JP2001179517A - Diamond drill and method of manufacturing the same - Google Patents

Diamond drill and method of manufacturing the same

Info

Publication number
JP2001179517A
JP2001179517A JP36864799A JP36864799A JP2001179517A JP 2001179517 A JP2001179517 A JP 2001179517A JP 36864799 A JP36864799 A JP 36864799A JP 36864799 A JP36864799 A JP 36864799A JP 2001179517 A JP2001179517 A JP 2001179517A
Authority
JP
Japan
Prior art keywords
diamond
drill
tip
sintered
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36864799A
Other languages
Japanese (ja)
Other versions
JP4348583B2 (en
Inventor
Kazuo Arai
一男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP36864799A priority Critical patent/JP4348583B2/en
Publication of JP2001179517A publication Critical patent/JP2001179517A/en
Application granted granted Critical
Publication of JP4348583B2 publication Critical patent/JP4348583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a long diamond drill as a precision cutting tool used in the boring technique of minimum diameter, capable of forming a deep bore of minimum diameter of above 10 mm onto a hard material difficult in working such as a hard metal material, a silicon monocrystalline material and a ceramics material. SOLUTION: A diamond powder green compact is laminated on a green compact base material of a hard metal material, and treated under high temperature and high pressure to manufacture a hard metal integrally sintered- polycrystalline diamond board, and the board is cut in lattice as the cutting-out work of the material from the obtained integrally sintered-board in a state that the board is cut in the thickness direction with an arbitrary inclination angle of θ=30 deg.-85 deg. in the cutter inserting direction in one of the X.Y axial direction of at least the polycrystalline sintered-diamond board surface, whereby obtaining a long diamond drill shaped-blank having a pair of cutting faces opposite to each other and completing the top solid diamond drill by using this long rod-shaped worked blank material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、極小径の孔加工技術に
用いられる精密切削工具に関するもので、詳しくは、超
硬材料、シリコン単結晶材料、及びセラミックス材料な
どの難加工硬質材料に、極小径の深孔の孔明け加工を施
すためのトップソリッド型のダイヤモンドドリルに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precision cutting tool used for a technology for drilling a hole having a very small diameter, and more particularly to a hard material such as a super hard material, a silicon single crystal material, and a ceramic material. The present invention relates to a top solid type diamond drill for drilling a very small diameter deep hole.

【0002】[0002]

【従来の技術および課題】従来、この種の硬質材料用切
削工具には、金属加工においては、一般的な螺旋溝を有
する金属素材からなるドリル母材の刃部領域表面等に、
TiC、TiN等のチタン系炭化物・窒化物、及びDLC
(ダイヤモンドライクカーボン)の硬質皮膜をイオンプ
レーティング等の成膜方法により形成させたもの、ある
いはガラス・セラミックス等の加工においては、ダイヤ
モンド砥粒を金属素材工具表面に電着塗布、又はダイヤ
モンド砥粒を金属工具表面に樹脂等で焼き固め、砥石部
分を形成したダイヤモンド工具(以下、ダイヤモンド砥
粒を金属工具表面に固着したものをダイヤモンド工具と
いう)などが挙げられる。
2. Description of the Related Art Conventionally, a cutting tool for hard materials of this type includes, in metal working, a cutting surface of a drill base material made of a metal material having a general helical groove.
Titanium carbides / nitrides such as TiC and TiN, and DLC
When a hard film of (diamond-like carbon) is formed by a film forming method such as ion plating, or in the processing of glass / ceramics, diamond abrasive grains are electrodeposited on the surface of a metal material tool, or diamond abrasive grains are applied. (Hereinafter referred to as a diamond tool in which diamond abrasive grains are fixed to the surface of a metal tool) formed by baking the surface of a metal tool with a resin or the like to form a grindstone portion.

【0003】これら各種切削工具に求められる共通した
課題は、第一に耐摩耗性を改善すること、つまり先端部
のライフサイクルの長寿命化を狙う傾向にある。その目
的で改良された最も代表的ものは、被加工物の材質を選
ばずに多種多様な用途に用いることができる「ダイヤモ
ンドドリル」である。
A common problem demanded of these various cutting tools is to firstly improve wear resistance, that is, extend the life cycle of the tip portion. The most typical one improved for that purpose is a “diamond drill” that can be used for various purposes without selecting the material of the workpiece.

【0004】これは金属素材からなるドリル母材の切削
工具刃先部分に、多結晶ダイヤモンドの焼結体チップを
取り付けてドリル形状として用いている。これにより多
結晶焼結ダイヤモンドが有する硬度、耐摩耗性、熱伝導
性などの優れた諸特性により、シリコン、カーボン、セ
ラミックス等の孔加工用切削工具として前記多結晶焼結
ダイヤモンドを用いたダイヤモンドドリルが注目されて
いる。
In this method, a sintered body tip of polycrystalline diamond is attached to a cutting tool cutting edge of a drill base material made of a metal material and used in a drill shape. Due to the excellent properties such as hardness, wear resistance and thermal conductivity of polycrystalline sintered diamond, diamond drill using the polycrystalline sintered diamond as a cutting tool for drilling holes in silicon, carbon, ceramics, etc. Is attracting attention.

【0005】一般的に、上記ダイヤモンドドリルは、切
削工具として以前よりアルミなどの軽合金の孔加工ばか
りではなく、ガラス,エポキシ樹脂などの複合材料、及
びプリント基板等の細孔加工にも効果的であることが知
られており、また超硬合金、サファイヤ単結晶、ジルコ
ニアセラミックス等の難加工材への孔加工用途として専
用に開発され、いわゆる、先端部に多結晶焼結ダイヤモ
ンドの焼結体チップが付いた「トップソリッド・ダイヤ
モンドドリル」が除々に実用化され、現在使用されてい
る。
In general, the diamond drill is effective not only as a cutting tool for drilling holes in light alloys such as aluminum, but also for drilling holes in composite materials such as glass and epoxy resin and printed circuit boards. It has been specially developed for use in drilling difficult-to-machine materials such as cemented carbide, sapphire single crystal, and zirconia ceramics. “Top solid diamond drills” with tips are gradually being put into practical use and are currently being used.

【0006】さらに最近では、半導体製造プロセスに用
いられるエッチング装置に必要不可欠な超精密部品のマ
イクロ加工技術の需要に伴って、より高精度で高速、か
つ長寿命の極細径孔明け用ドリルの要望が高まり、前記
エッチング装置のシリコン電極板部品などの難加工材に
対しても、応用されつつある。
[0006] More recently, with the demand for micromachining technology for ultra-precision parts that are indispensable for etching equipment used in semiconductor manufacturing processes, there has been a demand for a drill for drilling a very fine hole with higher precision, higher speed and longer life. And is being applied to difficult-to-machine materials such as silicon electrode plate parts of the etching apparatus.

【0007】しかし現状では、例えばシリコン電極板等
の基板板厚が10mm以上の難加工材料になると、図8に示
す現在市販されているシャンク付のトップソリッド・ダ
イヤモンドドリルのように、切削加工する主軸工具側の
ドリル長(孔明け研削有効部分のL寸法)が短く、長さ
が足りなくなり、深孔加工寸法には限界が生じてくる。
However, at present, when a difficult-to-machine material such as a silicon electrode plate having a substrate thickness of 10 mm or more is used, the material is cut like a currently marketed top solid diamond drill with a shank shown in FIG. The drill length (L dimension of the effective portion for drilling) on the spindle tool side is short, and the length becomes insufficient, and the drilling dimension is limited.

【0008】特に孔径がφ0.30mm〜φ0.60mm程度のトッ
プソリッド・ダイヤモンドドリルでは、多結晶焼結ダイ
ヤモンドの製造工程において、現在の超硬合金基材との
一体焼結の技術水準からは、ドリル長のL寸法は焼結ダ
イヤモンド81部分と基材金属部82を含めても約7mmの長
さが限界とされていた。
In particular, in the case of a top solid diamond drill having a hole diameter of about φ0.30 mm to φ0.60 mm, in the manufacturing process of polycrystalline sintered diamond, from the current technical level of integral sintering with a cemented carbide base material, The L dimension of the drill length was limited to about 7 mm in length including the sintered diamond 81 and the base metal part 82.

【0009】[0009]

【課題を解決するための手段】本発明は、上記極細深孔
加工用のダイヤモンドドリルの問題及び従来技術での課
題に対し、超硬合金素材の圧粉体基材上に、ダイヤモン
ドパウダー圧粉体を積層し、これを高温高圧下で処理し
て超硬合金一体焼結型の多結晶ダイヤモンド基板を製作
し、この形成された前記一体焼結基板からの材料取りと
して、基板を格子状に切断する際に、少なくとも多結晶
焼結ダイヤモンド基板表面のX・Y軸方向のどちらか一
方に、入刀方向にθ=30°〜85°の任意の傾斜角度を持
たせて厚み方向を斜め切断することにより、対向する一
対の切断面が平行となる細長棒状のダイヤモンドドリル
成形ブランクを得て、この細長棒状の加工ブランク材料
を用いてドリル長(L寸法)が7mm以上の細長ロングタ
イプのトップソリッド・ダイヤモンドドリルを製造する
ものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the diamond drill for drilling an ultra-fine deep hole and the problems of the prior art by forming a diamond powder compact on a cemented carbide compact. The body is laminated and processed under high temperature and high pressure to produce a cemented carbide integrated sintered type polycrystalline diamond substrate, and as a material removal from the formed integrated sintered substrate, the substrate is formed into a lattice shape. When cutting, at least one of the X and Y axis directions on the surface of the polycrystalline sintered diamond substrate is inclined obliquely in the thickness direction with an arbitrary inclination angle of θ = 30 ° to 85 ° in the cutting direction. In this way, a long and narrow rod-shaped diamond drill-formed blank in which a pair of opposing cut surfaces are parallel is obtained, and a long and long type top with a drill length (L dimension) of 7 mm or more is obtained using this long and narrow rod-shaped processed blank material. solid It is intended to produce a diamond drill.

【0010】この時、超硬合金との一体焼結による多結
晶ダイヤモンドの製造工程により得られる基板を格子状
に切断する際、切断入刀方向に傾斜角度を持たせて厚み
方向を斜め切断することが、最終的にドリル長(L寸
法)を決定することとなる。つまり、前記焼結された素
材基板をただ単に基板平面に対し垂直方向に切断するの
ではなく、少なくとも基板表面のX・Y軸方向のどちら
か一方に、基板平面に対し入刀角度としてθ=30°〜85
°の任意の傾斜角度を持たせて、厚み方向を斜め切断す
ることにより、仮に基板の厚みをtとした時、ドリル長
(L寸法)は、L=t/Cosθの細長棒状ダイヤモンド
ドリル成形体ブランクを得ることができる。
At this time, when the substrate obtained in the process of producing polycrystalline diamond by integral sintering with a cemented carbide is cut into a lattice, the substrate is cut obliquely in the thickness direction with an angle of inclination in the direction of cutting. This ultimately determines the drill length (L dimension). That is, instead of simply cutting the sintered material substrate in a direction perpendicular to the substrate plane, at least one of the X and Y axis directions of the substrate surface is set as a cutting angle θ = 30 ° ~ 85
°, and the oblique cutting in the thickness direction is performed, and if the thickness of the substrate is t, the drill length (L dimension) is L = t / Cosθ. A blank can be obtained.

【0011】但し、傾斜角がθ=30°以下である場合
は、斜め切断によるドリル長(L寸法)に対する寄与効
果がほとんど期待できず、またθ=85°以上になると、
極細径の直径φ0.3mmの超硬合金の切削工具としての材
質強度が不足する恐れがあるため、好ましくない。
However, when the inclination angle is θ = 30 ° or less, the effect of the oblique cutting on the drill length (L dimension) can hardly be expected, and when θ = 85 ° or more,
It is not preferable because the material strength as a cutting tool of a very small diameter cemented carbide having a diameter of 0.3 mm may be insufficient.

【0012】前記のドリル成形体ブランクを二次加工す
ることにより、多結晶焼結ダイヤモンドを先端に有する
細棒状ドリルの外観形状が、例えば例として、ドリル先
端部に角錐状又は多段の先端角を持たせた略砲弾型角錐
形状で、かつ一体焼結の金属基材が細長の三角柱以上の
多角柱であるものや、また別の例としては螺旋状の溝部
とランド部、及びねじれ角を有する円筒側面溝付のドリ
ル形状で、かつ先端刃先部が先端角を有するストレート
又はアンダーカットタイプ形状等に加工された焼結ダイ
ヤモンドチップを先端に有するものや、また他の別の例
として螺旋状の溝部とランド部、及びねじれ角を有する
円筒溝付のドリル形状で、かつ先端刃先部が円錐状又は
多段の先端角を持たせた略砲弾型円錐形状に加工された
焼結ダイヤモンドチップを先端に有するものなどの、こ
れら細長ロングタイプのトップソリッド・ダイヤモンド
ドリルが容易に製造できる。
By secondary processing of the above-mentioned drill compact blank, the external shape of the thin rod drill having polycrystalline sintered diamond at the tip is, for example, a pyramidal or multi-step tip angle at the tip of the drill. It has a substantially shell-shaped pyramid shape, and has an integrally sintered metal base material that is a polygonal prism having an elongated triangular prism or more, and as another example, has a spiral groove and land, and a twist angle. In the shape of a drill with a cylindrical side groove, the tip of which has a sintered diamond tip processed into a straight or undercut type shape or the like with a tip edge having a tip angle, or a spiral as another example. Sintered diamond processed into a drill shape with a groove, a land, and a cylindrical groove having a torsion angle, and a cone-shaped or substantially shell-shaped cone with a multi-step tip angle. Such as those having a-up to the tip, these elongated long type of top solid diamond drill can be easily manufactured.

【0013】また、前記多結晶焼結ダイヤモンド材料の
代わりに、超硬合金と一体焼結する硬質素材として多結
晶キュービック・ボロン・ナイトライド(PCBN焼結
体)を用いて、同様なトップソリッドの孔明け用ドリル
を作成してもよく、また本発明の趣旨を逸脱しない範囲
内で、一体焼結に適した超硬合金等の基材組成を変えて
組み合わせてもよい。
Further, instead of the polycrystalline sintered diamond material, a polycrystalline cubic boron nitride (PCBN sintered body) is used as a hard material integrally sintered with a cemented carbide, and a similar top solid Drills for drilling may be prepared, and combinations of base materials such as cemented carbide suitable for integral sintering may be changed without departing from the spirit of the present invention.

【0014】[0014]

【実施例1】以下、本発明の製造工程の一実施例につい
て、図面を参照しながら説明する。図5(a)に示す円
盤状のものは、超硬合金一体焼結により得られた多結晶
焼結ダイヤモンド基板であり、超硬合金素材(WC)の
圧粉体基材上にダイヤモンドパウダー圧粉体を積層し、
これを高温高圧下で処理して一体焼結素材基板50を得
る。この形成された一体焼結素材基板50の大きさは、外
径約φ60mm、厚み方向は焼結ダイヤモンド層51と超硬合
金層52を合わせて約7mm厚である。
Embodiment 1 An embodiment of the manufacturing process of the present invention will be described below with reference to the drawings. The disk-shaped one shown in FIG. 5 (a) is a polycrystalline sintered diamond substrate obtained by sintering a cemented carbide integrally, and a diamond powder pressure is placed on a compacted substrate of a cemented carbide material (WC). Stack the powder,
This is processed under high temperature and high pressure to obtain an integrated sintered material substrate 50. The size of the formed integrally sintered material substrate 50 is approximately φ60 mm in outer diameter, and approximately 7 mm thick in the thickness direction including the sintered diamond layer 51 and the cemented carbide layer 52.

【0015】次に、図5(b)に示すように、前記一体
焼結素材基板50を細棒状ドリルの材料取りのため、細か
く格子状に切断する。この時、少なくとも多結晶焼結ダ
イヤモンド基板表面のX・Y軸方向のどちらか一方に、
入刀角度θ=30°〜85°の任意の傾斜角度θを持たせて
厚み方向を斜めに切断する。
Next, as shown in FIG. 5 (b), the integrated sintered material substrate 50 is finely cut into a lattice shape in order to remove the material of a fine rod-shaped drill. At this time, at least one of the X and Y axis directions on the surface of the polycrystalline sintered diamond substrate,
The thickness direction is cut obliquely with an arbitrary inclination angle θ of 30 ° to 85 °.

【0016】これにより同図(c)のように一本一本に
分け、同図(d)に示すような細棒形状である、対向す
る一対の切断面が平行となる細長棒状のダイヤモンドド
リル成形ブランク105が得られる。
As a result, an elongated rod-shaped diamond drill which is divided into individual rods as shown in FIG. 3C and has a thin rod shape as shown in FIG. A molded blank 105 is obtained.

【0017】さらに詳細に説明すると、例えば図6に示
すように、基板の板厚が約t=7mmで、前記切断の入刀
傾斜角をθ=55°とした場合は、ドリル成形ブランク10
6として有効なドリル長(L寸法)は、切断ロスを含め
てもL=約12mmとなり、また同様に仮に傾斜角をθ=70
°とした場合には、L=約20mmとなり、従来のドリル長
(L寸法)の限界長さの3倍近いロングサイズの成形ブ
ランク取りが可能となる。
More specifically, as shown in FIG. 6, for example, when the thickness of the substrate is about t = 7 mm and the cutting inclination angle of the cutting is θ = 55 °, the drilled blank 10
The effective drill length (L dimension) as 6 is L = about 12 mm including the cutting loss. Similarly, if the inclination angle is θ = 70
°, L = approximately 20 mm, and it is possible to obtain a long-sized molded blank nearly three times the limit length of the conventional drill length (L dimension).

【0018】次に、この細長棒状のドリル成形ブランク
を用いて、四角柱タイプのダイヤモンドドリルを製作す
る一例を示す。まず前記切断した細長棒状のドリル成形
ブランクを、正四角柱となる各側面の寸法形状に研削・
研磨加工により整え、さらに多結晶焼結ダイヤモンド側
の先端部を、図1に示す多段の先端角を有する略砲弾形
状に加工し、ダイヤモンドドリル主軸部分10を作成す
る。
Next, an example of producing a square pillar type diamond drill using the elongated rod-shaped drill-formed blank will be described. First, the cut elongated bar-shaped drill-formed blank is ground and shaped into the shape of each side that becomes a square prism.
Polishing is performed, and the tip of the polycrystalline sintered diamond side is further processed into a substantially shell shape having multiple tip angles shown in FIG.

【0019】これを円筒状の金属シャンク5端部にロー
付け固定することにより、図2に示す外観形状の、ドリ
ル長(L寸法)が約20mmの細長ロングサイズのトップソ
リッドのダイヤモンドドリル20が完成する。
By fixing this to the end of the cylindrical metal shank 5 by brazing, an elongated long size top solid diamond drill 20 having a drill length (L dimension) of about 20 mm having the external shape shown in FIG. 2 is completed. I do.

【0020】なお、ここで示す図1は、本発明の一実施
例におけるダイヤモンドドリルの刃先端部分の拡大斜視
図であり、1は多結晶焼結ダイヤモンド部分、2は角柱ド
リル主要部の金属基材となる超硬合金(タングステンカ
ーバイト:WC)部分、また3は一体焼結による接合部
境界線、4はドリル先端の切れ刃部となる多段の先端角
を配した略砲弾型角錐部分をそれぞれ示し、図2は、実
際に孔加工に用いられる金属シャンク5部品に前記焼結
体をロー付け固定したダイヤモンドドリル20完成品の概
略斜視図を示すものである。
FIG. 1 is an enlarged perspective view of a tip portion of a blade of a diamond drill according to an embodiment of the present invention, wherein 1 is a polycrystalline sintered diamond portion, and 2 is a metal base of a main portion of a prismatic drill. The cemented carbide (tungsten carbide: WC) part used as the material, 3 is the boundary line of the joint formed by integral sintering, and 4 is the roughly bullet-shaped pyramid part with a multi-step tip angle that becomes the cutting edge of the drill tip FIG. 2 is a schematic perspective view of a completed diamond drill 20 in which the sintered body is brazed and fixed to five metal shank parts actually used for drilling.

【0021】また、図2におけるダイヤモンドドリル20
完成品は、ダイヤモンドドリル主軸部分10のドリル長
(L寸法)が傾斜角をθ=70°とした場合は、L=約20
mmとなり、このダイヤモンドドリル20を用いて細孔加工
をすることにより、従来のドリル長(L寸法)の限界長
さの2倍以上の深孔加工をすることができるようにな
る。
The diamond drill 20 shown in FIG.
The finished product has L = approximately 20 when the drill length (L dimension) of the diamond drill main shaft part 10 is set to θ = 70 °.
mm, and drilling a hole using this diamond drill 20 makes it possible to drill a deep hole twice or more the limit length of the conventional drill length (L dimension).

【0022】[0022]

【実施例2】次に、実施例1と同様な基板切断工程によ
り得られた細長棒状のダイヤモンドドリル成形ブランク
を用いて、別の外観形状を有するダイヤモンドドリルを
作成する工程を説明する。ここでは前述基板製造に関す
る内容の説明は省略するが、前記同様、図7に示すよう
に、切断の入刀傾斜角をθ=75°として、ドリル成形基
材としての有効なドリル長をL=約25mm、とした成形ブ
ランク107を切断により得る。
[Embodiment 2] Next, a process for producing a diamond drill having a different external shape by using an elongated rod-shaped diamond drill-formed blank obtained by a substrate cutting process similar to that of the embodiment 1 will be described. Here, the description of the contents relating to the manufacture of the substrate is omitted, but as shown in FIG. 7, as shown in FIG. 7, the cutting blade inclination angle is set to θ = 75 °, and the effective drill length as the drill forming base material is set to L = A molded blank 107 having a size of about 25 mm is obtained by cutting.

【0023】この細長棒状のドリル成形ブランク107を
用いて、螺旋溝付のダイヤモンドドリルを製作する一例
を以下に示す。まず前記切断した細長棒状のドリル成形
ブランク107は、真円状の円柱となるように各対角部を
研削・研磨、又は放電加工等により円筒形状に整え、さ
らに多結晶焼結ダイヤモンドの先端部を含むドリル円筒
側面部分を、螺旋溝付のドリル形状に加工し、図3に示
すダイヤモンドドリル主軸部30を作成する。
An example of manufacturing a diamond drill having a spiral groove using the elongated rod-shaped drill forming blank 107 will be described below. First, the cut elongated rod-shaped drill-formed blank 107 is formed into a cylindrical shape by grinding / polishing or electric discharge machining so that each diagonal portion becomes a perfect circular column, and further, the tip portion of the polycrystalline sintered diamond is formed. Is machined into a drill shape with a spiral groove to produce a diamond drill main shaft portion 30 shown in FIG.

【0024】これにより多結晶焼結ダイヤモンドを先端
部に有する細棒状ドリルの外観形状は、図3の六面図に
示すように、螺旋状の溝部34とランド部35、及び螺旋の
ねじれ角を有する円筒溝付のドリル形状となり、先端刃
先部の多結晶焼結ダイヤモンド31には、先端角を有する
ストレート又はアンダーカットタイプ形状等に加工され
た先端切れ刃形状を付加することも可能である。
As a result, the external shape of the thin rod drill having the polycrystalline sintered diamond at the tip is, as shown in FIG. 3, a spiral groove 34 and a land 35, and a helix angle of the spiral. The polycrystalline sintered diamond 31 at the tip of the cutting edge can have a tip cutting edge shape processed into a straight or undercut type shape having a tip angle.

【0025】これを円筒状の金属シャンク端部にロー付
け固定することにより、図4に示す外観形状の、ドリル
長(L寸法)が20mm以上の細長超ロングタイプの螺旋溝
付のトップソリッド・ダイヤモンドドリル40が完成す
る。
By fixing this to the end of the cylindrical metal shank by brazing, it is possible to form a top solid with a spiral groove of a slender super long type having a drill length (L dimension) of 20 mm or more in the external shape shown in FIG. The diamond drill 40 is completed.

【0026】なお、ここで示す図3は、本発明の他の一
実施例におけるダイヤモンドドリルの刃先端部分の拡大
六面図であり、31は多結晶焼結ダイヤモンド部分、32は
円柱ドリル主要部の金属基材となる超硬合金(タングス
テンカーバイト:WC)部分、また33は一体焼結による
接合部境界線、36はドリル先端部となる先端角を有する
ストレート又はアンダーカットタイプ形状等に加工され
た先端切れ刃部分をそれぞれ示し、図4は、実際に加工
に用いられる金属シャンク5部品に前記焼結体のドリル
主軸部分30をロー付け固定したトップソリッドのダイヤ
モンドドリル40完成品の概略側面図を示すものである。
FIG. 3 shown here is an enlarged hexahedral view of the tip of the blade of a diamond drill according to another embodiment of the present invention, wherein 31 is a polycrystalline sintered diamond portion, and 32 is a main portion of a cylindrical drill. The cemented carbide (tungsten carbide: WC) part that becomes the metal base of the material, 33 is the boundary of the joint by sintering, and 36 is the straight or undercut type shape with the tip angle to be the tip of the drill FIG. 4 is a schematic side view of a finished product of a top solid diamond drill 40 in which the main shaft portion 30 of the sintered body is brazed and fixed to five metal shank parts actually used for processing. FIG.

【0027】また実際に完成した前記φ0.3mm径のダイ
ヤモンドドリル40を用いての孔明け加工は、図4に示す
金属シャンク5部分を孔明け加工機側回転軸のコレット
チャック台座に取付けて、加工機側の回転中心の芯出し
位置調整を行い、加工試料としてシリコン単結晶(10
0)面、100mm角×厚さ16.0mmの基板中央部分に約2000
個の孔明け加工を連続して繰り返し行い、評価を行っ
た。
Drilling using the actually completed diamond drill 40 having a diameter of 0.3 mm is performed by attaching the metal shank 5 shown in FIG. 4 to the collet chuck pedestal on the rotary shaft of the drilling machine. The centering position of the rotation center on the processing machine side is adjusted, and a silicon single crystal (10
0) Approx. 2000 in the center of the board, 100mm square x 16.0mm thick
The drilling of individual pieces was repeated continuously and evaluated.

【0028】孔明け加工が終了した前記シリコン単結晶
基板について実測評価検査を行ったところ、1番目から
1000番目の加工したそれぞれの孔径を測定した結果、初
期の1番目孔径から100番目、200番目、300番目、‥
‥、900番目、1000番目の各100番間隔での孔径変化は、
径寸法公差で設定値±1μm以下の寸法バラツキ範囲で
あり、1000番目〜2000番目までの孔径及び形状にも大き
な変化は見られず、最後まで孔の状態は安定していた。
また同時に、ダイヤモンドドリル先端部においても、ド
リル先端形状、及び径寸法に大きな変化は見られず、最
後まで安定した孔明け性能を維持していた。
An actual measurement evaluation test was performed on the silicon single crystal substrate on which the drilling process was completed.
As a result of measuring the diameter of each of the 1000th processed holes, the 100th, 200th, 300th, ‥
孔, 900th, 1000th hole diameter change at every 100th interval,
The diameter tolerance was within a set value range of ± 1 μm or less, and there was no significant change in the hole diameter and shape from the 1000th to 2000th holes, and the hole state was stable until the end.
At the same time, there was no significant change in the shape and diameter of the drill tip at the tip of the diamond drill, and stable drilling performance was maintained until the end.

【0029】[0029]

【発明の効果】以上説明したように、本発明の一体焼結
型のダイヤモンドドリルの製造方法(請求項6)におい
ては、超硬合金素材の圧粉体基材上に、ダイヤモンドパ
ウダー圧粉体を積層し、これを高温高圧下で処理して超
硬合金一体焼結型の多結晶ダイヤモンド基板を製作し、
この形成された前記一体焼結基板からの材料取りとし
て、基板を格子状に切断する際、少なくとも多結晶焼結
ダイヤモンド基板表面のX・Y軸方向のどちらか一方
に、入刀方向にθ=30°〜85°の任意の傾斜角度を持た
せて厚み方向を斜め切断することにより、対向する一対
の切断面が平行となる細長棒状のダイヤモンドドリル成
形ブランクを得て、この前記細長棒状の成形ブランク材
料を用いてダイヤモンドドリルの外観形状を形成するこ
とにより、ドリル長(L寸法)が10mm以上の、従来にな
いロングサイズのトップソリッド・ダイヤモンドドリル
を得ることができる。
As described above, in the method of manufacturing a monolithically sintered diamond drill according to the present invention (claim 6), a diamond powder compact is formed on a cemented carbide base material. Are laminated and processed under high temperature and high pressure to produce a cemented carbide integrated sintered type polycrystalline diamond substrate,
When cutting the substrate into a lattice shape as a material removal from the formed integrally sintered substrate, at least one of the X and Y axis directions on the surface of the polycrystalline sintered diamond substrate, θ = By obliquely cutting in the thickness direction with an arbitrary inclination angle of 30 ° to 85 °, an elongated rod-shaped diamond drill forming blank in which a pair of opposed cut surfaces is parallel is obtained, and the elongated rod-shaped forming is performed. By forming the external shape of a diamond drill using a blank material, it is possible to obtain an unprecedented long size top solid diamond drill having a drill length (L dimension) of 10 mm or more.

【0030】また、本発明のダイヤモンドドリル(請求
項1)では、多結晶焼結ダイヤモンドを切削加工用ドリ
ル先端に配した超硬合金一体焼結によるトップソリッド
・ダイヤモンドドリルにおいて、多結晶焼結ダイヤモン
ドのダイヤチップ部分が、ドリル先端部からドリル首下
方向(ドリル径の中心軸他端方向)に、かつ中心軸に対
し傾斜角を持たせた切断面で区切られた一体焼結金属基
材との接合面を境に、ドリル先端から首下方向の前記接
合面に架けてのドリル長の中間部分で、斜め領域部分を
配置したロングサイズのダイヤモンドドリルを提供する
ことができる。
In the diamond drill according to the present invention (claim 1), in the top solid diamond drill formed by sintering a cemented carbide in which a polycrystalline sintered diamond is arranged at the tip of a cutting drill, the polycrystalline sintered diamond is used. The diamond chip part of the above is a one-piece sintered metal base material separated from the drill tip by the cutting surface in the downward direction of the drill neck (the other direction of the center axis of the drill diameter) and at an angle to the center axis. A long size diamond drill can be provided in which an oblique region is disposed at an intermediate portion of a drill length extending from the tip of the drill to the above-mentioned joining surface in a direction below the neck with the joining surface as a boundary.

【0031】また、本発明のダイヤモンドドリル(請求
項2)では、多結晶焼結ダイヤモンドを先端に有する細
棒状ドリルの外観形状が、ドリル先端部に角錐状又は多
段の先端角を持たせた略砲弾型角錐形状であり、かつ一
体焼結の金属基材が細長の三角柱以上の多角柱であるロ
ングサイズのダイヤモンドドリルを提供することができ
る。
Further, in the diamond drill of the present invention (claim 2), the external shape of the thin rod drill having polycrystalline sintered diamond at the tip is substantially a pyramid or a multi-stage tip angle at the tip of the drill. It is possible to provide a long-sized diamond drill having a shell-shaped pyramid shape and an integrally sintered metal base material being a polygonal prism having an elongated triangular prism or more.

【0032】また、本発明のダイヤモンドドリル(請求
項3)では、多結晶焼結ダイヤモンドを先端に有する細
棒状ドリルの外観形状が、螺旋状の溝部とランド部、及
びねじれ角を有する円筒溝付のドリル形状であり、かつ
先端刃先部が先端角を有するストレート又はアンダーカ
ットタイプ形状等に加工された焼結ダイヤモンドチップ
を先端部に有するロングサイズのダイヤモンドドリルを
提供することができる。
In the diamond drill of the present invention (claim 3), the external shape of the thin rod drill having polycrystalline sintered diamond at the tip is a spiral groove and a land, and a cylindrical groove having a twist angle. It is possible to provide a long-sized diamond drill having, at its tip, a sintered diamond tip processed into a straight or undercut type shape or the like having the same drill shape and a tip edge having a tip angle.

【0033】また、本発明のダイヤモンドドリル(請求
項4)では、多結晶焼結ダイヤモンドを先端に有する細
棒状ドリルの外観形状が、螺旋状の溝部とランド部、及
びねじれ角を有する円筒溝付のドリル形状であり、かつ
先端刃先部が円錐状又は多段の先端角を持たせた略砲弾
型円錐形状に加工された焼結ダイヤモンドチップを先端
部に有するロングサイズのダイヤモンドドリルを提供す
ることができる。
In the diamond drill of the present invention (claim 4), the external shape of the thin rod drill having polycrystalline sintered diamond at the tip is a spiral groove and a land, and a cylindrical groove having a twist angle. It is possible to provide a long-sized diamond drill having, at its tip, a sintered diamond tip that has a drilled shape and a tip of which is formed into a conical shape or a substantially shell-shaped conical shape having a multi-stepped tip angle. .

【0034】また本発明は、前記のような極小径の孔加
工技術に用いられる専用の精密切削工具として、超硬材
料、シリコン単結晶材料、及びセラミックス材料などの
難加工硬質材料に、極小径の深孔の孔明け加工を施すた
めの細長ロングサイズのダイヤモンドドリルを提供する
ことができ、コストパフォーマンスと耐摩耗性に優れた
トップソリッドのダイヤモンドドリルが実現できる。
The present invention is also directed to a precision cutting tool dedicated to the above-described ultra-small hole drilling technique, which is used for hard-to-machine hard materials such as cemented carbide materials, silicon single crystal materials, and ceramic materials. It is possible to provide an elongated long size diamond drill for deep hole drilling, and realize a top solid diamond drill excellent in cost performance and wear resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるダイヤモンドドリルの一例を示
す先端部分の拡大斜視図。
FIG. 1 is an enlarged perspective view of a tip portion showing an example of a diamond drill according to the present invention.

【図2】本発明におけるダイヤモンドドリルの使用形態
の一例を示す外観概略図。
FIG. 2 is a schematic external view showing an example of a usage form of a diamond drill according to the present invention.

【図3】本発明におけるダイヤモンドドリルの他の一例
を示す先端部分の拡大六面図。
FIG. 3 is an enlarged hexahedral view of a tip portion showing another example of the diamond drill according to the present invention.

【図4】本発明におけるダイヤモンドドリルの使用形態
の他の一例を示す外観概略図。
FIG. 4 is a schematic external view showing another example of a use form of the diamond drill according to the present invention.

【図5】本発明におけるダイヤモンドドリルの製造工程
の一部を説明する模式図。
FIG. 5 is a schematic view illustrating a part of the manufacturing process of the diamond drill according to the present invention.

【図6】本発明におけるダイヤモンドドリルの製造にお
ける切断工程を説明する模式図。
FIG. 6 is a schematic view illustrating a cutting step in the production of a diamond drill according to the present invention.

【図7】本発明におけるダイヤモンドドリルの製造にお
ける切断工程を説明する模式図。
FIG. 7 is a schematic diagram illustrating a cutting step in the production of a diamond drill according to the present invention.

【図8】従来の螺旋溝形状を有するトップソリッド型ダ
イヤモンドドリルの一例を示す側面図。
FIG. 8 is a side view showing an example of a conventional top solid diamond drill having a spiral groove shape.

【符号の説明】[Explanation of symbols]

1、31、51、81 多結晶焼結ダイヤモンド 2、32、52、82 超硬合金 3、33、53、83接合部境界 4、36 切れ刃部 5 シャンク 34 溝部 35 ランド部 105、106、107 ドリル成形ブランク 1, 31, 51, 81 Sintered polycrystalline diamond 2, 32, 52, 82 Cemented carbide 3, 33, 53, 83 Boundary boundary 4, 36 Cutting edge 5 Shank 34 Groove 35 Land 105, 106, 107 Drill forming blank

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年2月9日(2001.2.9)[Submission date] February 9, 2001 (2001.2.9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】前記のドリル成形体ブランクを二次加工す
ることにより、多結晶焼結ダイヤモンドを先端に有する
細棒状ドリルの外観形状が、例えば例として、ドリル先
端部に角錐状又は多段の先端角を持たせた略砲弾型角錐
形状で、かつ一体焼結の金属基材が細長の三角柱以上の
多角柱であるものや、また別の例としては螺旋状の溝部
とランド部、及びねじれ角を有する円筒側面溝付のドリ
ル形状で、かつ先端刃先部が先端角を有するストレート
又はアンダーカットタイプ形状等に加工された焼結ダイ
ヤモンドチップを先端に有するものや、また他の別の例
として螺旋状の溝部とランド部、及びねじれ角を有する
円筒溝付のドリル形状で、かつ先端刃先部が角錐形状
は多段の先端角を持たせた略砲弾型角錐形状に加工され
た焼結ダイヤモンドチップを先端に有するものなどの、
これら細長ロングタイプのトップソリッド・ダイヤモン
ドドリルが容易に製造できる。
By secondary processing of the above-mentioned drill compact blank, the external shape of the thin rod drill having polycrystalline sintered diamond at the tip is, for example, a pyramidal or multi-step tip angle at the tip of the drill. It has a substantially shell-shaped pyramid shape, and has an integrally sintered metal base material that is a polygonal prism having an elongated triangular prism or more, and as another example, has a spiral groove and land, and a twist angle. In the shape of a drill with a cylindrical side groove, the tip of which has a sintered diamond tip processed into a straight or undercut type shape or the like with a tip edge having a tip angle, or a spiral as another example. groove and the land portion, and the sintered drill shape cylindrical groove having a twist angle, and the tip edge portion is pyramid also <br/> is processed into a substantially bullet-shaped pyramid which gave the tip angle of the multi-stage Diamond Such as those having a Ndochippu the tip,
These elongated long type top solid diamond drills can be easily manufactured.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0033】また、本発明のダイヤモンドドリル(請求
項4)では、多結晶焼結ダイヤモンドを先端に有する細
棒状ドリルの外観形状が、螺旋状の溝部とランド部、及
びねじれ角を有する円筒溝付のドリル形状であり、かつ
先端刃先部が角錐形状又は多段の先端角を持たせた略砲
弾型角錐形状に加工された焼結ダイヤモンドチップを先
端部に有するロングサイズのダイヤモンドドリルを提供
することができる。
In the diamond drill of the present invention (claim 4), the external shape of the thin rod drill having polycrystalline sintered diamond at the tip is a spiral groove and a land, and a cylindrical groove having a twist angle. It is possible to provide a long-sized diamond drill having, at its tip, a sintered diamond tip that has a drill shape and a tip edge portion is processed into a pyramid shape or a substantially shell-shaped pyramid shape having a multi-step tip angle. .

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 多結晶焼結ダイヤモンドを切削加工用ド
リル先端に配した超硬合金一体焼結によるトップソリッ
ド・ダイヤモンドドリルにおいて、多結晶焼結ダイヤモ
ンドのダイヤチップ部分が、ドリル先端部からドリル首
下方向(ドリル径の中心軸他端方向)に、かつ前記中心
軸に対し傾斜角を持たせた切断面で区切られた一体焼結
金属基材との接合面を境に、ドリル先端から首下方向の
前記接合面に架けてのドリル長の中間部分で、斜め混在
領域部分を配置したことを特徴とするダイヤモンドドリ
ル。
In a top solid diamond drill made of sintered cemented carbide in which polycrystalline sintered diamond is arranged at the tip of a cutting drill, the diamond tip portion of the polycrystalline sintered diamond is moved from the tip of the drill to the neck of the drill. From the tip of the drill to the neck at the joint surface with the integral sintered metal substrate, which is separated in a downward direction (the other direction of the center axis of the drill diameter) and at an angle of inclination with respect to the center axis, A diamond drill, characterized in that an obliquely mixed region is disposed at an intermediate portion of a drill length extending over the joining surface in a downward direction.
【請求項2】 多結晶焼結ダイヤモンドを先端に有する
細棒状ドリルの外観形状が、ドリル先端部に角錐状又は
多段の先端角を持たせた略砲弾型角錐形状であり、かつ
一体焼結の金属基材が細長の三角柱以上の多角柱である
ことを特徴とする請求項1記載のダイヤモンドドリル。
2. The appearance of a thin rod-shaped drill having polycrystalline sintered diamond at the tip is a pyramid or a substantially shell-shaped pyramid having a multi-stepped tip at the tip of the drill, and is integrally sintered. The diamond drill according to claim 1, wherein the metal substrate is a polygonal prism having an elongated triangular prism or more.
【請求項3】 多結晶焼結ダイヤモンドを先端に有する
細棒状ドリルの外観形状が、螺旋状の溝部とランド部、
及びねじれ角を有する円筒側面溝付のドリル形状であ
り、かつ先端刃先部が先端角を有するストレート又はア
ンダーカットタイプ形状等に加工された焼結ダイヤモン
ドチップであることを特徴とする請求項1記載のダイヤ
モンドドリル。
3. A thin rod-shaped drill having a polycrystalline sintered diamond at its tip has a spiral groove portion and a land portion.
2. A sintered diamond chip having a drill shape having a cylindrical side groove having a torsion angle and a tip or cutting edge processed into a straight or undercut type shape having a tip angle. Diamond drill.
【請求項4】 多結晶焼結ダイヤモンドを先端に有する
細棒状ドリルの外観形状が、螺旋状の溝部とランド部、
及びねじれ角を有する円筒側面溝付のドリル形状であ
り、かつ先端刃先部が円錐状又は多段の先端角を持たせ
た略砲弾型円錐形状に加工された焼結ダイヤモンドチッ
プであることを特徴とする請求項1記載のダイヤモンド
ドリル。
4. A fine rod-shaped drill having a polycrystalline sintered diamond at its tip has a spiral groove portion and a land portion.
And a sintered diamond chip having a drilled shape with a cylindrical side groove having a torsion angle, and a tip edge portion processed into a conical shape or a substantially shell-shaped conical shape having a multi-staged tip angle. The diamond drill according to claim 1, wherein
【請求項5】 前記多結晶焼結ダイヤモンド材料の代わ
りに、焼結ボロンナイトライドを用いたことを特徴とす
る請求項1及び請求項2〜4記載のダイヤモンドドリ
ル。
5. The diamond drill according to claim 1, wherein a sintered boron nitride is used instead of the polycrystalline sintered diamond material.
【請求項6】 超硬合金素材の圧粉体基材上に、ダイヤ
モンドパウダー圧粉体を積層し、これを高温高圧下で処
理して超硬合金一体焼結型の多結晶ダイヤモンド基板を
製作し、この形成された前記一体焼結基板からの材料取
りとして、基板を格子状に切断する際に、少なくとも多
結晶焼結ダイヤモンド基板表面のX・Y軸方向のどちら
か一方に、入刀方向にθ=30°〜85°の任意の傾斜角度
を持たせて厚み方向を斜め切断することにより、対向す
る一対の切断面が平行となる細長棒状のダイヤモンドド
リル成形ブランクを得て、この前記細長棒状の加工ブラ
ンク材料を用いてトップソリッド・ダイヤモンドドリル
の前記請求項1又は請求項2、3、4記載の外観形状を
成形することを特徴とするダイヤモンドドリルの製造方
法。
6. A diamond powder compact is laminated on a cemented carbide base material and processed at high temperature and high pressure to produce a cemented carbide integrated sintered polycrystalline diamond substrate. When the substrate is cut into a lattice shape as a material removal from the formed integrally sintered substrate, at least one of the X and Y axis directions of the surface of the polycrystalline sintered diamond substrate is inserted in the cutting direction. By obliquely cutting in the thickness direction while giving an arbitrary inclination angle of θ = 30 ° to 85 °, an elongated rod-shaped diamond drill-formed blank in which a pair of opposed cut surfaces are parallel to each other is obtained. 5. A method for producing a diamond drill, wherein the external shape of the top solid diamond drill according to claim 1 or claim 2, 3 or 4 is formed using a rod-shaped blank material.
JP36864799A 1999-12-27 1999-12-27 Diamond drill and manufacturing method thereof Expired - Fee Related JP4348583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36864799A JP4348583B2 (en) 1999-12-27 1999-12-27 Diamond drill and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36864799A JP4348583B2 (en) 1999-12-27 1999-12-27 Diamond drill and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001179517A true JP2001179517A (en) 2001-07-03
JP4348583B2 JP4348583B2 (en) 2009-10-21

Family

ID=18492374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36864799A Expired - Fee Related JP4348583B2 (en) 1999-12-27 1999-12-27 Diamond drill and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4348583B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521324A (en) * 2007-03-16 2010-06-24 ティーディーワイ・インダストリーズ・インコーポレーテッド Composite materials
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8697258B2 (en) 2006-10-25 2014-04-15 Kennametal Inc. Articles having improved resistance to thermal cracking
JP2014111303A (en) * 2012-10-30 2014-06-19 Allied Material Corp Cutting tool and workpiece processing method using the same
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
JP2017511184A (en) * 2014-03-27 2017-04-20 サノキュリス リミテッドSanoculis Ltd. Medical device for tissue removal
KR101990013B1 (en) * 2019-01-16 2019-06-17 김멋진 Cutting Blade and Cutting Device using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8808591B2 (en) 2005-06-27 2014-08-19 Kennametal Inc. Coextrusion fabrication method
US8697258B2 (en) 2006-10-25 2014-04-15 Kennametal Inc. Articles having improved resistance to thermal cracking
US8841005B2 (en) 2006-10-25 2014-09-23 Kennametal Inc. Articles having improved resistance to thermal cracking
JP2010521324A (en) * 2007-03-16 2010-06-24 ティーディーワイ・インダストリーズ・インコーポレーテッド Composite materials
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
JP2014111303A (en) * 2012-10-30 2014-06-19 Allied Material Corp Cutting tool and workpiece processing method using the same
JP2017511184A (en) * 2014-03-27 2017-04-20 サノキュリス リミテッドSanoculis Ltd. Medical device for tissue removal
KR101990013B1 (en) * 2019-01-16 2019-06-17 김멋진 Cutting Blade and Cutting Device using the same

Also Published As

Publication number Publication date
JP4348583B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP3406774B2 (en) Diamond-coated insert tool and method of manufacturing the same
JP4444278B2 (en) A highly accurate method for manufacturing threaded taps.
KR20080047433A (en) Cutting tool
CN109048244A (en) A kind of production method of polycrystal diamond cutter
KR20080032137A (en) Machine reamer
CN106573314B (en) Cutting tool and method of making a cutting tool
JP4348583B2 (en) Diamond drill and manufacturing method thereof
WO2021197215A1 (en) Blank body, and cutting tool having front cutter face made of helical superhard material
JP2001212703A (en) Polycrystalline hard sintered cutting tool
JP2003127019A (en) Endmill having single-crystal diamond provided at its top
JP2002036017A (en) Drill having single crystal diamond at its tip
JPH08155947A (en) Diamond drill and production thereof
JP2000158220A (en) Throwaway drill and shank thereof
JP5264076B2 (en) Tool insert
JP4608062B2 (en) Burnishing drill
CN209903617U (en) Polycrystalline diamond integral cutting tool
CN209521115U (en) A kind of polycrystal diamond cutter
JPH1148016A (en) Small-diameter drill
JP3639227B2 (en) Drilling tools for brittle materials
JP2002160112A (en) Drill having polycrystal diamond at its tip
JP7473711B1 (en) Rotary cutting tool and manufacturing method thereof
JP2002018623A (en) Cutting tool with level difference
CN209521112U (en) A kind of polycrystalline diamond process tool
KR100423006B1 (en) A blade manufactureing method of a ball cutter and the blade thereof
JPH04304916A (en) Throwaway type drill

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees