the shape of the colony is irregular, the surface elevation of the colony is trapezoidal, the periphery of the colony is wavy, and the surface of the colony is rough. The surface of the colony has a dull luster and is buttery. The colony color is white-gray several days after inoculation, but turns brown after one week.
The fungus exhibits a cotton-like or wooly shape in the broth liquid culture.
The bacterium grows in the form of a sac in the broth gelatin puncture culture and liquefies gelatin.
This bacterium shows acidity in culture using litmus milk, and the culture solution coagulates.

(3)生理学的性質
グラム染色性:陽性
硝酸塩の還元:陽性
脱窒反応:陽性
MRテスト:陰性
VPテスト:陽性
インドールの生成:陰性
硫化水素の生成:陽性
デンプンの加水分解:陽性
クエン酸の利用:陽性
無機窒素源(硝酸塩及びアンモニウム塩)の利用:両塩を利用する。
色素の生成:不溶性の褐色色素を生成
ウレアーゼ:陰性
オキシダーゼ:陰性
カタラーゼ:陽性
生育の範囲:25〜55℃、pH6〜9
O-Fテスト(Hugh Leifson法):発酵型
糖類からの酸及びガスの生成の有無:D-グルコース、L-アラビノースは酸を生成、ガスは生成せず。
(3) Physiological properties Gram staining: Positive nitrate reduction: Positive denitrification: Positive
MR test: negative
VP test: Production of positive indole: Production of negative hydrogen sulfide: Hydrolysis of positive starch: Use of positive citric acid: Use of positive inorganic nitrogen sources (nitrate and ammonium salt): Use both salts.
Pigment production: Insoluble brown pigment produced Urease: Negative oxidase: Negative catalase: Positive growth range: 25-55 ° C, pH 6-9
OF test (Hugh Leifson method): Whether acid and gas are produced from fermented sugars: D-glucose and L-arabinose produce acid, but no gas.

(4)化学分類学的性質
本菌の16SリボゾームRNA遺伝子1,544塩基の分析の結果、ヌクレオチド配列はDNAデータベースの検索により、次に示す菌株と高い相同値を示す(B.はバチルス(Bacillus)の略。以下同じ)。
B. licheniformis strain B16 99.7%
B. licheniformis strain PR-1 99.7%
B. licheniformis strain KL-185 99.4%
B. licheniformis strain Mo1 99.1%
B. subtilis strain 09 98.1%
(4) Chemical taxonomic properties As a result of analysis of 1,544 bases of the 16S ribosomal RNA gene of this bacterium, the nucleotide sequence shows a high homology value with the following strains by searching the DNA database (B. is Bacillus) Abbreviation, the same applies hereinafter)
B. licheniformis strain B16 99.7%
B. licheniformis strain PR-1 99.7%
B. licheniformis strain KL-185 99.4%
B. licheniformis strain Mo1 99.1%
B. subtilis strain 09 98.1%

(5)分離源
菌株を分離した年月:平成14年8月
分離源:土壌
採取地:神戸
(5) Date of isolation of the source strain: August 2002 Source: Soil collection site: Kobe

(6)本菌の同定
以上の結果から、本菌はバージーズ・マニュアル・オブ・システマティック・バクテリオロジー(Volume 2)の記載事項に基づき、Bacillus属に属するものと同定された。さらに、16SリボゾームRNA遺伝子の解析から、本菌はB. licheniformis又はB. subtilisに属すると考えられるが、本菌は通性嫌気性菌であり、55℃でも生育可能であることから判断して、本菌をB. licheniformisと同定するのが妥当である。よって、本発明者は、本菌を「Bacillus licheniformis strain T-7-2」と命名した。
(6) Identification of the bacterium Based on the above results, the bacterium was identified as belonging to the genus Bacillus, based on the description in the Burgy's Manual of Systematic Bacteriology (Volume 2). Furthermore, from the analysis of the 16S ribosomal RNA gene, this bacterium is considered to belong to B. licheniformis or B. subtilis, but this bacterium is a facultative anaerobe and can be grown at 55 ° C. Therefore, it is appropriate to identify this bacterium as B. licheniformis. Therefore, the present inventor named this bacterium "Bacillus licheniformis strain T-7-2".

(A−3)本菌によるNH4 +とNO3 -の除去試験
図2に示すように、0.1%NH4NO3、3%グルコース、0.5mM Fe2+を含む前記表1の培地において、本菌は50℃、24時間でNH4 +(図中、Ammonia)とNO3 -(図中、Nitrate)をほぼ培地中から除去した。また、図3に示すように、30℃においても48時間で同培地中のNH4 +をほぼ除去し、NO3 -は40%まで除去した。この結果から、本菌は50℃のときに30℃に比べて急速に両イオンを培地から除去することが分かった。
(A-3) Removal test of NH 4 + and NO 3 by this bacterium As shown in FIG. 2, in the medium of Table 1 containing 0.1% NH 4 NO 3 , 3% glucose and 0.5 mM Fe 2+ , In this bacterium, NH 4 + (Ammonia in the figure) and NO 3 (Nitrate in the figure) were almost removed from the medium at 50 ° C. for 24 hours. Further, as shown in FIG. 3, also substantially eliminates the NH 4 + in the same medium for 48 hours at 30 ° C., NO 3 - was removed up to 40%. From this result, it was found that this bacterium removes both ions from the medium more rapidly at 50 ° C than at 30 ° C.

(A−4)NH4 +とNO3 -の同時除去に与えるFe2+とMoO4 2-の濃度の影響
0.1〜0.2%NH4NO3、3〜5%グルコースを含む培地において、NH4 +とNO3 -の同時除去に与えるFe2+とMoO4 2-の濃度の影響を調べた。図4は、二価鉄イオン(Fe2+)の影響を調べた結果であり、培養3日目(72時間後)の本菌(T-7-2株)の生育(OD660)培地中のNH4 +、NO3 -、NO2 -の残存量(%)を示す。また同図(a)は50℃で培養した結果、(b)は30℃で培養した結果である。同図に示すように、Fe2+の添加は、両イオンを除去するために非常に重要であった。特に、50℃においてこの傾向は顕著であった。すなわち、0.1%NH4NO3を含む培地において、Fe2+が存在しないと両イオンは殆ど除去されないが、0.2mM以上のFe2+存在下では、3日間で両イオンを完全に除去することが分かった。また、NH4NO3の濃度を0.2%に増加させた培地では、0.5mM Fe2+において、50℃培養下NH4 +とNO3 -の両イオンが除去された。
(A-4) NH 4 + and NO 3 - Effect of Fe 2+ and MoO 4 2-concentration giving the simultaneous removal of the
In a medium containing 0.1 to 0.2% NH 4 NO 3 and 3 to 5% glucose, the influence of the Fe 2+ and MoO 4 2− concentration on the simultaneous removal of NH 4 + and NO 3 was examined. Fig. 4 shows the results of investigating the effect of divalent iron ions (Fe 2+ ), in the growth medium (OD 660 ) of the bacterium (T-7-2 strain) on the third day of culture (after 72 hours). The remaining amount (%) of NH 4 + , NO 3 , and NO 2 is shown. FIG. 4A shows the result of culturing at 50 ° C., and FIG. 5B shows the result of culturing at 30 ° C. As shown in the figure, the addition of Fe 2+ was very important in order to remove both ions. In particular, this tendency was remarkable at 50 ° C. That is, in a medium containing 0.1% NH 4 NO 3 , both ions are hardly removed unless Fe 2+ is present, but both ions are completely removed in 3 days in the presence of 0.2 mM or more Fe 2+. I understood. In addition, in the medium in which the concentration of NH 4 NO 3 was increased to 0.2%, both NH 4 + and NO 3 ions were removed at 0.5 mM Fe 2+ under 50 ° C. culture.

図5は、モリブデン酸イオン(MoO4 2-)の影響を調べた結果であり、(a)は本菌(T-7-2株)を50℃で培養した結果、(b)は30℃で培養した結果である。同図に示すように、NH4 +とNO3 -の除去に与えるMoO4 2-の影響は、Fe2+ほど顕著ではなかった。また、10nM以上のMoO4 2-が存在すると、本菌による両イオン除去はむしろ阻害される傾向が認められた。MoO4 2-の濃度を適切に調整することによって、本菌による両イオンの効果的な除去が達成できることが分かった。 FIG. 5 shows the results of examining the influence of molybdate ions (MoO 4 2− ). (A) shows the result of culturing the bacterium (T-7-2 strain) at 50 ° C., (b) shows the result of 30 ° C. It is the result of having been cultured with. As shown in the figure, the effect of MoO 4 2− on the removal of NH 4 + and NO 3 was not as significant as Fe 2+ . Moreover, when MoO 4 2− of 10 nM or more was present, the removal of both ions by this bacterium was rather inhibited. It was found that effective removal of both ions by this bacterium can be achieved by adjusting the concentration of MoO 4 2- appropriately.

(A−5)本菌培養液中の全窒素量の変化
次に、本菌培養液中の全窒素量の変化について検討した。全窒素の定量法は、次の方法によって行った。
(A-5) Change in total nitrogen amount in the culture solution of the present bacterium Next, changes in the total nitrogen amount in the culture solution of the present bacterium were examined. The total nitrogen was quantified by the following method.

ケルダール分解で有機態窒素をアンモニア態窒素に変換し、生成したアンモニア態窒素の定量はConwayの微量拡散分析法により行った。吸収剤は2 g boric acidを20 mlの99%(w/w)ethanolに溶かし、2 mlのpH指示薬(0.2%(w/v)methyl red- 0.2%(w/v)bromocresol green(1:5))を加えた後、0.05 N HCl溶液でpH 3.5〜3.6に調整し、脱イオン水で計100 mlとして調製した。1 mlの試料を外室に、1 mlの吸収剤を内室に、それぞれ加えた。1 mlの12%(w/v)MgO light懸濁液を外室に加え、直ちに蓋をし、30℃で1夜静置して発生したアンモニアを内室に吸収させた。1 mlの脱イオン水を内室に加えた後、1/500 N HCl溶液で滴定を行い、アンモニア態窒素を定量した。   Organic nitrogen was converted to ammonia nitrogen by Kjeldahl decomposition, and the amount of ammonia nitrogen produced was determined by Conway's micro diffusion analysis method. The absorbent is 2 g boric acid dissolved in 20 ml of 99% (w / w) ethanol and 2 ml of pH indicator (0.2% (w / v) methyl red-0.2% (w / v) bromocresol green (1: After adding 5)), the pH was adjusted to 3.5 to 3.6 with 0.05 N HCl solution, and the total amount was adjusted to 100 ml with deionized water. 1 ml of sample was added to the outer chamber and 1 ml of absorbent was added to the inner chamber. 1 ml of 12% (w / v) MgO light suspension was added to the outer chamber, immediately capped, and allowed to stand at 30 ° C. overnight to absorb the generated ammonia in the inner chamber. After adding 1 ml of deionized water to the inner chamber, titration with 1/500 N HCl solution was performed to quantitate ammonia nitrogen.

50℃の培養条件において行った上記実験結果を図6に示す。同図に示すように、培養液中のNH4 +とNO3 -が減少するに従って、培地中の全窒素量は減少し、菌体中の全窒素量は増加する。培地中のNH4 +とNO3 -が完全に消費された時点で培地中と菌体中の全窒素量を合計すると、その量は始めに培地に加えた全窒素量の70%に減少している。残りの30%は脱窒されたものと考えられる。また、30℃培養においても、本菌の生育とともに培地中のNH4 +とNO3 -が消費され、培養48時間の時点で全窒素量は、培養開始時の80%に減少している(図7参照)。よって、30℃においても消費された窒素化合物の一部は脱窒されていると考えられる。 FIG. 6 shows the results of the above experiment conducted under the culture condition of 50 ° C. As shown in the figure, as NH 4 + and NO 3 in the culture solution decrease, the total nitrogen amount in the medium decreases and the total nitrogen amount in the cells increases. NH in the medium 4 + and NO 3 - is the sum total amount of nitrogen during the bacterial cell culture at the time it was completely consumed, the amount was reduced to 70% of the total amount of nitrogen added to the medium at the beginning ing. The remaining 30% is considered denitrified. Also in 30 ° C. culture, along with the growth of the fungus NH 4 + and NO 3 in the medium - is consumption, the total nitrogen content at the time of culture 48 hours is reduced to 80% at the start of cultivation ( (See FIG. 7). Therefore, a part of the nitrogen compound consumed even at 30 ° C. is considered to be denitrified.

以上のように、今回分離・同定した本菌(即ち、Bacillus licheniformis strain T-7-2)は、(1)50℃のような高温においても、NH4 +とNO3 -を同時に除去することができ、また、(2)50℃のみならず、30℃でもNH4 +とNO3 -を同時に除去することができる。この結果は、本菌が、常温ではあまり生育せずに高温においてのみ生育し、その生物活性を示すいわゆる高温菌とは異なる「耐熱性菌」であることを示すものである。このように本菌はおよそ30〜50℃で生育し、かつNH4 +とNO3 -を同時に除去できるため、気温変化の激しい条件下でも使用することが可能である。 As described above, this bacterium was currently isolated and identified (i.e., Bacillus licheniformis strain T-7-2) is, (1) even at a high temperature such as 50 ° C., NH 4 + and NO 3 - to simultaneously remove And (2) NH 4 + and NO 3 can be simultaneously removed not only at 50 ° C. but also at 30 ° C. This result indicates that the present bacterium is a “heat-resistant bacterium” which is different from so-called thermophilic bacterium which grows only at high temperature and does not grow so much at normal temperature and exhibits its biological activity. As described above, the bacterium grows at about 30 to 50 ° C. and can remove NH 4 + and NO 3 at the same time. Therefore, it can be used even under conditions where the temperature changes drastically.

〔実施例B:Bacillus属に属する保存株のうち、NH4 +とNO3 -を同時に除去する菌株の選択と同菌株によるNH4 +とNO3 -の同時除去試験〕
上記のように、本発明者は、NH4 +とNO3 -を同時に除去する微生物(即ち、T-7-2株)をBacillus属菌からはじめて見出した。そこで次に、Bacillus属に分類される保存株のうち、NH4 +とNO3 -を同時に除去する菌株が存在するかどうかを以下の実験により調査した。
[Example B: Selection of strains that simultaneously remove NH 4 + and NO 3 among conserved strains belonging to the genus Bacillus and simultaneous removal test of NH 4 + and NO 3 by the same strain]
As described above, the present inventor found for the first time a Bacillus genus microorganism that simultaneously removes NH 4 + and NO 3 (ie, T-7-2 strain). Therefore, next, of the stocks that are classified to the genus Bacillus, NH 4 + and NO 3 - was investigated by the following experiment whether strains of removing simultaneously present.

(B−1)使用菌株
本実験においては、下記の表示によって特定され、微生物保存機関に保存されている(1)〜(10)の菌株を使用した。
(1) B.subtilis IFO 13721 (2) B.subtilis IFO 3013 (3) B.subtilis IFO 13719
(4) B.subtilis IFO 3335 (5) B.subtilis IFO 3009 (6) B.subtilis IFO 3022
(7) B.megaterium (8) B.sphaericus IFO 3525 (9) Bacillus. sp. AM-23
(10) Bacillus. sp. FL-90 (以下、IFOの文字は省略することがある。)
(B-1) Strain used In this experiment, the strains (1) to (10) specified by the following display and stored in a microorganism storage organization were used.
(1) B. subtilis IFO 13721 (2) B. subtilis IFO 3013 (3) B. subtilis IFO 13719
(4) B. subtilis IFO 3335 (5) B. subtilis IFO 3009 (6) B. subtilis IFO 3022
(7) B. megaterium (8) B. sphaericus IFO 3525 (9) Bacillus. Sp. AM-23
(10) Bacillus. Sp. FL-90 (Hereafter, IFO may be omitted.)

(B−2)培地の調製
本実験に使用した培地の組成を下記表3に示す。0.8pM、0.8nM、又は8μMの濃度のNa2MoO4・2H2Oを含む7 mlの0.1%(w/v)NH4NO3培地を調製し、それぞれに0.1 mMとなるようFeSO4・7H2Oを添加した。
(B-2) Preparation of medium The composition of the medium used in this experiment is shown in Table 3 below. Prepare 7 ml of 0.1% (w / v) NH 4 NO 3 medium containing Na 2 MoO 4 · 2H 2 O at a concentration of 0.8 pM, 0.8 nM, or 8 μM, and adjust the FeSO 4 · 7H 2 O was added.

Figure 0004631082
Figure 0004631082

(B−3)培養
各菌を植菌後、30℃にて好気条件下で振盪培養し、1日ごとに培養液の濁度と培地中に残存するNH4 +、NO3 -、NO2 -を定量した。
(B-3) Cultivation After inoculation of each bacterium, shaking culture was performed at 30 ° C. under aerobic conditions, and turbidity of the culture solution and NH 4 + , NO 3 , NO remaining in the medium every day 2 - was quantified.

(B−4)NO2 -の定量
0-0.6 mMのNO2 -を含む0.15 mlの溶液に、H2O 0.35 ml、0.1 M potassium-sodium phosphate buffer(pH 7.1)0.5 mlを加えた後、0.5 mlの1%(w/v)スルファニルアミド-9% HCl溶液および0.02% N-ナフチルエチレンジアミン・2 HCl溶液を加え、室温にて10分間放置後、540 nmにて吸光度を測定した。
(B-4) NO 2 - Determination of
0-0.6 mM of NO 2 - To a solution of 0.15 ml containing, after adding H 2 O 0.35 ml, 0.1 M potassium-sodium phosphate buffer (pH 7.1) and 0.5 ml, 1% of 0.5 ml (w / v) A sulfanilamide-9% HCl solution and a 0.02% N-naphthylethylenediamine · 2 HCl solution were added, and the mixture was allowed to stand at room temperature for 10 minutes, and the absorbance was measured at 540 nm.

(B−5)NO3 -の定量
0.25-3 mMのNO3 -を含む溶液に、2%(w/v)サリチル酸-濃硫酸0.2mlを加えた後、3.7mlの10%(w/v)NaOH溶液を加えた後、410 nmにて吸光度を測定した。
(B-5) NO 3 - Determination of
After adding 0.2 ml of 2% (w / v) salicylic acid-concentrated sulfuric acid to a solution containing 0.25-3 mM NO 3 , 3.7 ml of 10% (w / v) NaOH solution was added, and then 410 nm Absorbance was measured at.

(B−6)NH4 +の定量
0.01-0.30 mMのNH4 +を含む1 mlの溶液に、0.4 mlのフェノール・ニトロプルシドナトリウム溶液(下記表4参照)を加えた後、0.6 mlのアンチホルミン溶液(下記表5参照:アンチホルミン4mlと1N NaOH 40mlを混合しH2Oで100mlにメスアップしたものを使用した。)を加え、栓をした後、室温にて45分間放置後、635 nmにて吸光度を測定した。
(B-6) Determination of NH 4 +
To 1 ml of a solution containing NH 4 + of 0.01-0.30 mM, was added to the 0.4 ml phenol-nitroprusside sodium solution (see Table 4), 0.6 ml of antiformin solution (Table 5 Reference: antiformin 4ml And 40 ml of 1N NaOH were mixed and made up to 100 ml with H 2 O.) was added, stoppered, allowed to stand at room temperature for 45 minutes, and the absorbance was measured at 635 nm.

Figure 0004631082
Figure 0004631082

Figure 0004631082
Figure 0004631082

(B−7)実験結果
本実験結果を以下の表6にまとめた。
(B-7) Experimental Results The experimental results are summarized in Table 6 below.

Figure 0004631082
Figure 0004631082

表6に示すように、今回調査した(1)〜(10)のバチルス属菌のうち、(3) B.subtilis 13719および(6) B.subtilis 3022 の2株において NH4 +, NO3 -の減少が見られた。また、(3) B.subtilis 13719 に関しては、MoO4 2-の濃度が0.8pMのとき最もNH4 +, NO3 -が減少した(その結果を図8に示す)。一方、(6) B.subtilis 3022 に関しては、MoO4 2-の濃度が0.8nMのとき最もNH4 +, NO3 -が減少した(その結果を図9に示す)。 As shown in Table 6, among the strains of the genus Bacillus (1) to (10) investigated this time, NH 4 + , NO 3 in two strains (3) B. subtilis 13719 and (6) B. subtilis 3022 Decrease was observed. As for (3) B. subtilis 13719, NH 4 + and NO 3 decreased most when the concentration of MoO 4 2− was 0.8 pM (the results are shown in FIG. 8). On the other hand, regarding (6) B. subtilis 3022, NH 4 + and NO 3 decreased most when the concentration of MoO 4 2− was 0.8 nM (the results are shown in FIG. 9).

次に、0.8pM、0.8nM、又は8μMの濃度のNa2MoO4・2H2Oを含む7 mlの0.1%(w/v)NH4NO3培地を調製し、それぞれに0.1 mMのFeSO4・7H2Oを添加した。これに(6) B.subtilis 3022を植菌後、45℃にて振盪培養し、1日ごとに培養液の濁度と培地中に残存するNH4 +、NO3 -、NO2 -を定量した。その結果、0.8nMのMoO4 2-のとき最もNH4 +, NO3 -が減少していた(図10に0.8nMのときの結果を示す。尚、図4、8〜10において、NO2、NO3、NH4はそれぞれNO2 -、NO3 -、NH4 +を示す)。 Next, 7 ml of 0.1% (w / v) NH 4 NO 3 medium containing Na 2 MoO 4 .2H 2 O at a concentration of 0.8 pM, 0.8 nM, or 8 μM is prepared, and 0.1 mM FeSO 4 is added to each. • 7H 2 O was added. This (6) B. subtilis 3022 and after inoculation, cultured with shaking at 45 ° C., NH remaining in turbidity and medium culture each day 4 +, NO 3 -, NO 2 - Quantitative did. As a result, NH 4 + and NO 3 were reduced most at 0.8 nM MoO 4 2− (FIG. 10 shows the results at 0.8 nM. In FIGS. 4 and 8 to 10, NO 2, NO3 and NH4 represent NO 2 , NO 3 and NH 4 + , respectively).

以上のように、(1)今回調査したBacillus属菌の中では、B.subtilis IFO 13719 とB.subtilis IFO 3022が30℃でNH4 +とNO3 -を同時に除去した。また、(2)B.subtilis IFO 3022は45℃においてもNH4 +とNO3 -を同時に除去した。即ち、この菌株は30℃及び45℃の両条件下でNH4 +とNO3 -を同時に除去できるいわゆる耐熱性菌の性質を示した。 As described above, (1) B. subtilis IFO 13719 and B. subtilis IFO 3022 simultaneously removed NH 4 + and NO 3 at 30 ° C. among the Bacillus species examined this time. Further, (2) B.subtilis IFO 3022 NH even in 45 ° C. 4 + and NO 3 - to simultaneously removed. That is, this strain exhibited the properties of a so-called heat-resistant bacterium that can simultaneously remove NH 4 + and NO 3 under both conditions of 30 ° C. and 45 ° C.

〔実施例C:Enterobacter属、Pseudomonas属などの保存株のうち、NH4 +とNO3 -を同時に除去する菌株の選択と同菌株によるNH4 +とNO3 -の同時除去試験〕
本発明者は、さらに、Enterobacter、Pseudomonas、Klebsiella、Serratia、Proteus、Alcaligenes、又はAcetobacter属に分類される保存株のうち、NH4 +とNO3 -を同時に除去する菌株が存在するかどうかを以下の実験により調査した。
[Example C: Selection of strains that simultaneously remove NH 4 + and NO 3 among conserved strains such as Enterobacter and Pseudomonas, and simultaneous removal test of NH 4 + and NO 3 by the same strain]
The present inventor further determines whether or not there is a strain that simultaneously removes NH 4 + and NO 3 among the conserved strains classified into the genus Enterobacter, Pseudomonas, Klebsiella, Serratia, Proteus, Alcaligenes, or Acetobacter. It was investigated by the experiment.

(C−1)使用菌株
本実験においては、下記の表示によって特定される保存菌株を使用した。
Enterobacter aerogenes IFO 13534
Enterobacter cloacae IFO 13535
Pseudomonas aeruginosa IFO 12689
Pseudomonas aeruginosa IFO 13738
Pseudomonas aeruginosa IFO 3080
Pseudomonas aeruginosa IFO 13130
Pseudomonas putida IFO 3738
Pseudomonas fluoresscens IFO 15833
Pseudomonas denitrificans IFO 13301
Klebsiella pneumoniae IFO 3318
Klebsiella planticola IFO 3317
Serratia marcescens IFO 3736
Proteus vulgaris IFO 3851
Alcaligenes faecalis IFO 13111
Alcaligenes xylosoxidans subsp. denitrificans IFO 15125
(C-1) Strain used In this experiment, a storage strain specified by the following display was used.
Enterobacter aerogenes IFO 13534
Enterobacter cloacae IFO 13535
Pseudomonas aeruginosa IFO 12689
Pseudomonas aeruginosa IFO 13738
Pseudomonas aeruginosa IFO 3080
Pseudomonas aeruginosa IFO 13130
Pseudomonas putida IFO 3738
Pseudomonas fluoresscens IFO 15833
Pseudomonas denitrificans IFO 13301
Klebsiella pneumoniae IFO 3318
Klebsiella planticola IFO 3317
Serratia marcescens IFO 3736
Proteus vulgaris IFO 3851
Alcaligenes faecalis IFO 13111
Alcaligenes xylosoxidans subsp.denitrificans IFO 15125

(C−2)培地の調製
本実験に使用した培地の組成を下記表7に示す。NH4NO3は0.1〜0.4%(w/v)、Na2MoO4・2H2Oは0.8pM、0.8nM、又は8μMの濃度のものを使用した。
(C-2) Preparation of medium The composition of the medium used in this experiment is shown in Table 7 below. NH 4 NO 3 having a concentration of 0.1 to 0.4% (w / v) and Na 2 MoO 4 .2H 2 O having a concentration of 0.8 pM, 0.8 nM, or 8 μM were used.

Figure 0004631082
Figure 0004631082

(C−3)培養
各菌を植菌後、30℃にて好気条件下で振盪培養し、1日ごとに培養液の濁度と培地中に残存するNH4 +、NO3 -、NO2 -を定量した。
(C-3) Culture After inoculation of each bacterium, shaking culture is performed at 30 ° C. under aerobic conditions, and turbidity of the culture solution and NH 4 + , NO 3 , NO remaining in the medium every day 2 - was quantified.

(C−4)NO2 -、NO3 -、NH4 +の定量、及び全窒素の定量法
NO2 -、NO3 -、NH4 +の各定量は、前記(B−4)(B−5)(B−6)に記載の方法と同様に行った。また、全窒素の定量法は、前記(A−5)に記載の方法と同様に行った。
(C-4) Determination of NO 2 , NO 3 , NH 4 + and determination of total nitrogen
Each quantification of NO 2 , NO 3 , and NH 4 + was carried out in the same manner as the method described in (B-4), (B-5), and (B-6). Moreover, the determination method of total nitrogen was performed similarly to the method as described in said (A-5).

(C−5)実験結果
本実験の結果、調査したEnterobacter属2株、Pseudomonas属7株、Klebsiella属2株、Serratia属1株、Proteus属1株、Alcaligenes属2株のうち、Enterobacter属2株、P. putida IFO 3738を除くPseudomonas属6株、およびKlebsiella pneumoniae IFO 3318の計9株が、0.1%NH4NO3培地において、NH4 +とNO3 -を同時に除去することができた。これら菌株によるNH4 +およびNO3 -の同時除去の結果を下記表8に示す。
(C-5) Experimental results Among the two Enterobacter genera, 7 Pseudomonas genera, 2 Klebsiella genera, 1 Serratia genera, 1 Proteus genera, and 2 Alcaligenes genera, which were investigated as a result of this experiment, 2 Enterobacter genera strains 6 strains of Pseudomonas except P. putida IFO 3738 and 9 strains of Klebsiella pneumoniae IFO 3318 were able to remove NH 4 + and NO 3 simultaneously in 0.1% NH 4 NO 3 medium. NH by these strains 4 + and NO 3 - The results of simultaneous removal shown in Table 8.

Figure 0004631082
Figure 0004631082

上記の結果は、培養2日目(48時間)の結果であり、NH4 +とNO3 -は培地中に残存する量(mM)を示す。 The above results are the results on the second day of culture (48 hours), and NH 4 + and NO 3 indicate the amount (mM) remaining in the medium.

また、代表的な例としてE. cloacae IFO 13535の結果を図11に、P. denitrificans IFO 13301の結果を図12にそれぞれ示す。尚、E.はエンテロバクター(Enterobacter)の略、P.はシュードモナス(Pseudomonas)の略である。   As a representative example, the results of E. cloacae IFO 13535 are shown in FIG. 11, and the results of P. denitrificans IFO 13301 are shown in FIG. E. is an abbreviation for Enterobacter, and P. is an abbreviation for Pseudomonas.

NH4 +とNO3 -を同時に除去することができた菌株の中でも、P. aeruginosa IFO 12689、P. aeruginosa IFO 13738、P. aeruginosa IFO 3080、P. aeruginosa IFO 13130 の4株は0.4%NH4NO3培地において、培養開始2日で、NH4 +とNO3 -をほぼ完全に除去することができた。またこのとき、NO2 -の蓄積は見られなかった。代表的な例としてP. aeruginosa IFO 3080の結果を図13(a)に示す。 Among the strains that could simultaneously remove NH 4 + and NO 3 , 4 strains of P. aeruginosa IFO 12689, P. aeruginosa IFO 13738, P. aeruginosa IFO 3080, P. aeruginosa IFO 13130 were 0.4% NH 4 In NO 3 medium, NH 4 + and NO 3 - were almost completely removed within 2 days from the start of culture. At this time, NO 2 - accumulation was observed. As a typical example, the result of P. aeruginosa IFO 3080 is shown in FIG.

また図13(b)に示すように、培養液中のNH4 +とNO3 -が減少するに従って、培地中の全窒素量(Total Nitrogen)は減少し、菌体中の全窒素量は増加する。培地中のNH4 +とNO3 -が完全に消費された時点(2日目)で培地中と菌体中の全窒素量を合計すると、その量は始めに培地に加えた全窒素量の45%に減少している。残りの55%は脱窒されたものと考えられる。 Further, as shown in FIG. 13 (b), as NH 4 + and NO 3 in the culture solution decrease, the total nitrogen amount in the medium decreases and the total nitrogen amount in the cells increases. To do. Medium NH 4 + and NO 3 in - is the sum of the total amount of nitrogen during the bacterial cell culture at the time it was completely consumed (2 days), the amount of the total amount of nitrogen added to the medium at the beginning It has decreased to 45%. The remaining 55% is considered denitrified.

上記P. aeruginosa IFO 3080の結果をまとめると、(1)Fe2+とMoO4 2-の濃度を調整することにより、0.4%という高濃度のNH4NO3を培地中から除去できた、また、(2)NH4 +とNO3 -が除去された時点において、窒素化合物は培地中(培養上清中)に殆ど存在しなかった。加えた全窒素量の45%は菌体に蓄積し、残りの55%は脱窒されたものと考えられる。 The results of P. aeruginosa IFO 3080 are summarized as follows: (1) By adjusting the concentrations of Fe 2+ and MoO 4 2- , NH 4 NO 3 as high as 0.4% could be removed from the medium. (2) At the time when NH 4 + and NO 3 - were removed, nitrogen compounds were hardly present in the medium (in the culture supernatant). 45% of the total nitrogen added is accumulated in the cells, and the remaining 55% is considered to be denitrified.

以上のように、本発明は、微生物を利用してNH4 +とNO3 -とを同時除去する硝化・脱窒方法に関するものであり、前述したとおり、排水処理に利用できるほか、家畜などの糞尿処理、さらには、水族館や養殖場における水中のアンモニア除去などにも利用可能であり、産業上幅広く利用できる。 As described above, the present invention relates to a nitrification / denitrification method that simultaneously removes NH 4 + and NO 3 using microorganisms. As described above, the present invention can be used for wastewater treatment, It can be used for excrement treatment, and also for removing ammonia in water in aquariums and farms, and can be used widely in industry.

本発明に係る微生物(T-7-2株)の分離法の概略を示す図である。It is a figure which shows the outline of the isolation | separation method of the microorganisms (T-7-2 strain) based on this invention. 上記T-7-2株の50℃培養下での硝化・脱窒能を示すグラフである。3 is a graph showing the nitrification / denitrification ability of the T-7-2 strain under 50 ° C. culture. 上記T-7-2株の30℃培養下での硝化・脱窒能を示すグラフである。It is a graph which shows the nitrification / denitrification ability in 30 degreeC culture | cultivation of the said T-7-2 strain | stump | stock. 上記T-7-2株のNH4 +およびNO3 -の同時除去に与えるFe2+濃度の影響を調べた結果を示すグラフであり、(a)は50℃で培養した結果、(b)は30℃で培養した結果である。NH 4 + and NO 3 of the T-7-2 strain - a graph showing the results of examining the effect of Fe 2+ concentration giving the simultaneous removal of, (a) shows the result of incubation at 50 ℃, (b) Is the result of culturing at 30 ° C. 上記T-7-2株のNH4 +およびNO3 -の同時除去に与えるMoO4 2-濃度の影響を調べた結果を示すグラフであり、(a)は50℃で培養した結果、(b)は30℃で培養した結果である。NH 4 + and NO 3 of the T-7-2 strain - a graph showing the results of examining the effect of MoO 4 2-concentration giving the simultaneous removal of, (a) shows the result of incubation at 50 ° C., (b ) Is the result of culturing at 30 ° C. 上記T-7-2株の50℃培養下での培養液中の全窒素量の変化を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the change of the total nitrogen amount in the culture solution under 50 degreeC culture | cultivation of the said T-7-2 strain | stump | stock. 上記T-7-2株の30℃培養下での培養液中の全窒素量の変化を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the change of the total nitrogen amount in the culture solution under 30 degreeC culture | cultivation of the said T-7-2 strain | stump | stock. B.subtilis IFO 13719株の硝化・脱窒能を示すグラフである。It is a graph which shows the nitrification and denitrification ability of B. subtilis IFO 13719 strain. B.subtilis IFO 3022株の30℃培養下での硝化・脱窒能を示すグラフである。It is a graph which shows the nitrification / denitrification ability in 30 degreeC culture | cultivation of B.subtilis IFO 3022 strain | stump | stock. B.subtilis IFO 3022株の45℃培養下での硝化・脱窒能を示すグラフである。It is a graph which shows the nitrification / denitrification ability in 45 degreeC culture | cultivation of B.subtilis IFO 3022 strain | stump | stock. E. cloacae IFO 13535株の硝化・脱窒能を示すグラフである。It is a graph which shows the nitrification and denitrification ability of E. cloacae IFO 13535 strain. P. denitrificans IFO 13301株の硝化・脱窒能を示すグラフである。2 is a graph showing the nitrification / denitrification ability of P. denitrificans IFO 13301 strain. (a)は、P. aeruginosa IFO 3080株の硝化・脱窒能を示すグラフであり、(b)は、その過程における培養液中の全窒素量の変化を調べた結果を示すグラフである。(A) is a graph showing the nitrification / denitrification ability of P. aeruginosa IFO 3080 strain, and (b) is a graph showing the results of examining the change in the total nitrogen amount in the culture medium in the process.

Claims (13)

以下の(a)〜()から選ばれる少なくとも1種類の微生物を用いて、対象物中のNH4 +とNO3 -とを同時に除去する硝化・脱窒方法。
(a)NH 4 + とNO 3 - を同時に除去できるバチルス属に属する菌株
(b)NH 4 + とNO 3 - を同時に除去できるシュードモナス属に属する菌株
(c)NH 4 + とNO 3 - を同時に除去できるエンテロバクター属に属する菌株
Using at least one microorganism selected from the following (a) ~ (c), NH 4 + and NO 3 in the object - and at the same time nitrification-denitrification method for removing.
(A) NH 4 + and NO 3 - at the same time strain belonging to the genus Bacillus can be removed (b) NH 4 + and NO 3 - strain belonging to the genus Pseudomonas capable of simultaneously removing (c) NH 4 + and NO 3 - at the same time Strains belonging to the genus Enterobacter that can be removed
上記(a)の菌株として、以下の(a1)〜(a3)から選ばれる少なくとも1種類の微生物を用いることを特徴とする、請求項1記載の硝化・脱窒方法。
(a1)バチルス・リケニフォルミス(Bacillus licheniformis)T-7-2株(FERM P-19418)
(a2)バチルス・ズブチルス(Bacillus subtilis)IFO 13719株
(a3)バチルス・ズブチルス(Bacillus subtilis)IFO 3022株
2. The nitrification / denitrification method according to claim 1, wherein at least one microorganism selected from the following (a1) to (a3) is used as the strain (a).
(A1) Bacillus licheniformis T-7-2 strain (FERM P-19418)
(A2) Bacillus subtilis IFO 13719 strain (a3) Bacillus subtilis IFO 3022 strain
上記(b)の菌株として、以下の(b1)〜(b6)から選ばれる少なくとも1種類の微生物を用いることを特徴とする、請求項1記載の硝化・脱窒方法。
(b1)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 12689株
(b2)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 13738株
(b3)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 3080株
(b4)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 13130株
(b5)シュードモナス・フルオレセンス(Pseudomonas fluorescens)IFO 15833株
(b6)シュードモナス・デニトリフィカンス(Pseudomonas denitrificans)IFO 13301株
The nitrification / denitrification method according to claim 1, wherein at least one microorganism selected from the following (b1) to (b6) is used as the strain (b).
(B1) Pseudomonas aeruginosa IFO 12689 (b2) Pseudomonas aeruginosa IFO 13738 (b3) Pseudomonas aeruginosa IFO 3080 (b4) Pseudomonas aeruginosa IFO 3080 (b4) 13130 strain (b5) Pseudomonas fluorescens IFO 15833 strain (b6) Pseudomonas denitrificans IFO 13301 strain
上記(c)の菌株として、以下の(c1)〜(c2)から選ばれる少なくとも1種類の微生物を用いることを特徴とする、請求項1記載の硝化・脱窒方法。
(c1)エンテロバクター・エアロゲネス(Enterobacter aerogenes)IFO 13534株
(c2)エンテロバクター・クロアカエ(Enterobacter cloacae)IFO 13535株
The nitrification / denitrification method according to claim 1, wherein at least one microorganism selected from the following (c1) to (c2) is used as the strain (c).
(C1) Enterobacter aerogenes IFO 13534 strain (c2) Enterobacter cloacae IFO 13535 strain
耐熱性の菌株を用いることを特徴とする、請求項1記載の硝化・脱窒方法。   2. The nitrification / denitrification method according to claim 1, wherein a heat-resistant strain is used. 排水処理などにおける水中の窒素除去、工場の排水処理その他無機物中の窒素除去、又は、糞尿その他有機物中の窒素除去に用いることを特徴とする、請求項1〜5の何れか1項に記載の硝化・脱窒方法。   It is used for nitrogen removal in water in wastewater treatment, etc., nitrogen removal in factory wastewater treatment and other inorganic substances, or nitrogen removal in manure and other organic substances, according to any one of claims 1 to 5. Nitrification / denitrification method. 以下の(a)〜()から選ばれる少なくとも1種類の微生物を含有し、対象物中のNH4 +とNO3 -とを同時に除去する硝化・脱窒処理剤。
(a)NH 4 + とNO 3 - を同時に除去できるバチルス属に属する菌株
(b)NH 4 + とNO 3 - を同時に除去できるシュードモナス属に属する菌株
(c)NH 4 + とNO 3 - を同時に除去できるエンテロバクター属に属する菌株
A nitrification / denitrification agent containing at least one microorganism selected from the following (a) to ( c ) and simultaneously removing NH 4 + and NO 3 in an object.
(A) NH 4 + and NO 3 - at the same time strain belonging to the genus Bacillus can be removed (b) NH 4 + and NO 3 - strain belonging to the genus Pseudomonas capable of simultaneously removing (c) NH 4 + and NO 3 - at the same time Strains belonging to the genus Enterobacter that can be removed
上記(a)の菌株として、以下の(a1)〜(a3)から選ばれる少なくとも1種類の微生物を含有することを特徴とする、請求項7記載の硝化・脱窒処理剤。
(a1)バチルス・リケニフォルミス(Bacillus licheniformis)T-7-2株(FERM P-19418)
(a2)バチルス・ズブチルス(Bacillus subtilis)IFO 13719株
(a3)バチルス・ズブチルス(Bacillus subtilis)IFO 3022株
The nitrification / denitrification treatment agent according to claim 7, wherein the strain (a) contains at least one kind of microorganism selected from the following (a1) to (a3).
(A1) Bacillus licheniformis T-7-2 strain (FERM P-19418)
(A2) Bacillus subtilis IFO 13719 strain (a3) Bacillus subtilis IFO 3022 strain
上記(b)の菌株として、以下の(b1)〜(b6)から選ばれる少なくとも1種類の微生物を含有することを特徴とする、請求項7記載の硝化・脱窒処理剤。
(b1)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 12689株
(b2)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 13738株
(b3)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 3080株
(b4)シュードモナス・エアルギノサ(Pseudomonas aeruginosa)IFO 13130株
(b5)シュードモナス・フルオレセンス(Pseudomonas fluorescens)IFO 15833株
(b6)シュードモナス・デニトリフィカンス(Pseudomonas denitrificans)IFO 13301株
The nitrification / denitrification treatment agent according to claim 7, wherein the strain (b) contains at least one microorganism selected from the following (b1) to (b6).
(B1) Pseudomonas aeruginosa IFO 12689 (b2) Pseudomonas aeruginosa IFO 13738 (b3) Pseudomonas aeruginosa IFO 3080 (b4) Pseudomonas aeruginosa IFO 3080 (b4) 13130 strain (b5) Pseudomonas fluorescens IFO 15833 strain (b6) Pseudomonas denitrificans IFO 13301 strain
上記(c)の菌株として、以下の(c1)〜(c2)から選ばれる少なくとも1種類の微生物を含有することを特徴とする、請求項7記載の硝化・脱窒処理剤。
(c1)エンテロバクター・エアロゲネス(Enterobacter aerogenes)IFO 13534株
(c2)エンテロバクター・クロアカエ(Enterobacter cloacae)IFO 13535株
The nitrification / denitrification treatment agent according to claim 7, wherein the strain (c) contains at least one microorganism selected from the following (c1) to (c2).
(C1) Enterobacter aerogenes IFO 13534 strain (c2) Enterobacter cloacae IFO 13535 strain
耐熱性の菌株を含有することを特徴とする、請求項7記載の硝化・脱窒処理剤。   The nitrification / denitrification treatment agent according to claim 7, comprising a heat-resistant strain. 排水処理などにおける水中の窒素除去、工場の排水処理その他無機物中の窒素除去、又は、糞尿その他有機物中の窒素除去に用いることを特徴とする、請求項7〜11の何れか1項に記載の硝化・脱窒処理剤。   It is used for nitrogen removal in water in wastewater treatment, etc., wastewater treatment in factories and other inorganic substances, or removal of nitrogen in manure and other organic substances, according to any one of claims 7-11. Nitrification / denitrification treatment agent. バチルス・リケニフォルミス(Bacillus licheniformis)T-7-2株(FERM P-19418)。

Bacillus licheniformis T-7-2 strain (FERM P-19418).

JP2003275878A 2003-07-17 2003-07-17 Nitrification and denitrification method that simultaneously removes NH4 + and NO3- using microorganisms Expired - Fee Related JP4631082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003275878A JP4631082B2 (en) 2003-07-17 2003-07-17 Nitrification and denitrification method that simultaneously removes NH4 + and NO3- using microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003275878A JP4631082B2 (en) 2003-07-17 2003-07-17 Nitrification and denitrification method that simultaneously removes NH4 + and NO3- using microorganisms

Publications (2)

Publication Number Publication Date
JP2005034783A JP2005034783A (en) 2005-02-10
JP4631082B2 true JP4631082B2 (en) 2011-02-16

Family

ID=34212391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003275878A Expired - Fee Related JP4631082B2 (en) 2003-07-17 2003-07-17 Nitrification and denitrification method that simultaneously removes NH4 + and NO3- using microorganisms

Country Status (1)

Country Link
JP (1) JP4631082B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112337A (en) * 2015-09-15 2015-12-02 重庆大学 Enterobacter cloacae and application thereof
CN105670977A (en) * 2016-04-01 2016-06-15 重庆大学 Enterobacter sp. strain and application thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719094B2 (en) * 2006-07-07 2011-07-06 財団法人電力中央研究所 Method for treating liquid containing selenate compound using microorganisms
JP4352146B1 (en) * 2008-11-18 2009-10-28 株式会社静内衛生社 Highly functional nitrifying bacteria and method for purifying urea or ammonia using the bacteria
CN102190373B (en) * 2010-03-08 2012-12-26 江苏中超环保有限公司 Aerobic and facultative anaerobic microbial activated bactericide for water treatment and application thereof in contact oxidation process
CN101985376B (en) * 2010-06-28 2013-05-08 北京大学 Method for removing carbon and nitrogen pollutants in waste water in one step
KR101370943B1 (en) * 2012-04-05 2014-03-12 씨제이제일제당 (주) A novel Bacillus licheniformis and its application as probiotics
KR101418710B1 (en) 2013-09-27 2014-07-09 강원대학교산학협력단 Alcaligenes faecalis EBN-NS13 (KCTC 12471BP) having excellent ability of nitrification and denitrification
CN104591403B (en) * 2015-01-13 2015-10-07 丹阳市尚德生物科技有限公司 Lake river corridor restoration agent
CN105441359B (en) * 2015-12-17 2019-05-14 华南理工大学 One bacillus licheniformis and its application
CN106754534B (en) * 2016-12-30 2020-06-30 东华理工大学 Acid-resistant denitrifying bacterium and application thereof
US20210171899A1 (en) * 2017-12-06 2021-06-10 Westcom Solutions Pte Ltd Methods and products for biodegradation of waste
SG10201807584UA (en) * 2018-09-04 2020-04-29 Westcom Solutions Pte Ltd Methods and products for biodegradation of waste
CN110643537A (en) * 2019-10-12 2020-01-03 杭州民安环境工程有限公司 Combined microorganism for treating black and odorous water body and screening method and application thereof
CN112744929B (en) * 2020-12-19 2022-08-05 武汉水之国环保科技有限公司 Application of bacillus subtilis SZG-JD-001 in preparation of biological composite carbon source
CN113526684A (en) * 2021-07-20 2021-10-22 浙江大学 Method for controlling sulfide release in drainage system
CN113735240A (en) * 2021-08-26 2021-12-03 天津赞兰科技有限公司 Nitrogen removal product for aquaculture and preparation method thereof
CN113913335B (en) * 2021-10-20 2023-07-07 大连海洋大学 Salt-tolerant nitrifying composite microbial agent and application thereof
CN113913336A (en) * 2021-10-20 2022-01-11 大连海洋大学 Salt-tolerant aerobic denitrification composite bacterium and application
CN114214229B (en) * 2021-12-08 2023-04-18 中国科学院天津工业生物技术研究所 Paracoccus pantoea strain MA3, production method and application thereof
CN114774320B (en) * 2022-04-27 2023-12-05 武汉轻工大学 Denitrifying microorganism and application thereof
CN115354006B (en) * 2022-07-25 2024-05-10 长江生态环保集团有限公司 Denitrifying microorganism composite flora and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263689A (en) * 2001-03-13 2002-09-17 Ebara Corp Method for treating ammonia-containing waste water and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263689A (en) * 2001-03-13 2002-09-17 Ebara Corp Method for treating ammonia-containing waste water and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112337A (en) * 2015-09-15 2015-12-02 重庆大学 Enterobacter cloacae and application thereof
CN105112337B (en) * 2015-09-15 2018-05-15 重庆大学 One Enterobacter cloacae and its application
CN105670977A (en) * 2016-04-01 2016-06-15 重庆大学 Enterobacter sp. strain and application thereof
CN105670977B (en) * 2016-04-01 2019-06-28 重庆大学 One plant of enterobacteria and its application

Also Published As

Publication number Publication date
JP2005034783A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP4631082B2 (en) Nitrification and denitrification method that simultaneously removes NH4 + and NO3- using microorganisms
US8574885B2 (en) Anammox bacterium isolate
Zhai et al. New nitrogen removal pathways in a full-scale hybrid constructed wetland proposed from high-throughput sequencing and isotopic tracing results
JP4807799B2 (en) Method for treating waste liquid containing fat, alpha starch and beta starch
CN111534449B (en) Aerobic denitrifying pseudomonas and culture method and application thereof
CN110283739B (en) Salt-tolerant denitrifying bacterium and application thereof
CN101386823B (en) Special effect anaerobic denitrifying bacterium and waste water processing method using thereof
CN108060101B (en) Ocean Dietzia W02-3a and application thereof in denitrification
CN109337832A (en) A kind of anthropi of resistance to high ammonia nitrogen heterotrophic nitrification-aerobic denitrification and its application
Wang et al. An aerobic denitrifier Pseudomonas stutzeri Y23 from an oil reservoir and its heterotrophic denitrification performance in laboratory-scale sequencing batch reactors
CN108300675B (en) Tenecium luteum for synchronously decarbonizing, nitrogen, phosphorus and surfactant and application of Tenecium luteum in sewage treatment
Zhang et al. Treatment of municipal wastewater by employing membrane bioreactors combined with efficient nitration microbial communities isolated by Isolation Chip with Plate Streaking technology
Mohammed Madani et al. Novel simultaneous removal of ammonium and sulfate by isolated bacillus cereus strain from sewage treatment plant
CN111925960B (en) Halomonas with nitrification and denitrification functions and application thereof
Zhao et al. Enhancement of COD, ammonia, phosphate and sulfide simultaneous removal by the anaerobic photosynthetic bacterium of Ectothiorhodospira magna in batch and sequencing batch culture
CN115386520B (en) Rhodococcus pyridine-philic RL-GZ01 strain and application thereof
KR100828566B1 (en) 4 Pseudomonas fluorescens K4 having excellent ability of denitrification
CN114292798B (en) Anaerobic denitrifying strain and application thereof in riverway water body remediation
CN111621438B (en) Wedner mannich bacillus LM-LZ separated from oxidation pond of pig farm and application thereof
CN110468066B (en) Aerobic denitrifying strain and application thereof
CN111378596B (en) Acid-resistant and facultative anaerobic manganese oxidizing bacterium and application thereof
JP3398760B2 (en) Water treatment method, water treatment agent and aerobic denitrifying bacteria
KR101222602B1 (en) Castellaniella sp. and mixotrophic denitrification process using castellaniella sp
CN113583918A (en) River sediment degrading strain and application thereof
KR20100048352A (en) Klebsiella pneumoniae kc-101 for effective of denitrification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees