JP4348583B2 - Diamond drill and manufacturing method thereof - Google Patents

Diamond drill and manufacturing method thereof Download PDF

Info

Publication number
JP4348583B2
JP4348583B2 JP36864799A JP36864799A JP4348583B2 JP 4348583 B2 JP4348583 B2 JP 4348583B2 JP 36864799 A JP36864799 A JP 36864799A JP 36864799 A JP36864799 A JP 36864799A JP 4348583 B2 JP4348583 B2 JP 4348583B2
Authority
JP
Japan
Prior art keywords
drill
diamond
tip
sintered
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36864799A
Other languages
Japanese (ja)
Other versions
JP2001179517A (en
Inventor
一男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP36864799A priority Critical patent/JP4348583B2/en
Publication of JP2001179517A publication Critical patent/JP2001179517A/en
Application granted granted Critical
Publication of JP4348583B2 publication Critical patent/JP4348583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、極小径の孔加工技術に用いられる精密切削工具に関するもので、詳しくは、超硬材料、シリコン単結晶材料、及びセラミックス材料などの難加工硬質材料に、極小径の深孔の孔明け加工を施すためのトップソリッド型のダイヤモンドドリルに関するものである。
【0002】
【従来の技術および課題】
従来、この種の硬質材料用切削工具には、金属加工においては、一般的な螺旋溝を有する金属素材からなるドリル母材の刃部領域表面等に、TiC、TiN等のチタン系炭化物・窒化物、及びDLC(ダイヤモンドライクカーボン)の硬質皮膜をイオンプレーティング等の成膜方法により形成させたもの、あるいはガラス・セラミックス等の加工においては、ダイヤモンド砥粒を金属素材工具表面に電着塗布、又はダイヤモンド砥粒を金属工具表面に樹脂等で焼き固め、砥石部分を形成したダイヤモンド工具(以下、ダイヤモンド砥粒を金属工具表面に固着したものをダイヤモンド工具という)などが挙げられる。
【0003】
これら各種切削工具に求められる共通した課題は、第一に耐摩耗性を改善すること、つまり先端部のライフサイクルの長寿命化を狙う傾向にある。その目的で改良された最も代表的ものは、被加工物の材質を選ばずに多種多様な用途に用いることができる「ダイヤモンドドリル」である。
【0004】
これは金属素材からなるドリル母材の切削工具刃先部分に、多結晶ダイヤモンドの焼結体チップを取り付けてドリル形状として用いている。これにより多結晶焼結ダイヤモンドが有する硬度、耐摩耗性、熱伝導性などの優れた諸特性により、シリコン、カーボン、セラミックス等の孔加工用切削工具として前記多結晶焼結ダイヤモンドを用いたダイヤモンドドリルが注目されている。
【0005】
一般的に、上記ダイヤモンドドリルは、切削工具として以前よりアルミなどの軽合金の孔加工ばかりではなく、ガラス,エポキシ樹脂などの複合材料、及びプリント基板等の細孔加工にも効果的であることが知られており、また超硬合金、サファイヤ単結晶、ジルコニアセラミックス等の難加工材への孔加工用途として専用に開発され、いわゆる、先端部に多結晶焼結ダイヤモンドの焼結体チップが付いた「トップソリッド・ダイヤモンドドリル」が除々に実用化され、現在使用されている。
【0006】
さらに最近では、半導体製造プロセスに用いられるエッチング装置に必要不可欠な超精密部品のマイクロ加工技術の需要に伴って、より高精度で高速、かつ長寿命の極細径孔明け用ドリルの要望が高まり、前記エッチング装置のシリコン電極板部品などの難加工材に対しても、応用されつつある。
【0007】
しかし現状では、例えばシリコン電極板等の基板板厚が10mm以上の難加工材料になると、図8に示す現在市販されているシャンク付のトップソリッド・ダイヤモンドドリルのように、切削加工する主軸工具側のドリル長(孔明け研削有効部分のL寸法)が短く、長さが足りなくなり、深孔加工寸法には限界が生じてくる。
【0008】
特に孔径がφ0.30mm〜φ0.60mm程度のトップソリッド・ダイヤモンドドリルでは、多結晶焼結ダイヤモンドの製造工程において、現在の超硬合金基材との一体焼結の技術水準からは、ドリル長のL寸法は焼結ダイヤモンド81部分と基材金属部82を含めても約7mmの長さが限界とされていた。
【0009】
【課題を解決するための手段】
本発明は、上記極細深孔加工用のダイヤモンドドリルの問題及び従来技術での課題に対し、超硬合金素材の圧粉体基材上に、ダイヤモンドパウダー圧粉体を積層し、これを高温高圧下で処理して超硬合金一体焼結型の多結晶ダイヤモンド基板を製作し、この形成された前記一体焼結基板からの材料取りとして、基板を格子状に切断する際に、少なくとも多結晶焼結ダイヤモンド基板表面のX・Y軸方向のどちらか一方に、入刀方向にθ=30°〜85°の任意の傾斜角度を持たせて厚み方向を斜め切断することにより、対向する一対の切断面が平行となる細長棒状のダイヤモンドドリル成形ブランクを得て、この細長棒状の加工ブランク材料を用いてドリル長(L寸法)が7mm以上の細長ロングタイプのトップソリッド・ダイヤモンドドリルを製造するものである。
【0010】
この時、超硬合金との一体焼結による多結晶ダイヤモンドの製造工程により得られる基板を格子状に切断する際、切断入刀方向に傾斜角度を持たせて厚み方向を斜め切断することが、最終的にドリル長(L寸法)を決定することとなる。つまり、前記焼結された素材基板をただ単に基板平面に対し垂直方向に切断するのではなく、少なくとも基板表面のX・Y軸方向のどちらか一方に、基板平面に対し入刀角度としてθ=30°〜85°の任意の傾斜角度を持たせて、厚み方向を斜め切断することにより、仮に基板の厚みをtとした時、ドリル長(L寸法)は、L=t/Cosθの細長棒状ダイヤモンドドリル成形体ブランクを得ることができる。
【0011】
但し、傾斜角がθ=30°以下である場合は、斜め切断によるドリル長(L寸法)に対する寄与効果がほとんど期待できず、またθ=85°以上になると、極細径の直径φ0.3mmの超硬合金の切削工具としての材質強度が不足する恐れがあるため、好ましくない。
【0012】
前記のドリル成形体ブランクを二次加工することにより、多結晶焼結ダイヤモンドを先端に有する細棒状ドリルの外観形状が、例えば例として、ドリル先端部に角錐状又は多段の先端角を持たせた略砲弾型角錐形状で、かつ一体焼結の金属基材が細長の三角柱以上の多角柱であるものや、また別の例としては螺旋状の溝部とランド部を有し、且つそれらが螺旋のねじれ角を有する円筒側面溝付のドリル形状で、かつ先端刃先部が先端角を有するストレート又はアンダーカットタイプ形状等に加工された焼結ダイヤモンドチップを先端に有するものなどの、これら細長ロングタイプのトップソリッド・ダイヤモンドドリルが容易に製造できる。
【0013】
また、前記多結晶焼結ダイヤモンド材料の代わりに、超硬合金と一体焼結する硬質素材として多結晶キュービック・ボロン・ナイトライド(PCBN焼結体)を用いて、同様なトップソリッドの孔明け用ドリルを作成してもよく、また本発明の趣旨を逸脱しない範囲内で、一体焼結に適した超硬合金等の基材組成を変えて組み合わせてもよい。
【0014】
【実施例1】
以下、本発明の製造工程の一実施例について、図面を参照しながら説明する。
図5(a)に示す円盤状のものは、超硬合金一体焼結により得られた多結晶焼結ダイヤモンド基板であり、超硬合金素材(WC)の圧粉体基材上にダイヤモンドパウダー圧粉体を積層し、これを高温高圧下で処理して一体焼結素材基板50を得る。この形成された一体焼結素材基板50の大きさは、外径約φ60mm、厚み方向は焼結ダイヤモンド層51と超硬合金層52を合わせて約7mm厚である。
【0015】
次に、図5(b)に示すように、前記一体焼結素材基板50を細棒状ドリルの材料取りのため、細かく格子状に切断する。この時、少なくとも多結晶焼結ダイヤモンド基板表面のX・Y軸方向のどちらか一方に、入刀角度θ=30°〜85°の任意の傾斜角度θを持たせて厚み方向を斜めに切断する。
【0016】
これにより同図(c)のように一本一本に分け、同図(d)に示すような細棒形状である、対向する一対の切断面が平行となる細長棒状のダイヤモンドドリル成形ブランク105が得られる。
【0017】
さらに詳細に説明すると、例えば図6に示すように、基板の板厚が約t=7mmで、前記切断の入刀傾斜角をθ=55°とした場合は、ドリル成形ブランク106として有効なドリル長(L寸法)は、切断ロスを含めてもL=約12mmとなり、また同様に仮に傾斜角をθ=70°とした場合には、L=約20mmとなり、従来のドリル長(L寸法)の限界長さの3倍近いロングサイズの成形ブランク取りが可能となる。
【0018】
次に、この細長棒状のドリル成形ブランクを用いて、四角柱タイプのダイヤモンドドリルを製作する一例を示す。まず前記切断した細長棒状のドリル成形ブランクを、正四角柱となる各側面の寸法形状に研削・研磨加工により整え、さらに多結晶焼結ダイヤモンド側の先端部を、図1に示す多段の先端角を有する略砲弾形状に加工し、ダイヤモンドドリル主軸部分10を作成する。
【0019】
これを円筒状の金属シャンク5端部にロー付け固定することにより、図2に示す外観形状の、ドリル長(L寸法)が約20mmの細長ロングサイズのトップソリッドのダイヤモンドドリル20が完成する。
【0020】
なお、ここで示す図1は、本発明の一実施例におけるダイヤモンドドリルの刃先端部分の拡大斜視図であり、1は多結晶焼結ダイヤモンド部分、2は角柱ドリル主要部の金属基材となる超硬合金(タングステンカーバイト:WC)部分、また3は一体焼結による接合部境界線、4はドリル先端の切れ刃部となる多段の先端角を配した略砲弾型角錐部分をそれぞれ示し、図2は、実際に孔加工に用いられる金属シャンク5部品に前記焼結体をロー付け固定したダイヤモンドドリル20完成品の概略斜視図を示すものである。
【0021】
また、図2におけるダイヤモンドドリル20完成品は、ダイヤモンドドリル主軸部分10のドリル長(L寸法)が傾斜角をθ=70°とした場合は、L=約20mmとなり、このダイヤモンドドリル20を用いて細孔加工をすることにより、従来のドリル長(L寸法)の限界長さの2倍以上の深孔加工をすることができるようになる。
【0022】
【実施例2】
次に、実施例1と同様な基板切断工程により得られた細長棒状のダイヤモンドドリル成形ブランクを用いて、別の外観形状を有するダイヤモンドドリルを作成する工程を説明する。ここでは前述基板製造に関する内容の説明は省略するが、前記同様、図7に示すように、切断の入刀傾斜角をθ=75°として、ドリル成形基材としての有効なドリル長をL=約25mm、とした成形ブランク107を切断により得る。
【0023】
この細長棒状のドリル成形ブランク107を用いて、螺旋溝付のダイヤモンドドリルを製作する一例を以下に示す。まず前記切断した細長棒状のドリル成形ブランク107は、真円状の円柱となるように各対角部を研削・研磨、又は放電加工等により円筒形状に整え、さらに多結晶焼結ダイヤモンドの先端部を含むドリル円筒側面部分を、螺旋溝付のドリル形状に加工し、図3に示すダイヤモンドドリル主軸部30を作成する。
【0024】
これにより多結晶焼結ダイヤモンドを先端部に有する細棒状ドリルの外観形状は、図3の六面図に示すように、螺旋状の溝部34とランド部35を有し、且つそれらが螺旋のねじれ角を有する円筒側面溝付のドリル形状となり、先端刃先部の多結晶焼結ダイヤモンド31には、先端角を有するストレート又はアンダーカットタイプ形状等に加工された先端切れ刃形状を付加することも可能である。
【0025】
これを円筒状の金属シャンク端部にロー付け固定することにより、図4に示す外観形状の、ドリル長(L寸法)が20mm以上の細長超ロングタイプの螺旋溝付のトップソリッド・ダイヤモンドドリル40が完成する。
【0026】
なお、ここで示す図3は、本発明の他の一実施例におけるダイヤモンドドリルの刃先端部分の拡大六面図であり、31は多結晶焼結ダイヤモンド部分、32は円柱ドリル主要部の金属基材となる超硬合金(タングステンカーバイト:WC)部分、また33は一体焼結による接合部境界線、36はドリル先端部となる先端角を有するストレート又はアンダーカットタイプ形状等に加工された先端切れ刃部分をそれぞれ示し、図4は、実際に加工に用いられる金属シャンク5部品に前記焼結体のドリル主軸部分30をロー付け固定したトップソリッドのダイヤモンドドリル40完成品の概略側面図を示すものである。
【0027】
また実際に完成した前記φ0.3mm径のダイヤモンドドリル40を用いての孔明け加工は、図4に示す金属シャンク5部分を孔明け加工機側回転軸のコレットチャック台座に取付けて、加工機側の回転中心の芯出し位置調整を行い、加工試料としてシリコン単結晶(100)面、100mm角×厚さ16.0mmの基板中央部分に約2000個の孔明け加工を連続して繰り返し行い、評価を行った。
【0028】
孔明け加工が終了した前記シリコン単結晶基板について実測評価検査を行ったところ、1番目から1000番目の加工したそれぞれの孔径を測定した結果、初期の1番目孔径から100番目、200番目、300番目、‥‥、900番目、1000番目の各100番間隔での孔径変化は、径寸法公差で設定値±1μm以下の寸法バラツキ範囲であり、1000番目〜2000番目までの孔径及び形状にも大きな変化は見られず、最後まで孔の状態は安定していた。また同時に、ダイヤモンドドリル先端部においても、ドリル先端形状、及び径寸法に大きな変化は見られず、最後まで安定した孔明け性能を維持していた。
【0029】
【発明の効果】
以上説明したように、本発明の一体焼結型のダイヤモンドドリルの製造方法(請求項6)においては、超硬合金素材の圧粉体基材上に、ダイヤモンドパウダー圧粉体を積層し、これを高温高圧下で処理して超硬合金一体焼結型の多結晶ダイヤモンド基板を製作し、この形成された前記一体焼結基板からの材料取りとして、基板を格子状に切断する際、少なくとも多結晶焼結ダイヤモンド基板表面のX・Y軸方向のどちらか一方に、入刀方向にθ=30°〜85°の任意の傾斜角度を持たせて厚み方向を斜め切断することにより、対向する一対の切断面が平行となる細長棒状のダイヤモンドドリル成形ブランクを得て、この前記細長棒状の成形ブランク材料を用いてダイヤモンドドリルの外観形状を形成することにより、ドリル長(L寸法)が10mm以上の、従来にないロングサイズのトップソリッド・ダイヤモンドドリルを得ることができる。
【0030】
また、本発明のダイヤモンドドリル(請求項1)では、多結晶焼結ダイヤモンドを切削加工用ドリル先端に配した超硬合金一体焼結によるトップソリッド・ダイヤモンドドリルにおいて、多結晶焼結ダイヤモンドのダイヤチップ部分が、ドリル先端部からドリル首下方向(ドリル径の中心軸他端方向)に、かつ中心軸に対し傾斜角を持たせた切断面で区切られた一体焼結金属基材との接合面を境に、ドリル先端から首下方向の前記接合面に架けてのドリル長の中間部分で、斜め領域部分を配置したロングサイズのダイヤモンドドリルを提供することができる。
【0031】
また、本発明のダイヤモンドドリル(請求項2)では、多結晶焼結ダイヤモンドを先端に有する細棒状ドリルの外観形状が、ドリル先端部に角錐状又は多段の先端角を持たせた略砲弾型角錐形状であり、かつ一体焼結の金属基材が細長の三角柱以上の多角柱であるロングサイズのダイヤモンドドリルを提供することができる。
【0032】
また、本発明のダイヤモンドドリル(請求項3)では、多結晶焼結ダイヤモンドを先端に有する細棒状ドリルの外観形状が、螺旋状の溝部とランド部、及びねじれ角を有する円筒溝付のドリル形状であり、かつ先端刃先部が先端角を有するストレート又はアンダーカットタイプ形状等に加工された焼結ダイヤモンドチップを先端部に有するロングサイズのダイヤモンドドリルを提供することができる。
【0034】
また本発明は、前記のような極小径の孔加工技術に用いられる専用の精密切削工具として、超硬材料、シリコン単結晶材料、及びセラミックス材料などの難加工硬質材料に、極小径の深孔の孔明け加工を施すための細長ロングサイズのダイヤモンドドリルを提供することができ、コストパフォーマンスと耐摩耗性に優れたトップソリッドのダイヤモンドドリルが実現できる。
【図面の簡単な説明】
【図1】本発明におけるダイヤモンドドリルの一例を示す先端部分の拡大斜視図。
【図2】本発明におけるダイヤモンドドリルの使用形態の一例を示す外観概略図。
【図3】本発明におけるダイヤモンドドリルの他の一例を示す先端部分の拡大六面図。
【図4】本発明におけるダイヤモンドドリルの使用形態の他の一例を示す外観概略図。
【図5】本発明におけるダイヤモンドドリルの製造工程の一部を説明する模式図。
【図6】本発明におけるダイヤモンドドリルの製造における切断工程を説明する模式図。
【図7】本発明におけるダイヤモンドドリルの製造における切断工程を説明する模式図。
【図8】従来の螺旋溝形状を有するトップソリッド型ダイヤモンドドリルの一例を示す側面図。
【符号の説明】
1、31、51、81 多結晶焼結ダイヤモンド
2、32、52、82 超硬合金
3、33、53、83接合部境界
4、36 切れ刃部
5 シャンク
34 溝部
35 ランド部
105、106、107 ドリル成形ブランク
[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a precision cutting tool used for extremely small-diameter hole drilling technology, and more specifically, to a hard-to-machine hard material such as a super hard material, a silicon single crystal material, and a ceramic material. The present invention relates to a top solid type diamond drill for performing a dawn process.
[0002]
[Prior art and problems]
Conventionally, in this type of cutting tool for hard materials, in metal processing, titanium carbide / nitriding such as TiC, TiN, etc. on the surface of the drill region of a drill base material made of a metal material having a general spiral groove In the processing of glass, ceramics, etc., diamond abrasive grains are electrodeposited and applied to the surface of a metal tool, and a hard film of DLC (diamond-like carbon) formed by a film forming method such as ion plating. Alternatively, a diamond tool in which diamond abrasive grains are baked and hardened on a metal tool surface with a resin or the like to form a grindstone portion (hereinafter, a diamond tool having diamond abrasive grains fixed to the metal tool surface is referred to as a diamond tool).
[0003]
A common problem required for these various cutting tools is to first improve the wear resistance, that is, to extend the life of the tip life cycle. The most representative one improved for that purpose is a “diamond drill” that can be used for various applications regardless of the material of the workpiece.
[0004]
This is used as a drill shape by attaching a sintered chip of polycrystalline diamond to a cutting tool cutting edge portion of a drill base material made of a metal material. As a result, the diamond drill using the polycrystalline sintered diamond as a cutting tool for drilling silicon, carbon, ceramics, etc. due to the excellent characteristics such as hardness, wear resistance, and thermal conductivity of the polycrystalline sintered diamond. Is attracting attention.
[0005]
Generally, the diamond drill is effective not only for drilling light alloys such as aluminum as a cutting tool but also for composite materials such as glass, epoxy resin, and printed circuit boards. Developed exclusively for drilling holes in difficult-to-work materials such as cemented carbide, sapphire single crystal, zirconia ceramics, etc., so-called polycrystalline sintered diamond chips are attached to the tip. The “top solid diamond drill” was gradually put into practical use and is now in use.
[0006]
More recently, with the demand for micro-machining technology for ultra-precision parts indispensable for etching equipment used in semiconductor manufacturing processes, the demand for drills for ultra-fine diameter drilling with higher precision, higher speed, and longer life has increased. It is also being applied to difficult-to-work materials such as silicon electrode plate parts of the etching apparatus.
[0007]
However, at present, when the thickness of a substrate such as a silicon electrode plate is 10 mm or more, the main spindle tool side to be machined, such as the top solid diamond drill with a shank currently on the market shown in FIG. The drill length (L dimension of the drilling effective portion) is short, the length is insufficient, and the deep hole machining dimension is limited.
[0008]
Especially in the case of top solid diamond drills with a hole diameter of about φ0.30mm to φ0.60mm, in the manufacturing process of polycrystalline sintered diamond, the drill length is The L dimension was limited to a length of about 7 mm including the sintered diamond 81 portion and the base metal portion 82.
[0009]
[Means for Solving the Problems]
In response to the above-mentioned problem of the diamond drill for processing ultrafine deep holes and the problems in the prior art, the diamond powder green compact is laminated on the green compact base material of the cemented carbide material, and this is subjected to high temperature and high pressure. When the substrate is cut into a lattice shape as a material removal from the formed integrally sintered substrate, at least a polycrystalline sintered substrate is manufactured. A pair of cuts facing each other by obliquely cutting in the thickness direction with an arbitrary inclination angle of θ = 30 ° to 85 ° in the blade direction on one of the X and Y axis directions on the surface of the diamond substrate An elongated rod-shaped diamond drill forming blank with parallel surfaces is obtained, and an elongated long type top solid diamond drill with a drill length (L dimension) of 7 mm or more is manufactured using this elongated rod-shaped blank material. It is intended.
[0010]
At this time, when cutting the substrate obtained by the manufacturing process of polycrystalline diamond by integral sintering with the cemented carbide in a lattice shape, it is possible to obliquely cut the thickness direction with an inclination angle in the cutting blade direction, Finally, the drill length (L dimension) is determined. In other words, the sintered material substrate is not simply cut in a direction perpendicular to the substrate plane, but at least in one of the X and Y axis directions of the substrate surface as an insertion angle with respect to the substrate plane, θ = By giving an arbitrary inclination angle of 30 ° to 85 ° and obliquely cutting the thickness direction, assuming that the thickness of the substrate is t, the drill length (L dimension) is an elongated rod shape with L = t / Cosθ A diamond drill compact blank can be obtained.
[0011]
However, when the inclination angle is θ = 30 ° or less, the contribution effect to the drill length (L dimension) by oblique cutting can hardly be expected, and when θ = 85 ° or more, the ultrafine diameter of φ0.3 mm This is not preferable because the material strength of the cemented carbide cutting tool may be insufficient.
[0012]
By externally processing the drill molded body blank, the external shape of the thin rod-shaped drill having polycrystalline sintered diamond at the tip is, for example, a pyramidal or multi-step tip angle at the tip of the drill. It has a substantially bullet-shaped pyramid shape, and the integrally sintered metal base is a polygonal prism that is longer than a long triangular prism, and as another example, has a spiral groove and a land, and these are spiral These elongated long types, such as those with a sintered diamond tip at the tip, which is drilled with a cylindrical side groove with a twist angle and the tip edge is processed into a straight or undercut type shape with a tip angle, etc. A top solid diamond drill can be easily manufactured.
[0013]
In addition, instead of the polycrystalline sintered diamond material, polycrystalline cubic boron nitride (PCBN sintered body) is used as a hard material to be sintered integrally with cemented carbide, and the same top solid is drilled. A drill may be created, and a base material composition such as cemented carbide suitable for integral sintering may be changed and combined within a range not departing from the gist of the present invention.
[0014]
[Example 1]
Hereinafter, an embodiment of the production process of the present invention will be described with reference to the drawings.
The disk shape shown in FIG. 5 (a) is a polycrystalline sintered diamond substrate obtained by cemented cemented carbide integrated sintering, and the diamond powder pressure is applied on the powdered compact substrate of cemented carbide (WC). The powders are stacked and processed under high temperature and high pressure to obtain an integrally sintered material substrate 50. The formed integrally sintered material substrate 50 has an outer diameter of about 60 mm and a thickness direction of about 7 mm including the sintered diamond layer 51 and the cemented carbide layer 52.
[0015]
Next, as shown in FIG. 5 (b), the integrally sintered material substrate 50 is finely cut into a lattice shape in order to remove the material of the thin rod-shaped drill. At this time, at least one of the X and Y axis directions on the surface of the polycrystalline sintered diamond substrate is provided with an arbitrary inclination angle θ of 30 ° to 85 °, and the thickness direction is cut obliquely. .
[0016]
As a result, it is divided into individual ones as shown in FIG. 1C, and is formed into a thin rod shape as shown in FIG. Is obtained.
[0017]
More specifically, for example, as shown in FIG. 6, when the board thickness is about t = 7 mm and the cutting inclination angle of the cutting is θ = 55 °, a drill effective as a drill forming blank 106 is used. The length (L dimension) is about 12 mm including the cutting loss. Similarly, if the inclination angle is θ = 70 °, L = about 20 mm, and the conventional drill length (L dimension). It becomes possible to take a molding blank of a long size close to three times the limit length.
[0018]
Next, an example of producing a square pillar type diamond drill using this elongated rod-shaped drill forming blank will be described. First, the cut long and narrow rod-shaped blank is prepared by grinding / polishing to the shape of each side to be a regular square column, and the tip of the polycrystalline sintered diamond side has the multi-step tip angle shown in FIG. The diamond drill main shaft portion 10 is formed by processing into a substantially shell shape having the same.
[0019]
By fixing this to the end of the cylindrical metal shank 5 by brazing, a long solid top solid diamond drill 20 having a drill length (L dimension) of about 20 mm and having the appearance shown in FIG. 2 is completed.
[0020]
FIG. 1 shown here is an enlarged perspective view of the tip portion of a diamond drill in one embodiment of the present invention, wherein 1 is a polycrystalline sintered diamond portion, and 2 is a metal base of a prismatic drill main portion. Cemented carbide (tungsten carbide: WC) part, 3 is a joint boundary line by integral sintering, 4 is a substantially bullet-shaped pyramid part with multi-stage tip angle that becomes the cutting edge part of the drill tip, FIG. 2 is a schematic perspective view of a finished product of the diamond drill 20 in which the sintered body is brazed and fixed to five metal shank parts that are actually used for drilling.
[0021]
Further, the finished product of the diamond drill 20 in FIG. 2 is L = about 20 mm when the drill length (L dimension) of the main part 10 of the diamond drill is θ = 70 °, and this diamond drill 20 is used. By drilling the pores, it becomes possible to perform deep hole machining more than twice the limit length of the conventional drill length (L dimension).
[0022]
[Example 2]
Next, a process of creating a diamond drill having another external shape using an elongated rod-shaped diamond drill forming blank obtained by the same substrate cutting process as in Example 1 will be described. Here, description of the contents related to the substrate manufacturing is omitted, but as described above, as shown in FIG. 7, the cutting inclination angle of cutting is θ = 75 °, and the effective drill length as a drill forming base material is L = A molding blank 107 having a size of about 25 mm is obtained by cutting.
[0023]
An example of manufacturing a diamond drill with a spiral groove using this elongated rod-shaped drill forming blank 107 is shown below. First, the cut elongated rod-shaped drill-shaped blank 107 is prepared such that each diagonal portion is formed into a cylindrical shape by grinding, polishing, electric discharge machining or the like so as to be a perfect circular cylinder, and further, the tip of polycrystalline sintered diamond 3 is processed into a drill shape with a spiral groove to create a diamond drill spindle 30 shown in FIG.
[0024]
As a result, as shown in the hexahedral view of FIG. 3, the external shape of the thin rod-shaped drill having polycrystalline sintered diamond at the tip portion has a spiral groove portion 34 and a land portion 35 , and these are spiral twists. become drill shape with cylindrical side surface groove having a square, the polycrystalline sintered diamond 31 of the distal cutting edge, it is also possible to add the processed leading cutting edge shape straight or undercut type shape having a tip angle It is.
[0025]
This is fixed to the end of the cylindrical metal shank by brazing, so that a top solid diamond drill 40 with a spiral groove of a long and ultra long type with a drill length (L dimension) of 20 mm or more is shown in Fig. 4. Is completed.
[0026]
FIG. 3 shown here is an enlarged hexahedral view of a diamond drill blade tip portion in another embodiment of the present invention, 31 is a polycrystalline sintered diamond portion, and 32 is a metal base of a cylindrical drill main portion. Cemented carbide (tungsten carbide: WC) part as a material, 33 is a joint boundary line by integral sintering, 36 is a tip processed into a straight or undercut type shape with a tip angle serving as a drill tip FIG. 4 shows a schematic side view of a finished product of a top solid diamond drill 40 in which a drill main shaft portion 30 of the sintered body is brazed and fixed to five metal shank parts actually used for processing. Is.
[0027]
Further, in the drilling using the diamond drill 40 having a diameter of 0.3 mm which is actually completed, the metal shank 5 shown in FIG. 4 is attached to the collet chuck pedestal of the rotary shaft on the drilling machine side, and the processing machine side The centering position of the center of rotation is adjusted, and about 2000 holes are drilled continuously in the center of the substrate of silicon single crystal (100) surface, 100mm square x 16.0mm thickness as a processed sample, and evaluated. went.
[0028]
As a result of measuring and evaluating the silicon single crystal substrate after the drilling process was completed, each of the first to 1000th processed hole diameters was measured. As a result, the 100th, 200th, and 300th positions from the initial 1st hole diameter were measured. , ... The change in the hole diameter at the 100th interval of the 900th and 1000th is within the size variation range of the set value ± 1 μm or less in the dimensional tolerance, and the hole diameter and shape from the 1000th to the 2000th are also greatly changed Was not seen, and the state of the hole was stable until the end. At the same time, there was no significant change in the shape and diameter of the drill tip at the diamond drill tip, and stable drilling performance was maintained until the end.
[0029]
【The invention's effect】
As described above, in the method of manufacturing an integrally sintered diamond drill according to the present invention (Claim 6), the diamond powder compact is laminated on the compact base material of the cemented carbide material. Is processed under high temperature and high pressure to produce a cemented carbide integrated sintered type polycrystalline diamond substrate, and as a material removal from the formed integrally sintered substrate, at least when the substrate is cut into a lattice shape, A pair of opposing surfaces by obliquely cutting in the thickness direction with an arbitrary inclination angle of θ = 30 ° to 85 ° in the insertion direction on either one of the X and Y axis directions of the surface of the crystal sintered diamond substrate An elongated rod-shaped diamond drill molding blank having a parallel cutting plane is formed, and the outer shape of the diamond drill is formed using the elongated rod-shaped molding blank material, so that the drill length (L dimension) is 10 mm or more. , It is possible to obtain a top solid diamond drill of unprecedented long size.
[0030]
In the diamond drill of the present invention (Claim 1), the diamond tip of the polycrystalline sintered diamond in the top solid diamond drill by cemented carbide cemented sintering in which the polycrystalline sintered diamond is arranged at the tip of the cutting drill. Joint surface with the integrally sintered metal base, where the section is divided from the drill tip to the bottom of the drill neck (to the other end of the center axis of the drill diameter) and with an angle of inclination with respect to the center axis Thus, it is possible to provide a long-sized diamond drill in which an oblique region portion is disposed at an intermediate portion of the drill length extending from the drill tip to the joint surface in the neck-down direction.
[0031]
Further, in the diamond drill of the present invention (Claim 2), the external shape of the thin rod-shaped drill having polycrystalline sintered diamond at the tip is a substantially bullet-shaped pyramid having a drill tip or a multi-step tip angle at the tip of the drill. It is possible to provide a long-sized diamond drill that has a shape and a monolithic sintered metal base material that is a polygonal column that is equal to or more than an elongated triangular column.
[0032]
Further, in the diamond drill of the present invention (Claim 3), the external shape of the thin rod-shaped drill having polycrystalline sintered diamond at the tip is a drill shape with a cylindrical groove having a spiral groove portion and a land portion and a helix angle. In addition, it is possible to provide a long-sized diamond drill having a sintered diamond tip processed into a straight or undercut type shape or the like having a tip angle at the tip edge.
[0034]
In addition, the present invention is a special precision cutting tool used in the above-described extremely small-diameter hole drilling technology, such as super hard materials, silicon single crystal materials, and hard-to-machine hard materials such as ceramic materials. It is possible to provide a long and thin diamond drill for drilling a large number of holes, and a top solid diamond drill with excellent cost performance and wear resistance can be realized.
[Brief description of the drawings]
FIG. 1 is an enlarged perspective view of a tip portion showing an example of a diamond drill according to the present invention.
FIG. 2 is a schematic external view showing an example of how the diamond drill is used in the present invention.
FIG. 3 is an enlarged six-side view of a tip portion showing another example of a diamond drill according to the present invention.
FIG. 4 is a schematic external view showing another example of how the diamond drill is used in the present invention.
FIG. 5 is a schematic diagram for explaining a part of the manufacturing process of the diamond drill in the present invention.
FIG. 6 is a schematic diagram for explaining a cutting process in manufacturing a diamond drill according to the present invention.
FIG. 7 is a schematic diagram for explaining a cutting step in manufacturing a diamond drill according to the present invention.
FIG. 8 is a side view showing an example of a conventional top solid type diamond drill having a spiral groove shape.
[Explanation of symbols]
1, 31, 51, 81 Polycrystalline sintered diamond
2, 32, 52, 82 Cemented carbide
3, 33, 53, 83 junction boundary
4, 36 Cutting edge
5 Shank
34 Groove
35 Land
105, 106, 107 Drilling blank

Claims (5)

多結晶焼結ダイヤモンドを切削加工用ドリル先端に配した超硬合金一体焼結によるトップソリッド・ダイヤモンドドリルにおいて、多結晶焼結ダイヤモンドのダイヤチップ部分が、ドリル先端部からドリル首下方向(ドリル径の中心軸他端方向)に、かつ前記中心軸に対し傾斜角を持たせた切断面で区切られた一体焼結金属基材との接合面を境に、ドリル先端から首下方向の前記接合面に架けてのドリル長の中間部分で、斜め混在領域部分を配置したことを特徴とするダイヤモンドドリル。  In a top solid diamond drill with cemented carbide cemented with polycrystalline sintered diamond at the tip of the cutting drill, the diamond tip of the polycrystalline sintered diamond moves from the drill tip to the drill neck (drill diameter). In the direction of the other end of the central axis of the drill) and the joint from the tip of the drill to the neck down from the joint surface with the integrally sintered metal substrate divided by a cut surface having an inclination angle with respect to the central axis. A diamond drill characterized in that a diagonal mixed region is placed in the middle of the drill length across the surface. 多結晶焼結ダイヤモンドを先端に有する細棒状ドリルの外観形状が、ドリル先端部に角錐状又は多段の先端角を持たせた略砲弾型角錐形状であり、かつ一体焼結の金属基材が細長の三角柱以上の多角柱であることを特徴とする請求項1記載のダイヤモンドドリル。  The external shape of a thin rod-shaped drill with polycrystalline sintered diamond at the tip is a pyramid shape with a drill tip or multi-step tip angle at the tip of the drill, and an integrally sintered metal base is elongated. The diamond drill according to claim 1, wherein the diamond drill is a polygonal cylinder having a triangular prism or more. 多結晶焼結ダイヤモンドを先端に有する細棒状ドリルの外観形状が、螺旋状の溝部とランド部を有し、且つそれらが螺旋のねじれ角を有する円筒側面溝付のドリル形状であり、かつ先端刃先部が先端角を有するストレート又はアンダーカットタイプ形状等に加工された焼結ダイヤモンドチップであることを特徴とする請求項1記載のダイヤモンドドリル。The external shape of the thin rod-shaped drill having polycrystalline sintered diamond at the tip is a drill shape with a cylindrical side groove having a spiral groove and a land , and having a helical twist angle, and the tip of the tip 2. The diamond drill according to claim 1, wherein the portion is a sintered diamond tip processed into a straight or undercut type shape having a tip angle. 前記多結晶焼結ダイヤモンド材料の代わりに、焼結ボロンナイトライドを用いたことを特徴とする請求項1〜4のいずれかに記載のダイヤモンドドリル。The diamond drill according to any one of claims 1 to 4, wherein sintered boron nitride is used instead of the polycrystalline sintered diamond material. 超硬合金素材の圧粉体基材上に、ダイヤモンドパウダー圧粉体を積層し、これを高温高圧下で処理して超硬合金一体焼結型の多結晶ダイヤモンド基板を製作し、この形成された前記一体焼結基板からの材料取りとして、基板を格子状に切断する際に、少なくとも多結晶焼結ダイヤモンド基板表面のX・Y軸方向のどちらか一方に、入刀方向にθ=30°〜85°の任意の傾斜角度を持たせて厚み方向を斜め切断することにより、対向する一対の切断面が平行となる細長棒状のダイヤモンドドリル成形ブランクを得て、この前記細長棒状の加工ブランク材料を用いてトップソリッド・ダイヤモンドドリルの前記請求項1〜4のいずれかに記載の外観形状を成形することを特徴とするダイヤモンドドリルの製造方法。A diamond powder compact is laminated on a cemented carbide substrate, and this is processed under high temperature and pressure to produce a cemented carbide integrated sintered polycrystalline diamond substrate. Further, as material removal from the integrally sintered substrate, when the substrate is cut into a lattice shape, at least one of the X and Y axis directions of the polycrystalline sintered diamond substrate surface is θ = 30 ° in the insertion direction. An elongated rod-shaped diamond drill forming blank in which a pair of opposed cut surfaces are parallel is obtained by obliquely cutting the thickness direction with an arbitrary inclination angle of ˜85 °, and this elongated rod-shaped processing blank material A method for producing a diamond drill, comprising: forming an external shape according to any one of claims 1 to 4 of a top solid diamond drill.
JP36864799A 1999-12-27 1999-12-27 Diamond drill and manufacturing method thereof Expired - Fee Related JP4348583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36864799A JP4348583B2 (en) 1999-12-27 1999-12-27 Diamond drill and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36864799A JP4348583B2 (en) 1999-12-27 1999-12-27 Diamond drill and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001179517A JP2001179517A (en) 2001-07-03
JP4348583B2 true JP4348583B2 (en) 2009-10-21

Family

ID=18492374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36864799A Expired - Fee Related JP4348583B2 (en) 1999-12-27 1999-12-27 Diamond drill and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4348583B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
MX2009003114A (en) 2006-10-25 2009-06-08 Tdy Ind Inc Articles having improved resistance to thermal cracking.
US7846551B2 (en) * 2007-03-16 2010-12-07 Tdy Industries, Inc. Composite articles
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
JP5914446B2 (en) * 2012-10-30 2016-05-11 株式会社アライドマテリアル Cutting tool and workpiece machining method using the same
IL231751A (en) * 2014-03-27 2016-08-31 Tel Hashomer Medical Res Infrastructure & Services Ltd Medical device for tissue removal
KR101990013B1 (en) * 2019-01-16 2019-06-17 김멋진 Cutting Blade and Cutting Device using the same

Also Published As

Publication number Publication date
JP2001179517A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
KR101280880B1 (en) Cutting inserts and methods for producing the same
JP4782672B2 (en) Indexable cutting insert and method of manufacturing the cutting insert
KR20010109295A (en) Method for forming a superabrasive polycrystalline cutting tool with an intergral chipbreaker feature
JP2008509822A (en) Indexable cutting insert and method for manufacturing the same
US5123217A (en) Drill for use in drilling hard and brittle materials
JP2001300813A (en) Ball end mill
KR20020064933A (en) Composite rotary tool and tool fabrication method
KR20080047433A (en) Cutting tool
JPH0234726B2 (en)
CN102438781A (en) Method to attach or improve the attachment of articles
JP4348583B2 (en) Diamond drill and manufacturing method thereof
CN106573314B (en) Cutting tool and method of making a cutting tool
JP3540256B2 (en) Drill with single crystal diamond at its tip
JP5264076B2 (en) Tool insert
JPH08155947A (en) Diamond drill and production thereof
JP2008229836A (en) Cutting tool made of single crystal silicon carbide
JP2004508216A (en) How to produce tool inserts
JP2006255814A (en) Micro rotating tool
JP2004268202A (en) Small diameter end mill
JP7473711B1 (en) Rotary cutting tool and manufacturing method thereof
JP4338881B2 (en) Manufacturing method of composite torsion sintered body
JP2002160112A (en) Drill having polycrystal diamond at its tip
KR100398776B1 (en) Method for manufacturing cutting edge of cutting tool to manufacture boll-seat in piston of car compressor
CN209521112U (en) A kind of polycrystalline diamond process tool
JP3540250B2 (en) Drill with single crystal diamond at its tip

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees