JP3855410B2 - Resistance paste, strain gauge using the same, and multidirectional operation body - Google Patents

Resistance paste, strain gauge using the same, and multidirectional operation body Download PDF

Info

Publication number
JP3855410B2
JP3855410B2 JP33143897A JP33143897A JP3855410B2 JP 3855410 B2 JP3855410 B2 JP 3855410B2 JP 33143897 A JP33143897 A JP 33143897A JP 33143897 A JP33143897 A JP 33143897A JP 3855410 B2 JP3855410 B2 JP 3855410B2
Authority
JP
Japan
Prior art keywords
carbon
resistor
resistance value
strain
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33143897A
Other languages
Japanese (ja)
Other versions
JPH11162254A (en
Inventor
謙一 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP33143897A priority Critical patent/JP3855410B2/en
Publication of JPH11162254A publication Critical patent/JPH11162254A/en
Application granted granted Critical
Publication of JP3855410B2 publication Critical patent/JP3855410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Position Input By Displaying (AREA)
  • Adjustable Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主としてゲーム機やパーソナルコンピュータ等の各種電子機器の操作部に、操作方向の検出用として使用される抵抗ペーストと、これを用いた歪ゲージ及び多方向操作体に関するものである。
【0002】
【従来の技術】
近年、ゲーム機やパーソナルコンピュータ等の電子機器の多機能化や多様化に伴って、操作部が前後左右に操作可能な多方向操作体によって表示画面の座標入力を行うものが増え、この多方向操作体の操作方向の検出用に各種歪ゲージが多く用いられている。
【0003】
従来のこの種の歪ゲージとしては、特開平7−243805号公報に記載された印刷タイプのものが知られており、絶縁基板に抵抗ペーストを印刷して多数の歪ゲージを同時に製作できるため、安価でかつ取扱いも容易なものとなっている。
【0004】
このような従来の印刷タイプの歪ゲージについて、図3及び図4を用いて説明する。
【0005】
図3(a)は従来の歪ゲージの断面図であり、同図において、1はリン青銅板の表面に絶縁処理が施された弾性を有する絶縁基板、2はエポキシ樹脂等の熱硬化性の樹脂バインダに銀粉やカーボンパウダー等の導電粉を分散した電極、3は両端が電極2に接続された抵抗体である。
【0006】
そして、抵抗体3は、熱硬化性の変性フェノール樹脂等の樹脂バインダ4の100重量部に対し、導電粉5として、粒子の繋がりが比較的少ない低ストラクチャーの、すなわちフタル酸ジブチルを単位重量当りどれだけ吸収するかを示す吸油量(以下、DBP吸油量と記載する)が100ml/100g以下と小さく、平均粒子径1〜20μmのグラファイトを20〜200重量部、または平均粒子径0.5〜5μmのニッケルや銅等を500〜900重量部配合した抵抗ペーストを、絶縁基板1の上に印刷することによって形成されている。
【0007】
以上の構成において、図3(a)の状態から絶縁基板1に荷重を加えて撓ませると、図3(b)に示すように、絶縁基板1上に印刷形成された抵抗体3も撓んで圧縮方向に機械的歪が生じるため、樹脂バインダ4内に配合された導電粉5の間の距離が狭まり、抵抗体3の抵抗値は小さくなる。
【0008】
また、これとは逆方向に荷重を加えて絶縁基板1を反らせると、抵抗体3には引張り方向に機械的歪が生じて導電粉5の間の距離が広がるため、抵抗値は大きくなり、これらの抵抗値の変化が電極2を介して機器の電子回路(図示せず)に送られることによって、歪ゲージに加えられた歪が検出されるものであった。
【0009】
この時、歪ゲージの抵抗値は、加えられた引張り或いは圧縮方向の歪量に比例して、本来直線的に変化するはずであるが、実際には樹脂バインダ4内に配合された導電粉5が互いに干渉し合うため、図4に示すように、歪ゲージの歪と抵抗値変化率の関係は、本来の直線に対し10数%程度のずれが生じた曲線を示すものとなっていた。
【0010】
【発明が解決しようとする課題】
しかしながら上記従来の抵抗ペーストとこれを用いた歪ゲージにおいては、樹脂バインダ4内に配合されたグラファイトやニッケル、銅等の導電粉5の形状が鱗片状もしくは板状の粉体であるため、特に抵抗体3を圧縮する方向に歪ゲージを撓ませた場合、導電粉5が内部で干渉し合い突っ掛かりが生じて、歪に対する抵抗値変化がスムーズに変化せず、歪に対する抵抗値変化の直線性が悪くなるという課題があった。
【0011】
また、グラファイトは、粉体中に炭素がどれだけ含まれているかを示す固定炭素量が75%〜95%と一般的に低く、炭素以外の有機物等は湿気を含み易いため、高湿度環境下で使用する場合、湿度によって抵抗値変動が大きくなるという課題もあった。
【0012】
本発明は、このような従来の課題を解決するものであり、歪に対する抵抗値変化がスムーズに変化し良好な直線性が得られると共に、高湿度環境下でも抵抗値変動の少ない抵抗ペーストと、これを用いた歪ゲージ及び多方向操作体を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決するために本発明の抵抗ペーストは、熱硬化性の樹脂バインダに、導電粉として平均粒子径70nm〜20μmでDBP吸油量60ml/100g以下の球状のカーボンパウダーを配合するものとし、しかもそのカーボンパウダーとしても、サーマル級カーボンブラックまたは黒鉛化カーボン、メソフェーズカーボンマイクロビーズ、ガラス状カーボンの少なくとも一つからなるものを用いて、抵抗ペーストを構成するものである。
【0014】
これにより、歪と抵抗値変化の良好な直線性が得られ、耐湿特性に優れた抵抗ペーストと、これを用いた歪ゲージ及び多方向操作体を得ることができる。
【0015】
【発明の実施の形態】
本発明の請求項1に記載の発明は、熱硬化性の樹脂バインダ100重量部に対し、導電粉として平均粒子径70nm〜20μmでフタル酸ジブチル吸油量60ml/100g以下の球状のカーボンパウダーを15重量部〜250重量部配合した抵抗ペーストであって、上記カーボンパウダーが、サーマル級カーボンブラックまたは黒鉛化カーボン、メソフェーズカーボンマイクロビーズ、ガラス状カーボンの少なくとも一つからなる抵抗ペーストとしたものであり、この抵抗ペーストを用いて印刷形成した抵抗体は、導電粉の形状が球状であるため、機械的歪を生じさせても樹脂バインダ内部で導電粉が干渉し合うことがなく、歪に対する抵抗値変化がスムーズに変化し良好な直線性が得られる歪ゲージ及び多方向操作体を得ることができるという作用を有する。また、そのカーボンパウダーとしても、サーマル級カーボンブラックまたは黒鉛化カーボン、メソフェーズカーボンマイクロビーズ、ガラス状カーボンの少なくとも一つからなるものとしており、これらのカーボンパウダーは固定炭素量が99%以上と一般のグラファイトに比べて高く、他の浸水性を有する有機物等が殆ど含まれていないため、高湿度環境下での抵抗値変動を少なくすることができるという作用を有する。
【0017】
請求項2に記載の発明は、請求項1記載の抵抗ペーストを絶縁基板上に印刷して抵抗体を形成し、この抵抗体の機械的な歪を抵抗値変化として検出する歪ゲージとしたものであり、歪と抵抗値変化の良好な直線性が得られ、耐湿特性に優れた歪ゲージが得られるという作用を有する。
【0018】
請求項3に記載の発明は、請求項1記載の抵抗ペーストを印刷し、複数の抵抗体を形成した絶縁基板と、絶縁基板に装着され、傾倒操作することによって抵抗体に機械的歪を生じさせる操作部からなる多方向操作体としたものであり、歪と抵抗値変化の良好な直線性が得られ、耐湿特性に優れた多方向操作体を得ることができるという作用を有する。
【0019】
以下、本発明の実施の形態について、図1及び図2を用いて説明する。
なお、従来の技術の項で説明した構成と同一構成の部分には同一符号を付して、詳細な説明を省略する。
【0020】
(実施の形態1)
図1は本発明の第1の実施の形態による歪ゲージの断面図であり、同図において、リン青銅板の表面に絶縁処理が施された弾性を有する絶縁基板1の上に、エポキシ樹脂等の熱硬化性の樹脂バインダに銀粉やカーボンパウダー等の導電粉を分散した電極2が印刷形成されていることは、従来の技術の場合と同様であるが、両端が電極2に接続された抵抗体8は、熱硬化性の変性フェノール樹脂等の樹脂バインダ4に、平均粒子径70nm〜20μmでDBP吸油量60ml/100g以下の球状のカーボンパウダーを導電粉9として配合した抵抗ペーストを、印刷することによって形成されている。
【0021】
以上の構成において、絶縁基板1に荷重を加えて撓ませると、絶縁基板1上に印刷形成された抵抗体8が撓んで圧縮方向または引張り方向の機械的歪が生じ、樹脂バインダ4内に配合された導電粉9の間の距離が変化するため、抵抗体8の抵抗値が変化し、この抵抗値の変化が電極2を介して機器の電子回路(図示せず)に送られることによって、歪ゲージに加えられた歪が検出されることは、従来の技術の場合と同様である。
【0022】
以上のような抵抗ペースト及び歪ゲージの具体的な製作方法と、その特性について説明する。
【0023】
抵抗ペーストは、熱硬化性の変性フェノール樹脂を樹脂バインダ4として用い、これに導電粉9と溶剤であるイソホロンとを混合して、ロールミルにより混練分散させる方法にて製作した。
【0024】
そして、抵抗ペーストの導電粉9は、平均粒子径80nmでDBP吸油量28ml/100gのサーマル級カーボンブラックと、平均粒子径70nmでDBP吸油量60ml/100gの黒鉛化カーボン、平均粒子径6μm及び20μmでDBP吸油量30ml/100gのメソフェーズカーボンマイクロビーズ、平均粒子径5μm及び20μmでDBP吸油量10ml/100gのガラス状カーボンを用い、その配合比や平均粒子径等を変えて上記の方法により数種類の抵抗ペーストを製作した。
【0025】
なお、サーマル級カーボンブラックは旭カーボン製の旭サーマル、黒鉛化カーボンは東海カーボン製の#3800、メソフェーズカーボンマイクロビーズは大阪ガス製のMCMB、ガラス状カーボンは日本カーボン製のICBが一般に知られている。
【0026】
また、比較用の従来の抵抗ペーストとして、導電粉をグラファイトとしたものも、同様にその配合比や平均粒子径等を変えて数種類製作した。
【0027】
そして、電極2が印刷形成された絶縁基板1の上に、これらの抵抗ペーストを用いて抵抗体8を印刷形成して歪ゲージを製作した後、絶縁基板1に荷重を加えて抵抗体8に歪を生じさせ、その時の歪に対する抵抗値変化率と抵抗値変化の直線性を評価した。
【0028】
また、これらの歪ゲージを60℃90〜95%RHの高湿度環境下に1000時間放置した後、抵抗値を測定し湿度に対する抵抗値変化率を評価した。
【0029】
以上のように行った特性評価の結果について、(表1)を用いて説明する。
【0030】
【表1】

Figure 0003855410
【0031】
(表1)から明らかなように、DBP吸油量が80ml/100gである従来のグラファイトを導電粉として用いた比較例1,2の歪に対する抵抗値変化率0.5〜0.8%に対し、導電粉がサーマル級カーボンブラックや黒鉛化カーボン、メソフェーズカーボンマイクロビーズ、ガラス状カーボンである実施例1〜6は、DBP吸油量が10〜60ml/100gと小さいため、歪に対する抵抗値変化率が0.6〜1.5%と、高い抵抗値変化率を得ることができた。
【0032】
また、歪ゲージを撓ませた際に、樹脂バインダ内で鱗片状のグラファイトの導電粉が干渉し合う、比較例1,2の歪に対する抵抗値変化の直線性が8〜10%であるのに対して、導電粉の形状が球状である実施例1〜6の直線性は5%以下と、歪に対する抵抗値変化の良好な直線性を示している。
【0033】
さらに、固定炭素量が75〜95%であるグラファイトを使用した比較例1,2の高湿度環境下での抵抗値変動が5%以上と大きくなるのに対し、固定炭素量が99%以上であるサーマル級カーボンブラックや黒鉛化カーボン、メソフェーズカーボンマイクロビーズ、ガラス状カーボンを導電粉に用いた実施例1〜6は、高湿度環境下での抵抗値変動も3%以下と少なくなることが確認できた。
【0034】
このように本実施の形態によれば、熱硬化性の樹脂バインダに、導電粉として平均粒子径70nm〜20μmでDBP吸油量60ml/100g以下の球状のカーボンパウダーを配合した抵抗ペーストを用いて歪ゲージを構成することによって、歪に対する高い抵抗値変化率が得られると共に、歪に対する抵抗値変化がスムーズに変化し良好な直線性が得られる歪ゲージを得ることができるものである。
【0035】
また、カーボンパウダーに、固定炭素量が99%以上であるサーマル級カーボンブラックまたは黒鉛化カーボン、メソフェーズカーボンマイクロビーズ、ガラス状カーボンの少なくとも一つを用いることによって、高湿度環境下での抵抗値変動を少なくすることもできる。
【0036】
(実施の形態2)
図2は本発明の第2の実施の形態による多方向操作体の外観斜視図であり、同図において、11はリン青銅板の表面に絶縁処理が施された弾性を有する絶縁基板、12は絶縁基板11の中央部に下端が固定された操作部で、絶縁基板11の四隅は剛体の取付台13に固定されている。
【0037】
そして、絶縁基板11の上面には、操作部12を挟んで左右に一対の第一の抵抗体14A,14Bが、前後には一対の第二の抵抗体15A,15Bが、実施の形態1と同様の抵抗ペーストを用いて印刷形成されている。
【0038】
以上の構成において、操作部12の上端を左方向に傾倒操作すると、この荷重によって絶縁基板1の左面は凹面に右面は凸面に変形し、第一の抵抗体14A,14Bには各々圧縮方向と引張り方向の機械的歪が生じるため、樹脂バインダ内に配合された導電粉の間の距離が変化して、第一の抵抗体14Aの抵抗値は小さく第一の抵抗体14Bの抵抗値は大きくなって、この抵抗値の変化が機器の電子回路(図示せず)に送られ、各々に加えられた歪が検出される。
【0039】
そして、これとは逆に、操作部12の上端を右方向に傾倒操作した場合には、第一の抵抗体14Aの抵抗値は大きく第一の抵抗体14Bの抵抗値は小さくなり、同様に、前後方向に傾倒操作した場合には、第二の抵抗体15A,15Bの抵抗値が各々変化することによって、操作部12がどの方向にどれだけ傾倒操作されたかが検出されるように構成されている。
【0040】
また、絶縁基板11上に印刷形成された第一の抵抗体14A,14Bや第二の抵抗体15A,15Bには、実施の形態1と同様の抵抗ペーストが用いられているため、機械的歪が生じても樹脂バインダ内部で導電粉が干渉し合うことがなく、歪に対するスムーズな抵抗値変化が行われる。
【0041】
このように本実施の形態によれば、実施の形態1と同様の抵抗ペーストを用いて多方向操作体を構成することによって、歪に対する高い抵抗値変化率と良好な直線性が得られると共に、高湿度環境下での抵抗値変動の少ない多方向操作体を得ることができるものである。
【0042】
なお、以上の説明では、歪ゲージの抵抗体8や多方向操作体の抵抗体14A,14B,15A,15Bを、リン青銅板の表面に絶縁処理が施された絶縁基板1や絶縁基板11に印刷形成した構成について説明したが、抵抗体を印刷形成する絶縁基板は、ある程度の弾性を有するものであれば、セラミック等の無機絶縁物或いはポリエステル樹脂やフェノール樹脂等の絶縁樹脂でも実施が可能なことは勿論である。
【0043】
【発明の効果】
以上のように本発明は、熱硬化性の樹脂バインダ100重量部に対し、導電粉として平均粒子径70nm〜20μmでフタル酸ジブチル吸油量60ml/100g以下の球状のカーボンパウダーを15重量部〜250重量部配合した抵抗ペーストであって、上記カーボンパウダーが、サーマル級カーボンブラックまたは黒鉛化カーボン、メソフェーズカーボンマイクロビーズ、ガラス状カーボンの少なくとも一つからなる抵抗ペーストとしたものである。これによれば、歪と抵抗値変化の良好な直線性が得られ、耐湿特性に優れた抵抗ペーストと、これを用いた歪ゲージ及び多方向操作体を得ることができるという有利な効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による歪ゲージの断面図
【図2】本発明の第2の実施の形態による多方向操作体の外観斜視図
【図3】従来の歪ゲージの断面図
【図4】歪と抵抗値変化率の特性図
【符号の説明】
1,11 絶縁基板
2 電極
4 樹脂バインダ
8 抵抗体
9 導電粉
12 操作部
13 取付台
14A,14B 第一の抵抗体
15A,15B 第二の抵抗体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resistance paste used for detecting an operation direction in operation units of various electronic devices such as game machines and personal computers, and a strain gauge and a multidirectional operation body using the same.
[0002]
[Prior art]
In recent years, with the increase in functionality and diversification of electronic devices such as game machines and personal computers, the number of coordinate input on the display screen has been increased by a multi-directional operation body that allows the operation unit to be operated front and rear, left and right. Various strain gauges are often used for detecting the operating direction of the operating body.
[0003]
As this type of conventional strain gauge, a printing type described in JP-A-7-243805 is known, and a large number of strain gauges can be manufactured simultaneously by printing a resistance paste on an insulating substrate. It is inexpensive and easy to handle.
[0004]
Such a conventional print type strain gauge will be described with reference to FIGS.
[0005]
FIG. 3A is a cross-sectional view of a conventional strain gauge, in which 1 is an insulating substrate having elasticity obtained by applying insulation treatment to the surface of a phosphor bronze plate, and 2 is a thermosetting material such as an epoxy resin. An electrode in which conductive powder such as silver powder or carbon powder is dispersed in a resin binder, 3 is a resistor having both ends connected to the electrode 2.
[0006]
The resistor 3 has a low structure, ie, dibutyl phthalate, as a conductive powder 5 with respect to 100 parts by weight of a resin binder 4 such as a thermosetting modified phenolic resin, that is, dibutyl phthalate per unit weight. The amount of oil absorption indicating how much is absorbed (hereinafter referred to as DBP oil absorption amount) is as small as 100 ml / 100 g or less, and 20 to 200 parts by weight of graphite having an average particle size of 1 to 20 μm, or an average particle size of 0.5 to It is formed by printing on the insulating substrate 1 a resistance paste containing 500 to 900 parts by weight of 5 μm nickel, copper, or the like.
[0007]
In the above configuration, when the insulating substrate 1 is bent by applying a load from the state of FIG. 3A, the resistor 3 printed on the insulating substrate 1 is also bent as shown in FIG. 3B. Since mechanical strain is generated in the compression direction, the distance between the conductive powders 5 blended in the resin binder 4 is reduced, and the resistance value of the resistor 3 is reduced.
[0008]
Further, if the insulating substrate 1 is warped by applying a load in the opposite direction, mechanical resistance is generated in the tensile direction in the resistor 3 and the distance between the conductive powders 5 is widened. These changes in resistance value are sent to the electronic circuit (not shown) of the device via the electrode 2 to detect the strain applied to the strain gauge.
[0009]
At this time, the resistance value of the strain gauge should change linearly in proportion to the applied strain in the tension or compression direction, but in reality, the conductive powder 5 mixed in the resin binder 4 is used. As shown in FIG. 4, the relationship between the strain of the strain gauge and the rate of change in resistance value shows a curve in which a deviation of about 10% or more from the original straight line has occurred.
[0010]
[Problems to be solved by the invention]
However, in the conventional resistance paste and the strain gauge using the same, the shape of the conductive powder 5 such as graphite, nickel, copper, etc. blended in the resin binder 4 is a scaly or plate-like powder. When the strain gauge is bent in the direction in which the resistor 3 is compressed, the conductive powder 5 interferes with each other to cause a bump and the resistance value change with respect to the strain does not change smoothly. There was a problem that the sex became worse.
[0011]
Graphite generally has a low fixed carbon amount of 75% to 95%, which indicates how much carbon is contained in the powder, and organic substances other than carbon are likely to contain moisture. In the case of using in the above, there has been a problem that the resistance value fluctuates with humidity.
[0012]
The present invention is to solve such a conventional problem, the resistance value change with respect to the strain is smoothly changed and good linearity is obtained, and a resistance paste with less resistance value variation under a high humidity environment, An object of the present invention is to provide a strain gauge and a multidirectional operating body using the same.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the resistance paste of the present invention is a mixture of a spherical carbon powder having an average particle diameter of 70 nm to 20 μm and a DBP oil absorption of 60 ml / 100 g or less as a conductive powder in a thermosetting resin binder , In addition, the carbon powder is composed of at least one of thermal grade carbon black or graphitized carbon, mesophase carbon microbeads, and glassy carbon to constitute a resistance paste.
[0014]
Thereby, the favorable linearity of a distortion and resistance value change is obtained, and the resistance paste excellent in the moisture-proof characteristic, the strain gauge using this, and a multidirectional operation body can be obtained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is based on 15 parts by weight of spherical carbon powder having an average particle diameter of 70 nm to 20 μm and a dibutyl phthalate oil absorption of 60 ml / 100 g or less as conductive powder with respect to 100 parts by weight of thermosetting resin binder. It is a resistance paste containing 250 parts by weight of a weight part , wherein the carbon powder is a resistance paste made of at least one of thermal grade carbon black or graphitized carbon, mesophase carbon microbeads, and glassy carbon , Resistors printed using this resistance paste have a spherical conductive powder shape, so even if mechanical strain occurs, the conductive powder does not interfere with each other inside the resin binder, and the resistance value changes with respect to the strain. Can be obtained with a strain gauge and a multidirectional operating body that can smoothly change and obtain good linearity. It has the effect of say. The carbon powder is also composed of at least one of thermal grade carbon black or graphitized carbon, mesophase carbon microbeads, and glassy carbon. These carbon powders have a fixed carbon content of 99% or more and are generally used. Since it is higher than graphite and hardly contains other organic substances having water permeability, it has an effect of reducing resistance value fluctuation in a high humidity environment.
[0017]
The invention described in claim 2 is a strain gauge in which the resistor paste according to claim 1 is printed on an insulating substrate to form a resistor, and mechanical strain of the resistor is detected as a change in resistance value. Thus, it has an effect that a good linearity of strain and resistance value change can be obtained, and a strain gauge excellent in moisture resistance can be obtained.
[0018]
According to a third aspect of the present invention, the resistive paste according to the first aspect is printed, an insulating substrate on which a plurality of resistors are formed, and the resistor is mechanically strained by being mounted on the insulating substrate and tilted. The multi-directional operating body is composed of an operating portion to be operated, and has the effect that a good linearity of strain and resistance value change can be obtained and a multi-directional operating body excellent in moisture resistance can be obtained.
[0019]
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2.
In addition, the same code | symbol is attached | subjected to the part of the structure same as the structure demonstrated in the term of the prior art, and detailed description is abbreviate | omitted.
[0020]
(Embodiment 1)
FIG. 1 is a cross-sectional view of a strain gauge according to a first embodiment of the present invention. In FIG. 1, an epoxy resin or the like is formed on an insulating substrate 1 having elasticity obtained by insulating a surface of a phosphor bronze plate. The electrode 2 in which conductive powder such as silver powder or carbon powder is dispersed in the thermosetting resin binder is printed and formed in the same manner as in the prior art, but the resistance is connected to the electrode 2 at both ends. The body 8 is printed on a resin binder 4 such as a thermosetting modified phenolic resin, and a resistance paste in which spherical carbon powder having an average particle diameter of 70 nm to 20 μm and a DBP oil absorption of 60 ml / 100 g or less is blended as the conductive powder 9 is printed. It is formed by.
[0021]
In the above configuration, when a load is applied to the insulating substrate 1 to bend it, the resistor 8 printed on the insulating substrate 1 is bent to cause a mechanical strain in the compression direction or the tensile direction, and is blended in the resin binder 4. Since the distance between the conductive powders 9 is changed, the resistance value of the resistor 8 is changed, and the change in the resistance value is sent to the electronic circuit (not shown) of the device via the electrode 2, The detection of the strain applied to the strain gauge is the same as in the prior art.
[0022]
A specific manufacturing method and characteristics of the resistance paste and strain gauge as described above will be described.
[0023]
The resistance paste was manufactured by using a thermosetting modified phenolic resin as the resin binder 4, mixing the conductive powder 9 and isophorone as a solvent, and kneading and dispersing with a roll mill.
[0024]
The conductive powder 9 of the resistance paste is composed of thermal grade carbon black having an average particle diameter of 80 nm and DBP oil absorption of 28 ml / 100 g, graphitized carbon having an average particle diameter of 70 nm and DBP oil absorption of 60 ml / 100 g, average particle diameters of 6 μm and 20 μm. Using mesophase carbon microbeads with a DBP oil absorption of 30 ml / 100 g, glassy carbon with an average particle diameter of 5 μm and 20 μm and a DBP oil absorption of 10 ml / 100 g, and changing the blending ratio, average particle diameter, etc. Resistive paste was made.
[0025]
In addition, Asahi Thermal made by Asahi Carbon is generally known for thermal grade carbon black, # 3800 made by Tokai Carbon for graphitized carbon, MCMB made by Osaka Gas for mesophase carbon microbeads, and ICB made by Nippon Carbon for glassy carbon. Yes.
[0026]
In addition, as a conventional resistance paste for comparison, several types of conductive powder made of graphite were produced in the same manner by changing the blending ratio, the average particle diameter, and the like.
[0027]
Then, the resistor 8 is printed and formed on the insulating substrate 1 on which the electrode 2 is printed by using these resistance pastes, and a strain gauge is manufactured. Strain was produced, and the resistance value change rate and the linearity of resistance value change with respect to the strain at that time were evaluated.
[0028]
These strain gauges were allowed to stand for 1000 hours in a high humidity environment of 60 ° C. and 90 to 95% RH, and then the resistance value was measured to evaluate the rate of change in resistance value with respect to humidity.
[0029]
The results of the characteristic evaluation performed as described above will be described using (Table 1).
[0030]
[Table 1]
Figure 0003855410
[0031]
As is clear from (Table 1), the resistance value change rate with respect to strain of Comparative Examples 1 and 2 using conventional graphite having a DBP oil absorption of 80 ml / 100 g as conductive powder is 0.5 to 0.8%. In Examples 1 to 6, where the conductive powder is thermal grade carbon black, graphitized carbon, mesophase carbon microbeads, or glassy carbon, the DBP oil absorption is as small as 10 to 60 ml / 100 g. A high resistance value change rate of 0.6 to 1.5% could be obtained.
[0032]
Further, when the strain gauge is bent, the linearity of the resistance value change with respect to the strain of Comparative Examples 1 and 2 in which the scaly graphite conductive powder interferes in the resin binder is 8 to 10%. On the other hand, the linearity of Examples 1 to 6 in which the shape of the conductive powder is spherical is 5% or less, indicating good linearity of resistance value change with respect to strain.
[0033]
Furthermore, while the resistance value fluctuation in the high humidity environment of Comparative Examples 1 and 2 using graphite having a fixed carbon amount of 75 to 95% increases to 5% or more, the fixed carbon amount is 99% or more. In Examples 1 to 6, where certain thermal grade carbon black, graphitized carbon, mesophase carbon microbeads, and glassy carbon were used as the conductive powder, it was confirmed that the fluctuation in resistance value under a high humidity environment was reduced to 3% or less. did it.
[0034]
Thus, according to the present embodiment, a thermosetting resin binder is strained using a resistance paste in which spherical carbon powder having an average particle diameter of 70 nm to 20 μm and a DBP oil absorption of 60 ml / 100 g or less is blended as a conductive powder. By configuring the gauge, a high resistance value change rate with respect to the strain can be obtained, and a strain gauge in which the resistance value change with respect to the strain smoothly changes and good linearity can be obtained can be obtained.
[0035]
Also, by using at least one of thermal grade carbon black, graphitized carbon, mesophase carbon microbeads, or glassy carbon with a fixed carbon content of 99% or more as carbon powder, resistance value fluctuations in a high humidity environment Can also be reduced.
[0036]
(Embodiment 2)
FIG. 2 is an external perspective view of a multidirectional operating body according to the second embodiment of the present invention. In FIG. 2, 11 is an insulating substrate having elasticity, in which the surface of a phosphor bronze plate is subjected to insulation treatment, The operation unit has a lower end fixed to the central portion of the insulating substrate 11, and the four corners of the insulating substrate 11 are fixed to a rigid mounting base 13.
[0037]
Then, on the upper surface of the insulating substrate 11, a pair of first resistors 14A and 14B are provided on the left and right with the operation unit 12 interposed therebetween, and a pair of second resistors 15A and 15B are provided on the front and rear sides of the first embodiment. The same resistance paste is used for printing.
[0038]
In the above configuration, when the upper end of the operation unit 12 is tilted leftward, the load causes the left surface of the insulating substrate 1 to be deformed into a concave surface and the right surface into a convex surface, and the first resistors 14A and 14B have Since mechanical strain in the tensile direction occurs, the distance between the conductive powders blended in the resin binder changes, and the resistance value of the first resistor 14A is small and the resistance value of the first resistor 14B is large. Thus, the change in resistance value is sent to an electronic circuit (not shown) of the device, and distortion applied to each is detected.
[0039]
On the contrary, when the upper end of the operation unit 12 is tilted to the right, the resistance value of the first resistor 14A is large and the resistance value of the first resistor 14B is small. When the tilting operation is performed in the front-rear direction, the resistance values of the second resistors 15A and 15B are changed to detect how much the operating unit 12 is tilted in which direction. Yes.
[0040]
In addition, since the first resistor 14A, 14B and the second resistor 15A, 15B printed on the insulating substrate 11 are made of the same resistance paste as that of the first embodiment, mechanical distortion is caused. Even if this occurs, the conductive powder does not interfere with each other inside the resin binder, and the resistance value can be smoothly changed with respect to strain.
[0041]
Thus, according to the present embodiment, by configuring the multidirectional operation body using the same resistance paste as in the first embodiment, a high resistance value change rate and good linearity with respect to strain can be obtained, It is possible to obtain a multidirectional operation body with little resistance value fluctuation in a high humidity environment.
[0042]
In the above description, the strain gauge resistor 8 and the multidirectional operating body resistors 14A, 14B, 15A, and 15B are applied to the insulating substrate 1 and the insulating substrate 11 in which the surface of the phosphor bronze plate is insulated. The printed structure has been described, but the insulating substrate on which the resistor is printed can be implemented with an inorganic insulating material such as ceramic or an insulating resin such as polyester resin or phenol resin as long as it has a certain degree of elasticity. Of course.
[0043]
【The invention's effect】
As described above, the present invention provides 15 parts by weight to 250 parts by weight of spherical carbon powder having an average particle diameter of 70 nm to 20 μm and a dibutyl phthalate oil absorption of 60 ml / 100 g or less as conductive powder with respect to 100 parts by weight of a thermosetting resin binder. A resistance paste containing parts by weight, wherein the carbon powder is a resistance paste made of at least one of thermal grade carbon black or graphitized carbon, mesophase carbon microbeads, and glassy carbon. According to this , a favorable linearity of strain and resistance value change can be obtained, and the advantageous effect that a resistance paste excellent in moisture resistance characteristics, a strain gauge using the same, and a multidirectional operation body can be obtained. It is done.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a strain gauge according to a first embodiment of the present invention. FIG. 2 is an external perspective view of a multidirectional operation body according to a second embodiment of the present invention. Sectional view [Fig. 4] Characteristic diagram of strain and resistance value change rate [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,11 Insulation board | substrate 2 Electrode 4 Resin binder 8 Resistor 9 Conductive powder 12 Operation part 13 Mounting base 14A, 14B 1st resistor 15A, 15B 2nd resistor

Claims (3)

熱硬化性の樹脂バインダ100重量部に対し、導電粉として平均粒子径70nm〜20μmでフタル酸ジブチル吸油量60ml/100g以下の球状のカーボンパウダーを15重量部〜250重量部配合した抵抗ペーストであって、上記カーボンパウダーが、サーマル級カーボンブラックまたは黒鉛化カーボン、メソフェーズカーボンマイクロビーズ、ガラス状カーボンの少なくとも一つからなる抵抗ペーストThis is a resistance paste in which 15 parts by weight to 250 parts by weight of spherical carbon powder having an average particle size of 70 nm to 20 μm and a dibutyl phthalate oil absorption of 60 ml / 100 g or less as a conductive powder is added to 100 parts by weight of a thermosetting resin binder. A resistance paste in which the carbon powder is at least one of thermal grade carbon black or graphitized carbon, mesophase carbon microbeads, and glassy carbon . 請求項1記載の抵抗ペーストを絶縁基板上に印刷して抵抗体を形成し、この抵抗体に加えられる機械的な歪を抵抗値変化として検出する歪ゲージ。A strain gauge which prints the resistance paste according to claim 1 on an insulating substrate to form a resistor, and detects mechanical strain applied to the resistor as a change in resistance value. 請求項1記載の抵抗ペーストを印刷し、複数の抵抗体を形成した絶縁基板と、絶縁基板に装着され、傾倒操作することによって抵抗体に機械的歪を生じさせる操作部からなる多方向操作体。 A multidirectional operation body comprising: an insulating substrate on which the resistance paste according to claim 1 is printed and a plurality of resistors are formed; and an operation unit that is mounted on the insulating substrate and causes a mechanical strain on the resistor by tilting operation. .
JP33143897A 1997-12-02 1997-12-02 Resistance paste, strain gauge using the same, and multidirectional operation body Expired - Fee Related JP3855410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33143897A JP3855410B2 (en) 1997-12-02 1997-12-02 Resistance paste, strain gauge using the same, and multidirectional operation body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33143897A JP3855410B2 (en) 1997-12-02 1997-12-02 Resistance paste, strain gauge using the same, and multidirectional operation body

Publications (2)

Publication Number Publication Date
JPH11162254A JPH11162254A (en) 1999-06-18
JP3855410B2 true JP3855410B2 (en) 2006-12-13

Family

ID=18243673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33143897A Expired - Fee Related JP3855410B2 (en) 1997-12-02 1997-12-02 Resistance paste, strain gauge using the same, and multidirectional operation body

Country Status (1)

Country Link
JP (1) JP3855410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528890B2 (en) 2012-07-26 2016-12-27 Murata Manufacturing Co., Ltd. Pressing force sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4342929B2 (en) * 2002-12-26 2009-10-14 昭和電工株式会社 Carbonaceous material for conductive composition and use thereof
JP5608865B2 (en) * 2011-10-03 2014-10-15 国立大学法人信州大学 Load measurement system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3076714B2 (en) * 1994-03-02 2000-08-14 アルプス電気株式会社 Resistance ink for strain gauge and strain gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528890B2 (en) 2012-07-26 2016-12-27 Murata Manufacturing Co., Ltd. Pressing force sensor

Also Published As

Publication number Publication date
JPH11162254A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
Dang et al. Supersensitive linear piezoresistive property in carbon nanotubes∕ silicone rubber nanocomposites
JP3038859B2 (en) Anisotropic conductive sheet
JP3980300B2 (en) Membrane pressure sensitive resistor and pressure sensor
JP3499877B2 (en) Force detection ink
US6791532B2 (en) Input device and detection device using resistance type strain sensor element
CN107246930A (en) A kind of thin film flexible force-sensing sensor
CN1094214C (en) Position inputting apparatus
US11315733B2 (en) Multilayer ceramic electronic parts with conductive resin
JP3855410B2 (en) Resistance paste, strain gauge using the same, and multidirectional operation body
EP2924406B1 (en) Load sensor
US4751492A (en) Variable resistor
JP2889792B2 (en) Variable resistor
CN1218275C (en) Contact control screen upper, lower electrode break-over structure
JP4622705B2 (en) Movable contact for panel switch
JP3076714B2 (en) Resistance ink for strain gauge and strain gauge
JP2000174400A (en) Flexible printed board
JP2005222932A5 (en)
CN1171140C (en) Surface inputting device with button switch
CN211831337U (en) Flexible circuit board and multi-directional input device
WO2021019923A1 (en) Conductive composition, conductive film, contact member and method for producing conductive composition
JP3000351B2 (en) Variable resistor
KR0145092B1 (en) Pointing device transducer using thick film resistor strain sensors
JP3167559B2 (en) Temperature sensor
JP2003139630A (en) Pressure sensitive film resistor and pressure sensitive sensor
JP2002141210A (en) Resistor and variable resistor using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

LAPS Cancellation because of no payment of annual fees