JP4342929B2 - Carbonaceous material for conductive composition and use thereof - Google Patents

Carbonaceous material for conductive composition and use thereof Download PDF

Info

Publication number
JP4342929B2
JP4342929B2 JP2003429866A JP2003429866A JP4342929B2 JP 4342929 B2 JP4342929 B2 JP 4342929B2 JP 2003429866 A JP2003429866 A JP 2003429866A JP 2003429866 A JP2003429866 A JP 2003429866A JP 4342929 B2 JP4342929 B2 JP 4342929B2
Authority
JP
Japan
Prior art keywords
conductive
carbon fiber
conductive composition
boron
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003429866A
Other languages
Japanese (ja)
Other versions
JP2004221071A (en
Inventor
利夫 森田
竜之 山本
正治 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003429866A priority Critical patent/JP4342929B2/en
Publication of JP2004221071A publication Critical patent/JP2004221071A/en
Application granted granted Critical
Publication of JP4342929B2 publication Critical patent/JP4342929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Description

本発明は、エレクトロニクス材料に使用され、集積回路、電子部品、光学部品や各種制御部品などの広範な工業製品に、配線材料や各機器との接続材料として、あるいは各種機器の帯電防止材料、電磁波シールドとして、また、静電塗装等に適用される導電性組成物、その組成物を含む導電性塗料、及び導電性接着剤に関する。   The present invention is used in electronic materials, applied to a wide range of industrial products such as integrated circuits, electronic components, optical components and various control components, as wiring materials and connection materials to various devices, or as antistatic materials and electromagnetic waves for various devices. The present invention also relates to a conductive composition applied as a shield and to electrostatic coating and the like, a conductive paint containing the composition, and a conductive adhesive.

導電性塗料、導電性接着剤には、例えば、導電性ペーストがあるが、用途により、狭義には導電性ペーストと抵抗ペーストに分けることができる。本発明は、抵抗ペーストも導電性ペーストに含めた広義の導電性ペーストに関するものである。
導電性ペーストは、主に導電材料、助剤、バインダーまたはマトリックス材料としての樹脂、溶剤から構成され、樹脂を溶剤に溶かしたワニスに、導電材料や助剤の微粒子を分散させることにより製造されている。この導電材料や助剤の分散には、3本ロール、ボールミル、ペイントシェーカーや遊星ミル等の分散混合機、解砕機や粉砕機が用いられる。導電性ペーストは、塗布後の熱処理温度により、乾燥・硬化型ペーストと焼付け型ペーストに分類することができる。
The conductive paint and conductive adhesive include, for example, a conductive paste, but can be divided into a conductive paste and a resistive paste in a narrow sense depending on the application. The present invention relates to a conductive paste in a broad sense including a resistive paste in a conductive paste.
The conductive paste is mainly composed of conductive material, auxiliary agent, binder or resin as matrix material, and solvent, and is manufactured by dispersing fine particles of conductive material and auxiliary agent in varnish in which resin is dissolved in solvent. Yes. For the dispersion of the conductive material and the auxiliary agent, a dispersion mixer such as a three roll, ball mill, paint shaker or planetary mill, a crusher or a pulverizer is used. The conductive paste can be classified into a dry / curing paste and a baking paste depending on the heat treatment temperature after coating.

乾燥・硬化型ペーストは、常温から250℃程度の温度範囲で熱処理されて導電材料、助剤と樹脂成分の複合体が形成される。この型のペーストは、使用する樹脂を選択することにより、耐溶剤性、耐熱性、接着性、柔軟性等の特徴を持たせることができる。これに使用される代表的な樹脂として、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂、シリコーン樹脂、アクリル樹脂やポリプロピレン樹脂等が挙げられる。焼付け型ペーストは、熱処理温度が400〜1300℃程度であり、塗布した有機成分は熱処理により焼失し無機成分となる。この型のペーストに使用される樹脂は、塗布時や熱処理時の挙動を考慮して選択され、ニトロセルロース、エチルセルロース等のセルロース系樹脂やアクリル樹脂、ブチラール樹脂等が使用されている。   The dry / cured paste is heat-treated in a temperature range from room temperature to about 250 ° C. to form a composite of conductive material, auxiliary agent and resin component. This type of paste can be provided with characteristics such as solvent resistance, heat resistance, adhesion, and flexibility by selecting a resin to be used. Typical resins used for this include phenolic resins, epoxy resins, polyester resins, silicone resins, acrylic resins and polypropylene resins. The baking paste has a heat treatment temperature of about 400 to 1300 ° C., and the applied organic component is burned down by the heat treatment and becomes an inorganic component. The resin used for this type of paste is selected in consideration of the behavior during coating and heat treatment, and cellulose resins such as nitrocellulose and ethyl cellulose, acrylic resins, butyral resins, and the like are used.

助剤としては、塗布時の流動性や塗布後の塗膜強度や摺動性を向上させるため、分散剤、増粘剤が用いられ、これらの例として、酸化珪素やアルミナ等が挙げられる。
溶剤は、樹脂の溶解性、導電剤の分散に必要な流動性の確保や、塗布後の熱処理による揮発性、揮発後の塗膜性状を考慮して選択する必要がある。その例として、メチルエチルケトン、N−メチルピロリドン等、テルピネオール等のテルペン化合物やグリコールエーテル、グリコールエステル等が挙げられる。
As the auxiliary agent, a dispersant and a thickener are used in order to improve the fluidity at the time of coating, the coating film strength after coating and the slidability, and examples thereof include silicon oxide and alumina.
The solvent must be selected in consideration of the solubility of the resin and the fluidity necessary for dispersing the conductive agent, the volatility due to heat treatment after coating, and the properties of the coating film after volatilization. Examples include terpene compounds such as terpineol, glycol ethers, glycol esters, and the like, such as methyl ethyl ketone and N-methylpyrrolidone.

これら導電性ペーストの塗布方法には、スクリーン印刷法、ディスペンサー法、ディッピング法、転写法、アプリケーター法、ハケ塗り法やスプレー法があり、基板や電子素子に塗布する主な方法は、スクリーン印刷法、ディッピング法、転写法である。塗布方法に合わせて、導電性ペーストの粘度等を調整する必要がある。   There are screen printing method, dispenser method, dipping method, transfer method, applicator method, brush coating method and spraying method for applying these conductive pastes. The main method for applying to the substrate and electronic elements is the screen printing method. Dipping method and transfer method. It is necessary to adjust the viscosity and the like of the conductive paste according to the coating method.

導電材料は、金、白金、パラジウム、銀、銀・白金合金、銀・パラジウム合金等の貴金属の微粒子や、銅、ニッケル、アルミ、タングステン等の卑金属の微粒子が用いられる。あるいは、炭素、黒鉛、カーボンブラック、酸化ルテニウム、酸化錫、酸化タンタル等の導電性非金属微粒子が用いられる。   As the conductive material, fine particles of noble metals such as gold, platinum, palladium, silver, silver / platinum alloy, silver / palladium alloy, and fine particles of base metals such as copper, nickel, aluminum, and tungsten are used. Alternatively, conductive nonmetallic fine particles such as carbon, graphite, carbon black, ruthenium oxide, tin oxide, and tantalum oxide are used.

しかし、導電材料として金属を含有しているときは、時間の経過と共に金属が酸化、腐食等されて、導電性が低下したり、電気回路基板の変形により基板から導電塗膜が剥離し、また、金属として銀を使用した場合は高価であるという問題がある。一方、カーボン系導電性材料は、酸化、腐食等に対して安定で、経済的であるが導電性が不十分である等の問題点があった。   However, when a metal is contained as a conductive material, the metal is oxidized, corroded, etc. as time passes, the conductivity is lowered, or the conductive coating film is peeled off from the substrate due to deformation of the electric circuit board. When silver is used as a metal, there is a problem that it is expensive. On the other hand, carbon-based conductive materials have problems such as being stable against oxidation, corrosion, and the like, economical, but insufficient in conductivity.

最近、気相法炭素繊維とカーボンブラックと熱可塑性樹脂及び/または熱硬化性樹脂を含む導電性塗料(例えば、特開平6-122785号公報(特許文献1)参照。)やホウ素含有微細炭素繊維と熱可塑性樹脂または熱硬化性樹脂を含む導電性塗料(例えば、特開2001-200211号公報(特許文献2)参照。)、易黒鉛化炭素繊維を含む塗料、接着剤(例えば、特開昭61-218669号公報(特許文献3)参照。)が提案されている。   Recently, conductive paint containing vapor grown carbon fiber, carbon black, thermoplastic resin and / or thermosetting resin (see, for example, JP-A-6-1222785 (Patent Document 1)) and boron-containing fine carbon fiber. And a conductive paint containing a thermoplastic resin or a thermosetting resin (for example, see JP-A-2001-200211 (Patent Document 2)), a paint containing graphitizable carbon fiber, and an adhesive (for example, JP-A No. 61-218669 (see Patent Document 3) has been proposed.

導電性塗料あるいは導電性接着剤の導電材料には、銀、金や白金を始め貴金属や銅、ニッケル等の卑金属、炭素の微粒子が用いられるが、前記の特許文献3件などの提案は、樹脂成分に対して、導電組成物に炭素繊維を混合して用いることにより導電性機能及び耐久性等の特性を向上させた導電性塗料、導電性接着剤を提供しようとするものである。
しかし、これら提案の方法においては、十分な導電性を得ようとすると、多量の炭素繊維を添加する必要があり、その結果樹脂成分との混合物の流動性が低下する。また、導電性成分として黒鉛化繊維のみを用いた場合は抵抗性に異方性が生じてしまうことが課題となっている。
For conductive materials of conductive paints or conductive adhesives, fine particles of silver, gold, platinum, noble metals, copper, nickel, and other base metals, and carbon are used. It is an object of the present invention to provide a conductive paint and a conductive adhesive having improved characteristics such as a conductive function and durability by using carbon fiber mixed with a conductive composition.
However, in these proposed methods, in order to obtain sufficient electrical conductivity, it is necessary to add a large amount of carbon fiber, and as a result, the fluidity of the mixture with the resin component decreases. Moreover, when only a graphitized fiber is used as a conductive component, an anisotropy in resistance occurs.

特開平6−122785号公報JP-A-6-122785 特開2001−200211号公報JP 2001-200211 A 特開昭61−218669号公報Japanese Patent Laid-Open No. Sho 61-218669

本発明は、導電性塗料あるいは導電性接着剤において、その導電性、マイグレーションの防止、耐酸化性、経年安定性や摺動特性を向上させた導電性組成物を含む導電性塗料あるいは導電性接着剤、さらにはこれらを用いた抵抗性異方性の少ない塗膜(導電体)を提供することを目的とする。
また、本発明の導電性塗料あるいは導電性接着剤は、導電性ばかりでなく、熱伝導性にも優れる放熱性材料を提供することを目的とする。
The present invention relates to a conductive paint or conductive adhesive containing a conductive composition having improved conductivity, prevention of migration, oxidation resistance, aging stability and sliding properties in a conductive paint or conductive adhesive. It is an object to provide a coating film (conductor) having a small resistance anisotropy using these agents.
Another object of the conductive paint or conductive adhesive of the present invention is to provide a heat dissipating material that is excellent not only in conductivity but also in thermal conductivity.

上記課題を解決するために、本発明者らは、導電材料に気相法炭素繊維、黒鉛質粒子及び/または非晶質炭素粒子を含む導電性組成物用炭素質材料、これらを含む導電性組成物、それらを含む導電性塗料及び導電性接着剤を見出した。
また、繊維中にホウ素を0.01〜5質量%含有する気相法炭素繊維と、黒鉛質粒子及び/または非晶質炭素粒子との混合物で、該炭素繊維を20質量%以上含む導電性組成物用炭素質材料、これらを含む導電組成物、それらを含む導電性塗料、導電性接着剤を見出した。
さらに、本発明の導電性塗料及び導電性接着剤は、導電性ばかりでなく熱伝導性にも優れる放熱性材料を提供し得ることをも見出した。
導電性塗料は、液状、ペースト状、または粉末状の製品を含み、流動状態(液状、融解状、空気懸濁体などの状態を含む)で物体の表面に広げると薄い膜となり、時間の経過につれてその面に固着した固体の皮膜(塗膜)となり、連続してその面を覆う。
In order to solve the above-mentioned problems, the present inventors have proposed a carbonaceous material for a conductive composition containing vapor-grown carbon fiber, graphite particles and / or amorphous carbon particles in a conductive material, and a conductive material containing these. We have found compositions, conductive paints and conductive adhesives containing them.
Also, a conductive composition comprising a vapor grown carbon fiber containing 0.01 to 5% by mass of boron in the fiber and graphite particles and / or amorphous carbon particles, and containing 20% by mass or more of the carbon fiber. Carbonaceous materials for use, conductive compositions containing them, conductive paints containing them, and conductive adhesives have been found.
Furthermore, it has also been found that the conductive paint and conductive adhesive of the present invention can provide a heat dissipating material that is excellent not only in conductivity but also in thermal conductivity.
Conductive paints include liquid, pasty, or powdered products that become a thin film when spread over the surface of an object in a fluid state (including liquid, molten, air suspension, etc.). As a result, a solid film (coating film) adhered to the surface is formed, and the surface is continuously covered.

すなわち本発明は
[1]内部に中空構造を持つ多層構造であり、外径2〜500nm、アスペクト比10〜15000の気相法炭素繊維と、黒鉛質粒子及び/または非晶質炭素粒子とを含み、これらの割合(質量%)が気相法炭素繊維10〜90%、黒鉛質粒子0〜65%、非晶質炭素粒子0〜35%であることを特徴とする導電性組成物用炭素質材料、
[2]気相法炭素繊維が、ホウ素を0.01〜5質量%含有する繊維であり、前記炭素繊維を20質量%以上含む前記[1]に記載の導電性組成物用炭素質材料、
[3]気相法炭素繊維が、分岐状気相法炭素繊維を含むものである前記[1]に記載の導電性組成物用炭素質材料、
[4]気相法炭素繊維が、コブ状気相法炭素繊維を含むものである前記[1]に記載の導電性組成物用炭素質材料、
[5]黒鉛質粒子または非晶質炭素粒子の平均粒径が、0.1〜100μmである前記[1]に記載の導電性組成物用炭素質材料、
[6]黒鉛質粒子または非晶質炭素粒子が、2000℃以上で熱処理されている前記[1]に記載の導電性組成物用炭素質材料、
[7]黒鉛質粒子が、ホウ素を含む前記[1]に記載の導電性組成物用炭素質材料、
[8]非晶質炭素粒子が、ホウ素を含む前記[1]に記載の導電性組成物用炭素質材料、
[9]非晶質炭素粒子が、カーボンブラックまたはガラス状炭素である前記[1]または[8]に記載の導電性組成物用炭素質材料、
[10]カーボンブラックが、オイルファーネスブラック、ガスブラック、アセチレンブラック、ランプブラック、サーマルブラック、チャンネルブラック及びケッチェンブラックからなる群から選ばれる少なくとも1種である前記[9]に記載の導電性組成物用炭素質材料、
[11]内部に中空構造を持つ多層構造であり、外径2〜500nm、アスペクト比10〜15000の気相法炭素繊維と黒鉛質粒子とを含み、気相法炭素繊維と黒鉛質粒子の少なくともいずれか一方がホウ素を含み、気相法炭素繊維と黒鉛質粒子の割合(質量%)が前記[1]に記載の導電性組成物用炭素質材料、
[12]内部に中空構造を持つ多層構造であり、外径2〜500nm、アスペクト比10〜15000の気相法炭素繊維と非晶質炭素粒子とを含み、気相法炭素繊維と非晶質炭素粒子の少なくともいずれか一方がホウ素を含み、気相法炭素繊維と非晶質炭素粒子の割合(質量%)が気相法炭素繊維65〜93%、黒鉛質粒子7〜35%である前記[1]に記載の導電性組成物用炭素質材料、
[13]前記[1]乃至[12]のいずれか1項に記載の導電性組成物用炭素質材料、バインダーまたはマトリックス材料の樹脂成分および必要に応じ溶剤を含むことからなる導電性組成物、
[14]溶剤を除いた導電性組成物中における、気相法炭素繊維の濃度をa質量%、黒鉛質粒子の濃度をb質量%、非晶質炭素粒子の濃度をc質量%とすると、a、b、cは次式:

Figure 0004342929
を満たす範囲である前記[13]に記載の導電性組成物、
[15]前記[1]乃至[12]のいずれか1項に記載の導電性組成物用炭素質材料に樹脂成分、必要に応じて溶剤を添加し、混練することを特徴とする導電性組成物の製造方法、
[16]導電性材料として前記[13]または[14]記載の導電性組成物を含有することを特徴とする導電性塗料、
[17]導電性塗料を、導電性ペーストとして用いる前記[16]に記載の導電性塗料、
[18]前記[13]または[14]に記載の導電性組成物を含むことを特徴とする導電性接着剤、
[19]前記[18]に記載の導電性塗料を用いて形成されたことを特徴とする導電性塗膜、及び
[20]前記[16]に記載の導電性塗料および/または前記[18]に記載の導電性接着剤を用いて作製されたことを特徴とする電子部品を開発することにより上記の課題を解決した。 That is, the present invention [1] is a multilayer structure having a hollow structure inside, a vapor grown carbon fiber having an outer diameter of 2 to 500 nm and an aspect ratio of 10 to 15000, and graphite particles and / or amorphous carbon particles. Carbon for conductive compositions, characterized in that these proportions (mass%) are vapor-grown carbon fibers of 10 to 90%, graphitic particles of 0 to 65%, and amorphous carbon particles of 0 to 35%. Quality material,
[2] The carbonaceous material for a conductive composition according to the above [1], wherein the vapor grown carbon fiber is a fiber containing 0.01 to 5% by mass of boron, and contains 20% by mass or more of the carbon fiber.
[3] The carbonaceous material for a conductive composition according to the above [1], wherein the vapor grown carbon fiber includes a branched vapor grown carbon fiber,
[4] The carbonaceous material for a conductive composition according to the above [1], wherein the vapor grown carbon fiber includes a bump-like vapor grown carbon fiber.
[5] The carbonaceous material for a conductive composition according to the above [1], wherein the average particle diameter of the graphite particles or amorphous carbon particles is 0.1 to 100 μm,
[6] The carbonaceous material for a conductive composition according to the above [1], wherein the graphite particles or amorphous carbon particles are heat-treated at 2000 ° C. or higher.
[7] The carbonaceous material for conductive composition according to [1], wherein the graphite particles contain boron,
[8] The carbonaceous material for a conductive composition according to [1], wherein the amorphous carbon particles contain boron,
[9] The carbonaceous material for a conductive composition according to the above [1] or [8], wherein the amorphous carbon particles are carbon black or glassy carbon,
[10] The conductive composition according to [9], wherein the carbon black is at least one selected from the group consisting of oil furnace black, gas black, acetylene black, lamp black, thermal black, channel black, and ketjen black. Carbonaceous materials for physical use,
[11] A multilayer structure having a hollow structure inside, comprising vapor-grown carbon fibers and graphite particles having an outer diameter of 2 to 500 nm and an aspect ratio of 10 to 15000, and comprising at least vapor-grown carbon fibers and graphite particles Any one of them contains boron, and the ratio (mass%) of vapor-grown carbon fiber and graphite particles is the carbonaceous material for conductive composition according to [1],
[12] A multilayer structure having a hollow structure inside, including vapor grown carbon fibers and amorphous carbon particles having an outer diameter of 2 to 500 nm and an aspect ratio of 10 to 15000, and vapor grown carbon fibers and amorphous At least one of the carbon particles contains boron, and the ratio (mass%) of vapor grown carbon fiber to amorphous carbon particles is 65 to 93% vapor grown carbon fiber and 7 to 35% graphite particles. The carbonaceous material for conductive compositions according to [1],
[13] A conductive composition comprising the carbonaceous material for a conductive composition according to any one of [1] to [12], a resin component of a binder or a matrix material, and a solvent as necessary.
[14] In the conductive composition excluding the solvent, the concentration of vapor grown carbon fiber is a mass%, the concentration of graphite particles is b mass%, and the concentration of amorphous carbon particles is c mass%. a, b, and c are the following formulas:
Figure 0004342929
The conductive composition according to [13], in a range satisfying
[15] A conductive composition characterized by adding a resin component and, if necessary, a solvent to the carbonaceous material for a conductive composition according to any one of [1] to [12], and kneading. Manufacturing method,
[16] A conductive paint comprising the conductive composition according to [13] or [14] as a conductive material,
[17] The conductive paint according to [16], wherein the conductive paint is used as a conductive paste.
[18] A conductive adhesive comprising the conductive composition according to [13] or [14],
[19] A conductive coating film formed by using the conductive paint according to [18], and [20] the conductive paint according to [16] and / or [18] The above-mentioned problems have been solved by developing an electronic component characterized by being produced using the conductive adhesive described in 1. above.

以下、本発明について詳細に説明する。
気相法炭素繊維:
気相法炭素繊維は、1980年代後半に研究されるようになり、炭化水素等のガスを金属触媒の存在下で気相熱分解することによって直径1000nm以下、数nmまでの炭素繊維が得られることが知られている。
Hereinafter, the present invention will be described in detail.
Vapor grown carbon fiber:
Vapor-grown carbon fibers have been studied in the late 1980s, and carbon fibers with a diameter of 1000 nm or less and up to several nm can be obtained by gas-phase pyrolysis of hydrocarbons and other gases in the presence of metal catalysts. It is known.

例えば、ベンゼン等の有機化合物を原料とし、触媒としてのフェロセン等の有機遷移金属化合物をキャリアーガスと共に高温の反応炉に導入し、基盤上に生成させる方法(特許第1784726号)、浮遊状態で気相法炭素繊維を生成させる方法(米国特許第4572813号)、あるいは反応炉壁に成長させる方法(特許第2778434号)等が開示されている。さらにこれらの方法により得られた気相法炭素繊維をアルゴン等の不活性雰囲気下600〜1500℃で熱処理し、更に2000〜3300℃で熱処理を行うことにより黒鉛化されたものが得られる(特開平8-60444号)。   For example, a method in which an organic compound such as benzene is used as a raw material, and an organic transition metal compound such as ferrocene as a catalyst is introduced into a high-temperature reactor together with a carrier gas and is produced on a substrate (Patent No. 1784726). A method for producing a phase-grown carbon fiber (US Pat. No. 4,572,813) or a method for growing on a reactor wall (Patent No. 2778434) is disclosed. Further, the vapor-grown carbon fiber obtained by these methods is heat-treated at 600 to 1500 ° C. in an inert atmosphere such as argon, and further heat-treated at 2000 to 3300 ° C. to obtain a graphitized fiber (specially Kaihei 8-60444).

これら製造方法により、比較的細くて導電性や熱伝導性に優れ、アスペクト比の大きいフィラー材に適した炭素繊維が得られるようになり、2〜500nm程度の径で、アスペクト比10〜15000程度のものが量産化され、導電性あるいは熱伝導性フィラー材として導電性樹脂用フィラーや鉛蓄電池の添加材等に使用されるようになった。   By these manufacturing methods, carbon fibers that are relatively thin, excellent in electrical conductivity and thermal conductivity, and suitable for a filler material having a large aspect ratio can be obtained, with a diameter of about 2 to 500 nm and an aspect ratio of about 10 to 15000. Has been mass-produced and has been used as a conductive or heat conductive filler material for fillers for conductive resins, additives for lead-acid batteries, and the like.

これら気相法炭素繊維は、形状や結晶構造に特徴があり、炭素六角網面の結晶が年輪状に巻かれ積層した構造を示し、その内部には極めて細い中空部を有する繊維である。また本発明に用いる気相法炭素繊維としては例えば特開2002-266170号公報に開示されている分岐状気相法炭素繊維であっても良いし、繊維径に変動があって、コブ状部分を有する気相法炭素繊維であっても良い。   These vapor grown carbon fibers are characterized by their shape and crystal structure, and show a structure in which crystals of carbon hexagonal mesh surfaces are wound in an annual ring shape and laminated, and have extremely thin hollow portions therein. Further, the vapor grown carbon fiber used in the present invention may be, for example, a branched vapor grown carbon fiber disclosed in Japanese Patent Application Laid-Open No. 2002-266170. Vapor grown carbon fiber having

含ホウ素炭素繊維:
更に、炭素繊維自体の導電性を向上させるためには、上記の様な気相法炭素繊維に対して各種の黒鉛化触媒を用いて、炭素繊維の結晶性(黒鉛化度)を向上させる方法がある。例えば、黒鉛化触媒としてホウ素または/及びホウ素化合物を使用した場合、ホウ素、あるいはホウ素及びホウ素化合物を含有する気相法炭素繊維(含ホウ素炭素繊維)は、通常の気相法炭素繊維に比べて導電性が向上する。
Boron-containing carbon fiber:
Furthermore, in order to improve the electrical conductivity of the carbon fiber itself, a method for improving the crystallinity (graphitization degree) of the carbon fiber by using various graphitization catalysts for the vapor grown carbon fiber as described above. There is. For example, when boron or / and a boron compound is used as a graphitization catalyst, boron or a vapor grown carbon fiber (boron-containing carbon fiber) containing boron and a boron compound is compared with a normal vapor grown carbon fiber. The conductivity is improved.

気相法炭素繊維はそのまま使用しても導電性の高い炭素質材料であり、またこれを配合した導電性組成物の機械的強度の向上に効果のある材料であるが、製造したままであるときは、繊維表面に原料炭化水素、その熱分解物などが付着している可能性があり、さらには結晶性が不十分なこともしばしば存在する。そこでこの炭素繊維を2000℃、好ましくは2300℃以上に不活性雰囲気下で熱処理すると、付着熱分解物などが揮散、除去されるとともに結晶性(黒鉛化)が進み、導電性の向上を図ることができる。結晶性の向上と共に炭素繊維の導電性も向上する。さらに炭素繊維の黒鉛化を一層促進させるために熱処理の際にホウ素を共存させることが特に好ましい。   Vapor-grown carbon fiber is a carbonaceous material with high conductivity even if it is used as it is, and is a material effective in improving the mechanical strength of a conductive composition containing this, but it is still manufactured. Sometimes raw material hydrocarbons, thermal decomposition products thereof, and the like may adhere to the fiber surface, and often the crystallinity is insufficient. Therefore, if this carbon fiber is heat-treated in an inert atmosphere at 2000 ° C, preferably 2300 ° C or more, the attached thermal decomposition products will be volatilized and removed, and the crystallinity (graphitization) will progress to improve conductivity. Can do. The conductivity of the carbon fiber is improved with the improvement of crystallinity. Further, in order to further promote graphitization of the carbon fiber, it is particularly preferable to coexist boron during the heat treatment.

繊維中にホウ素を含有する気相法炭素繊維(含ホウ素炭素繊維)は、上記気相法炭素繊維や分岐状、コブ状気相法炭素繊維を、例えば、国際公開第00/58536号パンフレットに開示した方法で、ホウ素あるいはホウ酸、ホウ酸塩、酸化ホウ素、炭化ホウ素等のホウ素化合物とともに、アルゴン等の不活性雰囲気下2000〜3300℃で熱処理することにより得られる。   The vapor-grown carbon fiber containing boron in the fiber (boron-containing carbon fiber) may be the above-mentioned vapor-grown carbon fiber or branched or bump-shaped vapor-grown carbon fiber, for example, in International Publication No. 00/58536. By the disclosed method, it is obtained by heat treatment at 2000-3300 ° C. in an inert atmosphere such as argon together with boron or a boron compound such as boric acid, borate, boron oxide, boron carbide.

含ホウ素炭素繊維の原料微細気相法炭素繊維としては、あまり結晶の発達していないドーピングしやすい低温熱処理品、例えば1500℃以下で熱処理された繊維を用いるか、好ましくは熱処理していない製造したままの(アズグロウン)状態の気相法炭素繊維を用いる。熱処理していない結晶の未発達の繊維でもホウ素触媒を用いた処理(ホウ素化処理)時に、黒鉛化温度まで加熱処理されるので十分使用できる。含ホウ素炭素繊維原料として通常の熱処理として採用される2000℃以上の温度で黒鉛化処理された繊維を用いることもできるが、エネルギー効率の面からは前もって黒鉛化せずに熱処理していないもの、あるいは1500℃以下の温度で熱処理したものを用いてホウ素の触媒作用を働かせる方が好ましい。   As the raw material fine vapor grown carbon fiber of boron-containing carbon fiber, a low-temperature heat-treated product which is not so developed and easily doped, for example, a fiber heat-treated at 1500 ° C. or lower, or preferably manufactured without heat treatment is used. A vapor grown carbon fiber in an as-grown state is used. Even undeveloped fibers of crystals that have not been heat-treated can be sufficiently used because they are heat-treated to the graphitization temperature during the treatment using a boron catalyst (boration treatment). Fibers graphitized at a temperature of 2000 ° C. or higher, which is employed as a normal heat treatment as a boron-containing carbon fiber raw material, can be used, but in terms of energy efficiency, those not heat-treated without graphitization in advance, Alternatively, it is preferable to use boron that has been heat-treated at a temperature of 1500 ° C. or less to activate the catalytic action of boron.

含ホウ素炭素繊維の原料は取扱い易くするため、あらかじめ解砕、粉砕してもよいが、原料ホウ素またはホウ素化合物は炭素繊維と直接混合せずに別の容器に入れて熱処理してホウ素またはホウ素化合物の蒸気を発生させて炭素繊維と反応させた後に最終的に解砕、粉砕、分級等のフィラー化処理をするので、熱処理の前にフィラー等としての適正な長さにしておく必要はない。気相成長法で一般的に得られる太さ(径)2〜1000nm程度、長さ500〜400000nm程度の炭素繊維をそのまま用いることができる。   The boron-containing carbon fiber raw material may be pulverized and pulverized in advance for easy handling. However, the raw material boron or boron compound is not directly mixed with the carbon fiber, but is heat-treated in a separate container. After the vapor is generated and reacted with the carbon fiber, it is finally subjected to filler treatment such as crushing, pulverization, classification, etc., so it is not necessary to make it an appropriate length as a filler or the like before the heat treatment. Carbon fibers having a thickness (diameter) of about 2 to 1000 nm and a length of about 500 to 400000 nm, which are generally obtained by vapor deposition, can be used as they are.

熱処理は2000℃以上の温度で行われるので、使用するホウ素またはホウ素化合物は少なくとも2000℃に達する前に分解等によっても蒸発しない物質であることが必要である。例えば、元素状ホウ素、B22、B23、B43、B45等のホウ素酸化物、オルトホウ酸、メタホウ酸、四ホウ酸等のホウ素オキソ酸やその塩、B4C、B6C等のホウ素炭化物、BNその他のホウ素化合物を使用する。好ましくはB4C、B6C等のホウ素炭化物、元素状ホウ素がよい。 Since the heat treatment is performed at a temperature of 2000 ° C. or higher, it is necessary that the boron or boron compound to be used is a substance that does not evaporate by decomposition or the like before reaching at least 2000 ° C. For example, elemental boron, boron oxides such as B 2 O 2 , B 2 O 3 , B 4 O 3 , and B 4 O 5 , boron oxo acids such as orthoboric acid, metaboric acid, and tetraboric acid, and salts thereof, B Boron carbides such as 4 C and B 6 C, BN and other boron compounds are used. Boron carbides such as B 4 C and B 6 C and elemental boron are preferable.

炭素繊維にホウ素を導入する方法としては、原料、すなわち固体状のホウ素またはホウ素化合物を炭素繊維に直接添加あるいは混合する方法、原料ホウ素またはホウ素化合物と炭素繊維を直接接触させずに、ホウ素またはホウ素化合物を加熱して発生させた蒸気を炭素繊維と接触させる方法があるが後者が好ましい。
炭素繊維にドーピングできるホウ素量は、一般的には0.01質量%〜5質量%である。従ってホウ素またはホウ素化合物を炭素繊維に直接接触させることなく蒸気で供給するときのホウ素またはホウ素化合物の使用量は、反応率を考慮して炭素量に対してホウ素原子換算で5質量%以上存在するように供給するのがよい。ホウ素の使用量が少ないと十分な効果が得られない。
As a method of introducing boron into the carbon fiber, a raw material, that is, a method of directly adding or mixing solid boron or a boron compound to the carbon fiber, a boron or boron compound without directly contacting the raw material boron or boron compound and the carbon fiber. There is a method in which vapor generated by heating a compound is brought into contact with carbon fiber, but the latter is preferred.
The amount of boron that can be doped into the carbon fiber is generally 0.01% by mass to 5% by mass. Therefore, the amount of boron or boron compound used when supplying boron or boron compound by vapor without directly contacting the carbon fiber is 5% by mass or more in terms of boron atom with respect to the carbon amount in consideration of the reaction rate. It is better to supply as follows. If the amount of boron used is small, sufficient effects cannot be obtained.

ホウ素またはホウ素化合物を炭素繊維に直接添加あるいは混合する方法では、熱処理の段階で過剰のホウ素またはホウ素化合物が繊維上で溶融燒結して固まったり、繊維表面を被覆したりして電気抵抗を上昇させるなど、要求されるフィラー特性が失われることがある。特に製造時に使用するシードとなる遷移金属またはその化合物由来の金属成分がホウ素と容易に反応して繊維の結晶内または表面でホウ化物(ホウ化金属)になる場合は、炭素繊維にホウ素またはホウ素化合物を接触させないで行うことが好ましい。   In the method of adding or mixing boron or boron compound directly to carbon fiber, excess boron or boron compound is melt-sintered and solidified on the fiber or coats the fiber surface in the heat treatment stage to increase the electrical resistance. Required filler properties may be lost. In particular, when a metal component derived from a transition metal or a compound used as a seed used in production easily reacts with boron to become a boride (metal boride) in the fiber crystal or on the surface, boron or boron is added to the carbon fiber. It is preferable to carry out without contacting the compound.

原料の微細な炭素繊維は、3次元の立体構造を持ち、フロック形状となり易いだけでなく、嵩密度が極めて小さく空隙率が非常に大きい。しかも添加するホウ素量は少量なので、単に両者を混合しただけでは両者を均一に接触させることは難しく、炭素繊維全体に均一な触媒作用をもたらすことは困難である。   The fine carbon fiber as a raw material has a three-dimensional structure and tends to have a flock shape, and also has a very low bulk density and a very high porosity. Moreover, since the amount of boron to be added is small, it is difficult to bring them into uniform contact simply by mixing them together, and it is difficult to bring about uniform catalytic action over the entire carbon fiber.

従ってホウ素の導入反応を効率よく行うには、繊維とホウ素またはホウ素化合物をよく混合し、できるだけ均一に接触させる必要がある。そのためには、ホウ素またはホウ素化合物はできるだけ粒径の小さいものを使用するのが好ましいが、繊維とホウ素またはホウ素化合物を非接触で行う方法が、炭素繊維のサイズの制限はなく、繊維のサイズが大きくても部分的に高濃度領域が発生することがなく、固結化も発生しにくい点から好ましい。   Therefore, in order to carry out the boron introduction reaction efficiently, it is necessary to mix the fiber and boron or boron compound well and make them contact as uniformly as possible. For that purpose, it is preferable to use boron or a boron compound having a particle size as small as possible. However, the method in which the fiber and boron or boron compound are contacted without contact is not limited in size of the carbon fiber, and the fiber size is not limited. Even if it is large, it is preferable in that a high concentration region does not partially occur and solidification hardly occurs.

一般に、気相法による微細な炭素繊維は、嵩密度が小さく、製造されたままの集合体は約0.01g/cm3以下、これを熱処理し解砕粉砕分級した通常品は0.02〜0.08g/cm3程度である。このように多くの空隙率を持つ微細な炭素繊維を熱処理するには非常に容量の大きな熱処理炉が必要で設備コストが高くなるだけでなく、生産性も悪い。効率的な方法でホウ素を導入する方法が重要である。 In general, fine carbon fibers produced by the vapor phase method have a small bulk density, and aggregates as produced are about 0.01 g / cm 3 or less, and ordinary products obtained by heat-treating and pulverizing and pulverizing are 0.02 to 0.08 g / It is about cm 3 . In order to heat treat such fine carbon fibers having a large porosity, a heat treatment furnace having a very large capacity is required, which not only increases the equipment cost but also deteriorates the productivity. A method of introducing boron in an efficient manner is important.

ホウ素の導入反応を効率よく行うためには炭素繊維の周囲のホウ素濃度を十分に保持する必要がある。そのためには、両者を直接接触させたいが、気相法炭素繊維生成触媒金属(例えば、鉄、コバルト等)とホウ素が反応したホウ化物が過剰に残り不都合が生じる場合には、直接接触させることなく、また熱処理の過程で、濃度のかたよりがおきないようにしなければならない。   In order to perform the boron introduction reaction efficiently, it is necessary to sufficiently maintain the boron concentration around the carbon fiber. For that purpose, it is desirable to make the two directly contact, but if the boride that reacts with the vapor-grown carbon fiber generation catalyst metal (for example, iron, cobalt, etc.) and boron remains excessively, the direct contact is required. In addition, it must be ensured that the concentration does not occur during the heat treatment.

そのため、熱処理前に繊維とホウ素またはホウ素化合物が固体同士で直接接触しないように、例えば別々の容器(ルツボ等)に入れたり、ホウ素またはホウ素化合物を炭素繊維布で包むなどして、共存させ熱処理することもできるが、好ましくは高密度化し、かつその状態をできるだけ維持(固定化)して熱処理する。その好ましい方法として、熱処理前に、炭素繊維を充填した容器の中に、ホウ素またはホウ素化合物を入れた容器を入れた後、圧力を加えて圧縮し、高密度化して固定化する。   Therefore, in order to prevent the fiber and boron or boron compound from directly contacting each other before heat treatment, for example, put them in separate containers (crucible etc.) or wrap boron or boron compound in a carbon fiber cloth and coexist heat treatment. However, the heat treatment is preferably performed while increasing the density and maintaining (fixing) the state as much as possible. As a preferred method, before heat treatment, a container filled with boron or a boron compound is placed in a container filled with carbon fiber, and then compressed by applying pressure, densified and fixed.

繊維とホウ素またはホウ素化合物を高密度化し、固定化する方法としては、成形法、造粒法、あるいは、混合物をルツボにいれて一定の形状に圧縮して、詰め込む方法等が挙げられる。成形法の場合、成形体の形状は円柱状、板状や直方体等何れの形状でもよい。   Examples of the method for densifying and fixing the fiber and boron or the boron compound include a molding method, a granulation method, and a method in which the mixture is put into a crucible and compressed into a certain shape and packed. In the case of a molding method, the shape of the molded body may be any shape such as a columnar shape, a plate shape, and a rectangular parallelepiped.

圧縮して成形体とした後、圧力を開放すると多少容積が膨らみ、嵩密度が下がることもあるが、その場合は圧縮時の嵩密度を圧力開放後の固定化の嵩密度が0.03g/cm3以上になるようにする。また繊維を容器に入れる場合も、処理効率を上げるために、加圧板等を用いて嵩密度が0.03g/cm3以上になるように圧縮したり、また圧縮したまま熱処理することもできる。 After compression to form a molded body, when the pressure is released, the volume expands to some extent and the bulk density may decrease, but in that case, the bulk density during compression is 0.03 g / cm after fixing the pressure. Try to be 3 or more. Also, when the fiber is put into a container, in order to increase the processing efficiency, it can be compressed using a pressure plate or the like so that the bulk density becomes 0.03 g / cm 3 or more, or it can be heat-treated while being compressed.

ホウ素を炭素の結晶内に導入するために必要な処理温度は2000℃以上、好ましくは2300℃以上である。処理温度が2000℃に満たないとホウ素と炭素との反応性が悪く、ホウ素の導入が難しい。また、ホウ素の導入を一層促進し、かつ炭素の結晶性を向上させ、特に径が約100nm程度の繊維で、炭素網面層の面間隔d002を0.3385nm以下にする必要がある場合には2300℃以上に保つことが好ましい。熱処理温度の上限は特に制限はないが、装置等の制限から3200℃程度である。 The treatment temperature required for introducing boron into the carbon crystal is 2000 ° C. or higher, preferably 2300 ° C. or higher. If the treatment temperature is less than 2000 ° C., the reactivity between boron and carbon is poor and it is difficult to introduce boron. In addition, when the introduction of boron is further promoted and the crystallinity of carbon is improved, especially when the fiber has a diameter of about 100 nm and the interplanar spacing d 002 of the carbon network layer is required to be 0.3385 nm or less. It is preferable to keep the temperature at 2300 ° C or higher. The upper limit of the heat treatment temperature is not particularly limited, but is about 3200 ° C. due to the limitations of the apparatus and the like.

使用する熱処理炉は2000℃以上、好ましくは2300℃以上の目的とする温度が保持できる炉であればよく、アチソン炉、抵抗炉、高周波炉他の通常の何れの装置でもよい。また、粉体または成形体に直接通電して加熱する方法も使用できる。   The heat treatment furnace used may be a furnace capable of maintaining a target temperature of 2000 ° C. or higher, preferably 2300 ° C. or higher, and may be any ordinary apparatus such as an Atchison furnace, a resistance furnace, a high frequency furnace, or the like. Moreover, the method of heating by energizing powder or a molded object directly can also be used.

熱処理の雰囲気は非酸化性の雰囲気、好ましくはアルゴン、ヘリウム、ネオン等の1種もしくは2種以上の希ガス雰囲気がよい。熱処理の時間は、生産性の面からは出来るだけ短い方が好ましい。長時間加熱していると燒結してくるので、製品収率も悪化する。従って、成形体等の中心部の温度が目標温度に達した後、1時間以下の保持時間で十分である。   The atmosphere for the heat treatment is a non-oxidizing atmosphere, preferably an atmosphere of one or more rare gases such as argon, helium and neon. The heat treatment time is preferably as short as possible from the viewpoint of productivity. If it is heated for a long time, the product yields and the product yield also deteriorates. Therefore, a holding time of 1 hour or less is sufficient after the temperature of the central part of the molded body or the like reaches the target temperature.

非晶質炭素粒子:
非晶質炭素とは、炭素原子が不規則な空間配置をしたX線回折、電子回折でブロードな反射を示す炭素である。ガラス状炭素、カーボンブラック等や、熱処理温度が低くて三次元規則構造を持たず、黒鉛構造に至らない結晶性の低い炭素が挙げられる。
Amorphous carbon particles:
Amorphous carbon is carbon that shows broad reflection by X-ray diffraction and electron diffraction in which carbon atoms are arranged in an irregular space. Examples thereof include glassy carbon, carbon black and the like, and carbon having low crystallinity that does not have a three-dimensional ordered structure due to a low heat treatment temperature and does not lead to a graphite structure.

このうち、ほぼ95%以上の非晶質炭素からなるナノメートルサイズの微粒子で比表面積、ストラクチャー、アグリゲート(凝集体)分布などの品質が作り込まれている炭素材料であるカーボンブラックが好適に使用できる。   Among these, carbon black, which is a carbon material in which quality such as specific surface area, structure, and aggregate (aggregate) distribution is made of nanometer-sized fine particles composed of approximately 95% or more of amorphous carbon, is preferred. Can be used.

カーボンブラックは、製造方法、原料により種々のものが知られているが、本発明に好適に使用できるものとしては、オイルファーネスブラック、ガスブラック、アセチレンブラック、ランプブラック、サーマルブラック、チャンネルブラック、ケッチェンブラック等を挙げることができる。これらの中でも、アセチレンブラック、サーマルブラック、チャンネルブラック、ケッチェンブラックが好ましい。   Various carbon blacks are known depending on the production method and raw materials, but those that can be suitably used in the present invention include oil furnace black, gas black, acetylene black, lamp black, thermal black, channel black, kettle. Examples include chain black. Among these, acetylene black, thermal black, channel black, and ketjen black are preferable.

本発明で使用する非晶質炭素粒子、例えば、カーボンブラックは、ストラクチャーが発達し、一次粒子径が小さく、かつ二次粒子径が大きく表面積が大きくて多孔質であることが望ましい。また、吸油量が90ml(DBP)/100g以上(JIS K 6221-1982「ゴム用カーボンブラック試験方法」に準じて測定)であることが好ましい。かくすることにより、得られる炭素質材料がストラクチャー構造を取りやすく、より高い導電性を発揮するからである。
非晶質炭素粒子の粒径(ストラクチャー基準)は、通常30〜500nm、好ましくは30〜100nmであり、BET法による比表面積の値が20〜50m2/gが好ましい。
The amorphous carbon particles used in the present invention, for example, carbon black, are desirably porous with a developed structure, a small primary particle size, a large secondary particle size and a large surface area. The oil absorption is preferably 90 ml (DBP) / 100 g or more (measured according to JIS K 6221-1982 “Testing Method for Carbon Black for Rubber”). This is because the resulting carbonaceous material easily takes a structure structure and exhibits higher conductivity.
The particle size (structure basis) of the amorphous carbon particles is usually 30 to 500 nm, preferably 30 to 100 nm, and the specific surface area value by the BET method is preferably 20 to 50 m 2 / g.

本発明に係る導電性組成物用炭素質材料中における非晶質炭素粒子の含有量としては、通常7〜35質量%、好ましくは10〜30質量%である。
また、導電性組成物の場合の非晶質炭素粒子の含有量としては、1〜60質量%、好ましくは2〜30質量%、より好ましくは5〜20質量%である。非晶質炭素粒子の含有量が1質量%未満だと、導電性組成物は十分な導電性、少ない抵抗異方性を発揮することができなくなることがあり、また、非晶質炭素粒子の含有量が60質量%以上だと、相対的に気相成長炭素繊維や黒鉛粒子の含有量が少なくなったり、あるいは樹脂成分の含有量が少なくなったりすることにより、導電性が十分に発揮されなかったりする不都合を生じることがある。
As content of the amorphous carbon particle in the carbonaceous material for electrically conductive compositions concerning this invention, it is 7-35 mass% normally, Preferably it is 10-30 mass%.
Moreover, as content of the amorphous carbon particle in the case of an electroconductive composition, it is 1-60 mass%, Preferably it is 2-30 mass%, More preferably, it is 5-20 mass%. When the content of the amorphous carbon particles is less than 1% by mass, the conductive composition may not exhibit sufficient conductivity and little resistance anisotropy. When the content is 60% by mass or more, the electrical conductivity is sufficiently exerted by relatively decreasing the content of vapor-grown carbon fiber and graphite particles or decreasing the content of the resin component. May cause inconvenience.

非晶質炭素(例えばカーボンブラック)はそのまま使用しても良いが、気相法炭素繊維と同様に、2000℃以上、好ましくは2300℃以上の温度での熱処理あるいはホウ素またはホウ素化合物を用いて2000℃以上、好ましくは2300℃以上の温度でのホウ素共存下における熱処理した黒鉛質粒子を超えない結晶化度を有するものを使用することができるこのような処理をした非晶質炭素は、熱処理しない非晶質炭素に比して導電性が向上し、また塗膜強度の向上した製品が得られるなど好ましい効果が期待できる。   Amorphous carbon (for example, carbon black) may be used as it is, but as with vapor grown carbon fiber, it is heat treated at a temperature of 2000 ° C. or higher, preferably 2300 ° C. or higher, or boron or a boron compound. It is possible to use those having a crystallinity not exceeding the heat treated graphite particles in the presence of boron at a temperature of ℃ ≧ 2, preferably ≧ 2300 ℃. A favorable effect can be expected, for example, that the conductivity is improved as compared with amorphous carbon, and a product with improved coating strength is obtained.

黒鉛粒子:
本発明で使用する黒鉛質粒子は黒鉛化がそれほど進行していなくても良く、具体的にはX線格子面間隔C0値(すなわち炭素網面層の面間隔d002の2倍値)が0.685nm以下(すなわちd002が0.3425nm以下)程度まで黒鉛化が進行していれば充分である。完全な黒鉛としての理論値はC0が0.6708nm(d002が0.3354nm)であり、この値をより小さくなることはない。
Graphite particles:
The graphitized particles used in the present invention do not have to be graphitized so much. Specifically, the X-ray lattice spacing C 0 value (that is, the double value of the plane spacing d 002 of the carbon network layer). 0.685nm or less (i.e., d 002 is less 0.3425Nm) graphitized extent is sufficient if the progress. The theoretical value for perfect graphite is C 0 of 0.6708 nm (d 002 is 0.3354 nm), and this value will not be smaller.

黒鉛質粒子としては、天然黒鉛、人造黒鉛が使用できるが、炭素質原料を熱処理することにより黒鉛質粒子として使用することができる。
黒鉛質粒子の原料としては、炭素質粉体である天然黒鉛、人造黒鉛、コークス、メソフェーズカーボン、ピッチ、木炭、樹脂炭等を使用することができるが、天然黒鉛、人造黒鉛、加熱することで黒鉛化が進み易いコークス、メソフェーズカーボン、ピッチが好適である。
形状は球形に近い方が樹脂と混練し易く、またメソフェーズカーボンを用いると流動性が向上するため樹脂成形性に優れたものが得られる。
As the graphite particles, natural graphite and artificial graphite can be used, but they can be used as graphite particles by heat-treating a carbonaceous raw material.
As the raw material of the graphite particles, natural graphite, artificial graphite, coke, mesophase carbon, pitch, charcoal, resin charcoal, etc., which are carbonaceous powders can be used, but natural graphite, artificial graphite, Coke, mesophase carbon, and pitch that are easily graphitized are suitable.
The shape closer to a sphere is easier to knead with the resin, and when mesophase carbon is used, the fluidity is improved, so that a resin having excellent resin moldability is obtained.

黒鉛質粒子と非晶質炭素粒子は、予め粉砕等により最終的に必要とされる粒度に調整してもよく、熱処理後に粉砕等により調整してもよいが、予め調整してあることが望ましい。
黒鉛質粒子と非晶質炭素粒子の粉砕には、高速回転粉砕機(ハンマーミル、ピンミル、ケージミル)や各種ボールミル(転動ミル、振動ミル、遊星ミル)、撹拌ミル(ビーズミル、アトライター、流通管型ミル、アニュラーミル)等が使用できる。また、微粉砕機のスクリーンミル、ターボミル、スーパーミクロンミル、ジェットミルでも条件を選定することによって使用可能である。
Graphite particles and amorphous carbon particles may be preliminarily adjusted to the required particle size by pulverization or the like, and may be adjusted by pulverization or the like after heat treatment, but it is desirable that they are adjusted in advance. .
High-speed rotary pulverizer (hammer mill, pin mill, cage mill), various ball mills (rolling mill, vibration mill, planetary mill), stirring mill (bead mill, attritor, distribution) Pipe mills, annular mills, etc. can be used. Further, a screen mill, a turbo mill, a super micron mill, and a jet mill of a fine pulverizer can be used by selecting conditions.

特性及び生産性を考慮すると、粒径は平均粒径0.1〜100μmの範囲が好ましく、さらに0.1〜80μmの範囲が好ましい。粒径については粒径が0.5μm以下及び/または80μmを超える粒子を実質的に除去し、これらの粒子が各々5質量%以下、好ましくは1質量%以下になるようにする。   Considering characteristics and productivity, the particle size is preferably in the range of 0.1 to 100 μm, more preferably in the range of 0.1 to 80 μm. Regarding the particle size, particles having a particle size of 0.5 μm or less and / or exceeding 80 μm are substantially removed so that each of these particles is 5% by mass or less, preferably 1% by mass or less.

熱処理工程は、平均粒径0.1〜100μmの炭素質粉体(原料粉)(黒鉛と非晶質)に対し、平均粒径0.1〜100μmのホウ素、ニッケル、コバルト、マンガン、ケイ素、マグネシウム、アルミニウム、カルシウム、チタン、バナジウム、クロム、鉄、銅、モリブデン、タングステン、ジルコニウムまたはその化合物から選ばれた少なくとも1種を、0.01〜10質量%、好ましくは0.1〜10質量%添加して混合した後に蓋付きの黒鉛製容器(ルツボ等)に入れる。上記化合物が0.01質量%より少量だと効果が充分でなく、10質量%より多いと効果は殆ど変わらないが、該化合物粉体や炭素質粉体が凝集する等の悪影響が出始めるため好ましくない。   In the heat treatment step, boron, nickel, cobalt, manganese, silicon, magnesium, aluminum having an average particle size of 0.1 to 100 μm is used for carbonaceous powder (raw material powder) (graphite and amorphous) having an average particle size of 0.1 to 100 μm. At least one selected from calcium, titanium, vanadium, chromium, iron, copper, molybdenum, tungsten, zirconium or a compound thereof is added with 0.01 to 10% by mass, preferably 0.1 to 10% by mass and mixed with a lid. Into a graphite container (such as a crucible). If the amount of the compound is less than 0.01% by mass, the effect is not sufficient, and if the amount is more than 10% by mass, the effect is hardly changed, but it is not preferable because adverse effects such as aggregation of the compound powder and carbonaceous powder start to appear. .

熱処理後黒鉛質粒子に含まれる所望の元素を100質量ppm以上にするには、化合物粉体として1種類以上(例えば、所望の元素としてホウ素元素の場合は、ホウ素、炭化ホウ素、酸化ホウ素等)を混合して添加する方がさらに効果的である。これは熱処理時の炉内温度には多少のばらつきが生じるために、融点、沸点の異なる物質を混合しておくことによりこのばらつきの問題を小さくできるからである。   To make the desired element contained in the graphite particles after heat treatment 100 ppm by mass or more, one or more compound powders (for example, boron, boron carbide, boron oxide, etc. in the case of boron element as the desired element) It is more effective to add and mix. This is because the temperature in the furnace during heat treatment varies somewhat, so that the problem of this variation can be reduced by mixing substances having different melting points and boiling points.

熱処理は黒鉛容器を容器ごとアルゴン、窒素、ヘリウム等の不活性ガス雰囲気中で熱処理することにより行われる。熱処理のための炉は黒鉛化炉として一般的なアチソン炉や高周波誘導加熱炉等を用いることができる。加熱温度は2000℃以上で、かつ添加物質や生成したホウ化物が揮散消失しない温度に抑えることが望ましい。概ね2000〜2500℃の範囲に加熱温度を設定するのが望ましい。なお、この熱処理時に黒鉛化していない原料の黒鉛化が併せて進行するが、上記の添加物質は黒鉛化触媒としても作用するため有効である。2500℃以上、例えば2500〜3200℃に加熱すると黒鉛微粉の黒鉛化が進行する点では有利だが、熱処理装置の材質から見てこの程度の温度が上限となる。   The heat treatment is performed by heat-treating the graphite container together with the container in an inert gas atmosphere such as argon, nitrogen, or helium. As a furnace for heat treatment, a general Atchison furnace or a high-frequency induction heating furnace as a graphitization furnace can be used. It is desirable that the heating temperature is 2000 ° C. or higher, and the temperature is such that additive substances and generated borides do not volatilize and disappear. It is desirable to set the heating temperature in the range of approximately 2000 to 2500 ° C. In addition, although graphitization of the raw material which has not been graphitized proceeds at the time of this heat treatment, the above-mentioned additive substance is effective because it also acts as a graphitization catalyst. Heating to 2500 ° C. or higher, for example, 2500 to 3200 ° C. is advantageous in that graphitization of the graphite fine powder proceeds, but this temperature is the upper limit in view of the material of the heat treatment apparatus.

本発明に係る導電性組成物用炭素質材料中における気相法炭素繊維と黒鉛質粒子及び/または非晶質炭素粒子の割合(質量%)は、気相法炭素繊維10〜90%好ましくは25〜60%、さらに30〜50%が好ましく、黒鉛質粒子0〜65%好ましくは0〜40%、非晶質炭素粒子0〜35%好ましくは0〜20%である。
非晶質炭素粒子を含まない、気相法炭素繊維と黒鉛質粒子を含む本発明に係る導電性組成物用炭素質材料中における気相法炭素繊維と黒鉛質粒子との割合は気相法炭素繊維35〜93%、好ましくは35〜60%、黒鉛質粒子7〜65%、好ましくは10〜40%である。
また、黒鉛質粒子を含まない、気相法炭素繊維と非晶質炭素粒子を含む本発明に係る導電性組成物用炭素質材料中における気相法炭素繊維と非晶質炭素粒子との割合は気相法炭素繊維35〜93%、好ましくは35〜60%、非晶質炭素粒子7〜35%、好ましくは10〜30%である。
なお、導電性塗料として体積固有抵抗が0.1Ωcm以下のものを必要とするときには、導電性組成物用炭素質材料は単なる気相法炭素繊維よりも、ホウ素含有気相法炭素繊維が好ましく、この繊維を60質量%以上、好ましくは75質量%以上、より好ましくは80質量%以上、非晶質炭素粒子及び/または黒鉛質粒子の合計が40質量%以下、好ましくは25質量%以下、より好ましくは20〜10質量%のものであることが必要である。
The ratio (mass%) of vapor grown carbon fiber and graphite particles and / or amorphous carbon particles in the carbonaceous material for conductive composition according to the present invention is preferably 10 to 90% of vapor grown carbon fiber. It is preferably 25 to 60%, more preferably 30 to 50%, graphite particles 0 to 65%, preferably 0 to 40%, amorphous carbon particles 0 to 35%, preferably 0 to 20%.
The ratio of the vapor-grown carbon fiber and the graphite particles in the carbonaceous material for a conductive composition according to the present invention containing the vapor-grown carbon fiber and the graphite particles without the amorphous carbon particles is the vapor-phase method. Carbon fiber is 35 to 93%, preferably 35 to 60%, and graphite particles 7 to 65%, preferably 10 to 40%.
Further, the ratio of vapor grown carbon fiber and amorphous carbon particles in the carbonaceous material for a conductive composition according to the present invention containing vapor grown carbon fiber and amorphous carbon particles, which does not contain graphite particles. Is 35 to 93%, preferably 35 to 60%, and amorphous carbon particles 7 to 35%, preferably 10 to 30%.
When a conductive coating material having a volume resistivity of 0.1 Ωcm or less is required, the carbonaceous material for the conductive composition is preferably a boron-containing vapor-grown carbon fiber rather than a simple vapor-grown carbon fiber. The fiber is 60% by mass or more, preferably 75% by mass or more, more preferably 80% by mass or more, and the total of amorphous carbon particles and / or graphitic particles is 40% by mass or less, preferably 25% by mass or less, more preferably Needs to be 20 to 10% by mass.

気相法炭素繊維は、中空繊維であるため熱伝導性が優れ、熱伝導性を必要とするペーストなどの用途に好適である。また気相法炭素繊維は塗膜の強度、導電性を向上させるが、これを熱処理あるいはホウ素含有気相法炭素繊維とすることにより、結晶性及び導電性が一層向上し、耐酸化性を改良し、経年変化を抑制する性能を付与することができる。
また、黒鉛質粒子及び非晶質炭素粒子は、単独で用いた場合においても濡れ性の向上、気相法炭素繊維による導電性の異方性を解消し、動摩擦抵抗が小さく摺動性に優れた塗膜を形成できる。
これらの黒鉛質粒子及び非晶質炭素粒子の炭素質物質も加熱処理あるいはホウ素化処理により気相法炭素繊維と同様に導電性の向上の効果を期待できる。黒鉛質粒子及び非晶質炭素粒子はそれぞれ単独でも上記の効果があるが、これを併用することにより、非晶質炭素粒子の不規則な鎖状に枝分かれした構造(ストラクチャー)と気相法炭素繊維との接触により電気的なネットワークを形成することで導電性を発現するのみならず、非晶質炭素粒子より導電性に優れた黒鉛質粒子を繊維状物質間の空隙に分散させることで電気的なネットワークの広がりを増すとともに、繊維状物質間の接触点の解離による導電性の低下を防ぎ、導電性の安定性等が期待できる。
Since vapor grown carbon fiber is a hollow fiber, it has excellent thermal conductivity and is suitable for applications such as pastes that require thermal conductivity. Vapor-grown carbon fiber improves the strength and conductivity of the coating. By using heat-treated or boron-containing vapor-grown carbon fiber, crystallinity and conductivity are further improved and oxidation resistance is improved. And the performance which suppresses a secular change can be provided.
Graphite particles and amorphous carbon particles also improve wettability when used alone, eliminate conductivity anisotropy due to vapor grown carbon fiber, have low dynamic friction resistance and excellent sliding properties. A coating film can be formed.
These carbonaceous materials such as graphite particles and amorphous carbon particles can also be expected to have an effect of improving the conductivity by heat treatment or boronation treatment as in the case of vapor grown carbon fiber. Graphite particles and amorphous carbon particles each have the above-mentioned effects, but by using these in combination, the structure (structure) of amorphous carbon particles branched into irregular chains and vapor grown carbon In addition to expressing electrical conductivity by forming an electrical network through contact with the fiber, electricity is generated by dispersing graphite particles, which are more conductive than amorphous carbon particles, in the gaps between the fibrous materials. In addition to increasing the spread of the network, it is possible to prevent the decrease in conductivity due to the dissociation of the contact points between the fibrous materials and to expect the stability of the conductivity.

樹脂成分:
本発明に係る導電性組成物においては、樹脂成分をフィラー等のバインダーあるいはマトリックスとして使用する。
使用できる樹脂成分としては熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマー等を挙げることができる。
Resin component:
In the conductive composition according to the present invention, the resin component is used as a binder such as a filler or a matrix.
Examples of the resin component that can be used include thermoplastic resins, thermosetting resins, and thermoplastic elastomers.

熱可塑性樹脂としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン、ポリブテン、ポリブタジエン、ポリスチレン(PS)、スチレンブタジエン樹脂(SB)、ポリ塩化ビニル(PVC)、ポリ酢酸ビニル(PVAc)、ポリエチルメタクリレート(PMMA、アクリル樹脂)、ポリ塩化ビニリデン(PVDC)、ポリテトラフロロエチレン(PTFE)、エチレンポリテトラフロロエチレン共重合体(ETFE)、エチレン酢酸ビニル共重合体(EVA)、AS樹脂(SAN)、ABS樹脂(ABS)、アイオノマー(IO)、AAS樹脂(AAS)、ACS樹脂(ACS)、ポリアセタール(POM、ポリオキシメチレン)、ポリアミド(PA、ナイロン)、ポリカーボネート(PC)、ポリフェニレンエーテル(PPE)、ポリエチレンテレフタレート(PETP)、ポリブチレンテレフタレート(PBTP)、ポリアリレート(PAR、Uポリマー)、ポリスルホン(PSF)、ポリエーテルスルホン(PESF)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリフェニレンスルフィド(PPS)、ポリオキシベンゾイル(POB)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、酢酸セルロース(CAB)、酢酪酸セルロース(CAB)等がある。これらの中でもポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチルメタクリレート、ポリテトラフロロエチレン、エチレンポリテトラフロロエチレン共重合体が好ましい。これらの熱可塑性樹脂はその一種を単独に用いても、二種以上を併用してもよい。   Examples of the thermoplastic resin include polyethylene (PE), polypropylene (PP), polymethylpentene, polybutene, polybutadiene, polystyrene (PS), styrene butadiene resin (SB), polyvinyl chloride (PVC), and polyvinyl acetate (PVAc). , Polyethyl methacrylate (PMMA, acrylic resin), polyvinylidene chloride (PVDC), polytetrafluoroethylene (PTFE), ethylene polytetrafluoroethylene copolymer (ETFE), ethylene vinyl acetate copolymer (EVA), AS resin (SAN), ABS resin (ABS), ionomer (IO), AAS resin (AAS), ACS resin (ACS), polyacetal (POM, polyoxymethylene), polyamide (PA, nylon), polycarbonate (PC), polyphenyle Ether (PPE), polyethylene terephthalate (PETP), polybutylene terephthalate (PBTP), polyarylate (PAR, U polymer), polysulfone (PSF), polyethersulfone (PESF), polyimide (PI), polyamideimide (PAI), Examples include polyphenylene sulfide (PPS), polyoxybenzoyl (POB), polyether ether ketone (PEEK), polyether imide (PEI), cellulose acetate (CAB), and cellulose acetate butyrate (CAB). Among these, polyethylene, polypropylene, polyvinyl chloride, polyethyl methacrylate, polytetrafluoroethylene, and ethylene polytetrafluoroethylene copolymer are preferable. These thermoplastic resins may be used alone or in combination of two or more.

熱硬化性樹脂としては、フェノール樹脂(PF)、アミノ樹脂、ユリア樹脂(UF)、メラミン樹脂(MF)、ベンゾグアナミン樹脂、不飽和ポリエステル(UP)、エポキシ樹脂(EP)、ジアリルフタレート樹脂(アリル樹脂)(PDAP)、シリコーン(SI)、ポリウレタン(PUR)、ビニルエステル樹脂等がある。これらの中でも、フェノール樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂が好ましい。なお、場合によっては、熱可塑性樹脂の一種またはその二種以上と熱硬化性樹脂の一種またはその二種以上を併用しても良い。   Thermosetting resins include phenolic resin (PF), amino resin, urea resin (UF), melamine resin (MF), benzoguanamine resin, unsaturated polyester (UP), epoxy resin (EP), diallyl phthalate resin (allyl resin) ) (PDAP), silicone (SI), polyurethane (PUR), vinyl ester resin and the like. Among these, phenol resin, unsaturated polyester resin, epoxy resin, and vinyl ester resin are preferable. In some cases, one or more thermoplastic resins and one or more thermosetting resins may be used in combination.

熱可塑性エラストマーとしては、スチレン−ブタジエン系(SBC)、ポリオレフィン系(TPO)、ウレタン系(TPU)、ポリエステル系(TPEE)、ポリアミド系(TPAE)、1,2−ポリブタジエン(PB)、ポリ塩化ビニル系(TPVC)、アイオノマー(IO)等がある。これらの中でも、ポリオレフィン系、ポリアミド系、ポリエステル系、アイオノマーが好ましい。なお、場合によっては、熱可塑性エラストマーの一種またはその二種以上と熱可塑性樹脂若しくは熱硬化性樹脂の一種またはその二種以上を併用しても良い。   Thermoplastic elastomers include styrene-butadiene (SBC), polyolefin (TPO), urethane (TPU), polyester (TPEE), polyamide (TPAE), 1,2-polybutadiene (PB), polyvinyl chloride System (TPVC), ionomer (IO), and the like. Among these, polyolefin, polyamide, polyester, and ionomer are preferable. In some cases, one or more thermoplastic elastomers and one or more thermoplastic resins or thermosetting resins may be used in combination.

組成物:
本発明の導電性組成物における熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマーの割合は、通常、20〜95質量%、好ましくは40〜65質量%である。樹脂成分の含有割合が20質量%未満だと、導電性組成物を用いて導電路を形成してもその導電路は剥離し易くなることがあり、また、95質量%以上だと十分な導電性を有しない導電性組成物になることがある。
Composition:
The ratio of the thermoplastic resin, thermosetting resin, and thermoplastic elastomer in the conductive composition of the present invention is usually 20 to 95% by mass, preferably 40 to 65% by mass. When the content ratio of the resin component is less than 20% by mass, the conductive path may be easily peeled off even if the conductive path is formed using the conductive composition. In some cases, the conductive composition has no properties.

本発明に係る導電性組成物には、本発明の目的を阻害しない範囲で公知の種々の添加剤を含有させることができる。
添加剤としては、可塑剤、安定剤、充填材、補強剤、酸化防止剤、紫外線吸収剤、難燃剤、滑剤等を挙げることができる。どのような添加剤を使用するかは、本発明に係る導電性組成物をどのような用途に供するかにより適宜に決定することができる。
The conductive composition according to the present invention may contain various known additives as long as the object of the present invention is not impaired.
Examples of the additive include a plasticizer, a stabilizer, a filler, a reinforcing agent, an antioxidant, an ultraviolet absorber, a flame retardant, and a lubricant. Which additive is used can be appropriately determined depending on the intended use of the conductive composition according to the present invention.

本発明の導電性組成物は、気相法炭素繊維、非晶質炭素粒子、黒鉛質粒子と樹脂成分とを混合することにより製造することができる。混合に際しては公知の混合機を使用することができる。各成分の配合順序には特に制限はない。また、この導電性組成物を使用して導電性塗料、導電性接着剤を調製する方法についても公知の方法が使用できる。   The conductive composition of the present invention can be produced by mixing vapor grown carbon fiber, amorphous carbon particles, graphite particles and a resin component. A known mixer can be used for mixing. There is no restriction | limiting in particular in the mixing | blending order of each component. Moreover, a well-known method can be used also about the method of preparing a conductive coating material and a conductive adhesive using this conductive composition.

本発明に係る導電性組成物は良好な導電性を有するので、この組成物を使用して導電性塗料及び導電性インクを形成することができる。また、この本発明の導電性組成物は樹脂成分をマトリックスとしているので成形性を有する。したがって、この導電性組成物を適宜に成形することにより、ファクシミリ電極板などの低抵抗バンド、非帯電コンベヤーベルト、医学用ゴム製品、導電タイヤ、IC収納ケース、謄写用・紡績用ロール、弾性電極、加熱用エレメント、過電流・過熱防止用素子、電磁波シールド材料、各種キーボードスイッチ、コネクター素子、スイッチ素子等の用途に展開することができる。   Since the conductive composition according to the present invention has good conductivity, this composition can be used to form a conductive paint and a conductive ink. Moreover, since this electroconductive composition of this invention uses the resin component as a matrix, it has moldability. Therefore, by forming this conductive composition appropriately, low resistance bands such as facsimile electrode plates, non-charged conveyor belts, medical rubber products, conductive tires, IC storage cases, copying and spinning rolls, elastic electrodes , Heating elements, overcurrent / overheat prevention elements, electromagnetic shielding materials, various keyboard switches, connector elements, switch elements, and the like.

本発明の組成物に用いる溶剤としては、一般的に導電性塗料、導電性接着剤に用いられている溶剤を用いることができる。例えば、メチルエチルケトン、N−メチルピロリドン、テルピネオール等のテルペン化合物やグリコールエーテル、グリコールエステル等を用いることができる。   As a solvent used for the composition of the present invention, a solvent generally used for conductive paints and conductive adhesives can be used. For example, terpene compounds such as methyl ethyl ketone, N-methylpyrrolidone, and terpineol, glycol ethers, glycol esters, and the like can be used.

これらの中から、使用する樹脂成分に応じて溶解性の良好なものを選択して使用する。これらはその一種を単独で使用することもできるし、またそれらの二種以上を併用することもできる。溶剤の使用量は、特に制限がなく、塗料及び接着剤を製造する際の通常の使用量で足りる。   Among these, those having good solubility are selected according to the resin component to be used. One of these can be used alone, or two or more of them can be used in combination. The amount of the solvent used is not particularly limited, and a normal amount used when producing the paint and the adhesive is sufficient.

また、塗布時の流動性や塗布後の塗膜強度や摺動性を向上させるため、分散剤、増粘剤などの助剤も一般的に導電性塗料に用いられている物を使用することができる。ワニスへの導電剤等の分散は、一般的に導電性塗料に用いられている方法により作製できる。   In addition, in order to improve the fluidity at the time of coating, the strength of the coating film after coating, and the slidability, auxiliary agents such as dispersants and thickeners should also be used that are generally used in conductive paints. Can do. Dispersion of the conductive agent or the like in the varnish can be produced by a method generally used for conductive paints.

本発明に用いる助剤や樹脂の添加量は、用いる樹脂の特性にも依存するが、導電性塗料、導電性接着剤の導電性、粘度、流動性等の要求される性能によって決定される。   The amount of the auxiliary agent or resin used in the present invention depends on the properties of the resin used, but is determined by the required performance such as the conductivity, viscosity, and fluidity of the conductive paint and conductive adhesive.

本発明の導電性組成物における、気相法炭素繊維、黒鉛質粒子、非晶質炭素粒子の溶剤を除いた導電性組成物中の気相法炭素繊維濃度をa質量%、黒鉛質粒子濃度をb質量%、非晶質炭素粒子濃度をc質量%とすると、a、b、cは次式を満たす範囲が好ましい。

Figure 0004342929
更に、導電性組成物の体積固有抵抗を向上させるためには、気相法炭素繊維にホウ素含有気相法炭素繊維を含ませることが好ましい。ホウ素含有気相法炭素繊維は高導電性炭素繊維であり、導電パスを効率良く形成させるため、その含有量は、溶剤を除いた導電性組成物中に好ましくは10〜60質量%、より好ましくは20〜60質量%がよい。 In the conductive composition of the present invention, the vapor-grown carbon fiber concentration in the conductive composition excluding the solvent of vapor-grown carbon fiber, graphite particles, and amorphous carbon particles is a mass%, and the graphite particle concentration. Is b mass%, and the amorphous carbon particle concentration is c mass%, a, b, and c are preferably in the range satisfying the following formula.
Figure 0004342929
Furthermore, in order to improve the volume resistivity of the electrically conductive composition, it is preferable to include a boron-containing vapor-grown carbon fiber in the vapor-grown carbon fiber. The boron-containing vapor-grown carbon fiber is a highly conductive carbon fiber, and in order to efficiently form a conductive path, its content is preferably 10 to 60% by mass, more preferably in the conductive composition excluding the solvent. 20-60 mass% is good.

また、気相法炭素繊維と黒鉛質粒子の混合物、または気相法炭素繊維と非晶質炭素粒子の混合物を用いる場合は、気相法炭素繊維は内部に中空構造を持つ多層構造であり、外径2〜500nm、アスペクト比10〜15000であって、繊維中にホウ素を0.01〜5質量%含有する気相法炭素繊維が好ましく、導電性組成物中に該炭素繊維を20質量%以上含むことが好ましく、より好ましくは25〜60質量%、さらに好ましくは30〜50質量%がよい。20質量%未満の含有量だと、気相法炭素繊維による導電性のパスが形成されず所望の導電性が得られず不都合である。   When using a mixture of vapor grown carbon fiber and graphite particles, or a mixture of vapor grown carbon fiber and amorphous carbon particles, the vapor grown carbon fiber has a multilayer structure with a hollow structure inside, Vapor grown carbon fiber having an outer diameter of 2 to 500 nm and an aspect ratio of 10 to 15000 and containing 0.01 to 5% by mass of boron in the fiber is preferable, and 20% by mass or more of the carbon fiber is included in the conductive composition. It is preferably 25 to 60% by mass, more preferably 30 to 50% by mass. When the content is less than 20% by mass, a conductive path due to vapor grown carbon fiber is not formed, and a desired conductivity cannot be obtained.

用途:
導電性塗料、導電性接着剤を使用する対象物としては、その塗膜に導電性を必要とするものであるならば特に制限がない。特に、この導電性塗料を使用し印刷配線板のような電気回路板を好適に製造することができる。
ここで、この電気回路基板の用途としては、家電用、産業用、車両用、通信情報用、航空船舶用、宇宙・兵器用、時計・写真用、玩具用などの各種の用途を挙げることができる。
Use:
There is no particular limitation on the object using the conductive paint or conductive adhesive as long as the coating film requires conductivity. In particular, an electric circuit board such as a printed wiring board can be suitably manufactured using this conductive paint.
Here, examples of the use of the electric circuit board include various uses such as home appliances, industrial use, vehicles, communication information use, air vessel use, space / weapon use, watch / photo use, and toy use. it can.

これらの各種の用途に応じて、導電性塗料または導電性インクを用いた配線用電気回路は、基板の片面に形成されていても、また基板の両面に形成されていても良い。この電気回路基板は、導電性塗料を印刷法によりあるいは塗装により基板上に塗布し、必要に応じて熱や電子線で硬化し、あるいは溶剤を除去するために乾燥するなどして製造される。導電性塗料の塗膜厚は、通常5〜100μmである。   Depending on these various uses, the electrical circuit for wiring using a conductive paint or conductive ink may be formed on one side of the substrate or on both sides of the substrate. This electric circuit board is manufactured by applying a conductive paint on a board by a printing method or painting, and curing it with heat or electron beam, if necessary, or drying to remove the solvent. The coating thickness of the conductive paint is usually 5 to 100 μm.

以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。   The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto.

気相法炭素繊維の作製:
特許2778434号公報に記載された方法により、平均繊維径150nm、平均繊維長20μmの気相法炭素繊維を得た。この繊維をアルゴン雰囲気下、1000℃で熱処理を行い更に2800℃で黒鉛化を行った(この気相法炭素繊維を以下、VGCF(150)と記す。)。
また、同様な方法により、平均繊維径80nm、平均繊維長20μmの気相法炭素繊維を得た。この繊維をアルゴン雰囲気下、1000℃で熱処理を行い更に2800℃で黒鉛化を行った(この気相法炭素繊維を以下、VGCF(80)と記す。)。
Preparation of vapor grown carbon fiber:
Vapor grown carbon fiber having an average fiber diameter of 150 nm and an average fiber length of 20 μm was obtained by the method described in Japanese Patent No. 2778434. This fiber was heat-treated at 1000 ° C. in an argon atmosphere and further graphitized at 2800 ° C. (this vapor grown carbon fiber is hereinafter referred to as VGCF (150)).
Further, by the same method, vapor grown carbon fiber having an average fiber diameter of 80 nm and an average fiber length of 20 μm was obtained. This fiber was heat-treated at 1000 ° C. in an argon atmosphere and further graphitized at 2800 ° C. (this vapor grown carbon fiber is hereinafter referred to as VGCF (80)).

VGCF−Bの作製:
平均繊維径150nm、平均繊維長20μmの気相法炭素繊維をアルゴン雰囲気下、1000℃で熱処理を行い、この繊維に炭化ホウ素を2質量%添加し、2800℃で黒鉛化を行った(この気相法炭素繊維を以下、VGCF−B(150)と記す。)。
また、平均繊維径80nm、平均繊維長20μmの気相法炭素繊維をアルゴン雰囲気下、1000℃で熱処理を行い、この繊維に炭化ホウ素を2質量%添加し、2800℃で黒鉛化を行った(この気相法炭素繊維を以下、VGCF−B(80)と記す。)。
Production of VGCF-B:
A vapor grown carbon fiber having an average fiber diameter of 150 nm and an average fiber length of 20 μm was heat-treated at 1000 ° C. in an argon atmosphere, and 2% by weight of boron carbide was added to the fiber and graphitized at 2800 ° C. (this gas Hereinafter, the phase carbon fiber is referred to as VGCF-B (150).)
Further, a vapor grown carbon fiber having an average fiber diameter of 80 nm and an average fiber length of 20 μm was heat-treated at 1000 ° C. in an argon atmosphere, and 2% by mass of boron carbide was added to the fiber and graphitized at 2800 ° C. ( This vapor grown carbon fiber is hereinafter referred to as VGCF-B (80).)

CB−Hの作製:
カーボンブラックCB(K)(アクゾ社製:ケッチェンブラックEC)をアルゴン雰囲気下、2800℃で熱処理を行った(このカーボンブラックを以下、CB−H(K)と記す。)。
Production of CB-H:
Carbon black CB (K) (manufactured by Akzo: Ketjen Black EC) was heat-treated at 2800 ° C. in an argon atmosphere (this carbon black is hereinafter referred to as CB-H (K)).

CB−Bの作製:
カーボンブラック(アクゾ社製:ケッチェンブラックEC)に炭化ホウ素を2質量%添加し、アルゴン雰囲気下、2800℃で熱処理を行った(このカーボンブラックを以下、CB−B(K)と記す。)。
Production of CB-B:
2% by mass of boron carbide was added to carbon black (manufactured by Akzo: Ketjen Black EC), and heat treatment was performed at 2800 ° C. in an argon atmosphere (this carbon black is hereinafter referred to as CB-B (K)). .

黒鉛質粒子−Bの作製:
UFG10(昭和電工製人造黒鉛微粉、平均粒径5μm)に平均粒径10μmに調整した炭化ホウ素を2質量%添加して混合した。この混合サンプルを黒鉛製の蓋付き容器に入れて、アルゴン雰囲気下、2800℃で熱処理を行った(この黒鉛質粒子を、以下UFG10−Bと記す。)。
Preparation of graphite particles-B:
2% by mass of boron carbide adjusted to an average particle size of 10 μm was added to and mixed with UFG10 (manufactured by Showa Denko artificial graphite fine powder, average particle size of 5 μm). This mixed sample was put in a graphite lidded container and heat-treated at 2800 ° C. in an argon atmosphere (the graphitic particles are hereinafter referred to as UFG10-B).

実施例1:
樹脂にキシレン変性フェノキシ樹脂、溶剤にグリコールエーテルを用い、導電剤に、黒鉛質粒子(昭和電工製人造黒鉛微粉、平均粒径5μm、製品名:UFG10)、非晶質炭素粒子(アクゾ社製ケッチェンブラックEC)(CB(K)と記す。)、気相法炭素繊維(平均繊維径150nm、平均繊維長20μm)(VGCF(150と記す。)を表1に示す添加量を用いて、3本ロールにて混練りを行い導電性ペーストを得た。
このペーストを用いて、エポキシ基板に幅4mm×長さ10mmのパターンをn=5でスクリーン印刷法にて印刷し、200℃で乾燥硬化を行った。乾燥硬化後のパターンの膜厚は膜厚10μmであった。また、このパターンの体積固有抵抗を測定した。その平均値を表1に示す。
また、塗膜の付着性評価をJIS K 5400-1900「碁盤目法」に準じて行った。上記ペーストを用いて、エポキシ基板に60mm×60mmのパターンでスクリーン印刷法にて印刷し、200℃で乾燥硬化し、厚さ10μmの塗膜を得た。この塗膜の付着性をます目数100の碁盤目法にて評価し、塗膜に付けた傷の状態を観察して、評価点数10、8を「◎」、6、4を「○」、2を「△」、0を「×」として4段階で評価した。その結果を表1及び2に示す。
Example 1:
Xylene-modified phenoxy resin is used for the resin, glycol ether is used for the solvent, graphite particles (manufactured by Showa Denko, artificial graphite fine powder, average particle size: 5 μm, product name: UFG10), amorphous carbon particles (Akezo Corporation) Chain black EC) (denoted as CB (K)), vapor grown carbon fiber (average fiber diameter 150 nm, average fiber length 20 μm) (VGCF (denoted as 150)) using the addition amounts shown in Table 3 This roll was kneaded to obtain a conductive paste.
Using this paste, a pattern having a width of 4 mm and a length of 10 mm was printed on an epoxy substrate by a screen printing method with n = 5, followed by drying and curing at 200 ° C. The film thickness of the pattern after drying and curing was 10 μm. Further, the volume resistivity of this pattern was measured. The average value is shown in Table 1.
In addition, the adhesion evaluation of the coating film was performed according to JIS K 5400-1900 “cross-cut method”. Using the paste, a 60 mm × 60 mm pattern was printed on an epoxy substrate by a screen printing method, and dried and cured at 200 ° C. to obtain a coating film having a thickness of 10 μm. The adhesion of this coating film was evaluated by a grid pattern method with a number of hundreds, and the state of scratches on the coating film was observed. The evaluation scores 10 and 8 were “◎”, and 6, 4 were “◯”. Evaluation was made in 4 stages, with 2 being “Δ” and 0 being “x”. The results are shown in Tables 1 and 2.

実施例2〜12及び比較例1〜5:
表1及び表2に示した気相法炭素繊維、黒鉛質粒子及び/または非晶質炭素粒子を用いて、実施例1と同様に導電性ペーストを作製し、それを用いて評価パターンの印刷、乾燥硬化を行い、体積固有抵抗を測定した。
Examples 2-12 and Comparative Examples 1-5:
Using the vapor-grown carbon fiber, graphite particles and / or amorphous carbon particles shown in Table 1 and Table 2, a conductive paste was prepared in the same manner as in Example 1, and an evaluation pattern was printed using the conductive paste. Then, dry curing was performed, and the volume resistivity was measured.

Figure 0004342929
Figure 0004342929

Figure 0004342929
Figure 0004342929

本発明によれば、導電性塗料、導電性接着剤の導電材料に気相法炭素繊維、黒鉛質粒子、非晶質炭素粒子の混合物を用いることにより、また、繊維中にホウ素を0.01〜5質量%含有する気相法炭素繊維と、黒鉛質粒子または非晶質炭素粒子との混合物を用いることにより、導電性、耐酸化性、経年安定性や摺動特性を向上させた、抵抗性異方性の少ない導電体(塗膜等)が得られる。   According to the present invention, by using a mixture of vapor grown carbon fiber, graphite particles, and amorphous carbon particles as the conductive material of the conductive paint and conductive adhesive, boron is added to the fiber in an amount of 0.01 to 5%. By using a mixture of vapor-grown carbon fibers containing 5% by mass and graphite particles or amorphous carbon particles, the conductivity, oxidation resistance, aging stability and sliding properties are improved. An electric conductor (such as a coating film) with little isotropic property is obtained.

Claims (17)

内部に中空構造を持つ多層構造であり、外径2〜500nm、アスペクト比10〜15000の気相法炭素繊維、黒鉛質粒子及び非晶質炭素粒子を含む炭素質材料並びにバインダーまたはマトリックス材料としての樹脂成分からなり、組成物中における気相法炭素繊維の濃度をa質量%、黒鉛質粒子の濃度をb質量%、非晶質炭素粒子の濃度をc質量%とすると、a、b、cは次式:
Figure 0004342929
を満たす範囲であることを特徴とする導電性組成物
A multilayer structure having a hollow structure inside, as a carbonaceous material including vapor-phase carbon fiber, graphite particles and amorphous carbon particles having an outer diameter of 2 to 500 nm and an aspect ratio of 10 to 15000, and as a binder or matrix material It is composed of a resin component. If the concentration of vapor grown carbon fiber in the composition is a mass%, the concentration of graphite particles is b mass%, and the concentration of amorphous carbon particles is c mass%, a, b, c Is the following formula:
Figure 0004342929
A conductive composition characterized by satisfying the requirements .
さらに、溶媒を含み、溶媒を除いた導電性組成物中における気相法炭素繊維の濃度をa質量%、黒鉛質粒子の濃度をb質量%、非晶質炭素粒子の濃度をc質量%とすると、a、b、cは次式:
Figure 0004342929
を満たす範囲である請求項1に記載の導電性組成物
Further, the concentration of the vapor grown carbon fiber in the conductive composition including the solvent and excluding the solvent is a mass%, the concentration of the graphite particles is b mass%, and the concentration of the amorphous carbon particles is c mass%. Then, a, b, and c are the following formulas:
Figure 0004342929
The conductive composition according to claim 1, wherein the conductive composition is in a range satisfying the above .
気相法炭素繊維が、ホウ素を0.01〜5質量%含有する繊維であり、前記炭素繊維を20質量%以上含む請求項1または2に記載の導電性組成物The electrically conductive composition according to claim 1 or 2 , wherein the vapor grown carbon fiber is a fiber containing 0.01 to 5% by mass of boron, and the carbon fiber is contained by 20% by mass or more. 気相法炭素繊維が、分岐状気相法炭素繊維を含むものである請求項1または2に記載の導電性組成物Vapor grown carbon fiber, electrically conductive composition according to claim 1 or 2 is intended to include branched vapor grown carbon fiber. 相法炭素繊維が、コブ状気相法炭素繊維を含むものである請求項1または2に記載の導電性組成物 Vapor grown carbon fiber, electrically conductive composition according to claim 1 or 2 is intended to include humped vapor grown carbon fibers. 黒鉛質粒子または非晶質炭素粒子の平均粒径が、0.1〜100μmである請求項1または2に記載の導電性組成物The conductive composition according to claim 1 or 2 , wherein the average particle diameter of the graphite particles or the amorphous carbon particles is 0.1 to 100 µm. 黒鉛質粒子または非晶質炭素粒子が、2000℃以上で熱処理されている請求項1または2に記載の導電性組成物The conductive composition according to claim 1 or 2 , wherein the graphite particles or the amorphous carbon particles are heat-treated at 2000 ° C or higher. 黒鉛質粒子が、ホウ素を含む請求項1または2に記載の導電性組成物The conductive composition according to claim 1 or 2 , wherein the graphite particles contain boron. 非晶質炭素粒子が、ホウ素を含む請求項1または2に記載の導電性組成物Amorphous carbon particles, conductive composition according to claim 1 or 2 containing boron. 非晶質炭素粒子が、カーボンブラックまたはガラス状炭素である請求項1、2または9に記載の導電性組成物The conductive composition according to claim 1, 2 or 9 , wherein the amorphous carbon particles are carbon black or glassy carbon. カーボンブラックが、オイルファーネスブラック、ガスブラック、アセチレンブラック、ランプブラック、サーマルブラック、チャンネルブラック及びケッチェンブラックからなる群から選ばれる少なくとも1種である請求項10に記載の導電性組成物The conductive composition according to claim 10 , wherein the carbon black is at least one selected from the group consisting of oil furnace black, gas black, acetylene black, lamp black, thermal black, channel black and ketjen black. 炭素質材料に樹脂成分を添加するか、または樹脂成分及び溶剤を添加し、混練することを特徴とする請求項1乃至11のいずれか1項に記載の導電性組成物の製造方法。 The method for producing a conductive composition according to any one of claims 1 to 11, wherein a resin component is added to the carbonaceous material , or a resin component and a solvent are added and kneaded. 導電性材料として請求項1乃至11のいずれか1項に記載の導電性組成物を含有することを特徴とする導電性塗料。 A conductive paint comprising the conductive composition according to any one of claims 1 to 11 as a conductive material. 導電性塗料を、導電性ペーストとして用いる請求項13に記載の導電性塗料。 The conductive paint according to claim 13 , wherein the conductive paint is used as a conductive paste. 請求項1乃至11のいずれか1項に記載の導電性組成物を含むことを特徴とする導電性接着剤。 A conductive adhesive comprising the conductive composition according to claim 1 . 請求項13に記載の導電性塗料を用いて形成されたことを特徴とする導電性塗膜。 A conductive coating film formed using the conductive paint according to claim 13 . 請求項13に記載の導電性塗料および/または請求項15に記載の導電性接着剤を用いて作製されたことを特徴とする電子部品。 An electronic component produced using the conductive paint according to claim 13 and / or the conductive adhesive according to claim 15 .
JP2003429866A 2002-12-26 2003-12-25 Carbonaceous material for conductive composition and use thereof Expired - Fee Related JP4342929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429866A JP4342929B2 (en) 2002-12-26 2003-12-25 Carbonaceous material for conductive composition and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002376060 2002-12-26
JP2003429866A JP4342929B2 (en) 2002-12-26 2003-12-25 Carbonaceous material for conductive composition and use thereof

Publications (2)

Publication Number Publication Date
JP2004221071A JP2004221071A (en) 2004-08-05
JP4342929B2 true JP4342929B2 (en) 2009-10-14

Family

ID=32911111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429866A Expired - Fee Related JP4342929B2 (en) 2002-12-26 2003-12-25 Carbonaceous material for conductive composition and use thereof

Country Status (1)

Country Link
JP (1) JP4342929B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004011042T2 (en) * 2003-04-24 2009-01-02 Showa Denko K.K. CARBON FIBERS CONTAINING RESIN DISPERSION AND RESIN COMPOSITE MATERIAL
JP2004339485A (en) * 2003-04-24 2004-12-02 Showa Denko Kk Carbon fiber-containing resin dispersion, and resin composite material
JP4908745B2 (en) * 2004-08-09 2012-04-04 双葉電子工業株式会社 Carbon nanotube composite material and manufacturing method thereof
JP2006097005A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Electrically conductive resin composition and method for producing the same
JP2006097006A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Method for producing electrically conductive resin composition and application thereof
WO2006041186A1 (en) * 2004-10-12 2006-04-20 Showa Denko K.K Resin composition containing vapor grown carbon fiber and use thereof
JP4684840B2 (en) * 2004-10-12 2011-05-18 昭和電工株式会社 Resin composition for seamless belt and seamless belt
JP4803715B2 (en) * 2004-10-15 2011-10-26 昭和電工株式会社 Conductive paste, its production method and use
JP4994671B2 (en) * 2005-01-21 2012-08-08 昭和電工株式会社 Conductive resin composition, production method and use thereof
JP4716793B2 (en) * 2005-06-06 2011-07-06 北川工業株式会社 Composite material
KR100631993B1 (en) * 2005-07-20 2006-10-09 삼성전기주식회사 Led package and fabricating method thereof
JP4689391B2 (en) * 2005-07-28 2011-05-25 Jfeケミカル株式会社 Method for producing graphite material for negative electrode material of lithium ion secondary battery
KR100754322B1 (en) 2005-09-27 2007-08-31 (주)지티 Manufacturing apparatus for carbon thread using carbon coating solution, and manufacturing method for carbon thread using the apparatus
JP2007161806A (en) * 2005-12-12 2007-06-28 Shin Etsu Chem Co Ltd Heat conductive silicone rubber composition
US20070276077A1 (en) * 2006-04-05 2007-11-29 Nano-Proprietary, Inc. Composites
US8283403B2 (en) 2006-03-31 2012-10-09 Applied Nanotech Holdings, Inc. Carbon nanotube-reinforced nanocomposites
US8445587B2 (en) 2006-04-05 2013-05-21 Applied Nanotech Holdings, Inc. Method for making reinforced polymer matrix composites
JP2008127552A (en) * 2006-11-24 2008-06-05 Techno Polymer Co Ltd Heat-dissipating resin composition, manufacturing method thereof, and molded article therefrom
JP2008150595A (en) * 2006-11-24 2008-07-03 Techno Polymer Co Ltd Radiating resin composition and molded article
KR100706653B1 (en) * 2006-12-27 2007-04-13 제일모직주식회사 Heat-conductive resin composition and plastic article
US8653177B2 (en) 2007-02-28 2014-02-18 Showa Denko K.K. Semiconductive resin composition
JP5198137B2 (en) * 2007-05-11 2013-05-15 東洋ゴム工業株式会社 Rubber composition for bonding steel cord
JP2010018685A (en) * 2008-07-09 2010-01-28 Mitsubishi Plastics Inc Electroconductive resin film
JP5764732B2 (en) * 2008-10-03 2015-08-19 島根県 Heat resistant high thermal conductive adhesive
JP2010126679A (en) * 2008-11-28 2010-06-10 Tajima Roofing Inc Gelatinous material
JP2010275376A (en) * 2009-05-26 2010-12-09 Bridgestone Corp Rubber composition and tire using the same
KR101119251B1 (en) * 2010-06-07 2012-03-16 삼성전기주식회사 Touch panel
JP5911051B2 (en) * 2010-11-16 2016-04-27 アルプス電気株式会社 Method for producing boron-containing carbon material
JP2013091783A (en) * 2011-10-06 2013-05-16 Showa Denko Kk Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
JP5872964B2 (en) 2012-05-29 2016-03-01 東レ・ダウコーニング株式会社 Conductive room temperature curable fluorosilicone rubber composition
JP2014028900A (en) * 2012-07-31 2014-02-13 Showa Denko Kk Conductive resin composition, and conductive coating material and conductive adhesive using the same
US20160096964A1 (en) 2013-05-15 2016-04-07 Showa Denko K.K. Flaky graphite containing boron and production method therefor
JPWO2015037368A1 (en) * 2013-09-13 2017-03-02 株式会社村田製作所 Conductive paste and capacitor element constituting solid electrolytic capacitor using the same
JP2016164978A (en) * 2015-02-27 2016-09-08 ダイニック株式会社 Electrode for electrochemical element and method for manufacturing the same, and coating material for underlayer
JP2017030311A (en) * 2015-08-05 2017-02-09 住友林業株式会社 Production method of woody material
JP6946722B2 (en) * 2017-05-08 2021-10-06 住友ゴム工業株式会社 Rubber composition, vulcanized bladder and pneumatic tire
KR20220163402A (en) * 2020-04-03 2022-12-09 토요잉크Sc홀딩스주식회사 Boron-doped carbon material, conductive composition, conductive film, and electrical storage device
WO2023182394A1 (en) * 2022-03-25 2023-09-28 積水テクノ成型株式会社 Resin composition, and resin molded body

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639576B2 (en) * 1985-03-23 1994-05-25 旭化成工業株式会社 Carbonaceous fiber-containing coating composition
JPS62246813A (en) * 1986-04-17 1987-10-28 Agency Of Ind Science & Technol Production of spherical graphite body
JPH01101373A (en) * 1987-10-13 1989-04-19 Daiso Co Ltd Electrically conductive composition
JPH0277442A (en) * 1988-09-14 1990-03-16 Showa Denko Kk Electrically conductive thermoplastic resin composition
JPH06122785A (en) * 1991-12-10 1994-05-06 Nikkiso Co Ltd Conductive composition, conductive coating material, conductive ink, and electric circuit board
JP3855410B2 (en) * 1997-12-02 2006-12-13 松下電器産業株式会社 Resistance paste, strain gauge using the same, and multidirectional operation body
TW524904B (en) * 1999-03-25 2003-03-21 Showa Denko Kk Carbon fiber, method for producing same and electrodes for electric cells
JP3667144B2 (en) * 1999-03-29 2005-07-06 電気化学工業株式会社 Carbon black, method for producing the same, and conductive composition
JP2001151833A (en) * 1999-09-13 2001-06-05 Showa Denko Kk Curable resin composition excellent in electroconductivity and cured product thereof
JP3606782B2 (en) * 2000-01-21 2005-01-05 昭和電工株式会社 Conductive paint
JP3948217B2 (en) * 2000-06-05 2007-07-25 昭和電工株式会社 Conductive curable resin composition, cured product thereof, and molded product thereof
JP4883361B2 (en) * 2000-06-05 2012-02-22 昭和電工株式会社 Conductive curable resin composition, cured product thereof, and molded product thereof
EP2277435A1 (en) * 2000-12-20 2011-01-26 Showa Denko K.K. Branched vapor grown carbon fiber, electrically conductive transparent composition and use thereof

Also Published As

Publication number Publication date
JP2004221071A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP4342929B2 (en) Carbonaceous material for conductive composition and use thereof
KR101156012B1 (en) Carbonaceous material for electrically conductive material and use thereof
CN105280904B (en) Electrode composition for battery
EP1343410B1 (en) Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
JP3850427B2 (en) Carbon fiber bonded body and composite material using the same
JP3776111B1 (en) Carbon fiber structure
US20080099732A1 (en) Electroconductive Resin Composition, Production Method and Use Thereof
JP2006265315A (en) Composite material
GB2363120A (en) Process for providing increased conductivity to a material
CN114788049A (en) Thermal disproportionation anode active material containing turbostratic carbon coating
WO2015016202A1 (en) Conductive filler, method for producing same, conductive paste and method for producing conductive paste
Zhang et al. One-step microwave-assisted solvothermal nano-manufacturing of Ni 2 P nanosphere as high-performance supercapacitors
JP3606782B2 (en) Conductive paint
JP2008247627A (en) Method for manufacturing carbon material, carbon material and electric double layer capacitor
US20210296652A1 (en) Electrically conductive composite material and method
JP2020107606A (en) Microbial fuel cell device
JP6424476B2 (en) Conductive material
JP5245087B2 (en) Nanocarbon material composite paste and pattern forming method using the same
JPH01101372A (en) Electrically conductive composite resin composition
JP2002270032A (en) Conductive powder, its manufacturing method and its application
JP2003020418A (en) Fine graphite powder, method for producing the same and use thereof
JP2022103671A (en) Composite carbon material
JPH027979B2 (en)
JP2005133205A (en) Particle for functional material, and manufacturing method of functional material and particle for functional material
JP2015230793A (en) Electrically conductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4342929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees