JP4696883B2 - Phase correction element and optical head device - Google Patents

Phase correction element and optical head device Download PDF

Info

Publication number
JP4696883B2
JP4696883B2 JP2005350539A JP2005350539A JP4696883B2 JP 4696883 B2 JP4696883 B2 JP 4696883B2 JP 2005350539 A JP2005350539 A JP 2005350539A JP 2005350539 A JP2005350539 A JP 2005350539A JP 4696883 B2 JP4696883 B2 JP 4696883B2
Authority
JP
Japan
Prior art keywords
liquid crystal
phase correction
light
correction element
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005350539A
Other languages
Japanese (ja)
Other versions
JP2007157235A (en
Inventor
光生 大澤
幸宏 垰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005350539A priority Critical patent/JP4696883B2/en
Publication of JP2007157235A publication Critical patent/JP2007157235A/en
Application granted granted Critical
Publication of JP4696883B2 publication Critical patent/JP4696883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Head (AREA)

Description

本発明は、位相補正素子および光ディスク等の光記録媒体に対して情報の記録再生を行う光ヘッド装置に関し、特に、波面収差を補正する位相補正素子および光ヘッド装置に関する。   The present invention relates to a phase correction element and an optical head apparatus that records and reproduces information with respect to an optical recording medium such as an optical disk, and more particularly to a phase correction element and an optical head apparatus that correct wavefront aberration.

DVD等の光記録媒体の片面に複数の情報記録層を有する多層光記録媒体に対して、情報の記録再生を行う場合、各層が離れていることに起因する波面収差を補正し、所望の情報記録層に集光する技術が必要である。ここで、上記の記録再生とは、光記録媒体に情報を記録すること、および、光記録媒体に記録された情報を再生することの、いずれか1つ以上の動作をいうものとする。以下、特に断る場合を除いて同様とする。   When recording / reproducing information to / from a multilayer optical recording medium having a plurality of information recording layers on one side of an optical recording medium such as a DVD, the wavefront aberration due to the separation of each layer is corrected to obtain desired information. A technique for condensing light on the recording layer is required. Here, the recording / reproducing means one or more operations of recording information on the optical recording medium and reproducing information recorded on the optical recording medium. The same applies hereinafter unless otherwise specified.

上記の技術としては、光源と対物レンズとの間の光路中に、透明基板に挟持された液晶層を備えた位相補正素子を設置し、波面収差を補正するものがある(例えば、特許文献1参照。)。具体的には、波面収差としての球面収差を補正する場合、液晶層に電圧を印加するための透明電極を複数個に分割して分割電極とし、各分割電極を光軸を中心に同心円状に配置し、各分割電極と対向する透明電極間に補正すべき収差に応じた電圧を印加し、球面収差を除去する技術がある。この技術で用いる位相補正素子は、機械的可動部がないため、小型の光ヘッド装置にも好適に用いることができる。   As the above technique, there is a technique in which a phase correction element including a liquid crystal layer sandwiched between transparent substrates is installed in an optical path between a light source and an objective lens to correct wavefront aberration (for example, Patent Document 1). reference.). Specifically, when correcting spherical aberration as wavefront aberration, the transparent electrode for applying a voltage to the liquid crystal layer is divided into a plurality of divided electrodes, and each divided electrode is formed concentrically around the optical axis. There is a technique in which spherical aberration is removed by applying a voltage according to the aberration to be corrected between the transparent electrodes arranged and opposed to the respective divided electrodes. Since the phase correction element used in this technique has no mechanical movable part, it can be suitably used for a small optical head device.

また、上記の分割電極をシート抵抗値の低い低抵抗電極とし、低抵抗電極よりもシート抵抗値が充分高い高抵抗平板電極を抵抗膜としてさらに設け、各低抵抗電極を高抵抗平板電極で電気的に接続する技術がある(例えば、特許文献2および特許文献3参照。)。この技術によって、位相補正素子に接続する電源数を低減できるため、光ヘッド装置全体をより小型にできる。   In addition, the above-mentioned divided electrode is a low resistance electrode having a low sheet resistance value, and a high resistance plate electrode having a sheet resistance value sufficiently higher than that of the low resistance electrode is further provided as a resistance film, and each low resistance electrode is electrically connected by a high resistance plate electrode. (For example, refer to Patent Document 2 and Patent Document 3). With this technique, the number of power supplies connected to the phase correction element can be reduced, so that the entire optical head device can be made smaller.

このような従来の位相補正素子は、1つの偏光方向に対して光の位相を補正するものである。波長選択の用途に用いられるファブリペローエタロンにおいては、偏光依存性を有する共振器の偏光依存性を除去する技術が報告されている(例えば、非特許文献1参照。)。具体的には、2つの基板面近傍で配向方向を相互に直交するようにしたTN液晶を用いて偏光依存性を有する共振器を実現し、所定値以上の電圧を印加して電圧印加方向に液晶を配向させて、偏光依存性を除去するものである。非特許文献1に記載された上記の技術は、波長の選択と偏光依存性の除去を目的としたものである。   Such a conventional phase correction element corrects the phase of light with respect to one polarization direction. In the Fabry-Perot etalon used for wavelength selection, a technique for removing the polarization dependence of a resonator having polarization dependence has been reported (for example, see Non-Patent Document 1). Specifically, a resonator having polarization dependency is realized by using TN liquid crystal whose orientation directions are orthogonal to each other in the vicinity of two substrate surfaces, and a voltage of a predetermined value or more is applied to the voltage application direction. The liquid crystal is aligned to remove the polarization dependency. The above-described technique described in Non-Patent Document 1 aims at selecting a wavelength and removing polarization dependency.

特開2003−067966号公報JP 2003-069766 A 特開2002−288866号公報JP 2002-288866 A 特開2001−084631号公報Japanese Patent Laid-Open No. 2001-084431 ジェイ・エス・パテル、シンドゥー・リー著、「電気的に可変かつ偏光依存性が除去可能な液晶ファブリ・ペローエタロン」、アプライド・フィジックス・レターズ、第58巻、第22号、p.2491−2493(J. S. Patel, Sin-Doo Lee, "Electrically Tunable and Polarization Insensitive Fabry-Perot Etalon with a Liquid-Crystal Film" Applied Physics Letters, Vol.58, No.22, p2491-2493)J.S Patel, Shindu Lee, “Liquid Crystal Fabry-Perot Etalon that is electrically variable and capable of removing polarization dependence”, Applied Physics Letters, Vol. 58, No. 22, p. 2491-2493 (J. S. Patel, Sin-Doo Lee, "Electrically Tunable and Polarization Insensitive Fabry-Perot Etalon with a Liquid-Crystal Film" Applied Physics Letters, Vol. 58, No. 22, p2491-2493)

しかしながら、このような従来の位相補正素子では、位相補正素子が有する液晶層中で液晶分子が一様配向しているために、液晶の異常光屈折率を感ずる偏光と常光屈折率を感ずる偏光とが入射したとき、常光屈折率を感ずる偏光に対しては、印加電圧の大きさに応じて透過波面を変化させることはできないという問題があった。   However, in such a conventional phase correction element, since the liquid crystal molecules are uniformly aligned in the liquid crystal layer of the phase correction element, polarized light that senses the extraordinary refractive index of liquid crystal and polarized light that senses the ordinary light refractive index. For the polarized light that senses the ordinary refractive index when incident, the transmitted wavefront cannot be changed according to the magnitude of the applied voltage.

具体的には、光ヘッド装置は、偏光光学系を用いてDVD、高密度光ディスク等の光記録媒体の記録再生を行うことが一般的であるため、偏光方向が相互に直交する往路光(光記録媒体に向かう光)と復路光(光記録媒体から反射された光)のいずれか一方の偏光に対してしか、素子として機能しないという問題があった。いずれの偏光に対しても位相を補正するためには、往路光と復路光の各々に対して1枚ずつ位相補正素子を並べる必要があり、装置の大型化、構成の複雑化、コストアップ等を招いてきた。   Specifically, since the optical head device generally performs recording and reproduction on an optical recording medium such as a DVD or a high-density optical disk using a polarization optical system, forward light (optical light whose polarization directions are orthogonal to each other) There is a problem that it functions as an element only with respect to either polarized light of light (light directed to the recording medium) or return light (light reflected from the optical recording medium). In order to correct the phase for any polarized light, it is necessary to arrange one phase correction element for each of the outward light and the backward light, which increases the size of the apparatus, the configuration, the cost, etc. Has been invited.

本発明はこのような問題を解決するためになされたもので、単一の液晶層を用いて直交するいずれの直線偏光の位相も補正することが可能な位相補正素子および光ヘッド装置を提供するものである。   The present invention has been made to solve such a problem, and provides a phase correction element and an optical head device capable of correcting the phase of any orthogonally polarized light using a single liquid crystal layer. Is.

以上の点を考慮して、請求項1に係る発明は、2枚の対向する透明基板と、前記透明基板間に挟持された1つの液晶層と、各前記透明基板の基板面上に形成され、補正対象の波面収差に応じた形状を有する透明電極とを備えた位相補正素子において、前記液晶層が、ツイステッドネマティック液晶からなり、前記液晶層の液晶分子が、各前記透明基板の基板面位置で前記基板面に略平行、かつ相互に90°+180°×m(m=0、1、2)の角度をなして配向し、前記透明電極を介して前記液晶層に電圧を印加していないときは、全ての液晶分子が前記基板面となす角度は実質的に一定であり、前記透明電極を介して前記液晶層に所定の電圧を印加したとき、各前記基板面間の中間位置に近い位置にある液晶分子ほど前記基板面に対して大きな角度で立ち上がり、各前記基板面間の中間の領域で前記基板面に対して略垂直になる構成を有している。 In view of the above points, the invention according to claim 1 is formed on two opposing transparent substrates, one liquid crystal layer sandwiched between the transparent substrates, and a substrate surface of each transparent substrate. A phase correction element comprising a transparent electrode having a shape corresponding to a wavefront aberration to be corrected, wherein the liquid crystal layer is made of twisted nematic liquid crystal, and the liquid crystal molecules of the liquid crystal layer are positioned on the substrate surface of each of the transparent substrates. Thus, the liquid crystal layers are aligned substantially parallel to the substrate surface and at an angle of 90 ° + 180 ° × m (m = 0, 1, 2), and no voltage is applied to the liquid crystal layer through the transparent electrode. When the angle between all the liquid crystal molecules and the substrate surface is substantially constant, when a predetermined voltage is applied to the liquid crystal layer through the transparent electrode, it is close to an intermediate position between the substrate surfaces. The liquid crystal molecules at the position are larger than the substrate surface. Rises at an angle, it has a structure obtained substantially perpendicular to the substrate surface in the middle of the region between each said substrate surface.

この構成により、液晶層の液晶分子が、各透明基板の基板面位置で基板面に略平行、かつ相互に直交するように配向し、電圧を印加したときに各基板面間の中間の領域で基板面に対して略垂直になるため、実効的に直交する配向の液晶層を2層有する構成となり、単一の液晶層を用いて直交するいずれの直線偏光の位相も補正することが可能な位相補正素子を実現できる。   With this configuration, the liquid crystal molecules of the liquid crystal layer are aligned so as to be substantially parallel to the substrate surface and orthogonal to each other at the substrate surface position of each transparent substrate, and in a middle region between the substrate surfaces when a voltage is applied. Since it is substantially perpendicular to the substrate surface, it has a configuration having two liquid crystal layers with orientations that are effectively orthogonal, and can correct the phase of any linearly polarized light that is orthogonal using a single liquid crystal layer. A phase correction element can be realized.

また、請求項に係る発明は、請求項1に記載の位相補正素子において、入射光にπ/2の奇数倍の位相差を付加する位相板が前記透明基板のいずれかに重ねて配置された構成を有している。 The invention according to claim 2, in the phase correcting element according to claim 1, which phase plate that adds a phase difference of an odd multiple of [pi / 2 to incident light are arranged to overlap in either of the transparent substrate It has a configuration.

この構成により、請求項1の効果に加え、1/4波長板等の位相板と一体化されるため、光軸合わせ等の組み立ての調整が容易であり、かつ省スペース化を図ることが可能な位相補正素子を実現できる。 With this configuration, in addition to the effect of claim 1, since it is integrated with a phase plate such as a quarter wave plate, assembly adjustment such as optical axis alignment is easy and space saving can be achieved. A simple phase correction element can be realized.

また、請求項に係る発明は、光源と、前記光源からの出射光を光記録媒体へ集光する対物レンズと、前記光記録媒体からの戻り光を検出する光検出器とを備える光ヘッド装置において、前記光源と前記対物レンズとの間の光路中に請求項1からまでのいずれか1項に記載の位相補正素子を備えた構成を有している。 According to a third aspect of the present invention, there is provided an optical head comprising a light source, an objective lens that condenses light emitted from the light source onto an optical recording medium, and a photodetector that detects return light from the optical recording medium. The apparatus has a configuration including the phase correction element according to any one of claims 1 and 2 in an optical path between the light source and the objective lens.

この構成により、請求項1または2の効果を有する光ヘッド装置を実現できる。 With this configuration, an optical head device having the effect of claim 1 or 2 can be realized.

また、請求項に係る発明は、請求項に記載の光ヘッド装置において、前記光源からの出射光が、前記液晶層の前記光源側の面に入射したとき、前記液晶層の基板面位置における液晶分子の常光屈折率または異常光屈折率を感じる方向に偏光方向を有する構成を有している。 According to a fourth aspect of the present invention, in the optical head device according to the third aspect, when the light emitted from the light source is incident on the light source side surface of the liquid crystal layer, the substrate surface position of the liquid crystal layer The liquid crystal molecules have a configuration in which the polarization direction is in the direction in which the ordinary light refractive index or the extraordinary light refractive index is felt.

この構成により、光源からの出射光が、液晶層の基板面位置における液晶分子の常光屈折率または異常光屈折率を感じる方向に偏光しているため、光の利用効率を向上することが可能な光ヘッド装置を実現できる。   With this configuration, since the light emitted from the light source is polarized in a direction in which the ordinary refractive index or the extraordinary light refractive index of the liquid crystal molecules at the substrate surface position of the liquid crystal layer is felt, the light utilization efficiency can be improved. An optical head device can be realized.

本発明は、液晶層の液晶分子が、各透明基板の基板面位置で基板面に略平行、かつ相互に直交するように配向し、電圧を印加したときに各基板面間の中間の領域で基板面に対して略垂直になるため、実効的に直交する配向の液晶層を2層有する構成となり、単一の液晶層を用いて直交するいずれの直線偏光の位相も補正できるという効果を有する位相補正素子を提供できる。   In the present invention, the liquid crystal molecules in the liquid crystal layer are aligned so that they are substantially parallel to the substrate surface and orthogonal to each other at the substrate surface position of each transparent substrate. Since it is substantially perpendicular to the substrate surface, it has a configuration having two liquid crystal layers with an orientation that is effectively orthogonal, and has the effect of being able to correct the phase of any linearly polarized light that is orthogonal using a single liquid crystal layer. A phase correction element can be provided.

以下、本発明の実施の形態について、図面を用いて説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る位相補正素子の構成を概念的に示す断面図である。図1において、位相補正素子10は、少なくとも2枚の対向する透明基板1a、1bと、各透明基板1a、1bの対向する基板面上に形成され液晶層2に電圧を印加するための透明電極3a、3bと、液晶が透明基板1a、1b間から漏れ出ないように外周を封じるシール4と、透明電極3a、3bに電気的に接続された配線5とを備えている。各透明電極3a、3bには、液晶層2に電圧を印加する外部信号源11が接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a sectional view conceptually showing the structure of the phase correction element according to the first embodiment of the present invention. In FIG. 1, a phase correction element 10 includes at least two opposing transparent substrates 1a and 1b and transparent electrodes that are formed on the opposing substrate surfaces of the transparent substrates 1a and 1b and apply a voltage to the liquid crystal layer 2. 3a and 3b, a seal 4 that seals the outer periphery so that liquid crystal does not leak from between the transparent substrates 1a and 1b, and a wiring 5 that is electrically connected to the transparent electrodes 3a and 3b. An external signal source 11 that applies a voltage to the liquid crystal layer 2 is connected to each of the transparent electrodes 3a and 3b.

透明基板1a、1bとして、PET、PCなどからなるプラスチック基板を用いてもよいが、ガラス基板を用いることが耐久性等の観点から好ましい。   A plastic substrate made of PET, PC, or the like may be used as the transparent substrates 1a and 1b, but it is preferable to use a glass substrate from the viewpoint of durability and the like.

透明電極3a、3bとして、ITO、SnO、ZnO等の酸化物からなる薄膜電極を用いることが、光の透過性および機械的耐久性等の観点から好ましい。また、透明電極3a、3bのうちの少なくとも一方の透明電極は、複数の分割電極によって構成されるのでもよい。さらに、分割電極間を電気的に接続する抵抗膜としての電極を有するのでもよい。以下、透明電極3aは、シート抵抗値の低い低抵抗電極3a11〜3a14と、低抵抗電極3a11〜3a14間を電気的に接続する抵抗膜としての高抵抗平面電極3a15とによって構成される複合電極であり、透明電極3bは単一の平板からなる電極とする。 As the transparent electrodes 3a and 3b, it is preferable to use a thin film electrode made of an oxide such as ITO, SnO 2 , or ZnO from the viewpoints of light transmittance and mechanical durability. Further, at least one of the transparent electrodes 3a and 3b may be constituted by a plurality of divided electrodes. Furthermore, you may have an electrode as a resistance film which electrically connects between division | segmentation electrodes. Hereinafter, the transparent electrode 3a is a composite electrode constituted by a low resistance electrode 3a11 to 3a14 having a low sheet resistance value and a high resistance flat electrode 3a15 as a resistance film for electrically connecting the low resistance electrodes 3a11 to 3a14. The transparent electrode 3b is an electrode made of a single flat plate.

シール4には、エポキシ、アクリルなどの樹脂系接着剤を用いることが、取り扱い上好ましい。また、上記の樹脂系接着剤が、熱硬化性、UV硬化性等を有するのでもよい。シール4は、透明電極3a、3bが形成されたいずれかの基板面の光学的有効領域の外側に、例えばシール材を印刷して形成される。また、シール材にガラスファイバからなるスペーサを所定の割合で混入することは、基板間隔の調整の容易性の観点から好ましい。   For the seal 4, it is preferable in terms of handling to use a resin adhesive such as epoxy or acrylic. Further, the resin adhesive may have thermosetting property, UV curable property, and the like. The seal 4 is formed, for example, by printing a sealing material on the outside of the optically effective area of any substrate surface on which the transparent electrodes 3a and 3b are formed. Moreover, it is preferable from the viewpoint of easy adjustment of the distance between the substrates to mix a spacer made of glass fiber at a predetermined ratio into the sealing material.

液晶層2の液晶には、ツイステッドネマティック液晶(以下、TN液晶という。)を用いるのが好ましい。液晶層2の液晶分子は、各透明基板1a、1bの基板面位置で基板面に略平行で、基板面に垂直な方向から見て相互に90°+180°×m(mは整数)の角度ねじれて配向している。特に、上記の整数mが0、すなわち、ねじれの角度が90°となる構成が、低電圧で駆動できること、散乱光の発生を低減できること等の観点から好ましい。   As the liquid crystal of the liquid crystal layer 2, twisted nematic liquid crystal (hereinafter referred to as TN liquid crystal) is preferably used. The liquid crystal molecules of the liquid crystal layer 2 are each at an angle of 90 ° + 180 ° × m (m is an integer) when viewed from the direction perpendicular to the substrate surface, substantially parallel to the substrate surface at the substrate surface position of each transparent substrate 1a, 1b. It is twisted and oriented. In particular, the configuration in which the integer m is 0, that is, the twist angle is 90 ° is preferable from the viewpoint of being able to be driven at a low voltage and reducing the generation of scattered light.

液晶の配向に、ポリイミドなどの不図示の配向膜を用い、ラビング等により配向処理を施してもよい。また、光配向の技術、SiO等を斜め蒸着して配向させる技術、ダイヤモンドライクカーボン膜等にイオンビームを照射して配向させる技術等の、他の技術を用いるのでもよい。また、液晶としては、正の誘電異方性(△ε)を有するものが好ましい。正の誘電異方性を有する液晶は、電界が印加されたとき、液晶分子の長手方向が電界方向を向くように動く。   For alignment of liquid crystal, an alignment film (not shown) such as polyimide may be used, and alignment treatment may be performed by rubbing or the like. In addition, other techniques such as a technique of photo-alignment, a technique of aligning by obliquely depositing SiO or the like, and a technique of aligning by irradiating an ion beam to a diamond-like carbon film or the like may be used. As the liquid crystal, those having positive dielectric anisotropy (Δε) are preferable. The liquid crystal having positive dielectric anisotropy moves so that the longitudinal direction of the liquid crystal molecules faces the electric field direction when an electric field is applied.

配線5として、フレキシブル回路基板を用いるのでもよい。配線5間に印加する電圧は矩形交流電圧が好ましく、周波数は10Hz〜10kHzが好ましい。また、上記の矩形交流電圧には、直流成分が含まれないようにすることがさらに好ましい。印加する電圧範囲は、基板面近傍を除く中間の領域(以下、単に中間領域という。)で液晶分子が基板面に対して所定の角度をなすものであればよい。このようにすることによって、中間領域での異常光屈折率が常光屈折率に向けて変化するため、光は両方の基板面近傍での異常光屈折率を相対的に強く感ずることになる。   A flexible circuit board may be used as the wiring 5. The voltage applied between the wires 5 is preferably a rectangular AC voltage, and the frequency is preferably 10 Hz to 10 kHz. Further, it is more preferable that the rectangular AC voltage does not include a DC component. The voltage range to be applied may be an intermediate region excluding the vicinity of the substrate surface (hereinafter simply referred to as an intermediate region) as long as the liquid crystal molecules form a predetermined angle with respect to the substrate surface. By doing so, since the extraordinary refractive index in the intermediate region changes toward the ordinary refractive index, the light senses the extraordinary refractive index in the vicinity of both substrate surfaces relatively strongly.

その結果、両方の基板面近傍での配向方向に偏光方向を有する偏光は、いずれも位相が補正されることになる。ここで、基板面に平行な面と液晶分子の長手方向がなす仰角が、中間領域で最大で80°以上となるように電圧を設定するのが好ましい。また、基板面に平行な面内での角度を方位角とするときの液晶分子の方位角の変化が、中間領域で大きくなるように電圧を設定するのが好ましい。以下、液晶分子の長手方向の向きの方位角を、液晶分子の方位角という。   As a result, the phase of any polarized light having a polarization direction in the alignment direction in the vicinity of both substrate surfaces is corrected. Here, it is preferable to set the voltage so that the elevation angle formed by the plane parallel to the substrate surface and the longitudinal direction of the liquid crystal molecules is 80 ° or more at the maximum in the intermediate region. Further, it is preferable to set the voltage so that the change in the azimuth angle of the liquid crystal molecules when the angle in the plane parallel to the substrate surface is the azimuth angle becomes large in the intermediate region. Hereinafter, the azimuth angle in the longitudinal direction of the liquid crystal molecules is referred to as the azimuth angle of the liquid crystal molecules.

ここで、対向する透明電極3a、3bの間に不図示の絶縁膜を設け、短絡を防ぐようにすることは好ましい。また、配向膜、絶縁膜および透明電極3a、3bの膜厚および屈折率を調整し、界面反射を防止することは光の利用効率の向上につながり、さらに好ましい。さらに、絶縁膜として、SiO、ZrO、TiO等の無機材料を、スパッタリング法、ゾルゲル法等を用いて成膜するのでもよい。 Here, it is preferable to provide an insulating film (not shown) between the opposing transparent electrodes 3a and 3b so as to prevent a short circuit. In addition, it is more preferable to adjust the film thickness and refractive index of the alignment film, the insulating film, and the transparent electrodes 3a and 3b to prevent interface reflection, which leads to improvement in light use efficiency. Further, as the insulating film, an inorganic material such as SiO 2 , ZrO 2 , or TiO 2 may be formed using a sputtering method, a sol-gel method, or the like.

また、透明基板1a、1bの液晶層2側と反対側の基板面にさらに反射防止膜を取り付けることは、光の利用効率が一層向上できるため、好ましい。蒸着法、スパッタリング法等を用いて誘電体多層膜を形成し、反射防止膜とするのでも、利用する波長程度の膜厚の透明な薄膜を形成し、反射防止膜とするのでもよい。   Further, it is preferable to attach an antireflection film to the substrate surface opposite to the liquid crystal layer 2 side of the transparent substrates 1a and 1b, since the light use efficiency can be further improved. A dielectric multilayer film may be formed by using a vapor deposition method, a sputtering method, or the like to form an antireflection film, or a transparent thin film having a film thickness of a wavelength to be used may be formed to form an antireflection film.

図2は、本発明の実施の形態に係る位相補正素子10を構成する透明電極3aの電極パターンの1例を模式的に示す図である。以下、説明の都合上、図2に示す透明電極3aの電極パターンは、球面収差補正に用いる位相補正素子の電極パターンであるものとして説明する。ここで、低抵抗電極3a11〜3a14は円形または輪帯状の形状を有し、高抵抗平面電極3a15は円形の形状を有し、各電極3a11〜3a15は、同心円状に配置される。低抵抗電極3a11〜3a14は高抵抗平面電極3a15よりもシート抵抗値が充分低く同心円状に配置されるため、同心円状かつ連続的に変化する電位分布を実現できる。また、低抵抗電極3a11〜3a14に印加する電圧を調節することによって、半径方向の電位分布を設定することができる。   FIG. 2 is a diagram schematically showing an example of an electrode pattern of the transparent electrode 3a constituting the phase correction element 10 according to the embodiment of the present invention. Hereinafter, for convenience of explanation, the electrode pattern of the transparent electrode 3a shown in FIG. 2 will be described as an electrode pattern of a phase correction element used for spherical aberration correction. Here, the low resistance electrodes 3a11 to 3a14 have a circular or annular shape, the high resistance planar electrode 3a15 has a circular shape, and the electrodes 3a11 to 3a15 are arranged concentrically. Since the low resistance electrodes 3a11 to 3a14 have a sheet resistance value sufficiently lower than that of the high resistance planar electrode 3a15 and are arranged concentrically, a concentric and continuously changing potential distribution can be realized. Further, the potential distribution in the radial direction can be set by adjusting the voltage applied to the low resistance electrodes 3a11 to 3a14.

外部信号源11からの電圧が配線51〜54を介して低抵抗電極3a11〜3a14に直接印加される構成でもよいが、補正すべき位相量または位相分布があらかじめ決まっている場合等の所定の場合には、所定の薄膜抵抗体を用いて外部信号源11からの電圧を分圧して低抵抗電極3a11〜3a14に印加する構成とすることは、接続する電源数を削減できるため、好ましい。なお、配線55は、透明電極3bに接続される。   The voltage from the external signal source 11 may be directly applied to the low resistance electrodes 3a11 to 3a14 via the wirings 51 to 54. However, in a predetermined case such as when the phase amount or phase distribution to be corrected is determined in advance. It is preferable to use a configuration in which a voltage from the external signal source 11 is divided and applied to the low resistance electrodes 3a11 to 3a14 using a predetermined thin film resistor because the number of power supplies to be connected can be reduced. The wiring 55 is connected to the transparent electrode 3b.

高抵抗平面電極3a15は、低抵抗電極3a11〜3a14と比べてシート抵抗値が十分高く、かつ、透明な材料からなるものであればよく、亜鉛、鉛、錫、インジウムなどの元素の1つ以上の酸化物からなるのでもよい。低抵抗電極3a11〜3a14は、高抵抗平面電極3a15と同様に、亜鉛、鉛、錫、インジウムなどの元素の1つ以上の酸化物からなるのでもよいが、透過率が上記の酸化物程度であれば、アルミニウム、金、銀、クロムなどの金属材料からなるのでもよい。   The high-resistance planar electrode 3a15 has only to have a sheet resistance value sufficiently higher than that of the low-resistance electrodes 3a11 to 3a14 and is made of a transparent material, and is one or more elements such as zinc, lead, tin, and indium. It may be made of the oxide. The low resistance electrodes 3a11 to 3a14 may be made of one or more oxides of elements such as zinc, lead, tin, and indium, like the high resistance planar electrode 3a15. If present, it may be made of a metal material such as aluminum, gold, silver, or chromium.

図3は、本発明の実施の形態に係る位相補正素子10を構成する透明電極3aの電極パターンの他の1例を概念的に示す図である。ここで、透明電極3aが図2に示すものと同様に、低抵抗電極3a21〜3a24と高抵抗平面電極3a25とによって構成され、透明電極3bが単一の電極によって構成されるものとする。以下、説明の都合上、図3に示す透明電極3aの電極パターンは、コマ収差補正に用いる位相補正素子の電極パターンであるものとして説明する。   FIG. 3 is a diagram conceptually showing another example of the electrode pattern of the transparent electrode 3a constituting the phase correcting element 10 according to the embodiment of the present invention. Here, it is assumed that the transparent electrode 3a is composed of the low resistance electrodes 3a21 to 3a24 and the high resistance planar electrode 3a25, and the transparent electrode 3b is composed of a single electrode, as shown in FIG. Hereinafter, for convenience of explanation, the electrode pattern of the transparent electrode 3a shown in FIG. 3 will be described as an electrode pattern of a phase correction element used for coma aberration correction.

外部信号源11からの電圧が配線51〜54を介して低抵抗電極3a21〜3a24に直接印加される構成でもよいが、補正すべき位相量または位相分布があらかじめ決まっている場合等の所定の場合には、所定の薄膜抵抗体を用いて外部信号源11からの電圧を分圧して低抵抗電極3a21〜3a24に印加する構成とすることは、接続する電源数を削減できるため、好ましい。なお、配線55は、透明電極3bに接続される。   The voltage from the external signal source 11 may be directly applied to the low resistance electrodes 3a21 to 3a24 via the wirings 51 to 54, but in a predetermined case such as when the phase amount or phase distribution to be corrected is determined in advance. It is preferable to use a configuration in which a voltage from the external signal source 11 is divided and applied to the low resistance electrodes 3a21 to 3a24 using a predetermined thin film resistor because the number of power supplies to be connected can be reduced. The wiring 55 is connected to the transparent electrode 3b.

以下、本発明の第1の実施の形態に係る位相補正素子10の作用について説明する。図4〜図7は、上記の整数mが0の場合、すなわち、液晶分子の配向方向が基板面間で90°ねじれている構成のときの位相補正素子10の作用について説明するための説明図である。図4は、液晶層2がTN液晶を用いて形成され、液晶層2に電圧が印加されていないときの液晶分子の配向の様子が示されている。   The operation of the phase correction element 10 according to the first embodiment of the present invention will be described below. 4 to 7 are explanatory diagrams for explaining the operation of the phase correction element 10 when the integer m is 0, that is, when the alignment direction of the liquid crystal molecules is twisted by 90 ° between the substrate surfaces. It is. FIG. 4 shows the orientation of the liquid crystal molecules when the liquid crystal layer 2 is formed using TN liquid crystal and no voltage is applied to the liquid crystal layer 2.

印加電圧が0Vのとき、液晶分子20は、図4に概念的に示すように90°の方位角範囲内で、液晶層2の厚さ方向に関して一様な方位角の変化を有する。以下、液晶分子20の方位角が単位角度変化するのに要する液晶層2の厚さ方向の距離をピッチという。印加電圧が0Vのとき、液晶分子20は、一様なピッチで方位角方向にねじれている。液晶分子20が透明基板1a、1bの基板面となす角度を極角(以下、液晶分子の極角という。)とすると、印加電圧が0Vのとき、全ての液晶分子の極角は実質的に一定になっている。   When the applied voltage is 0 V, the liquid crystal molecules 20 have a uniform azimuth change with respect to the thickness direction of the liquid crystal layer 2 within the azimuth range of 90 ° as conceptually shown in FIG. Hereinafter, the distance in the thickness direction of the liquid crystal layer 2 required for the azimuth angle of the liquid crystal molecules 20 to change by a unit angle is referred to as a pitch. When the applied voltage is 0 V, the liquid crystal molecules 20 are twisted in the azimuth direction at a uniform pitch. If the angle between the liquid crystal molecules 20 and the substrate surfaces of the transparent substrates 1a and 1b is the polar angle (hereinafter referred to as the polar angle of the liquid crystal molecules), when the applied voltage is 0V, the polar angles of all the liquid crystal molecules are substantially It is constant.

図5は、所定の電圧Voを印加したときの液晶分子の配向の様子を概念的に示す説明図である。印加電圧を徐々に大きくしていくと、図5に示すように、各液晶分子20は、電界方向に立ち上がる。ここで、電界方向は基板面に垂直な方向である。このとき、電界分布は一様であるが、液晶分子の極角の大きさは、基板面からの距離に応じて異なる。具体的には、2つの基板面から離れるほど、液晶分子の極角は、大きくなる。その結果、中間領域Bでは、液晶分子20が基板面に対して略直交するようになる。   FIG. 5 is an explanatory diagram conceptually showing the state of alignment of liquid crystal molecules when a predetermined voltage Vo is applied. When the applied voltage is gradually increased, each liquid crystal molecule 20 rises in the electric field direction as shown in FIG. Here, the electric field direction is a direction perpendicular to the substrate surface. At this time, the electric field distribution is uniform, but the polar angle of the liquid crystal molecules varies depending on the distance from the substrate surface. Specifically, the polar angle of the liquid crystal molecules increases as the distance from the two substrate surfaces increases. As a result, in the intermediate region B, the liquid crystal molecules 20 become substantially orthogonal to the substrate surface.

液晶分子の極角が大きくなるに伴って、液晶分子20の方位角方向へのねじれのピッチは極角が大きい部分の方が小さい部分に比較して短くなる。この結果、図5に示すように、基板面近傍の液晶層2の領域A、Cでは液晶分子20の方位角方向へのねじれピッチが大きくなり、極角は比較的小さい。逆に、中間領域Bでは、液晶分子20の方位角方向へのねじれピッチが短くなり、極角は相対的に大きくなる。結果として、液晶分子20の方位角方向へのねじれは主に中間領域Bに集中し、領域C内の液晶分子は、領域A内の液晶分子に対して方位角がほぼ90°をなすようにねじれて配向している。   As the polar angle of the liquid crystal molecules increases, the pitch of twist in the azimuth direction of the liquid crystal molecules 20 becomes shorter in the portion where the polar angle is larger than in the portion where the polar angle is smaller. As a result, as shown in FIG. 5, in the regions A and C of the liquid crystal layer 2 near the substrate surface, the twist pitch in the azimuth direction of the liquid crystal molecules 20 becomes large, and the polar angle is relatively small. Conversely, in the intermediate region B, the twist pitch in the azimuth direction of the liquid crystal molecules 20 is shortened, and the polar angle is relatively large. As a result, the twist of the liquid crystal molecules 20 in the azimuth direction is mainly concentrated in the intermediate region B, so that the liquid crystal molecules in the region C have an azimuth angle of approximately 90 ° with respect to the liquid crystal molecules in the region A. It is twisted and oriented.

基板面に平行に配向した液晶分子の方位角が大きく変化する場合、一般に、液晶層2を通過する光は旋光をされやすい。しかし、液晶分子の方位角が大きく変化する中間領域Bでは、液晶分子の極角が大きくなっているため、光はほとんど旋光されずそのまま通過し、領域A、Cでは、液晶分子が方位角方向にほぼねじれていないため、光は旋光されずそのまま通過する。   When the azimuth angle of the liquid crystal molecules aligned parallel to the substrate surface changes greatly, in general, the light passing through the liquid crystal layer 2 is easily rotated. However, in the intermediate region B where the azimuth angle of the liquid crystal molecules changes greatly, the polar angle of the liquid crystal molecules is large, so that the light passes almost without being rotated, and in the regions A and C, the liquid crystal molecules are in the azimuth direction. The light passes through the light without being rotated.

さらに、Voよりも高い所定の印加電圧Vpで、領域A、Cの液晶分子の極角は印加電圧の大きさに応じて大きくなる。このとき領域A、Cの液晶分子の方位角はほぼ直交し一定となる。その結果、基板面に平行かつ相互に直交する2つの偏光方向の光に対してそれぞれ領域A、Cで位相変調を与えることができ、液晶層2は、印加される電圧の大きさと面内分布に応じて、2つの偏光方向の光に対して位相補正することが可能となる。   Further, at a predetermined applied voltage Vp higher than Vo, the polar angles of the liquid crystal molecules in the regions A and C increase according to the magnitude of the applied voltage. At this time, the azimuth angles of the liquid crystal molecules in the regions A and C are almost orthogonal and constant. As a result, phase modulation can be applied to the light beams in two polarization directions parallel to the substrate surface and orthogonal to each other in the regions A and C, respectively. Accordingly, it is possible to correct the phase of light having two polarization directions.

以下、液晶分子20の方位角方向へのねじれが主に中間領域Bに集中し、領域A、Cで液晶分子の方位角が直交する電圧範囲を擬似直交配向電圧範囲という。その結果、印加電圧を制御することによって、単一の液晶層で、相互に直交する偏光に対して作用する位相補正素子を作製することが可能となる。   Hereinafter, the voltage range in which the twist in the azimuth angle direction of the liquid crystal molecules 20 is mainly concentrated in the intermediate region B and the azimuth angles of the liquid crystal molecules are orthogonal in the regions A and C is referred to as a quasi-orthogonal alignment voltage range. As a result, by controlling the applied voltage, it is possible to produce a phase correction element that acts on polarized light orthogonal to each other with a single liquid crystal layer.

以上説明したように、本発明の第1の実施の形態に係る位相補正素子は、液晶層の液晶分子が、各透明基板の基板面位置で基板面に略平行、かつ相互に直交するように配向し、電圧を印加したときに各基板面間の中間の領域で基板面に対して略垂直になるため、実効的に直交する配向の液晶層を2層有する構成となり、単一の液晶層を用いて直交するいずれの直線偏光の位相も補正できる。   As described above, the phase correction element according to the first embodiment of the present invention is configured so that the liquid crystal molecules of the liquid crystal layer are substantially parallel to the substrate surface and orthogonal to each other at the substrate surface position of each transparent substrate. Since it is aligned and substantially perpendicular to the substrate surface in the middle region between the substrate surfaces when a voltage is applied, it has a structure having two liquid crystal layers with orientations that are effectively orthogonal to each other. Can be used to correct the phase of any linearly polarized light that is orthogonal.

また、本発明の第1の実施の形態に係る位相補正素子が有する液晶層は単一の層からなるため、作製が容易であるとともに製造コストを抑えることができる。なお、位相補正素子と、1/4波長板等の位相板、その他の光部品とを一体化することは、組み立ての際の光軸合わせ等の調整の容易さ、省スペース化等の観点から好ましい。
(第2の実施の形態)
In addition, since the liquid crystal layer included in the phase correction element according to the first embodiment of the present invention includes a single layer, it can be easily manufactured and the manufacturing cost can be reduced. It should be noted that integrating the phase correction element with a phase plate such as a quarter-wave plate and other optical components is from the viewpoint of ease of adjustment such as optical axis alignment during assembly and space saving. preferable.
(Second Embodiment)

本発明の第2の実施の形態に係る位相補正素子は、液晶層にベンド配向する液晶を用いたものである。図6および図7は、ベンド配向する液晶を液晶層に用いたときの、液晶分子の配向の様子を概念的に示す説明図である。本発明の第2の実施の形態に係る位相補正素子の構成は、液晶層に用いる液晶を除き、本発明の第1の実施の形態に係る位相補正素子の構成と同様である。   The phase correction element according to the second embodiment of the present invention uses a liquid crystal that bends in a liquid crystal layer. 6 and 7 are explanatory views conceptually showing the state of alignment of liquid crystal molecules when bend-aligned liquid crystal is used for the liquid crystal layer. The configuration of the phase correction element according to the second embodiment of the present invention is the same as the configuration of the phase correction element according to the first embodiment of the present invention, except for the liquid crystal used in the liquid crystal layer.

液晶層にベンド配向する液晶を用いることによって、以下に説明するように、上記の擬似直交配向電圧範囲を広げることができる。その結果、補正できる位相の範囲を実質的に広げることができる。図6に、ベンド配向の一例として、印加電圧が0Vのときの液晶分子の配向(90°ねじれたスプレー配向)の様子を示す。   By using a liquid crystal that bends in the liquid crystal layer, the quasi-orthogonal alignment voltage range can be expanded as described below. As a result, the range of phases that can be corrected can be substantially expanded. FIG. 6 shows, as an example of bend alignment, the state of liquid crystal molecule alignment (spray alignment twisted by 90 °) when the applied voltage is 0V.

この場合、液晶分子21は、所定の点から広がると共に、一定のピッチで方位角方向にほぼねじれた配向状態を示す。ここで、2つの基板面近傍の液晶分子21は、相互に直交する方向に配向している。図7は、図6に示す配向の液晶に所定の電圧を印加して90°ねじれたベンド配向に転移させたときの各液晶分子の配向の様子を説明するための図である。   In this case, the liquid crystal molecules 21 spread from a predetermined point and exhibit an alignment state almost twisted in the azimuth direction at a constant pitch. Here, the liquid crystal molecules 21 near the two substrate surfaces are aligned in directions orthogonal to each other. FIG. 7 is a diagram for explaining the state of alignment of each liquid crystal molecule when a predetermined voltage is applied to the liquid crystal having the alignment shown in FIG.

液晶層に所定の電圧V1を印加すると、ベンド配向の液晶は、図7に示す状態、すなわち、中間領域Bで液晶分子の極角が急激に大きくなり、基板面とほぼ垂直をなす状態が実現する。この状態は、ベンド配向に転移後、TN配向する液晶(図4、図5)よりも低い印加電圧で発生する。そのため、擬似直交配向電圧範囲を実質的に広げることが可能となる。   When a predetermined voltage V1 is applied to the liquid crystal layer, the bend-aligned liquid crystal realizes the state shown in FIG. 7, that is, the state in which the polar angle of the liquid crystal molecules rapidly increases in the intermediate region B and is almost perpendicular to the substrate surface To do. This state occurs at an applied voltage lower than that of the liquid crystal aligned in TN (FIGS. 4 and 5) after transition to bend alignment. Therefore, it becomes possible to substantially widen the pseudo-orthogonal alignment voltage range.

透明電極3aとして、図2に示す円形または輪帯状の形状を有し同心円状に配置された複合電極3a11〜3a15を用いることによって、位相補正素子は、球面収差を補正する機能を有すると共に、焦点距離を調整する機能をも有する。また、透明電極3aとして、例えば、図3に示す複合電極3a21〜3a25等を用いることによって、位相補正素子は、コマ収差等の波面収差を補正する機能を有する。なお、位相補正素子10と、1/4波長板等の位相板等の他の光部品以外の光部品とを一体化することは、組み立ての際の調整の容易さ、省スペース化等の観点から好ましい。   As the transparent electrode 3a, by using the composite electrodes 3a11 to 3a15 having the circular or annular shape shown in FIG. 2 and arranged concentrically, the phase correction element has a function of correcting spherical aberration and a focal point. It also has a function of adjusting the distance. Further, by using, for example, the composite electrodes 3a21 to 3a25 shown in FIG. 3 as the transparent electrode 3a, the phase correction element has a function of correcting wavefront aberration such as coma aberration. It should be noted that integrating the phase correction element 10 with optical components other than other optical components such as a phase plate such as a quarter-wave plate is easy to adjust during assembly and saves space. To preferred.

以上説明したように、本発明の第2の実施の形態に係る位相補正素子は、本発明の第1の実施の形態に記載の効果に加え、液晶層がベンド配向する液晶によって構成されるため、液晶分子が基板面に垂直に配向し位相補正に効果的に寄与しない領域の厚さを薄くできると共に、電圧に応じて上記の領域の厚さを調節でき、その結果、偏光方向が直交する2つの直線偏光の位相補正に要する電圧を低下できると共に、位相の補正範囲を拡大することができる。
(第3の実施の形態)
As described above, the phase correction element according to the second embodiment of the present invention is constituted by the liquid crystal in which the liquid crystal layer is bend-aligned in addition to the effects described in the first embodiment of the present invention. The thickness of the region where the liquid crystal molecules are aligned perpendicular to the substrate surface and do not contribute effectively to the phase correction can be reduced, and the thickness of the above region can be adjusted according to the voltage, with the result that the polarization directions are orthogonal. The voltage required for phase correction of the two linearly polarized light can be reduced and the phase correction range can be expanded.
(Third embodiment)

図8は、本発明の第3の実施の形態に係る光ヘッド装置の構成の一例を概念的に示す図である。図8において、光ヘッド装置100は、半導体レーザ101と、偏光ビームスプリッタ102と、コリメータレンズ103と、本発明に係る位相補正素子10と、1/4波長板104と、半導体レーザ101からの出射光を光ディスク200の情報記録層201、202に集光させる対物レンズ105と、光ディスク200からの戻り光を検出する光検出器106とを備える。   FIG. 8 is a diagram conceptually illustrating an example of the configuration of the optical head device according to the third embodiment of the present invention. In FIG. 8, an optical head device 100 includes a semiconductor laser 101, a polarization beam splitter 102, a collimator lens 103, a phase correction element 10 according to the present invention, a quarter wavelength plate 104, and an output from the semiconductor laser 101. The objective lens 105 which condenses incident light on the information recording layers 201 and 202 of the optical disc 200 and the photodetector 106 which detects return light from the optical disc 200 are provided.

半導体レーザ101は、光ディスク200の種類に応じて出射する光の波長を切り替えられるようになっているのでもよい。具体的には、CDに対しては780nm帯のいずれかの波長の光を出射し、DVDに対しては660nm帯のいずれかの波長の光を出射し、HD−DVD等に対しては405nm帯のいずれかの波長の光を出射するのでもよい。また、半導体レーザ101が、例えば複数の半導体レーザによって構成され、各半導体レーザが異なる位置に配置されているのでもよい。半導体レーザ101と位相補正素子10以外の構成要素については、周知であり、その説明を省略する。ここで780nm帯の波長とは780±20nm、すなわち760〜800nmの範囲にある波長のことである。他も同様に660±20nm、405±15nmである。   The semiconductor laser 101 may be configured to switch the wavelength of the emitted light according to the type of the optical disc 200. Specifically, light of any wavelength in the 780 nm band is emitted for CD, light of any wavelength in the 660 nm band is emitted for DVD, and 405 nm for HD-DVD or the like. Light having any wavelength in the band may be emitted. Further, the semiconductor laser 101 may be constituted by, for example, a plurality of semiconductor lasers, and each semiconductor laser may be arranged at a different position. The components other than the semiconductor laser 101 and the phase correction element 10 are well known and will not be described. Here, the wavelength in the 780 nm band is a wavelength in the range of 780 ± 20 nm, that is, 760 to 800 nm. Others are similarly 660 ± 20 nm and 405 ± 15 nm.

なお、図8に示す上記の光部品以外に、回折格子、ホログラム素子、偏光依存性選択素子、波長選択性素子、波面変換手段等の異なる光部品または機構部品を適宜組み合わせて適用するのでもよい。また、図8に示す光部品以外の光部品を本発明の位相補正素子10と一体化することは、組み立ての際の調整の容易さ、省スペース化等の観点から好ましい。   In addition to the optical components shown in FIG. 8, different optical components or mechanical components such as a diffraction grating, a hologram element, a polarization-dependent selection element, a wavelength-selective element, and a wavefront conversion means may be applied in appropriate combination. . Further, integrating optical components other than the optical components shown in FIG. 8 with the phase correction element 10 of the present invention is preferable from the viewpoints of ease of adjustment during assembly, space saving, and the like.

以下、本発明の第3の実施の形態に係る光ヘッド装置100の動作について、片面に複数の情報記録層201、202を有する光ディスク200に対して情報の記録再生を行う際の作用を例にとり、説明する。かかる光ディスク200は、2層ディスクと称され、DVD、高密度光ディスク等がある。   Hereinafter, with respect to the operation of the optical head device 100 according to the third embodiment of the present invention, the operation when recording / reproducing information on / from the optical disc 200 having a plurality of information recording layers 201 and 202 on one side is taken as an example. ,explain. Such an optical disc 200 is called a double-layer disc, and includes a DVD, a high-density optical disc, and the like.

半導体レーザ101から出射されX方向に偏光したP偏光は、偏光ビームスプリッタ102を透過し、コリメータレンズ103を透過して平行ビーム化され、位相補正素子10を透過して本発明の第1の実施の形態または本発明の第2の実施の形態で説明したように位相が補正され、1/4波長板104を透過することによって円偏光に変換され、対物レンズ105により、光ディスク200の第1の情報記録層201または第2の情報記録層202に集光される。   The P-polarized light emitted from the semiconductor laser 101 and polarized in the X direction is transmitted through the polarization beam splitter 102, transmitted through the collimator lens 103, converted into a parallel beam, and transmitted through the phase correction element 10, thereby implementing the first embodiment of the present invention. As described in the second embodiment or the second embodiment of the present invention, the phase is corrected, and the light is converted into circularly polarized light by transmitting through the quarter-wave plate 104. The light is condensed on the information recording layer 201 or the second information recording layer 202.

次に、光ディスク200のいずれかの情報記録層201、202から反射された光は、戻り光となって対物レンズ105を透過し、さらに1/4波長板104を通過することによってY方向に偏光したS偏光に変換され、本発明の位相補正素子10、コリメータレンズ103を通過し、偏光ビームスプリッタ102で反射されて、光検出器106に入射する。   Next, the light reflected from any one of the information recording layers 201 and 202 of the optical disc 200 is returned as light, passes through the objective lens 105, and further passes through the quarter-wave plate 104 to be polarized in the Y direction. It is converted to S-polarized light, passes through the phase correction element 10 and the collimator lens 103 of the present invention, is reflected by the polarization beam splitter 102, and enters the photodetector 106.

次に、球面収差の補正方法について説明する。ここで、説明の都合上、初期状態で、位相補正素子100は位相補正量が位相可変範囲の中央近傍になるように電圧が印加され、対物レンズ105は、この初期状態で、2つの情報記録層201、202の平均位置(以下、設定位置という。)で収差が最小となるように配置されているものとする。以下、保護層表面から設定位置までの距離を設定層厚という。   Next, a method for correcting spherical aberration will be described. Here, for convenience of explanation, in the initial state, a voltage is applied to the phase correction element 100 so that the phase correction amount is near the center of the phase variable range, and the objective lens 105 has two information recordings in this initial state. It is assumed that the aberration is minimized at the average position of the layers 201 and 202 (hereinafter referred to as a set position). Hereinafter, the distance from the protective layer surface to the set position is referred to as the set layer thickness.

保護層の厚さが設定層厚と異なることによって、保護層の厚さから設定層厚を差し引いた分(以下、相違層厚という。)に比例する球面収差が発生し、情報の記録再生が困難になっていく。位相補正素子が対物レンズ105に入射する光に対して光軸を中心とする同心円状の位相補正を行い、上記球面収差を補正することができる。   When the thickness of the protective layer is different from the set layer thickness, spherical aberration proportional to the thickness obtained by subtracting the set layer thickness from the protective layer thickness (hereinafter referred to as the different layer thickness) occurs, and information recording / reproduction is performed. It becomes difficult. The phase correction element performs concentric phase correction around the optical axis for the light incident on the objective lens 105 to correct the spherical aberration.

コマ収差が補正対象の場合、図3に示す分割電極を設けた位相補正素子に、上記と同様に電圧を印加することによってコマ収差を補正することができる。印加電圧の大きさを調節してコマ収差を補正する方法については周知であり、その説明を省略する。また、コマ収差の補正の必要がある2層ディスク等に対しては、上記のパワー成分の補正用の位相補正素子とコマ収差補正用の位相補正素子とを一体化するのでもよい。   When coma is a correction target, the coma can be corrected by applying a voltage to the phase correction element provided with the divided electrodes shown in FIG. 3 in the same manner as described above. A method for correcting coma aberration by adjusting the magnitude of the applied voltage is well known, and a description thereof will be omitted. For a dual-layer disc or the like that needs to correct coma aberration, the above-described phase correction element for correcting the power component and the phase correction element for correcting coma aberration may be integrated.

以上説明したように、本発明の第3の実施の形態に係る光ヘッド装置は、位相補正素子を構成する液晶層の液晶分子が、各透明基板の基板面位置で基板面に略平行、かつ相互に直交するように配向し、電圧を印加したときに各基板面間の中間の領域で基板面に対して略垂直になるため、実効的に直交する配向の液晶層を2層有する構成となり、単一の液晶層を用いて直交するいずれの直線偏光の位相も補正することができる。   As described above, in the optical head device according to the third embodiment of the present invention, the liquid crystal molecules of the liquid crystal layer constituting the phase correction element are substantially parallel to the substrate surface at the substrate surface position of each transparent substrate, and Since the liquid crystal layers are aligned perpendicularly to each other and are almost perpendicular to the substrate surface in the middle region between the substrate surfaces when a voltage is applied, the liquid crystal layer has two liquid crystal layers that are effectively orthogonally aligned. The phase of any linearly polarized light that is orthogonal can be corrected using a single liquid crystal layer.

また、位相補正素子を構成する液晶層がベンド配向する液晶によって構成されるため、液晶分子が基板面に垂直に配向し位相補正に効果的に寄与しない領域の厚さを薄くできると共に、電圧に応じて上記の領域の厚さを調節でき、その結果、偏光方向が直交する2つの直線偏光の位相補正に要する電圧を低下できると共に、補正範囲を拡大できる。   In addition, since the liquid crystal layer constituting the phase correction element is composed of bend-aligned liquid crystal, the thickness of the region where the liquid crystal molecules are aligned perpendicular to the substrate surface and do not effectively contribute to the phase correction can be reduced, and the voltage can be reduced. Accordingly, the thickness of the above region can be adjusted, and as a result, the voltage required for phase correction of two linearly polarized light whose polarization directions are orthogonal can be reduced and the correction range can be expanded.

また、1/4波長板等の位相板と一体化されるため、光軸合わせ等の組み立ての調整が容易であり、かつ省スペース化を図ることができる。   In addition, since it is integrated with a phase plate such as a quarter-wave plate, assembly adjustment such as optical axis alignment is easy and space saving can be achieved.

また、光源からの出射光が、液晶層の常光屈折率または異常光屈折率を感じる方向に偏光しているため、簡易な構成かつ光の利用効率を向上することができる。   In addition, since the light emitted from the light source is polarized in a direction in which the ordinary refractive index or extraordinary light refractive index of the liquid crystal layer is felt, the simple configuration and the light utilization efficiency can be improved.

上記の本発明の実施の形態に基づく具体的な実施例を以下に説明する。なお、本実施例に係る位相補正素子が有する具体的な限定は、本発明の要旨を限定するものではない。以下、図1および図2を用いて本発明の実施例に係る位相補正素子10について説明する。   Specific examples based on the above-described embodiments of the present invention will be described below. The specific limitation of the phase correction element according to the present embodiment does not limit the gist of the present invention. Hereinafter, the phase correction element 10 according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2.

まず、0.5mmの厚さの石英ガラス基板を透明基板1aとして用い、透明基板1aの一方の基板面上にスパッタリング法を用いて、シート抵抗値が40Ω/□のITO透明導電膜を形成する。次に、透明基板1aの透明導電膜を図2に示す低抵抗電極のパターンにパタニングし、低抵抗電極3a11〜3a14を形成する。   First, using a quartz glass substrate having a thickness of 0.5 mm as the transparent substrate 1a, an ITO transparent conductive film having a sheet resistance value of 40Ω / □ is formed on one surface of the transparent substrate 1a using a sputtering method. . Next, the transparent conductive film of the transparent substrate 1a is patterned into the low resistance electrode pattern shown in FIG. 2 to form the low resistance electrodes 3a11 to 3a14.

次に、透明基板1aの低抵抗電極3a11〜3a14が形成された基板面に、シート抵抗値が10Ω/□の酸化錫膜を形成し、図2に示す高抵抗平板電極のパターンにパタニングし、高抵抗平面電極3a15を形成する。次に、0.5mmの厚さの石英ガラス基板を透明基板1bとして用い、透明基板1bの一方の基板面上にスパッタリング法を用いて、シート抵抗値が300Ω/□のITO透明導電膜を形成する。 Next, a tin oxide film having a sheet resistance value of 10 6 Ω / □ is formed on the surface of the transparent substrate 1a on which the low resistance electrodes 3a11 to 3a14 are formed, and patterned into the pattern of the high resistance flat plate electrode shown in FIG. Then, the high resistance planar electrode 3a15 is formed. Next, using a quartz glass substrate having a thickness of 0.5 mm as the transparent substrate 1b, an ITO transparent conductive film having a sheet resistance of 300Ω / □ is formed on one surface of the transparent substrate 1b by sputtering. To do.

次に、透明基板1bの透明導電膜をパタニングし、分割電極3a11〜3a15に対向する透明電極3bとする。透明電極3aは、図2に示すように、円形または輪帯状の形状を有する低抵抗電極3a11〜3a14と、円形の形状を有すると高抵抗平面電極3a15とによって構成され、各分割電極3a11〜3a15は、光軸を中心とする同心円状に配置される。   Next, the transparent conductive film of the transparent substrate 1b is patterned to form a transparent electrode 3b facing the divided electrodes 3a11 to 3a15. As shown in FIG. 2, the transparent electrode 3a includes a low resistance electrode 3a11 to 3a14 having a circular or annular shape, and a high resistance planar electrode 3a15 having a circular shape, and each divided electrode 3a11 to 3a15. Are arranged concentrically around the optical axis.

また、配線51〜55に、フレキシブル回路基板を接続し、外部から電圧を印加できるようにした。   In addition, a flexible circuit board is connected to the wirings 51 to 55 so that a voltage can be applied from the outside.

次に、透明基板1aの分割電極3a11〜3a15が形成された基板面、および、透明基板1bの透明電極3bが形成された基板面上に、ポリイミドからなる配向膜を塗布して焼成し、各配向膜の表面を一方向にラビングして配向処理を行う。次に、透明基板1aの分割電極3a11〜3a15が形成された基板面上に、直径10μmのギャップ制御材と導電性ビーズとを混合した接着材を印刷法を用いてパタニングしてシール4を形成する。   Next, an alignment film made of polyimide is applied and baked on the substrate surface on which the divided electrodes 3a11 to 3a15 of the transparent substrate 1a are formed and on the substrate surface on which the transparent electrode 3b of the transparent substrate 1b is formed. An alignment treatment is performed by rubbing the surface of the alignment film in one direction. Next, a seal 4 is formed on the surface of the transparent substrate 1a on which the divided electrodes 3a11 to 3a15 are formed by patterning an adhesive mixed with a 10 μm diameter gap control material and conductive beads using a printing method. To do.

次に、透明基板1aのシール4を形成した基板面と、透明基板1bの透明電極3bが形成された基板面とを対向させて重ね合わせ、圧着して透明電極3a、3b間が10μmの空セルを作製する。この際、各々の透明基板面上の配向処理方向が互いに直交するようにする。次に、常光屈折率noが1.52で異常光屈折率neが1.70の、正の誘電異方性を有するネマティック液晶を不図示の空セルの注入口から注入し、液晶層2とする。液晶には、ねじれピッチが200μmとなるようにカイラル材を混入する。   Next, the substrate surface on which the seal 4 of the transparent substrate 1a is formed and the substrate surface of the transparent substrate 1b on which the transparent electrode 3b is formed are placed on top of each other and pressed to form a 10 μm gap between the transparent electrodes 3a and 3b. A cell is produced. At this time, the alignment treatment directions on the transparent substrate surfaces are orthogonal to each other. Next, nematic liquid crystal having a positive dielectric anisotropy having an ordinary light refractive index no of 1.52 and an extraordinary light refractive index ne of 1.70 is injected from an injection port of an empty cell (not shown), and the liquid crystal layer 2 and To do. In the liquid crystal, a chiral material is mixed so that the twist pitch becomes 200 μm.

次に、空セルの注入口を紫外線硬化樹脂を用いて封止して紫外線を照射し、図1に示す位相補正素子10を形成する。   Next, the inlet of the empty cell is sealed with an ultraviolet curable resin and irradiated with ultraviolet rays to form the phase correction element 10 shown in FIG.

以下、図8を用いて本発明の実施例に係る光ヘッド装置100について説明する。図8において、光ヘッド装置100は、半導体レーザ等からなる半導体レーザ101と、偏光ビームスプリッタ102と、コリメータレンズ103と、本発明に係る位相補正素子10と、1/4波長板104と、半導体レーザ101からの出射光を光ディスク200の情報記録層201、202に集光させる対物レンズ105と、光ディスク200からの戻り光を検出する光検出器106とを備える。   Hereinafter, an optical head device 100 according to an embodiment of the present invention will be described with reference to FIG. In FIG. 8, an optical head device 100 includes a semiconductor laser 101 such as a semiconductor laser, a polarization beam splitter 102, a collimator lens 103, a phase correction element 10 according to the present invention, a quarter wavelength plate 104, a semiconductor The objective lens 105 which condenses the emitted light from the laser 101 on the information recording layers 201 and 202 of the optical disc 200 and the photodetector 106 which detects the return light from the optical disc 200 are provided.

半導体レーザ101は、半導体レーザからなり、波長405nmのレーザ光を出射する。半導体レーザ101が出射するレーザ光は、直線偏光(以下、P偏光とする。)であり、偏光方向は、位相補正素子10を構成する液晶層2の半導体レーザ101側の異常光屈折率軸(図1におけるX方向)に平行な方向となっている。したがって、光ディスク200からの戻り光(以下、S偏光とする。)は、液晶層2の1/4波長板104側の異常光屈折率軸(図1におけるY方向)に平行な方向となっている。   The semiconductor laser 101 is a semiconductor laser and emits laser light having a wavelength of 405 nm. The laser light emitted from the semiconductor laser 101 is linearly polarized light (hereinafter referred to as P-polarized light), and the polarization direction is an extraordinary refractive index axis (on the semiconductor laser 101 side) of the liquid crystal layer 2 constituting the phase correction element 10. The direction is parallel to the X direction in FIG. Therefore, the return light (hereinafter referred to as S-polarized light) from the optical disc 200 is in a direction parallel to the extraordinary refractive index axis (Y direction in FIG. 1) on the quarter wavelength plate 104 side of the liquid crystal layer 2. Yes.

光ヘッド装置100を構成する位相補正素子10には、電圧波形が矩形交流波形で周波数が1000Hzの電圧を印加する。位相補正素子10は、4Vrms以上の電圧が液晶層2に印加されることによって位相補正の機能を発揮する。そして、光軸から外側に向けて各分割電極3a11〜3a14に、それぞれ、5.5Vrms、7Vrms、8.5Vrms、10Vrmsの電圧を印加することによって、球面収差を補正することができる。   A voltage having a rectangular AC waveform and a frequency of 1000 Hz is applied to the phase correction element 10 constituting the optical head device 100. The phase correction element 10 exhibits a function of phase correction when a voltage of 4 Vrms or more is applied to the liquid crystal layer 2. The spherical aberration can be corrected by applying voltages of 5.5 Vrms, 7 Vrms, 8.5 Vrms, and 10 Vrms to the divided electrodes 3a11 to 3a14 from the optical axis to the outside.

上記のように、各分割電極3a11〜3a14に電圧を印加することによって、位相補正素子10を透過した光は、位相補正素子10に入射したP偏光と同一の方向に振動する直線偏光となり、偏光は保たれる。   As described above, by applying a voltage to each of the divided electrodes 3a11 to 3a14, the light transmitted through the phase correction element 10 becomes linearly polarized light that oscillates in the same direction as the P-polarized light incident on the phase correction element 10 and is polarized. Is kept.

本発明に係る位相補正素子および光ヘッド装置は、単一の液晶層を用いて直交するいずれの直線偏光の位相も補正することができるという効果を有し、保護層の厚さが異なる光記録媒体等に対して情報の記録再生を行うための位相補正素子および光ヘッド装置、2つの直交する偏光方向の光に対して位相補正を行うための位相補正素子および光ヘッド装置等の用途にも適用できる。   The phase correction element and the optical head device according to the present invention have the effect of being able to correct the phase of any linearly polarized light that is orthogonal using a single liquid crystal layer, and optical recording with different protective layer thicknesses. Phase correction element and optical head device for recording / reproducing information on a medium, etc., and also for applications such as a phase correction element and optical head device for performing phase correction on light of two orthogonal polarization directions Applicable.

具体的には、CD、DVD等の保護層の厚さが異なる光記録媒体、405nm帯の波長を用いて記録再生を行う光記録媒体、BD、HD−DVD等の規格が異なる光記録媒体等に対して情報の記録再生を行うための位相補正素子および光ヘッド装置等の用途にも適用できる。また、カメラ付き携帯電話、デジタルカメラ、デジタルビデオ、内視鏡等に用いられる可変焦点レンズとしても使用できる。特に、小型かつ薄型であって可動部位がない等の特徴があり、モバイル向け、光を利用する小型の素子および装置等に有効に利用できる。   Specifically, optical recording media with different protective layer thicknesses such as CD and DVD, optical recording media that perform recording and reproduction using a wavelength of 405 nm band, optical recording media with different standards such as BD and HD-DVD, etc. The present invention can also be applied to uses such as a phase correction element and an optical head device for recording and reproducing information. Further, it can also be used as a variable focus lens used for mobile phones with cameras, digital cameras, digital videos, endoscopes, and the like. In particular, it has features such as being small and thin and having no movable parts, and can be effectively used for mobile devices and small devices and devices that use light.

本発明の第1の実施の形態に係る位相補正素子の構成を概念的に示す断面図Sectional drawing which shows notionally the structure of the phase correction element based on the 1st Embodiment of this invention 図1に示す位相補正素子10を構成する透明電極3aの電極パターンの1例を模式的に示す図The figure which shows typically an example of the electrode pattern of the transparent electrode 3a which comprises the phase correction element 10 shown in FIG. 図2に示す透明電極3aの電極パターンと異なる電極パターンの1例を模式的に示す図The figure which shows typically an example of the electrode pattern different from the electrode pattern of the transparent electrode 3a shown in FIG. 液晶層2に電圧が印加されていないときのTN液晶の液晶分子の配向の様子を示す図The figure which shows the mode of the orientation of the liquid crystal molecule of TN liquid crystal when the voltage is not applied to the liquid crystal layer 2 図4に示す構成において、液晶層2に電圧を印加したときのTN液晶の液晶分子の配向の様子を示す図4 is a diagram showing the state of alignment of liquid crystal molecules of the TN liquid crystal when a voltage is applied to the liquid crystal layer 2 in the configuration shown in FIG. 液晶層2に電圧が印加されていないときの、ベンド配向する液晶の液晶分子の配向の様子を示す図The figure which shows the mode of the orientation of the liquid crystal molecule | numerator of the liquid crystal which carries out a bend alignment when the voltage is not applied to the liquid crystal layer 2. 図6に示す構成において、液晶層2に電圧を印加したときの、ベンド配向する液晶の液晶分子の配向の様子を示す図FIG. 6 is a diagram showing the state of alignment of liquid crystal molecules of bend-aligned liquid crystal when a voltage is applied to the liquid crystal layer 2 in the configuration shown in FIG. 本発明の第3の実施の形態に係る光ヘッド装置の構成の一例を概念的に示す図The figure which shows notionally an example of a structure of the optical head apparatus based on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1a、1b 透明基板
2 液晶層
3a、3b 透明電極
3a11〜3a14、3a21〜3a24 低抵抗電極
3a15、3a25 高抵抗平面電極
4 シール
5、51〜55 配線
10 位相補正素子
11 外部信号源
20、21 液晶分子
100 光ヘッド装置
101 半導体レーザ
102 偏光ビームスプリッタ
103 コリメータレンズ
104 1/4波長板
105 対物レンズ
106 光検出器
200 光ディスク
201、202 情報記録層
L 光軸
DESCRIPTION OF SYMBOLS 1a, 1b Transparent substrate 2 Liquid crystal layer 3a, 3b Transparent electrode 3a11-3a14, 3a21-3a24 Low resistance electrode 3a15, 3a25 High resistance plane electrode 4 Seal 5, 51-55 Wiring 10 Phase correction element 11 External signal source 20, 21 Liquid crystal Molecule 100 Optical head device 101 Semiconductor laser 102 Polarizing beam splitter 103 Collimator lens 104 1/4 wavelength plate 105 Objective lens 106 Photo detector 200 Optical disc 201, 202 Information recording layer L Optical axis

Claims (4)

枚の対向する透明基板と、前記透明基板間に挟持された1つの液晶層と、各前記透明基板の基板面上に形成され、補正対象の波面収差に応じた形状を有する透明電極とを備えた位相補正素子において、
前記液晶層が、ツイステッドネマティック液晶からなり、
前記液晶層の液晶分子が、各前記透明基板の基板面位置で前記基板面に略平行、かつ相互に90°+180°×m(m=0、1、2)の角度をなして配向し、
前記透明電極を介して前記液晶層に電圧を印加していないときは、全ての液晶分子が前記基板面となす角度は実質的に一定であり、
前記透明電極を介して前記液晶層に所定の電圧を印加したとき、各前記基板面間の中間位置に近い位置にある液晶分子ほど前記基板面に対して大きな角度で立ち上がり、各前記基板面間の中間の領域で前記基板面に対して略垂直になることを特徴とする位相補正素子。
Two opposing transparent substrates, one liquid crystal layer sandwiched between the transparent substrates, and a transparent electrode formed on the substrate surface of each transparent substrate and having a shape corresponding to the wavefront aberration to be corrected In the phase correction element provided,
The liquid crystal layer is made of twisted nematic liquid crystal,
The liquid crystal molecules of the liquid crystal layer are aligned at an angle of 90 ° + 180 ° × m (m = 0, 1, 2) substantially parallel to the substrate surface at the substrate surface position of each transparent substrate,
When no voltage is applied to the liquid crystal layer through the transparent electrode, the angle formed by all liquid crystal molecules with the substrate surface is substantially constant,
When a predetermined voltage is applied to the liquid crystal layer via the transparent electrode, the liquid crystal molecules that are closer to the intermediate position between the substrate surfaces rise at a larger angle with respect to the substrate surface, and between the substrate surfaces. A phase correction element characterized by being substantially perpendicular to the substrate surface in an intermediate region.
入射光にπ/2の奇数倍の位相差を付加する位相板が、前記透明基板のいずれかに重ねて配置された請求項1に記載の位相補正素子。The phase correction element according to claim 1, wherein a phase plate that adds a phase difference of an odd multiple of π / 2 to incident light is disposed on one of the transparent substrates. 光源と、前記光源からの出射光を光記録媒体へ集光する対物レンズと、前記光記録媒体からの戻り光を検出する光検出器とを備える光ヘッド装置において、前記光源と前記対物レンズとの間の光路中に請求項1または2に記載の位相補正素子を備えたことを特徴とする光ヘッド装置。In an optical head device comprising: a light source; an objective lens that condenses the light emitted from the light source onto an optical recording medium; and a photodetector that detects return light from the optical recording medium, the light source and the objective lens An optical head device comprising the phase correction element according to claim 1 in an optical path between the two. 前記光源からの出射光が、前記液晶層の前記光源側の面に入射したとき、前記液晶層の基板面位置における液晶分子の常光屈折率または異常光屈折率を感じる方向に偏光方向を有する請求項3に記載の光ヘッド装置。When the light emitted from the light source is incident on the light source side surface of the liquid crystal layer, the polarization direction is in a direction in which the normal light refractive index or the extraordinary light refractive index of the liquid crystal molecules at the substrate surface position of the liquid crystal layer is felt. Item 4. The optical head device according to Item 3.
JP2005350539A 2005-12-05 2005-12-05 Phase correction element and optical head device Expired - Fee Related JP4696883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350539A JP4696883B2 (en) 2005-12-05 2005-12-05 Phase correction element and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350539A JP4696883B2 (en) 2005-12-05 2005-12-05 Phase correction element and optical head device

Publications (2)

Publication Number Publication Date
JP2007157235A JP2007157235A (en) 2007-06-21
JP4696883B2 true JP4696883B2 (en) 2011-06-08

Family

ID=38241400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350539A Expired - Fee Related JP4696883B2 (en) 2005-12-05 2005-12-05 Phase correction element and optical head device

Country Status (1)

Country Link
JP (1) JP4696883B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2726306C1 (en) * 2019-12-13 2020-07-13 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) Method for formation and compensation of astigmatic wave front and device for its implementation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251303A (en) * 1999-02-24 2000-09-14 Fujitsu Ltd Optical memory device and liquid crystal device
JP2002251774A (en) * 2001-02-22 2002-09-06 Sony Corp Optical pickup and its wave front aberration correcting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182423A (en) * 1984-02-29 1985-09-18 Mitsubishi Electric Corp Optical switch
JPH09166793A (en) * 1995-10-13 1997-06-24 Toshiba Corp Liquid crystal display element
JPH09161306A (en) * 1995-12-08 1997-06-20 Hitachi Ltd Optical disk device
JPH09244069A (en) * 1996-03-05 1997-09-19 Citizen Watch Co Ltd Liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251303A (en) * 1999-02-24 2000-09-14 Fujitsu Ltd Optical memory device and liquid crystal device
JP2002251774A (en) * 2001-02-22 2002-09-06 Sony Corp Optical pickup and its wave front aberration correcting device

Also Published As

Publication number Publication date
JP2007157235A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
US7710536B2 (en) Liquid crystal diffraction lens element and optical head device
JP4752763B2 (en) Liquid crystal lens element and optical head device
JP4720507B2 (en) Liquid crystal lens element and optical head device
US7773489B2 (en) Liquid crystal lens element and optical head device
US7710535B2 (en) Liquid crystal lens element and optical head device
JP3620145B2 (en) Optical head device
KR20070036742A (en) Liquid crystal lens element and optical head device
JP4501611B2 (en) Liquid crystal lens element and optical head device
JP4508048B2 (en) Liquid crystal lens and optical head device
JP2007025143A (en) Liquid crystal optical element and device
JP4552556B2 (en) Liquid crystal lens element and optical head device
JP2009015995A (en) Liquid crystal diffractive lens element and optical head device
US7835252B2 (en) Optical head apparatus
JP4696883B2 (en) Phase correction element and optical head device
US7113472B2 (en) Optical head including an active polymer film for switching voltage during recording and reproducing processes
JP4380477B2 (en) Liquid crystal lens element and optical head device
JP3885251B2 (en) Optical anisotropic diffraction grating, driving method thereof, and optical head device using the same
JP2004334031A (en) Liquid crystal optical element and optical device
JP2004334028A (en) Liquid crystal optical element and optical device
JP2007250168A (en) Optical head device
JP4631679B2 (en) Optical head device
JP4379062B2 (en) Optical device
JP4882737B2 (en) Liquid crystal element and optical head device
JP2008243357A (en) Optical pickup device
JP2010086621A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees