JP2002319172A - Optical head device - Google Patents
Optical head deviceInfo
- Publication number
- JP2002319172A JP2002319172A JP2001124711A JP2001124711A JP2002319172A JP 2002319172 A JP2002319172 A JP 2002319172A JP 2001124711 A JP2001124711 A JP 2001124711A JP 2001124711 A JP2001124711 A JP 2001124711A JP 2002319172 A JP2002319172 A JP 2002319172A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- light
- optical
- crystal layer
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Head (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光ヘッド装置に関
し、特に電極が表面に形成された透明基板に挟持された
液晶層を有する光ヘッド装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head device, and more particularly to an optical head device having a liquid crystal layer sandwiched between a transparent substrate having electrodes formed on the surface thereof.
【0002】[0002]
【従来の技術】光ディスクであるDVDは、同じく光デ
ィスクであるCDに比べディジタル情報が高密度で記録
されており、DVDを再生するための光ヘッド装置は、
光源の波長をCDの780nmよりも短い650nmま
たは635nmとしたり、対物レンズの開口数(NA)
をCDの0.45よりも大きい0.6にして光ディスク
面上に集光するスポット径を小さくしている。2. Description of the Related Art A DVD, which is an optical disk, stores digital information at a higher density than a CD, which is also an optical disk.
The wavelength of the light source is set to 650 nm or 635 nm shorter than 780 nm of CD, or the numerical aperture (NA) of the objective lens.
Is set to 0.6 which is larger than 0.45 of the CD to reduce the spot diameter condensed on the optical disk surface.
【0003】さらに、次世代の光記録においては光源の
波長を400nm程度、NAを0.6以上とすること
で、より大きな記録密度を得ることが提案されている。
しかし、光源の短波長化や対物レンズの高NA化が原因
で、光ディスク面が光軸に対して直角より傾くチルトの
許容量や光ディスクの厚さムラの許容量が小さくなる。Further, in the next-generation optical recording, it has been proposed to obtain a higher recording density by setting the wavelength of the light source to about 400 nm and the NA to 0.6 or more.
However, due to the shorter wavelength of the light source and the higher NA of the objective lens, the allowable amount of tilt of the optical disk surface inclined from a right angle to the optical axis and the allowable amount of uneven thickness of the optical disk are reduced.
【0004】これら許容量が小さくなる理由は、光ディ
スクのチルトの場合にはコマ収差が発生し、光ディスク
の厚さムラの場合には球面収差が発生するために、光ヘ
ッド装置の集光特性が劣化して信号の読み取りが困難に
なることによる。高密度記録において、光ディスクのチ
ルトや厚さムラに対する光ヘッド装置の許容量を拡げる
ためにいくつかの方式が提案されている。[0004] The reason why these allowances are small is that coma aberration occurs when the optical disk is tilted, and spherical aberration occurs when the thickness of the optical disk is uneven. This is due to the fact that signal reading becomes difficult due to deterioration. In high-density recording, several methods have been proposed to increase the tolerance of the optical head device for tilt and thickness unevenness of the optical disk.
【0005】一つの方式として、通常光ディスクの接線
方向と半径方向との2軸方向に移動する対物レンズのア
クチュエータに、検出されたチルト角に応じて対物レン
ズを傾けるように傾斜用の軸を追加する方式がある。し
かし、この追加方式では球面収差は補正できないこと
や、アクチュエータの構造が複雑になるなどの問題があ
る。As one method, a tilting axis is added to an actuator of an objective lens which normally moves in two axial directions, that is, a tangential direction and a radial direction of an optical disk, so as to tilt the objective lens according to the detected tilt angle. There is a method to do. However, this additional method has problems that spherical aberration cannot be corrected and the structure of the actuator becomes complicated.
【0006】また別の方式として、対物レンズと光源と
の間に備えた位相補正素子により波面収差を補正する方
式がある。この補正方式では、アクチュエータに大幅な
改造を施すことなく光ヘッド装置に素子を組み入れるだ
けで光ディスクのチルトの許容量や厚さムラの許容量を
拡げることができる。As another system, there is a system in which a wavefront aberration is corrected by a phase correction element provided between an objective lens and a light source. In this correction method, the allowable amount of tilt of the optical disk and the allowable amount of unevenness in thickness can be increased only by incorporating an element into the optical head device without making significant modifications to the actuator.
【0007】例えば、位相補正素子を用いて光ディスク
のチルトを補正する上記の補正方式に特開平10−20
263がある。これは、位相補正素子を構成している液
晶などの複屈折性材料を挟持している一対の基板のそれ
ぞれに、電極が分割されて形成された分割電極に電圧を
印加して、複屈折性材料の実質的な屈折率を光ディスク
のチルト角に応じて変化させ、この屈折率の変化により
発生した透過光の波面変化により、光ディスクのチルト
で発生したコマ収差を補正する方式である。For example, Japanese Patent Laid-Open No. 10-20 discloses a correction method for correcting the tilt of an optical disk using a phase correction element.
263. This is because a voltage is applied to a divided electrode formed by dividing an electrode on each of a pair of substrates sandwiching a birefringent material such as a liquid crystal which constitutes a phase correction element, and a birefringent material is formed. In this method, the substantial refractive index of the material is changed in accordance with the tilt angle of the optical disk, and the coma generated by the tilt of the optical disk is corrected by the change in the wavefront of the transmitted light generated by the change in the refractive index.
【0008】[0008]
【発明が解決しようとする課題】しかし、従来の液晶を
用いた位相補正素子では、偏光方向がある特定方向を有
する直線偏光に対してのみ作用する。しかし光の利用効
率を上げるため、光源からの出射光の偏光方向と、反射
により光ディスクから光検出器へ向かう反射光の偏光方
向とを異ならせる偏光系の光ヘッド装置では、位相補正
素子は出射光または反射光のいずれか一方にしか作用し
ない問題があった。However, in a conventional phase correction element using a liquid crystal, the polarization direction acts only on linearly polarized light having a specific direction. However, in order to increase the light use efficiency, in a polarization type optical head device in which the polarization direction of the light emitted from the light source and the polarization direction of the reflected light traveling from the optical disk toward the photodetector by reflection are different, the phase correction element is not provided. There has been a problem that it only affects either the emitted light or the reflected light.
【0009】[0009]
【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであり、光源と、光源から
の出射光を光記録媒体上に集光させるための対物レンズ
と、集光され光記録媒体から反射される出射光を受光す
る光検出器と、光源と対物レンズとの間の光路中に1/
4波長板とを備える光ヘッド装置において、出射光の波
面を変化させるための、電極付透明基板に挟持された2
つの液晶層が、1/4波長板に対して光源側の、または
1/4波長板に対して光記録媒体側の光路中に配置さ
れ、かつ2つの液晶層を構成する液晶分子の電圧非印加
時におけるそれぞれの配向方向が直交することを特徴と
する光ヘッド装置を提供する。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has a light source, an objective lens for condensing light emitted from the light source on an optical recording medium, and A photodetector that receives the emitted light that is collected and reflected from the optical recording medium;
In an optical head device including a four-wavelength plate, a two-wavelength plate sandwiched between transparent substrates with electrodes for changing the wavefront of emitted light is provided.
One liquid crystal layer is disposed in the optical path on the light source side with respect to the quarter wavelength plate or on the optical recording medium side with respect to the quarter wavelength plate, and the voltage of the liquid crystal molecules constituting the two liquid crystal layers is not applied. Provided is an optical head device, wherein respective orientation directions at the time of application are orthogonal.
【0010】[0010]
【発明の実施の形態】本発明は、光源と、光源からの出
射光を光記録媒体上に集光させるための対物レンズと、
集光され光記録媒体から反射される出射光を受光する光
検出器と、光源と対物レンズとの間の光路中に1/4波
長板とを備える光ヘッド装置である。さらに、本発明の
光ヘッド装置では、出射光の波面を変化させるための、
電極付透明基板に挟持された2つの液晶層が、1/4波
長板に対して光源側の、または1/4波長板に対して光
記録媒体側の光路中に配置されている。すなわち、透明
基板に挟持された液晶層が2つ、1/4波長板に対して
光源側の光路中に配置されている。または透明基板に挟
持された液晶層が2つ、1/4波長板に対して光記録媒
体側の光路中に配置されている。そして、各液晶層を構
成する液晶分子は、電圧の非印加時に一定方向に配列し
ており、かつ液晶分子の配向方向がそれぞれ直交する光
ヘッド装置である。ただし、液晶分子の配向方向は、本
発明における効果が実現できれば直交状態(90度)か
らずれていてもよく、±10度程度のずれならばよい。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a light source, an objective lens for condensing light emitted from the light source on an optical recording medium,
An optical head device includes a photodetector that receives emitted light that is collected and reflected from an optical recording medium, and a quarter-wave plate in an optical path between a light source and an objective lens. Further, in the optical head device of the present invention, the wavefront of the emitted light is changed.
Two liquid crystal layers sandwiched between the electrode-attached transparent substrates are arranged in an optical path on the light source side with respect to the quarter wavelength plate or on the optical recording medium side with respect to the quarter wavelength plate. That is, two liquid crystal layers sandwiched between transparent substrates are arranged in the light path on the light source side with respect to the quarter-wave plate. Alternatively, two liquid crystal layers sandwiched between transparent substrates are arranged in the optical path on the optical recording medium side with respect to the quarter-wave plate. The liquid crystal molecules constituting each liquid crystal layer are arranged in a fixed direction when no voltage is applied, and the orientation of the liquid crystal molecules is orthogonal to each other. However, the alignment direction of the liquid crystal molecules may deviate from the orthogonal state (90 degrees) as long as the effects of the present invention can be realized, and may be a deviation of about ± 10 degrees.
【0011】このように構成することにより、2つの液
晶層は光源から光記録媒体へ向かう出射光に対して作用
して波面を変化させ、光記録媒体上での集光特性を向上
でき、また光記録媒体で反射し光記録媒体から光検出器
へ向かう出射光に対しても作用して波面を変化させ光検
出器上での集光特性を向上できて、光の利用効率を高め
ることができる。According to this structure, the two liquid crystal layers act on the outgoing light from the light source toward the optical recording medium to change the wavefront, thereby improving the light condensing characteristics on the optical recording medium. It also acts on the outgoing light reflected from the optical recording medium and traveling from the optical recording medium to the photodetector, changing the wavefront and improving the light condensing characteristics on the photodetector, and improving the light use efficiency. it can.
【0012】また、2つの液晶層は、1/4波長板に対
して光源側の光路中に配置され、かつ光源から光記録媒
体へ向かう出射光に対して波面を変化させることができ
る第1の液晶層と、光記録媒体において反射し光記録媒
体から光検出器へ向かう出射光(以下、反射光という)
に対して波面を変化させることができる第2の液晶層
と、であること。この場合、各液晶層に入射する直線偏
光の偏光方向は液晶分子の配向方向と一致していること
が好ましいが、両方向が±10度程度の角度をなしてい
てもよい。このように構成すると、2つの液晶層の厚さ
に制約がなくなり、設計の自由度が増して、好ましい。The two liquid crystal layers are arranged in an optical path on the light source side with respect to the quarter wavelength plate, and can change the wavefront with respect to the outgoing light from the light source toward the optical recording medium. Outgoing light reflected from the optical recording medium toward the photodetector (hereinafter referred to as reflected light)
And a second liquid crystal layer capable of changing the wavefront. In this case, it is preferable that the polarization direction of the linearly polarized light incident on each liquid crystal layer coincides with the alignment direction of the liquid crystal molecules, but both directions may form an angle of about ± 10 degrees. With this configuration, there is no restriction on the thickness of the two liquid crystal layers, and the degree of freedom in design is increased, which is preferable.
【0013】図1に、本発明の光ヘッド装置の一例を示
す。光源である半導体レーザ1からの出射光の波面を変
化させる第1の液晶層100、光記録媒体である光ディ
スク8からの反射光の波面を変化させる第2の液晶層1
01を配置した。2つの液晶層100、101はそれぞ
れ液晶に電圧を印加できるように電極を表面に形成した
透明基板に挟持されている。FIG. 1 shows an example of an optical head device according to the present invention. First liquid crystal layer 100 for changing the wavefront of light emitted from semiconductor laser 1 as a light source, and second liquid crystal layer 1 for changing the wavefront of light reflected from optical disk 8 as an optical recording medium.
01 was arranged. The two liquid crystal layers 100 and 101 are each sandwiched between transparent substrates having electrodes formed on the surface so that a voltage can be applied to the liquid crystal.
【0014】半導体レーザ1からの直線偏光である出射
光はコリメートレンズ30により平行光となり、ビーム
スプリッタ2、液晶層100、101を透過後、1/4
波長板5を透過して円偏光となり、アクチュエータ7に
設置された対物レンズ6により光ディスク8上に集光さ
れる。液晶層100を透過するとき、出射光の波面が変
化する。The outgoing light, which is linearly polarized light from the semiconductor laser 1, becomes parallel light by the collimator lens 30, and after passing through the beam splitter 2 and the liquid crystal layers 100 and 101, becomes 1/4.
The light passes through the wave plate 5 to become circularly polarized light, and is condensed on the optical disk 8 by the objective lens 6 installed on the actuator 7. When transmitting through the liquid crystal layer 100, the wavefront of the emitted light changes.
【0015】光ディスク8により反射された円偏光の出
射光は反射光となり、反射光は再び対物レンズ6および
1/4波長板5を透過し、光源からの出射光とは偏光方
向がほぼ直交する直線偏光となる。液晶層101を透過
するとき、反射光の波面が変化し、ビームスプリッタ2
により反射され、集光レンズ31を透過して光検出器に
集光される。The circularly polarized outgoing light reflected by the optical disk 8 becomes reflected light, and the reflected light passes through the objective lens 6 and the quarter-wave plate 5 again, and the direction of polarization is substantially orthogonal to the outgoing light from the light source. It becomes linearly polarized light. When transmitted through the liquid crystal layer 101, the wavefront of the reflected light changes, and the beam splitter 2
And is condensed on the photodetector through the condenser lens 31.
【0016】光の波面を変化させる液晶層は、例えば図
7に示すように液晶分子28が紙面に平行に配向し、電
極24a、24bが形成された透明基板21a、21b
に挟持され、シール材22によって周辺がシールされて
いるものを用いることができる。ここで、25は絶縁
膜、26は配向膜である。液晶分子28の配向方向と入
射光の偏光方向とが一致する場合、液晶層23に電極2
4a、24bを用いて電圧を印加することで液晶層の実
質的な屈折率が変化し、光の偏光状態をほとんど変化さ
せずに、透過光の波面を変化できる。As shown in FIG. 7, for example, as shown in FIG. 7, the liquid crystal layer which changes the wavefront of light is made of transparent substrates 21a and 21b on which electrodes 24a and 24b are formed and liquid crystal molecules 28 are oriented parallel to the paper surface.
And the periphery thereof is sealed by the sealing material 22. Here, 25 is an insulating film, and 26 is an alignment film. When the alignment direction of the liquid crystal molecules 28 matches the polarization direction of the incident light, the electrode 2
By applying a voltage using 4a and 24b, the substantial refractive index of the liquid crystal layer changes, and the wavefront of the transmitted light can be changed without substantially changing the polarization state of the light.
【0017】ここで、液晶層の液晶分子の配向方向とほ
ぼ直交した偏光方向の光に対しては偏光方向および波面
を変化させることは実質的にない。つまり、半導体レー
ザからの出射光の偏光方向とほぼ直交した配向方向をも
つ第2の液晶層101は出射光の波面に影響せず、ま
た、光ディスクからの反射光の偏光方向とほぼ直交した
配向方向をもつ第1の液晶層100は反射光の波面に影
響しない。Here, the polarization direction and the wavefront of the light having a polarization direction substantially orthogonal to the alignment direction of the liquid crystal molecules in the liquid crystal layer are not substantially changed. That is, the second liquid crystal layer 101 having an alignment direction substantially orthogonal to the polarization direction of the light emitted from the semiconductor laser does not affect the wavefront of the emitted light, and has an alignment substantially orthogonal to the polarization direction of the light reflected from the optical disk. The first liquid crystal layer 100 having a direction does not affect the wavefront of the reflected light.
【0018】ここで、第1の液晶層100、および第2
の液晶層101をそれぞれ挟む透明基板には、光ディス
ク基板の厚み偏差や多層光ディスク再生により発生する
球面収差の補正用として例えば図8に示すような同心円
状に分割された電極や、光ディスクの傾斜(チルト)に
より発生するコマ収差の補正用に分割された図9に示す
ような電極(51〜55)を設ければよい。また、これ
らの電極を組み合わせでもよい。Here, the first liquid crystal layer 100 and the second
For example, concentrically divided electrodes as shown in FIG. 8 for correcting the thickness deviation of the optical disk substrate and the spherical aberration generated by the reproduction of the multilayer optical disk, or the inclination of the optical disk ( The electrodes (51 to 55) divided as shown in FIG. 9 may be provided for correcting the coma generated by the tilt. Further, these electrodes may be combined.
【0019】また、連続的に変化する電圧分布を発生さ
せるための、例えば図10に示す電極を透明基板に形成
してもよい。図10に示すように、透明基板の全表面に
わたって薄膜の一様な透明電極80をまず形成する。次
に発生するそれぞれの収差に対処できる形状の電圧印加
用電極として、複数の給電部材81、82、83を透明
電極80上に設ける。そして、上記の球面収差に対処す
るための所望の電圧分布となる適切な電圧を、それぞれ
の給電部材に引出配線84を通じて、信号1、信号2お
よび信号3として印加することで、連続的な電圧分布を
発生させる。Further, for example, an electrode shown in FIG. 10 for generating a continuously changing voltage distribution may be formed on a transparent substrate. As shown in FIG. 10, a thin transparent electrode 80 is first formed over the entire surface of the transparent substrate. A plurality of power supply members 81, 82, and 83 are provided on the transparent electrode 80 as a voltage application electrode having a shape capable of coping with the respective aberrations that occur next. Then, an appropriate voltage having a desired voltage distribution for coping with the above-mentioned spherical aberration is applied as a signal 1, a signal 2 and a signal 3 to the respective power supply members through the lead-out wiring 84, thereby providing a continuous voltage. Generate a distribution.
【0020】すなわち、発生する収差を補正するよう
に、電極上に複数の給電部材を収差の形状に合わせた形
状の給電部材を設ける。そして、例えば、一方の基板上
に図10に示した給電部材が形成され、対向する他方の
基板面には一様な薄膜電極があるとする。給電部材81
と他方の基板の薄膜電極間に電圧V81を印加する、さ
らに給電部材82と他方の基板の薄膜電極間に電圧V8
2を印加する。電圧V81と電圧V82とは異なるもの
とする。That is, a power supply member having a shape in which a plurality of power supply members are adjusted to the shape of the aberration is provided on the electrode so as to correct the generated aberration. Then, for example, it is assumed that the power supply member shown in FIG. 10 is formed on one substrate, and a uniform thin-film electrode is provided on the other opposing substrate surface. Power supply member 81
And a voltage V81 between the power supply member 82 and the thin film electrode of the other substrate.
2 is applied. It is assumed that the voltage V81 is different from the voltage V82.
【0021】ここで、給電部材81〜83の抵抗値は電
極80の抵抗値より小さくする。すなわち、給電部材に
電圧を印加したとき給電部材は等電位となり、給電部材
間の電極面上には電位差(電圧分布)が発生するように
それぞれの抵抗値を選ぶ。Here, the resistance values of the power supply members 81 to 83 are made smaller than the resistance value of the electrode 80. That is, when a voltage is applied to the power supply members, the power supply members have the same potential, and the respective resistance values are selected such that a potential difference (voltage distribution) occurs on the electrode surface between the power supply members.
【0022】この連続的な電圧分布を発生させること
で、液晶層の屈折率分布を連続的にし、液晶層からの透
過光の波面変化を連続的にできる。この波面変化は、図
8に示す同心円状の分割電極から得られる離散的な波面
変化よりも、実際に発生する収差により近い連続的な波
面変化となって好ましい。特に球面収差を補正する場合
には、光軸より遠い周辺部分の収差の変化量が大きいた
めに、電極の分割を行って離散的な波面変化を発生させ
る方法に比べて、給電部材を形成する方が連続的な波面
変化となって、収差の変化に対応でき好ましい。さら
に、このような連続的な波面変化と分割電極による離散
的な波面変化を発生させるパターンを組み合わせてもよ
いし、複数の収差を補正するように液晶層への電圧印加
分布を組み合わせることもできる。By generating this continuous voltage distribution, the refractive index distribution of the liquid crystal layer can be made continuous, and the wavefront change of the transmitted light from the liquid crystal layer can be made continuous. This wavefront change is preferably a continuous wavefront change closer to the actually generated aberration than the discrete wavefront change obtained from the concentric divided electrodes shown in FIG. In particular, in the case of correcting spherical aberration, since the amount of change in aberration in a peripheral portion far from the optical axis is large, a power supply member is formed as compared with a method in which the electrodes are divided to generate a discrete wavefront change. It is more preferable that a continuous wavefront change be made, which can cope with a change in aberration. Furthermore, a pattern for generating such a continuous wavefront change and a discrete wavefront change by the split electrode may be combined, or a voltage application distribution to the liquid crystal layer may be combined so as to correct a plurality of aberrations. .
【0023】このように、半導体レーザから光ディスク
に向かう出射光は第1の液晶層100で収差が補正さ
れ、光ディスク上で良好な光の集光特性が得られる。ま
た従来の液晶層が1つの方法では光ディスクからの反射
光に対してはこの液晶層は収差補正機能を有さなかっ
た。しかし、本発明におけるように第2の液晶層を加え
この液晶層を用いることで、光ディスクからの反射光の
収差も補正できる。さらに、光検出器上でも良好な集光
特性を示すことができ、フォーカスサーボやトラッキン
グサーボ特性の劣化を防ぐことができる。As described above, the aberration of the light emitted from the semiconductor laser toward the optical disk is corrected by the first liquid crystal layer 100, so that good light focusing characteristics can be obtained on the optical disk. Further, in the conventional method using only one liquid crystal layer, this liquid crystal layer does not have an aberration correcting function for reflected light from an optical disk. However, by adding the second liquid crystal layer and using this liquid crystal layer as in the present invention, the aberration of the light reflected from the optical disk can also be corrected. Further, good light-collecting characteristics can be exhibited on the photodetector, and deterioration of focus servo and tracking servo characteristics can be prevented.
【0024】図1に示す本発明の光ヘッド装置において
は、2つの液晶層は積層してある(図2および図3を用
いて後程詳しく説明する)。また、積層した2つの液晶
層に1/4波長板5をさらに積層することで部品点数を
低減できる。以下、液晶層は透過光の波面を変化させ収
差を補正する機能を有するので、液晶層を2枚の透明基
板で挟んみ、それらを積層した2つの液晶層を液晶収差
補正素子ともいう。In the optical head device of the present invention shown in FIG. 1, two liquid crystal layers are laminated (described in detail later with reference to FIGS. 2 and 3). Further, the number of components can be reduced by further laminating the quarter-wave plate 5 on the two liquid crystal layers. Hereinafter, since the liquid crystal layer has a function of correcting the aberration by changing the wavefront of the transmitted light, the two liquid crystal layers sandwiching the liquid crystal layer between two transparent substrates and laminating them are also referred to as a liquid crystal aberration correction element.
【0025】対物レンズを保持したアクチュエータに液
晶収差補正素子を搭載することにより、トラッキング時
に対物レンズと液晶収差補正素子とが一体に動くと、対
物レンズと液晶収差補正素子の光軸間の位置ズレが発生
せず、収差補正性能の劣化はなく好ましい。By mounting the liquid crystal aberration correcting element on the actuator holding the objective lens, if the objective lens and the liquid crystal aberration correcting element move together during tracking, the positional deviation between the optical axis of the objective lens and the liquid crystal aberration correcting element will increase. Does not occur, and the aberration correction performance is not deteriorated.
【0026】図4に示す本発明の光ヘッド装置の別の例
においては、2つの液晶層のうち第1の液晶層100は
1/4波長板5とともにアクチュエータ7に保持(搭
載)され、第2の液晶層101はアクチュエータ7に保
持(搭載)されていない。液晶層100は主に半導体レ
ーザ1からの出射光の波面変化を発生させ、液晶層10
1は主に光ディスクからの反射光この図4において、図
1と同じ符号の要素は、図1と同じものを意味する。の
波面変化を発生させる。In another example of the optical head device of the present invention shown in FIG. 4, the first liquid crystal layer 100 of the two liquid crystal layers is held (mounted) on the actuator 7 together with the quarter-wave plate 5, and The second liquid crystal layer 101 is not held (mounted) on the actuator 7. The liquid crystal layer 100 mainly generates a wavefront change of the light emitted from the semiconductor laser 1, and the liquid crystal layer 10
In FIG. 4, elements denoted by the same reference numerals as those in FIG. 1 mean the same as those in FIG. Causes a wavefront change.
【0027】液晶層100がアクチュエータに搭載され
ているため、対物レンズ6との位置ずれを起こすことが
なく、さらに重量を低減でき消費電力も抑制できて好ま
しい。反射光の波面変化を発生させる液晶層101は、
液晶層100に比べ要求される収差補正機能は低くても
よいために、対物レンズとは分離して別置きにしても充
分に機能する。Since the liquid crystal layer 100 is mounted on the actuator, no displacement occurs with respect to the objective lens 6 and the weight can be further reduced and the power consumption can be suppressed. The liquid crystal layer 101 that generates the wavefront change of the reflected light is
Since the aberration correction function required as compared with the liquid crystal layer 100 may be lower, it can function sufficiently even if it is separately provided from the objective lens.
【0028】液晶層101は、図4に示すように出射光
と反射光の両方の光路中に設置してもよいし、光ディス
クからの反射光がビームスプリッタ2で分波された後
の、光検出器の前においてもよい。本発明の光ヘッド装
置の他の例として、図6に示すように透明基板間に挟持
した液晶層100と液晶層101とを積層した液晶収差
補正素子をアクチュエータ7に搭載せずに、対物レンズ
6とビームスプリッタ2との間に設置する。この図6に
おいて、図1と同じ符号の要素は、図1と同じものを意
味する。The liquid crystal layer 101 may be provided in both the optical path of the emitted light and the reflected light as shown in FIG. 4, or the light after the reflected light from the optical disc is split by the beam splitter 2. It may be before the detector. As another example of the optical head device of the present invention, as shown in FIG. 6, an objective lens is provided without mounting a liquid crystal aberration correction element in which a liquid crystal layer 100 and a liquid crystal layer 101 sandwiched between transparent substrates are stacked on an actuator 7. 6 and the beam splitter 2. In FIG. 6, the elements having the same reference numerals as those in FIG. 1 mean the same as those in FIG.
【0029】上記の図1、図4および図6に示した本発
明の光ヘッド装置の例は、2つの液晶層は1/4波長板
に対して光源側の光路中に配置したものであり、半導体
レーザからの出射光も、光ディスクからの反射光も液晶
層を透過するときには直線偏光である。In the example of the optical head device of the present invention shown in FIGS. 1, 4 and 6, the two liquid crystal layers are arranged in the optical path on the light source side with respect to the quarter wavelength plate. Both the light emitted from the semiconductor laser and the light reflected from the optical disk are linearly polarized when they pass through the liquid crystal layer.
【0030】これに対して図5に示した本発明の光ヘッ
ド装置の例は、2つの液晶層は1/4波長板に対して光
ディスク側の光路中に配置してある。半導体レーザ1か
らの直線偏光である出射光は、1/4波長板5を透過す
ることによりほぼ円偏光になり液晶収差補正素子(2つ
の液晶層100、101を積層した)を透過する。この
とき液晶収差補正素子は、それぞれの液晶層の液晶分子
の配向方向が直交するように積層されているので、直交
する配向方向に平行な円偏光の2つの偏光成分に対し
て、2つの液晶層は、それぞれの波面を変化させること
ができる。On the other hand, in the example of the optical head device of the present invention shown in FIG. 5, two liquid crystal layers are arranged in the optical path on the optical disk side with respect to the quarter wavelength plate. The outgoing light, which is linearly polarized light from the semiconductor laser 1, passes through the quarter-wave plate 5 and becomes substantially circularly polarized light, and passes through a liquid crystal aberration correction element (two liquid crystal layers 100 and 101 are laminated). At this time, the liquid crystal aberration correcting elements are stacked so that the alignment directions of the liquid crystal molecules of the respective liquid crystal layers are orthogonal to each other. The layers can change their respective wavefronts.
【0031】また、光ディスク8からの円偏光の反射光
に対しても同様に波面を変化させることができる。しか
も、この2つの液晶層と1/4波長板5との組み合わせ
により、光ディスク8からの反射光は1/4波長板5を
通過後に、半導体レーザ1からの出射光の偏光方向と直
交する偏光方向を得ることができ、偏光ビームスプリッ
タ2により高効率で反射光を光検出器9に導くことがで
きる。この図5において、図1と同じ符号の要素は、図
1と同じものを意味する。図5に示す光ヘッド装置の例
では、液晶収差補正素子(2つの液晶層)と1/4波長
板とを分離したが、これらを一体化してアクチュエータ
に搭載してもよいし、アクチュエータに搭載しなくても
よく、光学的機能には大きな差はない。Also, the wavefront can be similarly changed with respect to the circularly polarized reflected light from the optical disk 8. Moreover, the combination of the two liquid crystal layers and the quarter-wave plate 5 allows the reflected light from the optical disk 8 to pass through the quarter-wave plate 5 and then be polarized orthogonal to the polarization direction of the light emitted from the semiconductor laser 1. The direction can be obtained, and the reflected light can be guided to the photodetector 9 with high efficiency by the polarization beam splitter 2. In FIG. 5, elements having the same reference numerals as those in FIG. 1 mean the same elements as those in FIG. In the example of the optical head device shown in FIG. 5, the liquid crystal aberration correcting element (two liquid crystal layers) and the quarter-wave plate are separated, but these may be integrated and mounted on the actuator, or mounted on the actuator. There is no significant difference in optical functions.
【0032】液晶収差補正素子を作成する方法として、
図2に示すように電極24jが形成されたガラス基板2
1cと電極24c(および電極24d)が形成されたガ
ラス基板21dとの周辺部を、シール材22によりシー
ルした後、両ガラス基板間に液晶を注入するなどして液
晶層23aを形成する。同様にガラス基板21dと電極
24kが形成されたガラス基板21eとの周辺部を、シ
ール材22によりシールした後、両ガラス基板間に液晶
を注入するなどして液晶層23bを形成すればよい。As a method of producing a liquid crystal aberration correction element,
Glass substrate 2 on which electrode 24j is formed as shown in FIG.
After sealing the periphery of the glass substrate 21d on which the electrode 1c and the electrode 24c (and the electrode 24d) are formed with the sealing material 22, a liquid crystal layer 23a is formed by injecting a liquid crystal between the two glass substrates. Similarly, after sealing the periphery of the glass substrate 21d and the glass substrate 21e on which the electrode 24k is formed with the sealing material 22, the liquid crystal layer 23b may be formed by injecting liquid crystal between the two glass substrates.
【0033】また、液晶収差補正素子を作成する別の方
法として、図3に示すように、電極24hが形成された
ガラス基板21gと電極24eが形成されたガラス基板
21hとの周辺部を、シール材22によりシールした
後、両ガラス基板間に液晶を注入するなどして液晶層2
3cを形成する。同様に電極24fが形成されガラス基
板21jと電極24gが形成されガラス基板21kとの
周辺部を、シール材22によりシールした後、両ガラス
基板間に液晶を注入するなどして液晶層23dを形成し
てもよい。図2および図3において、5は1/4波長
板、21f、21mはガラス基板である。図2および図
3においては透明基板として、ガラス基板を使用してい
る。As another method of producing a liquid crystal aberration correcting element, as shown in FIG. 3, a peripheral portion of a glass substrate 21g on which an electrode 24h is formed and a glass substrate 21h on which an electrode 24e is formed are sealed. After sealing with the material 22, the liquid crystal layer 2 is formed by injecting liquid crystal between both glass substrates.
3c is formed. Similarly, the periphery of the glass substrate 21j on which the electrode 24f is formed and the electrode 24g is formed and the periphery of the glass substrate 21k is sealed with the sealing material 22, and then a liquid crystal is injected between the two glass substrates to form a liquid crystal layer 23d. May be. 2 and 3, reference numeral 5 denotes a 波長 wavelength plate, and reference numerals 21f and 21m denote glass substrates. 2 and 3, a glass substrate is used as the transparent substrate.
【0034】使用する液晶材料は、ディスプレイ用途な
どに用いられる、例えばネマティック液晶がよい。ま
た、使用する透明基板の材料としては、ガラス、ポリカ
ーボネート系樹脂、アクリル系樹脂、エポキシ系樹脂、
塩化ビニル系樹脂などの基板が使用できるが、耐久性な
どの点からガラス基板が好ましい。The liquid crystal material used is, for example, a nematic liquid crystal used for a display purpose. In addition, as a material of the transparent substrate to be used, glass, polycarbonate resin, acrylic resin, epoxy resin,
A substrate such as a vinyl chloride resin can be used, but a glass substrate is preferable in terms of durability and the like.
【0035】1/4波長板としては、3/4波長板や、
5/4波長板などの1/4波長の奇数の整数倍の位相差
をもつものでもよい。また、波長板の材料としては、水
晶やニオブ酸リチウムのような複屈折性の光学単結晶を
用いてもよいし、高分子液晶やポリカーボネートなどの
有機物薄膜を用いてもよい。As the quarter wavelength plate, a 3/4 wavelength plate,
It may have a phase difference of an odd multiple of a quarter wavelength such as a 5/4 wavelength plate. As the material of the wave plate, a birefringent optical single crystal such as quartz or lithium niobate may be used, or an organic thin film such as a polymer liquid crystal or polycarbonate may be used.
【0036】光検出器により得られる光ディスクの例え
ば再生信号の強度が最適となるように、液晶収差補正素
子(または液晶層)の電極に向けた制御電圧発生手段で
ある補正素子制御回路により電圧が出力される。補正素
子制御回路より出力される電圧は、光ディスクの厚み偏
差量、チルト量、液晶収差補正素子と対物レンズとの位
置ずれなどに応じた電圧であり、液晶収差補正素子の電
極に印加する実質的に変化する電圧となる。The voltage is controlled by a correction element control circuit, which is control voltage generation means for the electrodes of the liquid crystal aberration correction element (or liquid crystal layer), so that the intensity of, for example, a reproduction signal of the optical disk obtained by the photodetector is optimized. Is output. The voltage output from the correction element control circuit is a voltage corresponding to the thickness deviation amount and the tilt amount of the optical disc, the positional deviation between the liquid crystal aberration correction element and the objective lens, and is substantially applied to the electrodes of the liquid crystal aberration correction element. The voltage changes to
【0037】[0037]
【実施例】「例1」本例の光ヘッド装置は、光ディスク
の厚み偏差により生ずる球面収差を補正する液晶収差補
正素子を備えている。対物レンズは光ディスクの厚さが
設計値からずれると球面収差を発生し信号の読み取り精
度が低下する。この球面収差を補正する液晶収差補正素
子を図1の光ヘッド装置の液晶収差補正素子(第1の液
晶層と第2の液晶層を積層したもの)として組み込ん
だ。図3にこの素子の概念図を示した。この液晶収差補
正素子は、第1の液晶層100(23c)と第2の液晶
層101(23d)の2つの液晶層を有し、1/4波長
板5をさらに積層した。EXAMPLE 1 The optical head device of this example is provided with a liquid crystal aberration correcting element for correcting a spherical aberration caused by a thickness deviation of an optical disk. When the thickness of the optical disc deviates from the design value, the objective lens generates spherical aberration, and the signal reading accuracy is reduced. A liquid crystal aberration correcting element for correcting the spherical aberration was incorporated as a liquid crystal aberration correcting element (a laminate of a first liquid crystal layer and a second liquid crystal layer) of the optical head device of FIG. FIG. 3 shows a conceptual diagram of this element. This liquid crystal aberration correction element has two liquid crystal layers, that is, a first liquid crystal layer 100 (23c) and a second liquid crystal layer 101 (23d).
【0038】液晶層100の液晶分子の配向方向は、半
導体レーザ1からの出射光の波面を変化させるように、
半導体レーザ1からの出射光の偏光方向に平行とした。
また、第2の液晶層101の配向方向は、光ディスク8
からの反射光がこの液晶層101に入射するときの偏光
方向とほぼ平行にした(すなわち、液晶層100と液晶
層101の液晶分子の配向方向はそれぞれ直交してい
る)。ここで、光ディスク8からの反射光の偏光方向を
90度回転させるように、1/4波長板5を対物レンズ
6の下となるよう積層した。The orientation direction of the liquid crystal molecules in the liquid crystal layer 100 is changed so as to change the wavefront of the light emitted from the semiconductor laser 1.
The light was emitted from the semiconductor laser 1 in a direction parallel to the polarization direction.
The orientation direction of the second liquid crystal layer 101 is
The reflected light from the liquid crystal layer 101 was substantially parallel to the polarization direction when entering the liquid crystal layer 101 (that is, the alignment directions of the liquid crystal molecules of the liquid crystal layer 100 and the liquid crystal molecules of the liquid crystal layer 101 were orthogonal). Here, the quarter-wave plate 5 was laminated below the objective lens 6 so that the polarization direction of the reflected light from the optical disk 8 was rotated by 90 degrees.
【0039】本例では2つの液晶層を挟む透明基板とし
ての2枚のガラス基板には、液晶層に同じ電圧分布を与
えるように図8に示すように同心円状のITO膜からな
る分割された、同じ形状の透明電極をそれぞれ形成し
た。各分割された透明電極には、光ディスクの厚み偏差
による球面収差を補正するように適切な電圧を印加し
た。In this embodiment, two glass substrates as transparent substrates sandwiching two liquid crystal layers are divided from concentric ITO films as shown in FIG. 8 so as to give the same voltage distribution to the liquid crystal layers. A transparent electrode having the same shape was formed. An appropriate voltage was applied to each of the divided transparent electrodes so as to correct spherical aberration due to thickness deviation of the optical disk.
【0040】対物レンズのNAは0.85とし、光ディ
スクの反射面までのカバー層の厚さは約0.10mm、
0.11mm、0.12mmの3種類の光ディスクで再
生特性を調べた。用いた光ヘッド装置は、光ディスクの
カバー層の厚さ0.10mmで球面収差が最小になるよ
うに調整されたものであった。この光ディスク(カバー
層の厚さ0.10mm)では、2つの液晶層に電圧を印
加しなくても良好な再生特性が得られた。The NA of the objective lens is 0.85, the thickness of the cover layer up to the reflection surface of the optical disk is about 0.10 mm,
The reproduction characteristics of three types of optical disks of 0.11 mm and 0.12 mm were examined. The optical head device used was adjusted so that spherical aberration was minimized when the cover layer of the optical disk had a thickness of 0.10 mm. With this optical disk (cover layer thickness 0.10 mm), good reproduction characteristics were obtained without applying a voltage to the two liquid crystal layers.
【0041】これに対して0.11mmのカバー層の光
ディスクを用いたときは、球面収差の影響で再生特性が
劣化した。液晶層100に印加する電圧分布を調整し、
カバー層の厚み偏差により発生する球面収差とは逆符号
の球面収差を発生させることで光ディスク上での光は良
好な集光特性を示し、再生特性を改善できた。このとき
液晶層101には電圧を印加しなくても実用に耐えうる
再生特性が得られた。On the other hand, when an optical disk having a cover layer of 0.11 mm was used, the reproduction characteristics deteriorated due to the influence of spherical aberration. The voltage distribution applied to the liquid crystal layer 100 is adjusted,
By generating a spherical aberration having a sign opposite to that of the spherical aberration caused by the thickness deviation of the cover layer, the light on the optical disc exhibited good light-collecting characteristics, and the reproduction characteristics were improved. At this time, the liquid crystal layer 101 had a reproduction characteristic that could be used practically without applying a voltage.
【0042】これに対してカバー層の厚さを0.12m
mにしたときは、液晶層100に印加する電圧分布を調
整することで光ディスク上での集光特性は改善された。
しかし、液晶層100のみに電圧を印加しただけでは、
光ディスクからの反射光に対しては収差を補正できない
ため、フォーカスサーボを実施するためのフォーカスエ
ラー信号にオフセットが発生した。そして、フォーカス
サーボ信号のS字カーブが歪み、フォーカスサーボを充
分に実施することが困難で再生特性は劣化した。そこで
液晶層101にも液晶層100と同じ電圧分布を印加す
ることで、光ディスクからの反射光の球面収差も改善さ
れ、上述のフォーカスエラー信号のオフセットや、S字
カーブの歪みも解消され良好な再生特性が得られた。On the other hand, the thickness of the cover layer was 0.12 m.
When it was set to m, the light-collecting characteristics on the optical disk were improved by adjusting the distribution of the voltage applied to the liquid crystal layer 100.
However, simply applying a voltage only to the liquid crystal layer 100 results in
Since the aberration cannot be corrected for the reflected light from the optical disk, an offset occurs in the focus error signal for performing the focus servo. Then, the S-shaped curve of the focus servo signal was distorted, and it was difficult to sufficiently execute the focus servo, and the reproduction characteristics deteriorated. Therefore, by applying the same voltage distribution to the liquid crystal layer 101 as that of the liquid crystal layer 100, the spherical aberration of the reflected light from the optical disk is also improved, and the offset of the focus error signal and the distortion of the S-shaped curve are eliminated, which is favorable. Reproduction characteristics were obtained.
【0043】「例2」本例の光ヘッド装置は、図4に示
すような構成を有する。本例の光ヘッド装置における2
つの液晶層のうち、半導体レーザから出射した直線偏光
に対して波面を変化させることができる第1の液晶層1
00と1/4波長板5とを積層して図4に示すように対
物レンズ6を固定しているアクチュエータ7に搭載し、
また光ディスク8からの反射光の波面を変化させること
ができる第2の液晶層101をアクチュエータに搭載せ
ずに用いた。液晶層100と液晶層101の液晶分子の
配向方向は、互いに直交している。この2つの液晶層1
00、101はそれぞれ例1と同じ形状の電極を形成し
たガラス基板で挟んだ。ここで例1と同じ光ディスクを
用いて再生テストを行った結果、例1とほぼ同等の再生
特性が得られた。また、アクチュエータ7に搭載した液
晶層100は、例1の液晶収差補正素子に比べて重量が
60%程度と軽量化でき、アクチュエータ7への負荷が
減り、高速化や消費電力低減に効果があった。Example 2 The optical head device of this example has a configuration as shown in FIG. 2 in the optical head device of this example
First liquid crystal layer 1 capable of changing a wavefront with respect to linearly polarized light emitted from a semiconductor laser in one liquid crystal layer 1
00 and a quarter-wave plate 5 are stacked and mounted on an actuator 7 fixing an objective lens 6 as shown in FIG.
Further, the second liquid crystal layer 101 capable of changing the wavefront of the reflected light from the optical disk 8 was used without being mounted on the actuator. The alignment directions of the liquid crystal molecules of the liquid crystal layer 100 and the liquid crystal layer 101 are orthogonal to each other. These two liquid crystal layers 1
Samples 00 and 101 were sandwiched between glass substrates on which electrodes having the same shape as in Example 1 were formed. Here, as a result of performing a reproduction test using the same optical disk as in Example 1, reproduction characteristics almost equivalent to those in Example 1 were obtained. Further, the liquid crystal layer 100 mounted on the actuator 7 can be reduced in weight to about 60% as compared with the liquid crystal aberration correction element of Example 1, and the load on the actuator 7 is reduced, which is effective in increasing the speed and reducing power consumption. Was.
【0044】「例3」本例の光ヘッド装置は、図5に示
すような構成を有する。本例では、2つの液晶層を1/
4波長板5に対して光記録媒体側に配置した。半導体レ
ーザ1からの直線偏光の出射光は1/4波長板5を透過
し円偏光になった後、互いに直交した液晶分子の配向方
向を有する第1の液晶層100と第2の液晶層101を
有する液晶収差補正素子を透過し、対物レンズ6で光デ
ィスク8上集光される。集光され光ディスク8で反射さ
れた光は、再び液晶収差補正素子を透過し1/4波長板
5を透過して、出射光の偏光方向とは直交する偏光とな
り、ビームスプリッタ2で反射され集光レンズ31を透
過し光検出器9に導かれた。Example 3 The optical head device of this example has a configuration as shown in FIG. In this example, the two liquid crystal layers are divided by 1 /
It was arranged on the optical recording medium side with respect to the four-wavelength plate 5. Output light of linearly polarized light from the semiconductor laser 1 passes through the quarter-wave plate 5 and becomes circularly polarized light, and then the first liquid crystal layer 100 and the second liquid crystal layer 101 having liquid crystal molecules oriented in mutually orthogonal directions. And is condensed on the optical disk 8 by the objective lens 6. The light condensed and reflected by the optical disk 8 again passes through the liquid crystal aberration correction element, passes through the quarter-wave plate 5, becomes a polarization orthogonal to the polarization direction of the emitted light, and is reflected by the beam splitter 2 and collected. The light passed through the optical lens 31 and was guided to the photodetector 9.
【0045】2つの液晶層のリタデーション値Rdがほ
ぼ等しくし、互いに直交する液晶分子の配向方向を有す
る2つの液晶層を透過することで、この素子を透過する
光の偏光状態を不変にできた。この2つの液晶層のRd
を等しくするためにはそれぞれの液晶層に印加する電圧
を調整してもよいが、同じ種類の液晶で同じ厚さの液晶
層を用いることで、偏光の状態が維持できて好ましく、
同じ厚さの液晶層とした。このようにRdを揃えた液晶
収差補正素子を用いて例1、2と同等の光ディスクの再
生テストを実施した。The two substantially equal retardation values R d of the liquid crystal layer, by passing through the two liquid crystal layers with alignment direction of liquid crystal molecules are orthogonal to each other, can the polarization state of light passing through the element unchanged Was. R d of these two liquid crystal layers
Although the voltage applied to each liquid crystal layer may be adjusted in order to make the same, it is preferable to use a liquid crystal layer of the same type of liquid crystal and the same thickness so that the polarization state can be maintained,
The liquid crystal layers had the same thickness. Thus it was performed the regeneration test equivalent optical disk and the examples 1 and 2 using the liquid crystal aberration correcting element having uniform R d.
【0046】2つの液晶層を透過するときに、それぞれ
の液晶層の液晶分子の配向方向に平行な光の偏光成分の
みが波面を変化できるため、本例のように円偏光でこの
素子に光が入射する場合には、2つの液晶層それぞれに
同じ電圧を印加することで、光の波面を変化させること
ができ、良好な再生特性が得られた。When transmitted through the two liquid crystal layers, only the polarization component of light parallel to the alignment direction of the liquid crystal molecules of each liquid crystal layer can change the wavefront. When light is incident, the same voltage was applied to each of the two liquid crystal layers, whereby the wavefront of light could be changed, and good reproduction characteristics were obtained.
【0047】前述のように、本例では対物レンズを搭載
したアクチュエータに2つの液晶層を有する液晶収差補
正素子を搭載し、1/4波長板をアクチュエータに搭載
しなかった。例1の場合と比べて素子の重量は80%と
なり軽量化できた。また、アクチュエータに搭載しなく
てもよい場合もある。As described above, in this example, the actuator equipped with the objective lens is equipped with the liquid crystal aberration correcting element having two liquid crystal layers, and the quarter wavelength plate is not mounted on the actuator. The weight of the element was reduced to 80% as compared with the case of Example 1 and the weight was reduced. In some cases, it may not be necessary to mount it on the actuator.
【0048】[0048]
【発明の効果】以上説明したように、本発明の光ヘッド
装置においては、2つの液晶層の液晶分子の配向方向が
互いに直交するように積層されているので、一方の液晶
層には光源から光記録媒体に向かう出射光の波面を変化
させ、光記録媒体上での光の集光特性を向上させ、他方
に液晶層には光記録媒体から光検出器に向かう反射光の
波面を変化させて、光検出器上での光の集光特性を向上
させることができ、光の利用効率を向上させることがで
きる。As described above, in the optical head device of the present invention, the two liquid crystal layers are stacked so that the alignment directions of the liquid crystal molecules are orthogonal to each other. By changing the wavefront of the outgoing light toward the optical recording medium and improving the light condensing characteristics on the optical recording medium, the liquid crystal layer changes the wavefront of the reflected light from the optical recording medium toward the photodetector. As a result, it is possible to improve the light collecting characteristics of the light on the photodetector, and to improve the light use efficiency.
【図1】本発明における2つの液晶層が1/4波長板に
対して光源側にある光ヘッド装置の一例を示す概念的断
面図。FIG. 1 is a conceptual cross-sectional view showing an example of an optical head device in which two liquid crystal layers in the present invention are on the light source side with respect to a quarter-wave plate.
【図2】本発明における液晶収差補正素子の一例を示す
断面図。FIG. 2 is a cross-sectional view illustrating an example of a liquid crystal aberration correction element according to the present invention.
【図3】本発明における液晶収差補正素子の別の例を示
す断面図。FIG. 3 is a cross-sectional view showing another example of the liquid crystal aberration correction element according to the present invention.
【図4】本発明における2つの液晶層が1/4波長板に
対して光源側にある光ヘッド装置の別の例を示す概念的
断面図。FIG. 4 is a conceptual cross-sectional view showing another example of the optical head device in which two liquid crystal layers in the present invention are on the light source side with respect to the quarter wavelength plate.
【図5】本発明における2つの液晶層が1/4波長板に
対して光記録媒体側にある光ヘッド装置の例を示す概念
的断面図。FIG. 5 is a conceptual cross-sectional view showing an example of an optical head device in which two liquid crystal layers in the present invention are on the optical recording medium side with respect to a quarter wavelength plate.
【図6】本発明における2つの液晶層が1/4波長板に
対して光源側にある光ヘッド装置の他の例を示す概念的
断面図。FIG. 6 is a conceptual cross-sectional view showing another example of the optical head device in which two liquid crystal layers in the present invention are on the light source side with respect to the quarter wavelength plate.
【図7】液晶層の構成の一例を示す概念的断面図。FIG. 7 is a conceptual cross-sectional view illustrating an example of a configuration of a liquid crystal layer.
【図8】球面収差を補正する本発明における液晶層の分
割電極形状を示す模式的平面図。FIG. 8 is a schematic plan view showing a divided electrode shape of a liquid crystal layer in the present invention for correcting spherical aberration.
【図9】コマ収差を補正する本発明における液晶層の分
割電極形状を示す模式的平面図。FIG. 9 is a schematic plan view showing a shape of a divided electrode of a liquid crystal layer in the present invention for correcting coma aberration.
【図10】球面収差を補正する本発明における液晶層の
透明電極および給電部材形状を示す模式的平面図。FIG. 10 is a schematic plan view showing the shape of a transparent electrode and a power supply member of a liquid crystal layer in the present invention for correcting spherical aberration.
1:半導体レーザ 2:ビームスプリッタ 30:コリメートレンズ 5:1/4波長板 6:対物レンズ 7:アクチュエータ 8:光ディスク 9:光検出器 100、101:液晶層 21a、21b:ガラス基板 22:シール材 23:液晶層 24a、24b:電極 25:絶縁膜 26:配向膜 28:液晶分子 80:透明電極 81〜83:給電部材 84:引出配線 1: Semiconductor laser 2: Beam splitter 30: Collimating lens 5: 1/4 wavelength plate 6: Objective lens 7: Actuator 8: Optical disk 9: Photodetector 100, 101: Liquid crystal layer 21a, 21b: Glass substrate 22: Sealing material 23: Liquid crystal layer 24a, 24b: Electrode 25: Insulating film 26: Alignment film 28: Liquid crystal molecule 80: Transparent electrode 81-83: Power supply member 84: Lead wiring
Claims (4)
に集光させるための対物レンズと、集光され光記録媒体
から反射される出射光を受光する光検出器と、光源と対
物レンズとの間の光路中に1/4波長板とを備える光ヘ
ッド装置において、出射光の波面を変化させるための、
電極付透明基板に挟持された2つの液晶層が、1/4波
長板に対して光源側の、または1/4波長板に対して光
記録媒体側の光路中に配置され、かつ2つの液晶層を構
成する液晶分子の電圧非印加時におけるそれぞれの配向
方向が直交することを特徴とする光ヘッド装置。A light source, an objective lens for condensing light emitted from the light source on an optical recording medium, a photodetector for receiving condensed light emitted from the optical recording medium, and a light source. In an optical head device including a quarter-wave plate in an optical path between the objective lens and the objective lens, the optical head device changes a wavefront of emitted light.
Two liquid crystal layers sandwiched between transparent substrates with electrodes are disposed in an optical path on the light source side with respect to the 波長 wavelength plate or on the optical recording medium side with respect to the 波長 wavelength plate. An optical head device, wherein the orientation directions of liquid crystal molecules constituting a layer when voltage is not applied are orthogonal to each other.
て光源側の光路中に配置され、かつ前記光源から前記光
記録媒体へ向かう出射光に対して波面を変化させること
ができる第1の液晶層と、前記光記録媒体から前記光検
出器へ向かう出射光に対して波面を変化させることがで
きる第2の液晶層と、である請求項1記載の光ヘッド装
置。2. The liquid crystal device according to claim 1, wherein the two liquid crystal layers are arranged in an optical path on a light source side with respect to a quarter wavelength plate, and change a wavefront with respect to light emitted from the light source toward the optical recording medium. 2. The optical head device according to claim 1, comprising: a first liquid crystal layer that can be formed; and a second liquid crystal layer that can change a wavefront with respect to light emitted from the optical recording medium toward the photodetector.
るアクチュエータに保持され、第2の液晶層は前記アク
チュエータに保持されていない請求項2記載の光ヘッド
装置。3. The optical head device according to claim 2, wherein the first liquid crystal layer is held by an actuator holding the objective lens, and the second liquid crystal layer is not held by the actuator.
記録媒体側の光路中に配置されている請求項1記載の光
ヘッド装置。4. The optical head device according to claim 1, wherein the two liquid crystal layers are arranged in an optical path on the optical recording medium side with respect to the quarter wavelength plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001124711A JP2002319172A (en) | 2001-04-23 | 2001-04-23 | Optical head device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001124711A JP2002319172A (en) | 2001-04-23 | 2001-04-23 | Optical head device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002319172A true JP2002319172A (en) | 2002-10-31 |
JP2002319172A5 JP2002319172A5 (en) | 2008-03-27 |
Family
ID=18974052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001124711A Pending JP2002319172A (en) | 2001-04-23 | 2001-04-23 | Optical head device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002319172A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006006684A1 (en) * | 2004-07-15 | 2006-01-19 | Asahi Glass Company, Limited | Liquid crystal lens element and optical head device |
WO2006013901A1 (en) * | 2004-08-04 | 2006-02-09 | Asahi Glass Company, Limited | Liquid crystal lens element and optical head |
JP2006048818A (en) * | 2004-08-04 | 2006-02-16 | Asahi Glass Co Ltd | Liquid crystal lens element, and optical head apparatus |
JP2006085801A (en) * | 2004-09-15 | 2006-03-30 | Asahi Glass Co Ltd | Liquid crystal lens element and optical head device |
JP2007257676A (en) * | 2006-03-20 | 2007-10-04 | Citizen Holdings Co Ltd | Optical pickup and liquid crystal optical element |
US7308752B2 (en) | 2003-06-10 | 2007-12-18 | Sony Corporation | Method for making an optical pickup apparatus having a movable unit supported by springs attached to a fixed unit |
CN100401167C (en) * | 2005-01-10 | 2008-07-09 | 三星电子株式会社 | Liquid crystal device, optical pickup and optical recording and/or reproducing apparatus employing it |
WO2009147805A1 (en) * | 2008-06-06 | 2009-12-10 | 日立マクセル株式会社 | Liquid crystal optical element drive method, optical head device, and liquid crystal optical element |
US7656769B2 (en) | 2005-02-25 | 2010-02-02 | Panasonic Corporation | Optical pickup and objective optical system for use in the same |
JP2011187133A (en) * | 2010-03-10 | 2011-09-22 | Konica Minolta Opto Inc | Optical pickup device |
JP2011187134A (en) * | 2010-03-10 | 2011-09-22 | Konica Minolta Opto Inc | Optical pickup device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001100174A (en) * | 1999-07-07 | 2001-04-13 | Matsushita Electric Ind Co Ltd | Optical device, optical head and optical recording reproducing device |
JP2002251774A (en) * | 2001-02-22 | 2002-09-06 | Sony Corp | Optical pickup and its wave front aberration correcting device |
JP2002304762A (en) * | 2001-04-10 | 2002-10-18 | Nec Corp | Optical head device and optical information recording and reproducing device |
-
2001
- 2001-04-23 JP JP2001124711A patent/JP2002319172A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001100174A (en) * | 1999-07-07 | 2001-04-13 | Matsushita Electric Ind Co Ltd | Optical device, optical head and optical recording reproducing device |
JP2002251774A (en) * | 2001-02-22 | 2002-09-06 | Sony Corp | Optical pickup and its wave front aberration correcting device |
JP2002304762A (en) * | 2001-04-10 | 2002-10-18 | Nec Corp | Optical head device and optical information recording and reproducing device |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7308752B2 (en) | 2003-06-10 | 2007-12-18 | Sony Corporation | Method for making an optical pickup apparatus having a movable unit supported by springs attached to a fixed unit |
US7710535B2 (en) | 2004-07-15 | 2010-05-04 | Asahi Glass Company, Limited | Liquid crystal lens element and optical head device |
WO2006006684A1 (en) * | 2004-07-15 | 2006-01-19 | Asahi Glass Company, Limited | Liquid crystal lens element and optical head device |
WO2006013901A1 (en) * | 2004-08-04 | 2006-02-09 | Asahi Glass Company, Limited | Liquid crystal lens element and optical head |
JP2006048818A (en) * | 2004-08-04 | 2006-02-16 | Asahi Glass Co Ltd | Liquid crystal lens element, and optical head apparatus |
JP4552556B2 (en) * | 2004-08-04 | 2010-09-29 | 旭硝子株式会社 | Liquid crystal lens element and optical head device |
US7773489B2 (en) | 2004-08-04 | 2010-08-10 | Asahi Glass Company, Limited | Liquid crystal lens element and optical head device |
JP2006085801A (en) * | 2004-09-15 | 2006-03-30 | Asahi Glass Co Ltd | Liquid crystal lens element and optical head device |
JP4501611B2 (en) * | 2004-09-15 | 2010-07-14 | 旭硝子株式会社 | Liquid crystal lens element and optical head device |
CN100401167C (en) * | 2005-01-10 | 2008-07-09 | 三星电子株式会社 | Liquid crystal device, optical pickup and optical recording and/or reproducing apparatus employing it |
US7656769B2 (en) | 2005-02-25 | 2010-02-02 | Panasonic Corporation | Optical pickup and objective optical system for use in the same |
JP2007257676A (en) * | 2006-03-20 | 2007-10-04 | Citizen Holdings Co Ltd | Optical pickup and liquid crystal optical element |
WO2009147805A1 (en) * | 2008-06-06 | 2009-12-10 | 日立マクセル株式会社 | Liquid crystal optical element drive method, optical head device, and liquid crystal optical element |
JP2011187133A (en) * | 2010-03-10 | 2011-09-22 | Konica Minolta Opto Inc | Optical pickup device |
JP2011187134A (en) * | 2010-03-10 | 2011-09-22 | Konica Minolta Opto Inc | Optical pickup device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101047830B1 (en) | Liquid Crystal Lens Element and Optical Head Device | |
JP3476989B2 (en) | Optical pickup | |
JP4720507B2 (en) | Liquid crystal lens element and optical head device | |
JP4835437B2 (en) | Liquid crystal lens element and optical head device | |
US20070133372A1 (en) | Optical pickup unit and information recording and reproducing apparatus | |
KR100667790B1 (en) | Liquid crystal device for compensating birefringence and optical pickup and optical recording and/or reproducing apparatus employing it | |
US6532202B1 (en) | Optical element, optical head and optical recording reproducing apparatus | |
JP4501611B2 (en) | Liquid crystal lens element and optical head device | |
JP2002319172A (en) | Optical head device | |
JP4552556B2 (en) | Liquid crystal lens element and optical head device | |
JP5291906B2 (en) | Objective optical element and optical head device | |
JP2001290017A (en) | Diffraction device for two wavelengths and optical head device | |
JP2002251774A (en) | Optical pickup and its wave front aberration correcting device | |
US6992966B2 (en) | Optical pickup device | |
JP2001143303A (en) | Optical head device | |
JP3493335B2 (en) | Optical element, optical head and optical recording / reproducing device | |
JP4695739B2 (en) | Optical element and optical head and optical recording / reproducing apparatus using the same | |
JP2004138900A (en) | Aberration correction element, aberration correction device, information recording and reproducing apparatus, and aberration correction method | |
JP4082072B2 (en) | Optical head device | |
JP4207550B2 (en) | Optical head device | |
JP4082085B2 (en) | Optical head device | |
JPH09320103A (en) | Light pickup device | |
JP2004171644A (en) | Optical pickup | |
JP2000353333A (en) | Optical pickup device and optical disk device | |
JP4211140B2 (en) | Optical element, optical pickup, and optical disc apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080212 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080212 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090703 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100406 |