JP4341474B2 - Phase correction element and optical head device - Google Patents

Phase correction element and optical head device Download PDF

Info

Publication number
JP4341474B2
JP4341474B2 JP2004166050A JP2004166050A JP4341474B2 JP 4341474 B2 JP4341474 B2 JP 4341474B2 JP 2004166050 A JP2004166050 A JP 2004166050A JP 2004166050 A JP2004166050 A JP 2004166050A JP 4341474 B2 JP4341474 B2 JP 4341474B2
Authority
JP
Japan
Prior art keywords
phase correction
correction element
light
transparent electrode
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004166050A
Other languages
Japanese (ja)
Other versions
JP2005346845A (en
Inventor
具展 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004166050A priority Critical patent/JP4341474B2/en
Publication of JP2005346845A publication Critical patent/JP2005346845A/en
Application granted granted Critical
Publication of JP4341474B2 publication Critical patent/JP4341474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Optical Head (AREA)

Description

本発明は、位相補正素子および光ヘッド装置に関するものである。   The present invention relates to a phase correction element and an optical head device.

光入射側に情報記録層が透明樹脂からなるカバー層で覆われた光記録媒体(以後、「光ディスク」という)として、CD用光ディスクやDVD用光ディスクが普及している。光ヘッド装置における、DVD用の光ディスクの情報の記録および/または再生において、光源として波長が660nm帯の半導体レーザとNAが0.6から0.65までの対物レンズが用いられている。   As an optical recording medium (hereinafter referred to as “optical disk”) in which an information recording layer is covered with a cover layer made of a transparent resin on the light incident side, an optical disk for CD and an optical disk for DVD are widely used. In recording and / or reproducing information on an optical disk for DVD in an optical head device, a semiconductor laser having a wavelength of 660 nm and an objective lens having an NA of 0.6 to 0.65 are used as a light source.

光ディスク1枚当たりの情報量を増加させるために、情報記録層を2層とした再生専用の光ディスクが普及している。情報記録層が単層の光ディスク(以後、「単層光ディスク」という)はカバー厚が0.6mmであるが、情報記録層が2層の光ディスク(以後、「2層光ディスク」という)は光入射側のカバー厚が0.56mmおよび0.63mmの位置に情報記録層が形成されている。   In order to increase the amount of information per optical disc, read-only optical discs with two information recording layers are in widespread use. An optical disc with a single information recording layer (hereinafter referred to as “single layer optical disc”) has a cover thickness of 0.6 mm, whereas an optical disc with two information recording layers (hereinafter referred to as “double layer optical disc”) is light incident. An information recording layer is formed at positions where the side cover thickness is 0.56 mm and 0.63 mm.

光ヘッド装置において、単層光ディスクに対して収差がゼロとなるように最適設計された対物レンズを用いて、2層光ディスクを記録および/または再生する場合、カバー厚の違いによって球面収差が発生し情報記録層への入射光の集光性が劣化する。特に、記録型の2層光ディスクにおいて、集光性の劣化は記録時の集光パワー密度の低下の原因となり、書き込みエラーを招くため問題となる。   In an optical head device, when recording and / or reproducing a two-layer optical disk using an objective lens that is optimally designed to have zero aberration with respect to a single-layer optical disk, spherical aberration occurs due to the difference in cover thickness. Condensability of incident light on the information recording layer is deteriorated. In particular, in a recordable double-layer optical disc, the deterioration of the light condensing property causes a decrease in the light condensing power density at the time of recording, which causes a writing error.

また、光ディスクの記録密度を向上するため、光源として波長が405nm帯の半導体レーザとNAが0.85の対物レンズ、およびカバー厚が0.1mmの光ディスクが提案されている。この場合も、記録型の2層光ディスクにおいて、カバー厚の違いによって発生する球面収差が書き込みエラーを招くため問題となる。   In order to improve the recording density of the optical disk, a semiconductor laser having a wavelength of 405 nm, an objective lens having an NA of 0.85, and an optical disk having a cover thickness of 0.1 mm have been proposed as light sources. In this case as well, in a recording type double-layer optical disc, spherical aberration caused by a difference in cover thickness causes a writing error, which is a problem.

上記のような2層光ディスク等のカバー厚の違いによって発生する球面収差を補正する従来技術として、光ヘッド装置において可動レンズ群または位相補正素子を用いる方法が知られている。   As a conventional technique for correcting the spherical aberration caused by the difference in the cover thickness of the two-layer optical disk as described above, a method using a movable lens group or a phase correction element in an optical head device is known.

可動レンズ群を用いた球面収差補正について特許文献1に記載されている。光源からの出射光が対物レンズに至る前の光軸中に、対物レンズに近接して凹レンズと凸レンズからなる可動レンズ群が設置されており、この凸レンズはアクチュエータに固定されている。アクチュエータを駆動して、凸レンズを光軸方向に移動することにより、凸レンズ可動レンズ群のパワーが正(凸レンズ)から負(凹レンズ)へと連続的に変わり焦点距離可変レンズ機能が発現する。この駆動により、光ディスクのカバー厚の異なる情報記録層に入射光の焦点を合わせることができる。しかし、可動レンズ群を用いた場合、凹および凸レンズとアクチュエータが必要となり光ヘッド装置の大型化を招くとともに、稼動させるための機構設計が複雑になる問題があった。   Patent Document 1 describes spherical aberration correction using a movable lens group. In the optical axis before the light emitted from the light source reaches the objective lens, a movable lens group including a concave lens and a convex lens is installed in the vicinity of the objective lens, and the convex lens is fixed to the actuator. By driving the actuator and moving the convex lens in the optical axis direction, the power of the convex lens movable lens group continuously changes from positive (convex lens) to negative (concave lens), and the focal length variable lens function is exhibited. By this driving, the incident light can be focused on the information recording layers having different cover thicknesses of the optical disc. However, when the movable lens group is used, there are problems that a concave and convex lens and an actuator are required, resulting in an increase in size of the optical head device and a complicated mechanism design for operation.

また、光ディスクのカバー厚の違いによって発生する球面収差を補正する液晶を用いた位相補正素子が特許文献2に記載されている。   Further, Patent Document 2 discloses a phase correction element using liquid crystal that corrects spherical aberration caused by a difference in the cover thickness of an optical disk.

しかし、従来の位相補正素子では、液晶を用いているため偏光依存性を有しており、偏光方向がある特定方向を有する直線偏光に対してのみ作用する。特に光源の光パワーを必要とする書込系光ヘッド装置では、光の利用効率を上げる必要があり、光源からの出射光の偏光方向と、反射により光ディスクから検出器へ向かう反射光の偏光方向とを異ならせる偏光系の光ヘッド装置が通常用いられるが、従来の液晶を用いた位相補正素子は特定方向の直線偏光に対してのみ作用するため、光源から光ディスクへ向かう出射光、または、光検出器に向かう光ディスクからの反射光のいずれか一方にしか作用しない問題があった。   However, since the conventional phase correction element uses a liquid crystal, it has polarization dependency and acts only on linearly polarized light having a specific direction of polarization. Especially in writing optical head devices that require the light power of the light source, it is necessary to increase the light utilization efficiency. The polarization direction of the light emitted from the light source and the polarization direction of the reflected light from the optical disk to the detector by reflection Is usually used, but the phase correction element using a conventional liquid crystal works only for linearly polarized light in a specific direction. There has been a problem of acting only on one of the reflected light from the optical disk toward the detector.

このような偏光系光ヘッド装置の問題に対して、2つの液晶層を用いて構成する位相補正素子を用いることが特許文献3に記載されている。位相補正素子は、第1の液晶層と第2の液晶層からなり、かつ2つの液晶層を構成する液晶分子の電圧非印加時におけるそれぞれの配向方向が直交する配置でアクチュエータに搭載されている。このような構成にすることにより、2つの液晶層のうちの1つは、光記録媒体へ向かう光源からの出射光に作用して波面を変化させることで光記録媒体上での集光特性を向上でき、もうひとつの液晶層により、光記録媒体から光検出器へ向かう反射・戻り光に作用して波面を変化させることで光検出器上での集光特性を向上できる。   Patent Document 3 discloses that a phase correction element configured by using two liquid crystal layers is used to solve the problem of such a polarizing optical head device. The phase correction element includes a first liquid crystal layer and a second liquid crystal layer, and is mounted on the actuator in such a manner that the orientation directions of the liquid crystal molecules constituting the two liquid crystal layers are orthogonal to each other when no voltage is applied. . By adopting such a configuration, one of the two liquid crystal layers has a condensing characteristic on the optical recording medium by acting on the light emitted from the light source toward the optical recording medium and changing the wavefront. The light condensing property on the photodetector can be improved by changing the wavefront by acting on the reflected / returned light directed from the optical recording medium to the photodetector by the other liquid crystal layer.

特開2003−115127号公報JP 2003-115127 A 特開2003−36555号公報JP 2003-36555 A 特開2002−319172号公報JP 2002-319172 A

しかし従来の2つの液晶層を用いた位相補正素子は、2つの液晶層を一体化して部品点数を減らした構成の場合、形状の大型化や重量増となるため、対物レンズを保持するアクチュエータに搭載することが難しく、対物レンズと一体駆動することによる理想的な位相補正ができない問題があった。また2つの液晶層を一体化せず別置きとして使用する場合、部品点数の増加となるため、光ヘッド装置の光学系が複雑になり、調整工程の増大や、歩留の低下を招き、コスト増になる問題があった。   However, the conventional phase correction element using two liquid crystal layers has a configuration in which the two liquid crystal layers are integrated to reduce the number of parts. There is a problem that it is difficult to mount, and ideal phase correction cannot be performed by driving integrally with the objective lens. Also, when the two liquid crystal layers are not integrated but used separately, the number of parts increases, so the optical system of the optical head device becomes complicated, leading to an increase in the adjustment process and a decrease in yield, resulting in a cost increase. There was a problem of increasing.

本発明は、上記の課題を解決するためになされたものであり、透明導電性基板と、前記透明導電性基板上に形成された無機材料からなる無機電気光学薄膜と、前記無機電気光学薄膜上に形成された透明電極とを備える位相補正素子であって、前記透明導電性基板と前記透明電極との間に電圧を印加することによって、前記無機電気光学薄膜は、その平面内方向の屈折率が等方的にかつ印加電圧の大きさに応じて変化して、前記位相補正素子に入射する入射光の波面を入射光の偏光状態に依存せず等方的に変化させることを特徴とする位相補正素子を提供する。 The present invention has been made to solve the above problems, a transparent conductive substrate and the inorganic electro-optic thin film made of an inorganic material formed on a transparent conductive substrate, the inorganic electro thin film a phase correction element and a transparent electrode formed by applying a voltage between the transparent electrode and the transparent conductive substrate, the inorganic electro-optic thin film, the refractive its plane direction rate is changed according to the size of the isotropically and applied voltage, and characterized in that the phase correcting element changes the polarization state to the isotropic independent of the incident light wave front of the incident light incident on the A phase correction element is provided.

また、光源と、前記光源からの出射光を光記録媒体に集光する対物レンズと、前記対物レンズにより集光され前記光記録媒体により反射された光を分波するビームスプリッタと分波された光を検出する光検出器とを備えた光ヘッド装置において、前記光源と前記対物レンズとの間の光路中に上記の位相補正素子が設置されていることを特徴とする光ヘッド装置を提供する。 Further, light source, an objective lens for focusing the optical recording medium the light emitted from the light source, which is a beam splitter and demultiplexes for demultiplexing the light reflected by the optical recording medium is converged by the objective lens in the optical head device including a photodetector for detecting light, and an optical head device, characterized in that said phase correction element is disposed in the optical path between the front Symbol light source and the objective lens provide.

請求項1の発明に係る位相補正素子では、無機材料電気光学薄膜に印加する電圧によって生じる屈折率の変化量が、無機材料電気光学薄膜に入射する偏光状態によらずほぼ等方的であるため、入射偏光の状態に依存することなく透過光の波面を変化させることができる。   In the phase correction element according to the first aspect of the invention, the amount of change in the refractive index caused by the voltage applied to the inorganic material electro-optic thin film is substantially isotropic regardless of the polarization state incident on the inorganic material electro-optic thin film. The wavefront of transmitted light can be changed without depending on the state of incident polarized light.

また、本発明の位相補正素子は無機材料電気光学薄膜を用いるため、液晶を用いた位相補正素子よりも早い応答が可能となる。   In addition, since the phase correction element of the present invention uses an inorganic material electro-optic thin film, it is possible to respond faster than a phase correction element using liquid crystal.

さらに、本発明の位相補正素子は、固体の無機材料電気光学素子を用いるため、液晶のような液体であることに起因する液体漏れや、液晶層への周辺からの汚染物による液晶比抵抗の低下のような問題が発生しないため、耐久性や耐光性などの長期の環境信頼性にも優れている。   Further, since the phase correction element of the present invention uses a solid inorganic material electro-optic element, liquid leakage caused by being a liquid like liquid crystal or liquid crystal specific resistance due to contaminants from the periphery to the liquid crystal layer. Since problems such as degradation do not occur, long-term environmental reliability such as durability and light resistance is also excellent.

さらに、透明電極が1つのみであるため製造工程がより簡略化され、生産性の高い位相補正素子となる。 Furthermore , since there is only one transparent electrode, the manufacturing process is further simplified and a phase correction element with high productivity is obtained.

請求項の発明に係る位相補正素子は、請求項1の発明に係る位相補正素子の効果に加え、同心円状の給電部材が形成されているため球面収差を補正する補正用波面が光学軸のまわりに均一なものとなるという効果を有する。さらに、給電部材が透明平面電極よりも抵抗値が小さいため、抵抗値の大きい透明平面電極内では隣接する給電部材間で電位(電圧)がなめらかに変化するという効果を有する。 In addition to the effect of the phase correcting element according to the first aspect of the invention, the phase correcting element according to the second aspect of the invention has a concentric feeding member so that the correction wavefront for correcting the spherical aberration has the optical axis. It has the effect of being uniform around. Furthermore, since the power supply member has a resistance value smaller than that of the transparent flat electrode, the potential (voltage) smoothly changes between adjacent power supply members in the transparent flat electrode having a large resistance value.

請求項に係る光ヘッド装置の発明は、無機電気光学薄膜からなる位相補正素子を搭載しているため偏光光学系を使用する場合でも光の高い利用効率が得られ、また2つの液晶層を用いた従来の位相補正素子で問題となったアクチュエータへの搭載が容易になるとともに、調整工程も簡素化され装置のコストダウンが図れる。 The invention of the optical head device according to claim 3 is equipped with a phase correction element made of an inorganic electro-optic thin film, so that even when a polarizing optical system is used, high light utilization efficiency can be obtained, and two liquid crystal layers are provided. The conventional phase correction element used can be easily mounted on the actuator, and the adjustment process is simplified, thereby reducing the cost of the apparatus.

また、液晶層を用いた位相補正素子では、光源の波長が400nm前後の光ヘッド装置に適用する場合、長時間のレーザ照射で、有機材料である液晶や配向膜の劣化が徐々に生じ、所望の特性が得られなくなる問題があったが、本発明の位相補正素子は、無機電気光学薄膜を用いるため耐レーザ性が高い。また、光ヘッド装置の組立調整工程内でよく使用されるUV硬化型接着剤の使用による材料劣化も生じない。そのため、装置の信頼性が高い。   In addition, in a phase correction element using a liquid crystal layer, when applied to an optical head device having a light source wavelength of around 400 nm, the long-term laser irradiation gradually causes deterioration of the liquid crystal or the alignment film, which is an organic material. However, the phase correction element of the present invention has high laser resistance because it uses an inorganic electro-optic thin film. Further, material deterioration due to the use of a UV curable adhesive often used in the assembly adjustment process of the optical head device does not occur. Therefore, the reliability of the device is high.

以下、図面を参照して本発明の実施形態を説明する。
「第一の実施形態」
本発明の第一実施形態に係る位相補正素子100の構成例について図1に断面図を示す。本実施形態に係る位相補正素子の構成および作製手順例を以下に説明する。
透明基板1の一方の平坦面に第1透明電極3を形成する。さらに第1透明電極3の面に無機材料を用いた電気光学薄膜4(以後、「無機電気光学薄膜4」という)を形成する。さらに、無機電気光学薄膜4の面に第2透明電極5を形成する。さらに、第2透明電極5の面と、透明基板1の第1透明電極3が形成されていない裏面とに、各々、反射防止膜6、7を形成し、位相補正素子100とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
"First embodiment"
FIG. 1 shows a cross-sectional view of a configuration example of the phase correction element 100 according to the first embodiment of the present invention. An example of the configuration and manufacturing procedure of the phase correction element according to this embodiment will be described below.
The first transparent electrode 3 is formed on one flat surface of the transparent substrate 1. Further, an electro-optic thin film 4 (hereinafter referred to as “inorganic electro-optic thin film 4”) using an inorganic material is formed on the surface of the first transparent electrode 3. Further, the second transparent electrode 5 is formed on the surface of the inorganic electro-optic thin film 4. Further, antireflection films 6 and 7 are formed on the surface of the second transparent electrode 5 and the back surface of the transparent substrate 1 where the first transparent electrode 3 is not formed, respectively, to form the phase correction element 100.

まず、位相補正素子100の作用について説明する。
第1透明電極3と第2透明電極5に電圧を印加することによって、無機電気光学薄膜4に電気光学効果が生じ、無機電気光学薄膜4の電圧印加方向、および電圧印加方向と直交する方向、すなわち平面内方向の屈折率が変化する。本発明では、電圧印加方向に光を入射させる使い方であり、位相補正のための屈折率変化で重要になるのは、電圧印加方向と直交する方向の屈折率変化である。
First, the operation of the phase correction element 100 will be described.
By applying a voltage to the first transparent electrode 3 and the second transparent electrode 5, an electro-optic effect is generated in the inorganic electro-optic thin film 4, and the voltage application direction of the inorganic electro-optic thin film 4 and the direction orthogonal to the voltage application direction, That is, the refractive index in the in-plane direction changes. In the present invention, light is incident in the voltage application direction, and what is important in the refractive index change for phase correction is the refractive index change in the direction orthogonal to the voltage application direction.

電気光学効果には、印加電圧に対して線形に屈折率が変化する1次電気光学効果(ポッケルス効果)と印加電圧の二乗に屈折率が比例する2次電気光学効果(カー効果)がある。屈折率の変化量は、無機電気光学材料の種類や結晶構造によって決まる、電圧の1次に比例する係数1次電気光学係数(rij)や電圧の2次に比例する係数2次電気光学係数(sij)とならんで、無機電気光学薄膜材料に印加する電圧の方向にも関係する。
その中で、無機電気光学材料および構造と電圧印加方向を適切に選ぶことで、電圧印加方向と直交する方向の屈折率変化量を、入射偏光状態によらず等方的にできる。
The electro-optic effect includes a primary electro-optic effect (Pockels effect) in which the refractive index changes linearly with respect to the applied voltage, and a secondary electro-optic effect (Kerr effect) in which the refractive index is proportional to the square of the applied voltage. The amount of change in the refractive index is determined by the type and crystal structure of the inorganic electro-optic material. The first-order electro-optic coefficient (r ij ) is proportional to the first-order voltage, and the second-order electro-optic coefficient is proportional to the second-order voltage. Along with (s ij ), this also relates to the direction of the voltage applied to the inorganic electro-optic thin film material.
Among them, by appropriately selecting the inorganic electro-optic material and structure and the voltage application direction, the amount of change in the refractive index in the direction orthogonal to the voltage application direction can be made isotropic regardless of the incident polarization state.

例えば、2次電気光学効果を有する、ヘルマン・モルガンの記号で表すとm3m型の結晶構造の材料は、X方向(100)に電界Eが存在する場合、(100)方向とそれに直交するY方向、Z方向の屈折率、および、Y方向、Z方向の屈折率変化は、式1、式2、式3で記述される。   For example, when expressed by the Herman Morgan symbol having a secondary electro-optic effect, an m3m type crystal structure material has an electric field E in the X direction (100) and the Y direction perpendicular to the (100) direction. , The refractive index change in the Z direction, and the refractive index change in the Y direction and the Z direction are expressed by Equation 1, Equation 2, and Equation 3.

Figure 0004341474
Figure 0004341474

ここでs11、s12は、電気光学結晶の2次電気光学係数、g11、g12は結晶の電気光学係数、εは真空の誘電率、εrは比誘電率である。式2、式3から、電圧(または電界)の方向(X方向)と直交する2つの方向(Y方向、Z方向)の屈折率、および屈折率変化は等しく、X方向に伝播する入射光の偏光状態に依存しないことが分かる。このような材料を位相補正素子100に使用することで、入射偏光の状態に依存することなく透過光の波面を変化させることができる。この構造の結晶では、電圧印加方向が(111)方向でも、入射光の偏光状態に依存性せず、電圧印加方向に直交する2つの方向の屈折率変化は等しくなる。 Here, s 11 and s 12 are the secondary electro-optic coefficients of the electro-optic crystal, g 11 and g 12 are the electro-optic coefficients of the crystal, ε 0 is the dielectric constant of vacuum, and ε r is the relative dielectric constant. From Equations 2 and 3, the refractive index in two directions (Y direction and Z direction) orthogonal to the direction of voltage (or electric field) (X direction) and the refractive index change are equal, and the incident light propagating in the X direction It can be seen that it does not depend on the polarization state. By using such a material for the phase correction element 100, the wavefront of the transmitted light can be changed without depending on the state of incident polarized light. In the crystal having this structure, even when the voltage application direction is the (111) direction, the refractive index changes in the two directions orthogonal to the voltage application direction are equal without depending on the polarization state of the incident light.

また、例えば1次電気光学効果有する、ヘルマン・モルガンの記号で表すとm3m型の結晶構造の材料は、c軸方向(Z方向)に電界Eが存在する場合、c軸方向(Z)とそれに直交する、X方向とY方向の屈折率は、式4、式5で記述される。   For example, when expressed by the Herman Morgan symbol having the primary electro-optic effect, an m3m type crystal structure material has an electric field E in the c-axis direction (Z direction). The refractive indexes in the X direction and the Y direction that are orthogonal to each other are described by Equations 4 and 5.

Figure 0004341474
Figure 0004341474

ここでr33、r13は電気光学結晶の1次電気光学係数であり、n、nはそれぞれ、異常光屈折率、常光屈折率である。式4、式5から、電圧(すなわち電界)の方向(Z方向)と直交する2つの方向(X方向、Y方向)の屈折率変化は等しく、Z方向(すなわちc軸)に伝播する入射光の偏光状態に依存しないことが分かる。このような材料を位相補正素子100に使用することで、入射偏光状態に依存することなく透過光の波面を変化させることができる。 Here r 33, r 13 is the primary electro-optic coefficient of the electro-optic crystal, n e, n o, respectively, the extraordinary light refractive index, which is the ordinary refractive index. From Expressions 4 and 5, the refractive index changes in two directions (X direction and Y direction) orthogonal to the direction of voltage (ie, electric field) (Z direction) are equal, and incident light propagates in the Z direction (ie, c axis). It can be seen that it does not depend on the polarization state. By using such a material for the phase correction element 100, the wavefront of the transmitted light can be changed without depending on the incident polarization state.

このように、結晶構造によって電圧の印加方向を適切に選ぶことで、偏光状態に依存しない位相補正素子100が得られる。
なお、以上述べてきた無機電気光学薄膜4としては、KTaNb1−x(KTN)、BaTiO、LiNbO、PLZT(Pb(1−x)La(ZrTi(1−y)(1−x/4))が、電気光学係数が大きく好ましい。
Thus, the phase correction element 100 independent of the polarization state can be obtained by appropriately selecting the voltage application direction according to the crystal structure.
As the inorganic electro-optic thin film 4 described above, KTa x Nb 1-x O 3 (KTN), BaTiO 3 , LiNbO 3 , PLZT (Pb (1-x) La x (Zr y Ti (1-y ) (1-x / 4) O 3 ) is preferable because of its large electro-optic coefficient.

次に、発生する球面収差を補正するための位相補正用の透明電極について説明する。
位相補正素子100によって2層光ディスクのカバー層の相違に応じて発生する球面収差を補正するためには、球面収差の空間的な波面の乱れを打ち消すような波面を、無機電気光学薄膜4に入射する光に対して発生させる。空間的な波面の乱れを打ち消すような波面を無機電気光学薄膜4で発生させるためには、入射光が無機電気光学薄膜4を透過する部分の、ビーム断面内で電圧分布を持たせることで得られる。
Next, a transparent electrode for phase correction for correcting the generated spherical aberration will be described.
In order to correct the spherical aberration caused by the difference in the cover layer of the two-layer optical disk by the phase correction element 100, a wavefront that cancels the disturbance of the spatial wavefront of the spherical aberration is incident on the inorganic electro-optic thin film 4. To generate light. In order to generate a wavefront that cancels the disturbance of the spatial wavefront in the inorganic electro-optic thin film 4, it is obtained by providing a voltage distribution in the beam cross section of the portion where the incident light is transmitted through the inorganic electro-optic thin film 4. It is done.

位相補正素子100によって波面の空間分布変化を発生させる電極形状としては、例えば図2に示すような同心円状に分割された電極を、位相補正素子100の第1透明電極3、もしくは第2透明電極5に設けて球面収差を補正する方法がある。また、連続的になめらかに変化する球面収差を発生させるために、連続的になめらかに変化する電圧分布が得られる、例えば図3に示すような電極を位相補正素子100の第1透明電極3、もしくは第2透明電極5として設ける方法がある。   As an electrode shape for generating a spatial distribution change of the wavefront by the phase correction element 100, for example, an electrode divided concentrically as shown in FIG. 2 is used as the first transparent electrode 3 or the second transparent electrode of the phase correction element 100. 5 for correcting spherical aberration. Further, in order to generate a continuously and smoothly changing spherical aberration, a continuously and smoothly changing voltage distribution is obtained. For example, an electrode as shown in FIG. 3 is used as the first transparent electrode 3 of the phase correction element 100, Alternatively, there is a method of providing as the second transparent electrode 5.

連続的になめらかに変化する電圧分布を得るための構成としては、図3に示すように、例えば、無機電気光学薄膜4の第2透明電極5として、まず一様な透明平面電極40を形成する。次に発生する球面収差を補正できる電圧印加用電極形状として、球面収差の形状に合わせた電圧を供給する複数の給電部材41、42、43を透明平面電極40上に設ける。   As a configuration for obtaining a voltage distribution that changes continuously and smoothly, for example, as shown in FIG. 3, first, a uniform transparent flat electrode 40 is formed as the second transparent electrode 5 of the inorganic electro-optic thin film 4. . A plurality of power supply members 41, 42, and 43 for supplying a voltage in accordance with the shape of the spherical aberration are provided on the transparent flat electrode 40 as a voltage application electrode shape that can correct the spherical aberration that occurs next.

また、第2透明電極5に対向する第1透明電極3には一様な薄膜電極を設ける。そして引出配線44を通じて、上記の球面収差を補正するための所望の電圧分布となる適切な電圧として、給電部材41と第1透明電極3間に信号電圧51を、給電部材42と第1透明電極3間には信号電圧52を、そして、給電部材43と第1透明電極3間には信号電圧53を各々印加する。このとき、信号電圧51と信号電圧52と信号電圧53は異なるものとする。   The first transparent electrode 3 facing the second transparent electrode 5 is provided with a uniform thin film electrode. Then, the signal voltage 51 is supplied between the power supply member 41 and the first transparent electrode 3 as an appropriate voltage having a desired voltage distribution for correcting the spherical aberration through the lead wire 44, and the power supply member 42 and the first transparent electrode. 3, and a signal voltage 53 is applied between the power supply member 43 and the first transparent electrode 3. At this time, the signal voltage 51, the signal voltage 52, and the signal voltage 53 are different.

ここで、給電部材41〜43の抵抗値は透明平面電極40の抵抗値より小さくする。すなわち、給電部材41、42、43の各々に異なる電圧を印加したとき、給電部材41、42、43の各々のパターニングされた電極は等電位となり、異なる給電部材間に挟まれた透明電極40には、異なる給電部材間の電位差(電圧分布)が発生するように給電部材(41、42、43)と透明平面電極40の抵抗を選ぶ。   Here, the resistance value of the power feeding members 41 to 43 is made smaller than the resistance value of the transparent flat electrode 40. That is, when different voltages are applied to each of the power supply members 41, 42, and 43, the patterned electrodes of each of the power supply members 41, 42, and 43 become equipotential, and the transparent electrode 40 sandwiched between the different power supply members is applied to the transparent electrode 40. Select the resistances of the power supply members (41, 42, 43) and the transparent flat electrode 40 so that a potential difference (voltage distribution) between different power supply members is generated.

このような構成にすることで、無機電気光学薄膜4に入射するビーム断面内に、連続的にかつなめらかに変化する電圧分布を発生させることでき、無機電気光学薄膜4からなる位相補正素子100の光ビーム断面内の位置による屈折率が連続的になめらかに変化し、透過波面の変化を連続的かつなめらかにできる。この透過波面の変化は、図2に示す同心円状の分割電極から得られる離散的な波面変化よりも、実際に発生する収差により近い波面変化となるので好ましい。また、このような連続的になめらかな波面変化と分割電極による離散的な波面変化を発生させるパターンを組合せてもよいし、球面収差以外の複数の収差も補正できるように、液晶層への電圧印加分布を組合せてもよい。   With such a configuration, a continuously and smoothly changing voltage distribution can be generated in the cross section of the beam incident on the inorganic electro-optic thin film 4, and the phase correction element 100 made of the inorganic electro-optic thin film 4 can be generated. The refractive index according to the position in the cross section of the light beam changes continuously and smoothly, and the change of the transmitted wavefront can be made continuously and smoothly. This change in the transmitted wavefront is preferable because it is closer to the aberration that actually occurs than the discrete wavefront change obtained from the concentric segmented electrodes shown in FIG. In addition, such a continuous smooth wavefront change and a pattern that generates a discrete wavefront change by the divided electrodes may be combined, or the voltage to the liquid crystal layer may be corrected so that a plurality of aberrations other than the spherical aberration can be corrected. Application distributions may be combined.

無機電気光学4の作製方法としては、電子ビーム蒸着、イオンプレーティング、イオンビームスパッタリング、RFマグネトロンスパッタリング、レーザアブレーション、MBE、CVD、プラズマCVD、MOCVD等の気相成長法や、ゾルゲル法、セルフフラックス法等のウエットプロセスにより作製された固体成長法によって作製される。最近、光通信用の光導波路デバイス用途として無機電気光学薄膜の研究が盛んに行われている。無機電気光学4の作製方法としては、光導波路薄膜としての高品位な薄膜が得られている、CVD法、ゾルゲル法、セルフフラックス法が好ましい。   The inorganic electro-optic 4 can be produced by vapor deposition methods such as electron beam evaporation, ion plating, ion beam sputtering, RF magnetron sputtering, laser ablation, MBE, CVD, plasma CVD, MOCVD, sol-gel method, self-flux, etc. It is produced by a solid growth method produced by a wet process such as a method. In recent years, research on inorganic electro-optic thin films has been actively conducted as an optical waveguide device for optical communication. As a method for producing the inorganic electro-optic 4, a CVD method, a sol-gel method, and a self-flux method, in which a high-quality thin film as an optical waveguide thin film is obtained, are preferable.

透明基板1としては、無機電気光学薄膜4の材料および作製方法にもよるが、上記の好ましいプロセスにおいては、400℃程度から、条件によっては、1000℃近傍で成膜するなど高温環境におかれるので、軟化点や融点の高い、SiO基板、KTaNb1−x基板、MgO基板、SrTiO基板などか好ましい。 Although the transparent substrate 1 depends on the material of the inorganic electro-optic thin film 4 and the manufacturing method thereof, in the above-described preferable process, the transparent substrate 1 is placed in a high-temperature environment such as film formation from about 400 ° C., depending on conditions, such as film formation near 1000 ° C. Therefore, an SiO 2 substrate, a KTa x Nb 1-x O 3 substrate, an MgO substrate, an SrTiO 3 substrate, or the like having a high softening point and melting point is preferable.

第1透明電極3も透明基板1と同様、高温に環境におかれるので、高温でも使用可能なSnO薄膜やAu薄膜を、電子ビーム蒸着やCVD法やRFマグネトロンスパッタリング法などで成膜して使用する。 Similarly to the transparent substrate 1, the first transparent electrode 3 is placed in a high temperature environment. Therefore, a SnO 2 thin film or an Au thin film that can be used at a high temperature is formed by electron beam evaporation, CVD, RF magnetron sputtering, or the like. use.

第2透明電極5は、既に無機電気光学薄膜4が成膜れており、第1透明電極3ほど高い温度耐久性は要求されない。後工程の反射防止膜6の成膜工程は高温成膜でも300℃程度であり、ITOやSnOを使用できる。なお、第2透明電極5の電極形状として、連続的かつなめらかに変化する電圧分布を得ることができる図3の構成を使用する場合は、一様な高抵抗値の透明平面電極40としては、Sb、In、Gaなどの元素を1種または複数種ドープしたSnOや、Ga、Al、Si、Y、Inなどの元素を1種または複数種ドープしたZnO膜がよく、また、透明平面電極40の抵抗値より小さくする必要のある給電部材41〜43としてはITOを使用する。 The second transparent electrode 5 has already been inorganic electro-optic thin film 4 is deposited, higher temperature resistance as the first transparent electrode 3 is not required. The film formation process of the antireflection film 6 in the subsequent process is about 300 ° C. even at high temperature film formation, and ITO or SnO 2 can be used. In addition, when using the structure of FIG. 3 which can obtain the voltage distribution which changes continuously and smoothly as an electrode shape of the 2nd transparent electrode 5, as the transparent plane electrode 40 of uniform high resistance value, SnO 2 doped with one or more elements such as Sb, In, and Ga, and a ZnO film doped with one or more elements such as Ga, Al, Si, Y, and In are preferable. ITO is used as the power supply members 41 to 43 that need to be smaller than the resistance value of 40.

反射防止膜6、7は、透明基板1、第1透明電極3、無機電気光学薄膜4、第2透明電極5の屈折率および膜厚を考慮し、使用波長において反射防止になるよう光学多層膜設計を行い、電子ビーム蒸着法やRFスパッタ法で形成すればよい。   The antireflection films 6 and 7 are optical multilayer films so as to be antireflective at the wavelength used in consideration of the refractive index and film thickness of the transparent substrate 1, the first transparent electrode 3, the inorganic electro-optic thin film 4, and the second transparent electrode 5. It is only necessary to design and form by electron beam evaporation or RF sputtering.

第1透明電極3や第2透明電極5は、位相補正素子100に入射する光ビームの有効エリア(図示せず)の外側部分から、外部電圧印加用の配線を引き出せるようにするため、第1透明電極3に対しては反射防止膜6、第2透明電極5、無機電気光学薄膜4を、第2透明電極5に対しては反射防止膜6を、反応性イオンエッチングやイオンビームエッチングなどでエッチングし、さらに、第1および第2透明電極上にクロムや金の電極(図示せず)を形成し、金属ワイヤーやFPCケーブルなどの配線により、電圧発生装置8に接続する。   The first transparent electrode 3 and the second transparent electrode 5 are arranged in such a manner that a wiring for applying an external voltage can be drawn from an outer portion of an effective area (not shown) of the light beam incident on the phase correction element 100. The antireflection film 6, the second transparent electrode 5, and the inorganic electro-optic thin film 4 are applied to the transparent electrode 3, and the antireflection film 6 is applied to the second transparent electrode 5 by reactive ion etching or ion beam etching. Etching is performed, and further, chromium and gold electrodes (not shown) are formed on the first and second transparent electrodes, and connected to the voltage generator 8 by wiring such as metal wires and FPC cables.

「第二の実施形態」
本発明の第二の実施形態に係る位相補正素子200の構成例について、図4に断面図を示す。図1と同じ機能を有するものは同じ符号を付与している。
第二の実施形態は、透明基板として透明導電性基板2を使用したこと、および、第一の実施形態における第1透明電極3を使用せずに、透明導電性基板2が第一の実施形態における第1透明電極3として機能するところが、第一の実施形態と異なる。これにより透明導電性基板2の上に、直接、無機電気光学薄膜4が成膜できるので、透明導電性基板2の格子定数に近い格子定数を持つ電気光学材料の結晶性の高い薄膜を得ることできる。
"Second Embodiment"
FIG. 4 shows a cross-sectional view of the configuration example of the phase correction element 200 according to the second embodiment of the present invention. Components having the same functions as those in FIG. 1 are given the same reference numerals.
In the second embodiment, the transparent conductive substrate 2 is used as the transparent substrate, and the transparent conductive substrate 2 is the first embodiment without using the first transparent electrode 3 in the first embodiment. The functioning as the first transparent electrode 3 is different from the first embodiment. As a result, the inorganic electro-optic thin film 4 can be formed directly on the transparent conductive substrate 2, so that a thin film with high crystallinity of an electro-optic material having a lattice constant close to that of the transparent conductive substrate 2 can be obtained. it can.

第一の実施形態の第1透明電極3を使用せず、透明導電性基板2を用いることを除けば位相補正素子200の構成や機能は、第一の実施形態の位相補正素子100と同じである。透明導電性基板2としては、高い透過率でかつ抵抗率の低い材料が好ましく、例えば低濃度のNbをドープしたSrTiOなどを使用できる。 The configuration and function of the phase correction element 200 are the same as those of the phase correction element 100 of the first embodiment except that the first transparent electrode 3 of the first embodiment is not used and the transparent conductive substrate 2 is used. is there. The transparent conductive substrate 2 is preferably made of a material having high transmittance and low resistivity. For example, SrTiO 3 doped with a low concentration of Nb can be used.

「第三の実施形態」
図1に示す断面構造の本発明の位相補正素子100を搭載したDVD用の光ディスクの記録および/または再生に用いられる光ヘッド装置300の構成例を図5に示す。位相補正素子100には、第2透明電極5として、連続的になめらかな波面変化が発生できる図3に示す構造のものを用いる。光源である半導体レーザ21からの直線偏光である出射光はコリメータレンズ30により平行光となり、ビームスプリッタ22、位相補正素子100を透過後、1/4波長板25を透過して円偏光になり、フォーカスサーボおよびトラッキングサーボ用のアクチュエータ27に設置された対物レンズ26により光ディスク28の情報記録層に集光される。
"Third embodiment"
FIG. 5 shows a configuration example of an optical head device 300 used for recording and / or reproduction of a DVD optical disk on which the phase correction element 100 of the present invention having the sectional structure shown in FIG. 1 is mounted. For the phase correction element 100, the second transparent electrode 5 having a structure shown in FIG. 3 capable of generating a smooth wavefront change continuously is used. The outgoing light, which is linearly polarized light from the semiconductor laser 21 as the light source, becomes parallel light by the collimator lens 30, passes through the beam splitter 22 and the phase correction element 100, passes through the quarter wavelength plate 25, and becomes circularly polarized light, The light is condensed on the information recording layer of the optical disk 28 by the objective lens 26 installed in the actuator 27 for focus servo and tracking servo.

また、光ディスク28により反射された円偏光の反射光は、再び対物レンズ26および1/4波長板25を透過し、光源からの出射光とは偏光方向がほぼ直交する直線偏光となる。そして再度位相補正素子100を透過し、ビームスプリッタ22により反射され、集光レンズ31を透過して光検出器29に集光される。   Further, the circularly polarized reflected light reflected by the optical disk 28 passes through the objective lens 26 and the quarter wavelength plate 25 again, and becomes linearly polarized light whose polarization direction is substantially orthogonal to the light emitted from the light source. Then, the light passes again through the phase correction element 100, is reflected by the beam splitter 22, passes through the condenser lens 31, and is condensed on the photodetector 29.

位相補正素子100が搭載された光ヘッド装置300を用い、カバー厚の異なるDVD用の単層および2層の記録および/または再生用光ディスクに対して安定した記録および/または再生を行うための動作について以下に説明する。   Operation for performing stable recording and / or reproduction on DVD single-layer and dual-layer recording and / or reproducing optical discs with different cover thicknesses using optical head device 300 on which phase correction element 100 is mounted Is described below.

対物レンズ26は、使用波長λ=660nmでカバー厚0.60mmのDVD用の単層光ディスクに対して収差がゼロとなるように設計されており、開口数NA=0.65および焦点距離3.05mmの対物レンズである。このため、単層光ディスクの記録および/または再生時には位相補正素子100に電圧を印加しない。   The objective lens 26 is designed to have zero aberration with respect to a single-layer optical disc for DVD having a working wavelength λ = 660 nm and a cover thickness of 0.60 mm, and has a numerical aperture NA = 0.65 and a focal length of 3. This is a 05 mm objective lens. For this reason, no voltage is applied to the phase correction element 100 during recording and / or reproduction of a single-layer optical disc.

2層光ディスクの記録および/または再生においては、カバー厚(情報記録層までの距離)が0.60mmと異なるので、カバー厚0.60mmのDVD用単層光ディスクに対して収差がゼロとなるように設計された対物レンズ26で集光した場合、球面収差が発生する。このとき発生する球面収差、すなわち光路長差OPDは、中心(r=0)を基準に、ゼルニケ(Zernike)関数における3次球面収差の表記として、   In recording and / or reproduction of a dual-layer optical disc, the cover thickness (distance to the information recording layer) is different from 0.60 mm, so that the aberration is zero for a DVD single-layer optical disc with a cover thickness of 0.60 mm. When the light is condensed by the objective lens 26 designed as described above, spherical aberration occurs. The spherical aberration occurring at this time, that is, the optical path length difference OPD is expressed as a third-order spherical aberration in the Zernike function with the center (r = 0) as a reference.

Figure 0004341474
Figure 0004341474

となる。rは規格化半径で、aは球面収差に対する3次球面収差の成分割合を示す。式6はrに対して、中心(r=0)でOPD(0)=a、r=(1/2)0.5でOPD(r)=−0.5a(極大または極小)、外周(r=1)でOPD(1)=aとなる。 It becomes. r is the normalized radius, and a is the component ratio of the third-order spherical aberration to the spherical aberration. In Equation 6, OPD (0) = a at the center (r = 0), r = (1/2) 0.5 , OPD (r) = − 0.5a (maximum or minimum), outer periphery (with respect to r) When r = 1), OPD (1) = a.

カバー厚0.56mmの層(0.60mmよりも薄い層)の記録および/または再生時は、式6にて発生する光路長差OPDのr依存性を打ち消すような透過波面が得られるように位相補正素子100の引出配線44を通じて、給電部材41と第1透明電極3間に信号電圧51を、給電部材42と第1透明電極3間に信号電圧52を、そして、給電部材43と第1透明電極3間には信号電圧53を各々印加する。このとき給電部材42はOPDが極値となる規格化半径r=(1/2)0.5の位置に配置することが好ましい。 When recording and / or reproducing a layer having a cover thickness of 0.56 mm (a layer thinner than 0.60 mm), a transmitted wavefront that cancels the r-dependence of the optical path length difference OPD generated in Equation 6 is obtained. Through the lead wire 44 of the phase correction element 100, the signal voltage 51 is supplied between the power supply member 41 and the first transparent electrode 3, the signal voltage 52 is supplied between the power supply member 42 and the first transparent electrode 3, and the power supply member 43 and the first transparent electrode 3 are connected. A signal voltage 53 is applied between the transparent electrodes 3. At this time, the power supply member 42 is preferably disposed at a position of a normalized radius r = (1/2) 0.5 where the OPD becomes an extreme value.

また、この場合のOPDは極小となるため、給電部材42において屈折率が小さく、給電部材41、43における屈折率が大きくなるように信号電圧51、52、53を印加することでカバー厚の違いによって発生した球面収差が補正され、対物レンズ26により、カバー厚0.56mmの層に効率よく集光される。   Further, since the OPD in this case is minimized, the difference in cover thickness is achieved by applying the signal voltages 51, 52, and 53 so that the refractive index of the power supply member 42 is small and the refractive index of the power supply members 41 and 43 is large. Is corrected by the objective lens 26, and is efficiently condensed on a layer having a cover thickness of 0.56 mm.

一方、カバー厚0.63mmの層の記録および/または再生時においても、カバー厚00.56mmと同様に、式6にて発生する光路長差OPDのr依存性を打ち消すような透過波面が得られるように位相補正素子100の引出配線44を通じて、給電部材41と第1透明電極3間に信号電圧51を、給電部材42と第1透明電極3間に信号電圧52を、そして、給電部材43と第1透明電極3間には信号電圧53を各々印加する。カバー厚0.63mmの場合、OPDは極大となるため、カバー厚0.56mmとは反対に、給電部材42において屈折率が大きく、給電部材41、43における屈折率が小さくなるように信号電圧51、52、53を印加することでカバー厚の違いによって発生した球面収差が補正され、対物レンズ26により、カバー厚0.63mmの層に効率よく集光される。従って、位相補正素子100の印加電圧を切り替えることにより、カバー厚の異なるDVD用の単層光ディスクおよび2層光ディスクに対して安定した記録および/または再生が実現する。   On the other hand, when recording and / or reproducing a layer having a cover thickness of 0.63 mm, a transmitted wavefront that cancels the r-dependence of the optical path length difference OPD generated in Equation 6 is obtained as in the case of the cover thickness of 0.056 mm. The signal voltage 51 is supplied between the power supply member 41 and the first transparent electrode 3 through the lead wire 44 of the phase correction element 100, the signal voltage 52 is supplied between the power supply member 42 and the first transparent electrode 3, and the power supply member 43. A signal voltage 53 is applied between the first transparent electrode 3 and the first transparent electrode 3. When the cover thickness is 0.63 mm, the OPD becomes a maximum, so that the signal voltage 51 is large so that the refractive index of the power supply member 42 is large and the refractive index of the power supply members 41 and 43 is small, contrary to the cover thickness of 0.56 mm. , 52 and 53 are applied to correct the spherical aberration caused by the difference in cover thickness, and the objective lens 26 efficiently collects the light on the layer having a cover thickness of 0.63 mm. Therefore, by switching the voltage applied to the phase correction element 100, stable recording and / or reproduction can be realized for a single-layer optical disc and a dual-layer optical disc for DVDs having different cover thicknesses.

第一の実施形態で述べたように、位相補正素子100は、位相補正素子100を透過する光の偏光状態に依存せずに、透過光の屈折率を変えることができるので、半導体レーザ21から光ディスク28に向かう出射光の波面は、位相補正素子100で収差が補正され、光ディスク上で良好な光の集光特性が得られる。また、光ディスク28からの反射光の偏光方向が、入射光の偏光方向に対して直交するような光の利用効率が高い偏光系光ヘッド装置の場合でも、位相補正素子100が入射偏光状態に依存しないため、光ディスク28から光検出器29に向かう反射光の波面も位相補正素子100で収差が補正され、光検出器上でも良好な集光特性を示すことができ、フォーカスサーボやトラッキングサーボ特性の劣化を防ぐことができる。   As described in the first embodiment, the phase correction element 100 can change the refractive index of the transmitted light without depending on the polarization state of the light transmitted through the phase correction element 100. The wavefront of the emitted light traveling toward the optical disk 28 is corrected for aberrations by the phase correction element 100, and a good light condensing characteristic is obtained on the optical disk. Further, even in the case of a polarization-type optical head device with high light use efficiency in which the polarization direction of reflected light from the optical disk 28 is orthogonal to the polarization direction of incident light, the phase correction element 100 depends on the incident polarization state. Therefore, the wavefront of the reflected light from the optical disk 28 toward the photodetector 29 is also corrected for aberrations by the phase correction element 100, and can exhibit a good condensing characteristic even on the photodetector. Deterioration can be prevented.

図5に示す本発明の光ヘッド装置のように、位相補正素子100と1/4波長板25を積層した場合、部品点数を低減できるの好ましい。位相補正素子100への積層面は、無機電気光学薄膜4が成膜されている側とそうでない側とどちらでもよいが、透明電極からの電気配線取出部がない基板側に積層するほうが作業面や信頼性面で好ましい。   When the phase correction element 100 and the quarter wavelength plate 25 are laminated as in the optical head device of the present invention shown in FIG. 5, the number of components can be reduced. The laminated surface to the phase correction element 100 may be either the side on which the inorganic electro-optic thin film 4 is formed or the side on which the inorganic electro-optic thin film 4 is not formed, but the working surface is laminated on the substrate side where there is no electrical wiring extraction portion from the transparent electrode. And preferable in terms of reliability.

位相補正素子100は対物レンズ26を保持したアクチュエータ27に搭載することが好ましい。これにより、トラッキング時に対物レンズ26と位相補正素子100とが一体に動かすことができ、このため対物レンズ26と位相補正素子100との光軸間のズレ発生による収差補正性能の劣化がなくなる。   The phase correction element 100 is preferably mounted on an actuator 27 that holds the objective lens 26. Thereby, the objective lens 26 and the phase correction element 100 can be moved together during tracking, and therefore, the aberration correction performance is not deteriorated due to the deviation between the optical axes of the objective lens 26 and the phase correction element 100.

図5に示した本発明の光ヘッド装置の例では、位相補正素子100は、1/4波長板25に対して光源側の光路中に配置したものであり、半導体レーザ21からの出射光も光ディスク28からの反射光も位相補正素子100を透過するときは直線偏光であるが、位相補正素子100を1/4波長板25に対して光ディスク側の光路中に配置した構成にしてもよい。この場合、半導体レーザ21からの直線偏光である出射光は、1/4波長板25を通過することによりほぼ円偏光となり位相補正素子100を透過する。このとき、位相補正素子100は偏光方向に依存しない屈折率変化を電圧印加によって発生するため、円偏光の入射光に対しても波面を変化させることができる。また、光ディスク28からの反射光も円偏光となり位相補正素子100に入射されるが、同様の理由により波面を変化させることができる。その後、1/4波長板25を通過することで、半導体レーザ21からの出射光の偏光方向と直交する偏光方向に変換され、ビームスプリッタ22により高い効率で光検出器29に導くことができる。   In the example of the optical head device of the present invention shown in FIG. 5, the phase correction element 100 is arranged in the optical path on the light source side with respect to the quarter wavelength plate 25, and the emitted light from the semiconductor laser 21 is also The reflected light from the optical disk 28 is also linearly polarized light when passing through the phase correction element 100, but the phase correction element 100 may be arranged in the optical path on the optical disk side with respect to the quarter wavelength plate 25. In this case, the outgoing light, which is linearly polarized light from the semiconductor laser 21, passes through the quarter wavelength plate 25, becomes almost circularly polarized light, and passes through the phase correction element 100. At this time, since the phase correction element 100 generates a refractive index change independent of the polarization direction by applying a voltage, the wavefront can be changed even for incident light of circular polarization. Further, the reflected light from the optical disk 28 also becomes circularly polarized light and enters the phase correction element 100, but the wavefront can be changed for the same reason. Thereafter, the light passes through the quarter-wave plate 25 and is converted into a polarization direction orthogonal to the polarization direction of the light emitted from the semiconductor laser 21, and can be guided to the photodetector 29 with high efficiency by the beam splitter 22.

すなわち、位相補正素子100は、無機電気光学薄膜4に印加する電圧によって生じる屈折率の変化量が、電気光学薄膜に入射する偏光状態によらずほぼ等方的であるため、位相補正素子100に入射する光の偏光状態に依存することなく透過光の波面を変化させることができる。このような光ヘッド装置構成にすることにより、1つの無機電気光学薄膜4からなる位相補正素子100で、光源から光記録媒体へ向かう出射光と、光記録媒体で反射し光記録媒体から光検出器へ向かう出射光の両方に対して波面を変化させることができ、光記録媒体上での集光特性、および光検出器上での集光特性を向上でき、高い光利用効率の偏光系光ヘッド装置に適用可能となる。   That is, in the phase correction element 100, the amount of change in the refractive index caused by the voltage applied to the inorganic electro-optic thin film 4 is almost isotropic regardless of the polarization state incident on the electro-optic thin film. The wavefront of transmitted light can be changed without depending on the polarization state of incident light. With such an optical head device configuration, the phase correction element 100 composed of one inorganic electro-optic thin film 4 emits the light emitted from the light source toward the optical recording medium, and is reflected by the optical recording medium and is detected from the optical recording medium. The wavefront can be changed for both the outgoing light to the detector, the light collection characteristics on the optical recording medium, and the light collection characteristics on the photodetector can be improved. Applicable to the head device.

1/4波長板としては、3/4波長板や5/4波長板など、1/4波長板に対して位相差が1/2の整数倍を持つものでもよく、波長板材料としては水晶のような複屈折性の光学結晶を用いてもよいし、高分子液晶やポリカーボネートなどの有機薄膜を用いてもよい。   The quarter wave plate may be a quarter wave plate or a 5/4 wave plate having a phase difference that is an integral multiple of 1/2 with respect to the quarter wave plate. A birefringent optical crystal such as that described above may be used, or an organic thin film such as a polymer liquid crystal or polycarbonate may be used.

本実施形態では、波長660nmの光を用いるDVD用の単層および2層光ディスクに対して動作する位相補正素子を搭載した光ヘッド装置について説明したが、波長405nmの青色光を用いる単層および2層光ディスクに対して動作する位相補正素子を搭載した光ヘッド装置についても同様の作用・効果が得られる。   In the present embodiment, the optical head device mounted with a single layer for DVD using light with a wavelength of 660 nm and a phase correction element that operates with respect to a two-layer optical disk has been described. The same operation and effect can be obtained for an optical head device equipped with a phase correction element that operates on a layered optical disk.

「例1」
第一の実施形態に示した本発明の位相補正素子100の参考例を以下に説明する。図1は位相補正素子100の断面図である。この位相補正素子100は、透明基板1のSiO基板の上に第1透明電極3として、透明導電膜であるSnOを基板温度750℃のCVD法で成膜する。その上に、無機電気光学薄膜4として、結晶組成が、KTa0.65Nb0.35膜(以後、「KTN65」という)になるよう減圧下でキャリアガスを制御しながら、900℃のCVD法で成膜する。膜厚は4.0μmで、結晶相は膜面内のツイストはあるが、結晶成長しやすい(100)を向いている。光導波路膜として使用する場合は、ドメインによる散乱等の影響が大きいが、本発明の場合は薄膜に垂直方向に光を入射させて用いるので使用可能である。さらにKTN65に第2透明電極5を成膜したのち、反射防止膜6、7を電子ビーム蒸着で成膜する。
"Example 1"
A reference example of the phase correction element 100 of the present invention shown in the first embodiment will be described below. FIG. 1 is a cross-sectional view of the phase correction element 100. In this phase correction element 100, SnO 2 , which is a transparent conductive film, is formed as a first transparent electrode 3 on the SiO 2 substrate of the transparent substrate 1 by a CVD method with a substrate temperature of 750 ° C. In addition, the inorganic electro-optic thin film 4 has a crystal composition of 900 ° C. while controlling the carrier gas under reduced pressure so that the crystal composition becomes a KTa 0.65 Nb 0.35 O 3 film (hereinafter referred to as “KTN65”). A film is formed by a CVD method. The film thickness is 4.0 μm, and the crystal phase has a twist in the film surface, but faces a crystal growth (100) that is easy to grow. When used as an optical waveguide film, the influence of scattering due to the domain is large, but in the present invention, it can be used because light is incident on the thin film in the vertical direction. Further, after the second transparent electrode 5 is formed on the KTN 65, the antireflection films 6 and 7 are formed by electron beam evaporation.

第2透明電極5として、連続的かつなめらかに変化する電圧分布を得ることができる図3に示した構成を用い、高抵抗値の透明平面電極40としてはSbをドープしたSnOを、透明平面電極40の抵抗値より小さくする必要のある給電部材41〜43にはITOを使用する。高抵抗値の透明平面電極40と低抵抗値の給電部材41〜43の抵抗比は、10000程度である。 As the second transparent electrode 5, the configuration shown in FIG. 3 capable of obtaining a voltage distribution that changes continuously and smoothly is used. As the transparent flat electrode 40 having a high resistance value, SnO 2 doped with Sb is used as a transparent flat plate. ITO is used for the power supply members 41 to 43 which need to be smaller than the resistance value of the electrode 40. The resistance ratio between the transparent flat electrode 40 having a high resistance value and the power supply members 41 to 43 having a low resistance value is about 10,000.

以上の構成の位相補正素子100に、電圧を印加した場合に発生する位相差(Δnd)は、式3および、g12=−0.038m/C、n=2.32(λ=660nm)、εr=18760から、Δnd=0.32μm(14V印加時)となる。これは、使用波長λ=660nmで、カバー厚0.60mmのDVD用の単層光ディスクに対して収差がゼロとなるように設計された開口数NA=0.65および焦点距離3.05mmの対物レンズを、カバー厚0.56mmと0.63mmのDVD用の2層光ディスクに用いるときに発生する最大光路長差の約0.2λ(=0.2×660nm=0.132μm)に対して十分な値であり、球面収差の補正が可能である。 The phase difference (Δnd) generated when a voltage is applied to the phase correction element 100 having the above configuration is expressed by Equation 3, g 12 = −0.038 m 4 / C 2 , and n = 2.32 (λ = 660 nm). ), Εr = 18760, and Δnd = 0.32 μm (when 14 V is applied). This is an objective with a numerical aperture NA = 0.65 and a focal length of 3.05 mm, which is designed so that the aberration is zero for a single-layer optical disk for DVD having a working wavelength λ = 660 nm and a cover thickness of 0.60 mm. Sufficient for the maximum optical path length difference of about 0.2λ (= 0.2 × 660 nm = 0.132 μm) that occurs when the lens is used for a double-layer optical disc for DVD with a cover thickness of 0.56 mm and 0.63 mm This is a correct value and can correct spherical aberration.

また、式2より、電圧により屈折率は増加するため、例えば、位相補正素子100の中央部の印加電圧を周辺部の印加電圧よりも大きくなるように信号電圧を51、52、53を印加することで、正のパワーすなわち凸レンズ相当の透過波面を発生できる。逆に位相補正素子100の中央部の印加電圧を周辺部の印加電圧よりも小さくなるように信号電圧51、52、53を印加することで、負のパワーすなわち凹レンズ相当の透過波面を発生できる。また、透過波面の発生において入射偏光依存性はない。   Further, from Equation 2, since the refractive index increases with voltage, for example, the signal voltages 51, 52, and 53 are applied so that the applied voltage at the center of the phase correction element 100 is larger than the applied voltage at the peripheral part. Thus, a positive power, that is, a transmitted wavefront equivalent to a convex lens can be generated. Conversely, by applying the signal voltages 51, 52, and 53 so that the applied voltage at the center of the phase correction element 100 is smaller than the applied voltage at the peripheral part, a negative wave, that is, a transmitted wavefront corresponding to a concave lens can be generated. Further, there is no dependence on incident polarization in the generation of the transmitted wavefront.

「例2」
第二の実施形態に示した本発明の位相補正素子200の実施例を以下に説明する。図4は位相補正素子200の断面図で、透明導電性基板2として抵抗率が1.5×10Ω・cm、厚さが1.0mmの低濃度NbドープのSrTiO(100)を用いる。透明導電性基板2の上には、無機電気光学薄膜4として、結晶組成が、KTN65になるよう減圧下でキャリアガスを制御しながら、1000℃でCVDエピタキシャル成膜する。膜厚は4.0μmで、結晶相は(100)を向いている。さらにKTN65に第2透明電極5を成膜し、さらに反射防止膜6、7を電子ビーム蒸着で成膜する。
"Example 2"
Examples of the phase correction element 200 of the present invention shown in the second embodiment will be described below. FIG. 4 is a cross-sectional view of the phase correction element 200. As the transparent conductive substrate 2, low-concentration Nb-doped SrTiO 3 (100) having a resistivity of 1.5 × 10 6 Ω · cm and a thickness of 1.0 mm is used. . On the transparent conductive substrate 2, a CVD epitaxial film is formed as the inorganic electro-optic thin film 4 at 1000 ° C. while controlling the carrier gas under reduced pressure so that the crystal composition becomes KTN65. The film thickness is 4.0 μm, and the crystal phase faces (100). Further, the second transparent electrode 5 is formed on the KTN 65, and the antireflection films 6 and 7 are formed by electron beam evaporation.

第2透明電極5として、連続的かつなめらかに変化する電圧分布を得ることができる図3の構成を用い、高抵抗値の透明平面電極40としてはSbをドープしたSnOを、透明平面電極40の抵抗値より小さくする必要のある給電部材41〜43にはITOを使用する。高抵抗値の透明平面電極40と低抵抗値の給電部材41〜43の抵抗比は、10000程度である。 As the second transparent electrode 5, the configuration shown in FIG. 3 capable of obtaining a voltage distribution that changes continuously and smoothly is used. As the transparent flat electrode 40 having a high resistance value, SnO 2 doped with Sb is used, and the transparent flat electrode 40 is used. ITO is used for the power feeding members 41 to 43 which need to be smaller than the resistance value of the above. The resistance ratio between the transparent flat electrode 40 having a high resistance value and the power supply members 41 to 43 having a low resistance value is about 10,000.

以上の構成の位相補正素子200に、電圧を印加した場合に発生する位相差(Δnd)は、式2、式3および、g12=−0.038m/C、n=2.32(λ=660nm)、εr=27000から、Δnd=0.34μm(10V印加時)となる。これは、使用波長λ=660nmで、カバー厚0.60mmのDVD用の単層光ディスクに対して収差がゼロとなるように設計された開口数NA=0.65および焦点距離3.05mmの対物レンズを、カバー厚0.56mmと0.63mmのDVD用の2層光ディスクに用いるときに発生する最大光路長差の約0.2λ(=0.2×660nm=0.132μm)に対して十分な値であり、球面収差の補正が可能である。 The phase difference (Δnd) generated when a voltage is applied to the phase correction element 200 having the above configuration is expressed by Expressions 2, 3 and g 12 = −0.038 m 4 / C 2 , n = 2.32 ( From λ = 660 nm) and εr = 27000, Δnd = 0.34 μm (when 10 V is applied). This is an objective with a numerical aperture NA = 0.65 and a focal length of 3.05 mm, which is designed so that the aberration is zero for a single-layer optical disk for DVD having a working wavelength λ = 660 nm and a cover thickness of 0.60 mm. Sufficient for the maximum optical path length difference of about 0.2λ (= 0.2 × 660 nm = 0.132 μm) that occurs when the lens is used for a double-layer optical disc for DVD with a cover thickness of 0.56 mm and 0.63 mm This is a correct value and can correct spherical aberration.

なお、比誘電率が例1と比較して大きい理由は、基板として用いているSrTiOの格子定数(0.39nm)がKTN(65)の格子定数(0.4nm)に近く格子整合がとれ、品質のよいエピタキシャル成長膜ができるためと考えられる。実施例2の場合、誘電率が高いため、同じ4.0μmの膜厚でも、例1に比べて、低電圧駆動が可能になる。なお、印加電圧の切替により正のパワーの透過波面、および負のパワーの透過波面を発生できることは、例1の場合と同じである。 The reason why the relative dielectric constant is larger than that of Example 1 is that the lattice constant (0.39 nm) of SrTiO 3 used as the substrate is close to the lattice constant (0.4 nm) of KTN (65) and lattice matching can be obtained. This is probably because a high quality epitaxially grown film can be formed. In the case of Example 2, since the dielectric constant is high, even with the same film thickness of 4.0 μm, it is possible to drive at a lower voltage than in Example 1. It is to be noted that, as in the case of Example 1, it is possible to generate a transmitted wavefront with a positive power and a transmitted wavefront with a negative power by switching the applied voltage.

「例3」
第三の実施形態に示した本発明の光ヘッド装置300の実施例を以下に説明する。図5は光ヘッド装置300の構成図で、位相補正素子100は、例1で用いたものに1/4波長板25が一体化されている。一体化のため、位相補正素子100は、図1の反射防止膜7は成膜せず、その基板面にUV硬化樹脂を用いて1/4波長板25を接着する。光ヘッド装置300の構成は、第三の実施形態で説明したので省略する。
"Example 3"
An example of the optical head device 300 of the present invention shown in the third embodiment will be described below. FIG. 5 is a configuration diagram of the optical head device 300. The phase correction element 100 is integrated with the quarter-wave plate 25 used in Example 1. For the integration, the phase correction element 100 does not form the antireflection film 7 of FIG. 1 and bonds the quarter wavelength plate 25 to the substrate surface using a UV curable resin. Since the configuration of the optical head device 300 has been described in the third embodiment, a description thereof will be omitted.

光ヘッド装置300において、対物レンズは、使用波長λ=660nmで、カバー厚0.60mmのDVD用の単層光ディスクに対して収差がゼロとなるように設計されており、開口数NA=0.65および焦点距離3.05mmの対物レンズである。このため、カバー厚0.60mmのDVD用の単層光ディスクを記録および/または再生する場合、位相補正素子100への電圧印加をしなくても入射光は対物レンズ26により情報記録層に集光される。   In the optical head device 300, the objective lens is designed to have zero aberration with respect to a single-layer optical disc for DVD having a working wavelength λ = 660 nm and a cover thickness of 0.60 mm, and a numerical aperture NA = 0. 65 and an objective lens having a focal length of 3.05 mm. For this reason, when recording and / or reproducing a DVD single-layer optical disc having a cover thickness of 0.60 mm, incident light is focused on the information recording layer by the objective lens 26 without applying a voltage to the phase correction element 100. Is done.

DVD用の2層光ディスクの記録および/または再生においては、カバー厚0.56mmの層の記録および/または再生時は、発生する光路長差OPDが極小値を有するr(規格化半径)依存性となるため、位相補正素子100の透過波面が光路長差OPDのr依存性を打ち消すように、中心部と周辺部の給電部材41、43には、ほぼ10Vの電圧を、OPDが極小値を持つr(=1/20.5)位置に配置する給電部材42には、ほぼ0Vの電圧を印加することで、最大光路長差約0.2λ(=0.2×660nm=0.132μm)を補正する。これにより、記録情報層への集光性が改善できるとともに、位相補正素子100は入射偏光依存性が無いため、光検出器への集光性能改善も同時に実現する。 In recording and / or reproduction of a dual-layer optical disc for DVD, the optical path length difference OPD generated has a minimum value r (standardized radius) dependency during recording and / or reproduction of a layer having a cover thickness of 0.56 mm. Therefore, so that the transmitted wavefront of the phase correction element 100 cancels the r dependence of the optical path length difference OPD, the power supply members 41 and 43 in the central part and the peripheral part have a voltage of approximately 10 V and the OPD has a minimum value. By applying a voltage of almost 0 V to the power supply member 42 arranged at the r (= 1/2 0.5 ) position, the maximum optical path length difference is about 0.2λ (= 0.2 × 660 nm = 0.132 μm). ) Is corrected. Thereby, the condensing property to the recording information layer can be improved, and the phase correction element 100 does not have the dependency on the incident polarization, and thus the condensing performance to the photodetector is improved at the same time.

カバー厚0.63mmの層の記録および/または再生時は、発生する光路長差OPDが極大値を有するr(規格化半径)依存性となるため、位相補正素子100の透過波面が光路長差OPDのr依存性を打ち消すように、中心部と周辺部の給電部材41、43には、ほぼ0Vの電圧を、OPDが極小値を持つr(=1/20.5)位置に配置する給電部材42には、ほぼ10Vの電圧を印加することで、最大光路長差約0.2λ(=0.2×660nm=0.132μm)を補正する。これにより、記録情報層への集光性が改善できるとともに、位相補正素子100は入射偏光依存性が無いため、光検出器への集光性能改善も同時に実現する。 When recording and / or reproducing a layer having a cover thickness of 0.63 mm, the generated optical path length difference OPD becomes r (standardized radius) dependence having a maximum value, and therefore the transmitted wavefront of the phase correction element 100 is the optical path length difference. In order to cancel the r dependency of OPD, the power supply members 41 and 43 in the central portion and the peripheral portion are arranged with a voltage of approximately 0 V at the r (= 1/2 0.5 ) position where the OPD has a minimum value. By applying a voltage of approximately 10 V to the power supply member 42, the maximum optical path length difference of about 0.2λ (= 0.2 × 660 nm = 0.132 μm) is corrected. Thereby, the condensing property to the recording information layer can be improved, and the phase correction element 100 does not have the dependency on the incident polarization, and thus the condensing performance to the photodetector is improved at the same time.

以上説明したように、本発明の位相補正素子では、無機材料の無機電気光学薄膜に印加する電圧によって生じる屈折率の変化量が、無機電気光学薄膜に入射する光の偏光状態によらず等方的であるため、入射偏光の状態に依存することなく透過光の波面を変化させることができる。このため、2層光ディスクのカバー層の違いによって発生する球面収差により阻害される光ディスク上、および光検出器上での集光特性の改善を、1つの位相補正素子により実現することができ、高い光の利用効率が要求される偏光系の光ヘッド装置にも適用できる。   As described above, in the phase correction element of the present invention, the amount of change in the refractive index caused by the voltage applied to the inorganic electro-optic thin film is isotropic regardless of the polarization state of the light incident on the inorganic electro-optic thin film. Therefore, the wavefront of the transmitted light can be changed without depending on the state of incident polarized light. For this reason, it is possible to improve the light collection characteristics on the optical disk and the photodetector, which are hindered by the spherical aberration generated by the difference in the cover layer of the two-layer optical disk, with a single phase correction element. The present invention can also be applied to a polarizing optical head device that requires light use efficiency.

本発明の位相補正素子の一例を示す断面図。Sectional drawing which shows an example of the phase correction element of this invention. 球面収差を補正する無機材料を用いた無機電気光学薄膜に電圧を印加する透明電極の分割形状を示す模式的平面図。The typical top view which shows the division | segmentation shape of the transparent electrode which applies a voltage to the inorganic electro-optic thin film using the inorganic material which correct | amends spherical aberration. 球面収差を補正する無機材料を用いた無機電気光学薄膜に電圧を印加する透明電極および給電部材形状を示す模式的平面図。The typical top view which shows the transparent electrode and electric power feeding member shape which apply a voltage to the inorganic electro-optic thin film using the inorganic material which correct | amends spherical aberration. 本発明の位相補正素子の別の例を示す断面図。Sectional drawing which shows another example of the phase correction element of this invention. 本発明の位相補正素子を搭載した光ヘッド装置を示す構成図。The block diagram which shows the optical head apparatus carrying the phase correction element of this invention.

符号の説明Explanation of symbols

1:透明基板
2:透明導電性基板
3:第1透明電極
4:無機材料の電気光学薄膜
5:第2透明電極
6、7:反射防止膜
8:電圧発生装置
21:半導体レーザ
22:ビームスプリッ
25:1/4波長板
26:対物レンズ
27:アクチュエータ
28:光ディスク
29:光検出器
30:コリメートレンズ
31:集光レンズ
40:高抵抗透明電極
41、42、43:給電部材
44:引出配線
100、200:位相補正素子
300:光ヘッド装置

1: transparent substrate 2: transparent conductive substrate 3: first transparent electrode 4: electro-optic thin film 5 of inorganic material: second transparent electrode 6, 7: antireflection film 8: voltage generator 21: semiconductor laser 22: beam split motor 25 1/4 wavelength plate 26: objective lens 27: actuator 28: the optical disc 29: light detector 30: collimating lens 31: condensing lens 40: high-resistance transparent electrodes 41, 42, 43: power supply member 44: lead wire 100, 200: Phase correction element 300: Optical head device

Claims (3)

透明導電性基板と、
前記透明導電性基板上に形成された無機材料からなる無機電気光学薄膜と、
前記無機電気光学薄膜上に形成された透明電極とを備える位相補正素子であって、
前記透明導電性基板と前記透明電極との間に電圧を印加することによって、前記無機電気光学薄膜は、その平面内方向の屈折率が等方的にかつ印加電圧の大きさに応じて変化して、前記位相補正素子に入射する入射光の波面を入射光の偏光状態に依存せず等方的に変化させることを特徴とする位相補正素子。
A transparent conductive substrate;
An inorganic electro-optic thin film made of an inorganic material formed on the transparent conductive substrate;
A phase correction element and a transparent electrode formed on the inorganic electro thin film,
By applying a voltage between the transparent electrode and the transparent conductive substrate, the inorganic electro-optic thin film changes according to the magnitude of the refractive index is isotropic and the applied voltage in the plane direction Te, phase correction element for causing the wave front of the incident light is in a polarization state in isotropic independent change of the incident light incident on the phase correcting element.
前記透明電極上に同心円状でかつ、前記透明電極より抵抗値の小さい2つ以上の給電部材が形成されている構造を有する請求項1に記載の位相補正素子。2. The phase correction element according to claim 1, wherein the phase correction element has a structure in which two or more power feeding members that are concentric and have a resistance value smaller than that of the transparent electrode are formed on the transparent electrode. 光源と、
前記光源からの出射光を光記録媒体に集光する対物レンズと、
前記対物レンズにより集光され前記光記録媒体により反射された光を分波するビームスプリッタと分波された光を検出する光検出器とを備えた光ヘッド装置において
記光源と前記対物レンズとの間の光路中に請求項1または請求項2に記載の位相補正素子が設置されていることを特徴とする光ヘッド装置。
A light source;
An objective lens for focusing the light emitted from the light source to the optical recording medium,
In the optical head device and an optical detector for detecting light beam splitter and demultiplexes the light reflected demultiplexed by said optical recording medium is converged by the objective lens,
An optical head and wherein the phase correcting element is provided according to claim 1 or claim 2 in the optical path between the front Symbol light source and the objective lens.
JP2004166050A 2004-06-03 2004-06-03 Phase correction element and optical head device Expired - Fee Related JP4341474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166050A JP4341474B2 (en) 2004-06-03 2004-06-03 Phase correction element and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166050A JP4341474B2 (en) 2004-06-03 2004-06-03 Phase correction element and optical head device

Publications (2)

Publication Number Publication Date
JP2005346845A JP2005346845A (en) 2005-12-15
JP4341474B2 true JP4341474B2 (en) 2009-10-07

Family

ID=35499064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166050A Expired - Fee Related JP4341474B2 (en) 2004-06-03 2004-06-03 Phase correction element and optical head device

Country Status (1)

Country Link
JP (1) JP4341474B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217414B2 (en) * 2014-01-30 2017-10-25 富士通株式会社 READ GENERATION DEVICE, METHOD, AND PROGRAM
CN108873405B (en) * 2018-06-26 2021-08-17 昆山龙腾光电股份有限公司 Color filter substrate and manufacturing method thereof, display device and visual angle switching method thereof

Also Published As

Publication number Publication date
JP2005346845A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
US7773489B2 (en) Liquid crystal lens element and optical head device
US7710535B2 (en) Liquid crystal lens element and optical head device
US7710536B2 (en) Liquid crystal diffraction lens element and optical head device
US7719657B2 (en) Liquid crystal lens element and optical head device
US7738344B2 (en) Liquid crystal lens element optical head device
US7388822B2 (en) Liquid crystal lens element and optical head device
US7787063B2 (en) Optical element and optical pickup
JP4501611B2 (en) Liquid crystal lens element and optical head device
JP4552556B2 (en) Liquid crystal lens element and optical head device
JP5291906B2 (en) Objective optical element and optical head device
JP4341474B2 (en) Phase correction element and optical head device
JP2002319172A (en) Optical head device
JP4436069B2 (en) Liquid crystal optical element and optical device
JP4449239B2 (en) Optical head device
JP4479134B2 (en) Optical head device
JP4696883B2 (en) Phase correction element and optical head device
JP2007034030A (en) Liquid crystal device
JP4212978B2 (en) Aberration correction element, optical pickup device including the same, and information recording / reproducing device including the same
JP2006003739A (en) Phase correction optical element, optical pickup apparatus and phase correction method
JP2009199651A (en) Objective optical element and optical head device
JP2010086621A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees