JP4340512B2 - Lens peripheral processing apparatus and processing method - Google Patents

Lens peripheral processing apparatus and processing method Download PDF

Info

Publication number
JP4340512B2
JP4340512B2 JP2003363685A JP2003363685A JP4340512B2 JP 4340512 B2 JP4340512 B2 JP 4340512B2 JP 2003363685 A JP2003363685 A JP 2003363685A JP 2003363685 A JP2003363685 A JP 2003363685A JP 4340512 B2 JP4340512 B2 JP 4340512B2
Authority
JP
Japan
Prior art keywords
lens
control
cut
grindstone
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003363685A
Other languages
Japanese (ja)
Other versions
JP2005125453A (en
Inventor
勝彦 辰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2003363685A priority Critical patent/JP4340512B2/en
Publication of JP2005125453A publication Critical patent/JP2005125453A/en
Application granted granted Critical
Publication of JP4340512B2 publication Critical patent/JP4340512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

この発明は、レンズの外周加工装置及び外周加工方法に関するもので、回転砥石を用いて外周の一部が切除(カット)された異形レンズを研削加工する装置及び方法に関するものである。   The present invention relates to an outer periphery processing apparatus and an outer periphery processing method for a lens, and more particularly to an apparatus and a method for grinding a deformed lens having a part of the outer periphery cut (cut) using a rotating grindstone.

レンズ芯取機によるレンズの外周加工は、対向するカップ状ホルダでレンズの表裏面を保持して、レンズを光軸回りに回転させながら回転砥石でレンズの外周を研削加工することによって行われる。一般的な円形のレンズでは、回転砥石を定位置に保持してレンズの外周を真円に加工するが、多角形のレンズや一部のファインダー用レンズでは、芯取りを行った後、外周の一部を直線的に切除するカット加工が必要である。   The outer periphery processing of the lens by the lens centering machine is performed by holding the front and back surfaces of the lens with opposing cup-shaped holders and grinding the outer periphery of the lens with a rotating grindstone while rotating the lens around the optical axis. In general circular lenses, the outer periphery of the lens is processed into a perfect circle by holding the rotating grindstone in a fixed position.However, in the case of polygonal lenses and some finder lenses, the outer periphery A cutting process that cuts a part straight is necessary.

従来このカット加工は、図4に示すように、レンズ芯取機でレンズ外周の研削加工を行った後、レンズ5の回転を停止した状態で回転砥石6を図に矢印12で示すY軸方向、即ちレンズ5の接線方向に移動させることによって行っている。   Conventionally, as shown in FIG. 4, this cutting process is performed by grinding the lens outer periphery with a lens centering machine, and then rotating the lens 5 in a state where the rotation of the lens 5 is stopped. That is, it is performed by moving the lens 5 in the tangential direction.

しかし、レンズ芯取機の回転砥石6をY軸方向に移動させる図4の方法は、砥石6を搭載する砥石台をY軸方向に案内するガイドと送り装置とが必要で、装置構造が複雑になる。即ち、レンズ芯取機は、レンズの加工径に対応する位置に回転砥石6を設定するため、およびレンズ表裏面の周縁の面取加工を行うために、回転砥石6をX軸方向(レンズの半径方向)及びZ軸方向(レンズの光軸方向)に移動させる必要があるが、Y軸方向の移動は必要としない。従って、この方法の場合には、レンズ外周のカット加工を行うためのみに、レンズ芯取機に回転砥石6のY軸方向の移動機構を設けてやらねばならず、装置が複雑かつ高価になる。   However, the method of FIG. 4 in which the rotating grindstone 6 of the lens centering machine is moved in the Y-axis direction requires a guide and a feeding device for guiding the grindstone table on which the grindstone 6 is mounted in the Y-axis direction, and the apparatus structure is complicated. become. That is, the lens centering machine moves the rotating grindstone 6 in the X-axis direction (the lens of the lens) in order to set the rotating grindstone 6 at a position corresponding to the processing diameter of the lens and to chamfer the periphery of the lens front and back surfaces. Although it is necessary to move in the radial direction) and the Z-axis direction (the optical axis direction of the lens), movement in the Y-axis direction is not necessary. Therefore, in the case of this method, it is necessary to provide a moving mechanism in the Y-axis direction of the rotating grindstone 6 in the lens centering machine only for cutting the outer periphery of the lens, and the apparatus becomes complicated and expensive. .

この問題を解決する従来技術として、特許文献2には、対向する一対のカップ型治具にてレンズを狭圧保持してレンズの外径を切削する芯取機において、前記芯取機のレンズ軸の回転と砥石軸の外径を切削する方向とを電子カム制御可能なNC装置を用いてレンズの外形を小判型及び角型に加工する自動芯取方法が提案されている。
特開昭59‐19605号公報 特開2000‐218489公報
As a prior art for solving this problem, Patent Document 2 discloses a centering machine that cuts the outer diameter of a lens by holding the lens narrowly with a pair of opposing cup-shaped jigs. There has been proposed an automatic centering method for processing the outer shape of a lens into an oval shape and a square shape by using an NC device capable of electronic cam control of the rotation of the shaft and the direction of cutting the outer diameter of the grindstone shaft.
JP 59-19605 A JP 2000-218489 A

しかし特許文献2に記載された方法においても、カット加工はレンズ外周の真円加工の後に行われており、カットされる部分の真円加工という無駄な円加工を含む2工程の加工となるので、加工効率が悪い。また上記のような従来の加工方法では、直線的なカット部と円形の外周とが繋がる部分に鋭利な角が形成され、加工中や加工後にこの角の部分が欠けたり手を傷つけたりするという問題が発生する。   However, even in the method described in Patent Document 2, the cutting process is performed after the perfect circle process on the outer periphery of the lens, and is a two-step process including a useless circular process such as a perfect circle process for the part to be cut. The processing efficiency is bad. Further, in the conventional processing method as described above, a sharp corner is formed in a portion where the linear cut portion and the circular outer periphery are connected, and the corner portion is chipped or injured during or after the processing. A problem occurs.

そこでこの発明は、DカットやHカットなどと呼ばれている外周に直線的なカット部分を含む異形レンズの芯取り加工において、真円部分とカット部分とを連続的に加工することが可能で、従って真円部分とカット部分との境目に鋭利な角や不連続な段差のない円弧面取(R面取)加工や直線面取(C面取)加工を行うことが可能なレンズの外周加工方法を提供することを課題としている。   Therefore, the present invention can continuously process a perfect circle portion and a cut portion in the centering processing of a deformed lens including a linear cut portion on the outer periphery, which is called D cut or H cut. Therefore, the outer circumference of the lens that can perform circular chamfering (R chamfering) or straight chamfering (C chamfering) without sharp corners or discontinuous steps at the boundary between the perfect circle part and the cut part. The problem is to provide a processing method.

この発明の方法によるレンズの外周加工は、対向端にカップ状のレンズホルダ3、4を備えた一対のワーク軸1a、1bを回転駆動するワーク駆動モータ29と、前記ワーク軸の軸直角方向(X軸方向)に進退する砥石台14に装着されて前記レンズホルダに保持されたレンズの外周を加工する回転砥石6と、前記砥石台を進退させるX送りモータ35と、当該X送りモータ及び前記ワーク駆動モータの回転角を制御するNC装置40とを備えたレンズ芯取機を用いて行われる。   The outer periphery processing of the lens by the method of the present invention includes a workpiece driving motor 29 for rotating and driving a pair of workpiece shafts 1a and 1b having cup-shaped lens holders 3 and 4 at opposite ends, and a direction perpendicular to the axis of the workpiece shaft ( A rotating grindstone 6 that is mounted on a grindstone base 14 that advances and retreats in the X-axis direction and processes the outer periphery of the lens held by the lens holder, an X feed motor 35 that advances and retracts the grindstone base, the X feed motor, and the This is performed using a lens centering machine including an NC device 40 that controls the rotation angle of the work drive motor.

すなわち、本願請求項1の発明に係るレンズの外周加工装置は、対向端にカップ状のレンズホルダ3、4を備えた一対のワーク軸1a、1bを回転駆動するワーク駆動モータ29と、前記ワーク軸の軸直角方向(X軸方向)に進退する砥石台14に装着されて前記レンズホルダに保持されたレンズの外周を加工する回転砥石6と、前記砥石台を進退させるX送りモータ35と、当該X送りモータ及び前記ワーク駆動モータの回転角を制御するNC装置40とを備え、当該NC装置は、レンズ外周の一部にカット部7を加工するときのワーク軸の回転角と砥石位置との関係を制御するカット制御手段と、前記カット部相互ないしカット部と真円部9との角部に円弧面取部8を形成するときのワーク軸の回転角と砥石位置との関係を制御する角部制御手段(円弧面取制御手段)と、前記カット部のレンズ中心からの距離をH、当該カット部とレンズの真円部との境に設ける円弧面取の円弧半径をa、回転砥石6の半径をR、レンズの半径をrとして、cosα=(H-a)/(r-a)、tanβ=(r-a)sinα/(R+H)で与えられるワーク軸の角度α及びβを演算する制御変換角度演算手段とを備えている。 In other words, the lens outer peripheral processing apparatus according to the first aspect of the present invention includes a workpiece driving motor 29 that rotationally drives a pair of workpiece shafts 1a and 1b having cup-shaped lens holders 3 and 4 at opposite ends, and the workpiece. A rotating grindstone 6 that is mounted on a grindstone base 14 that advances and retreats in the direction perpendicular to the axis (X-axis direction) and processes the outer periphery of the lens held by the lens holder; an X feed motor 35 that advances and retracts the grindstone base; An NC device 40 for controlling the rotation angle of the X-feed motor and the work drive motor, and the NC device includes a rotation angle of the work shaft and a grindstone position when machining the cut portion 7 on a part of the outer periphery of the lens. And the relationship between the rotation angle of the workpiece axis and the grinding wheel position when the arc chamfered portion 8 is formed at the corner portion between the cut portions or between the cut portion and the perfect circle portion 9. Corner And control means (arc chamfered control means), the distance from the lens center of the cut portion H, the arc radius of the circular arc chamfer provided at the boundary between the true circle portion of the cutting portion and the lens a, the grinding wheel 6 Control conversion angle calculation that calculates angles α and β of the workpiece axis given by cosα = (Ha) / (ra), tanβ = (ra) sinα / (R + H) where R is the radius and r is the lens radius. Means.

上記請求項1の発明に係る外周加工装置を用いる本願請求項2のレンズの外周加工方法は、ワーク軸の回転角が前記制御変換角度演算手段で演算された制御変換角度に達したときに、回転砥石6を定位置に保持してレンズの外周を真円に加工する真円加工制御から前記角部制御手段の制御による角部制御へ、次いで当該角部制御から前記カット制御手段の制御によるカット制御へ、次いで当該カット制御から再び前記角部制御へ、次いで角部制御から真円加工制御へと制御を変換することにより、真円部9とカット部7との角部に円弧面取部8を有し又は有しないレンズの当該真円部とカット部とをレンズから砥石を離隔させることなく連続加工するというものである。 In the lens outer periphery processing method of the present invention using the outer periphery processing apparatus according to the first aspect of the present invention, when the rotation angle of the workpiece axis reaches the control conversion angle calculated by the control conversion angle calculation means, From the perfect circle processing control for processing the outer periphery of the lens into a perfect circle while holding the rotating grindstone 6 at a fixed position, to the corner control by the control of the corner control means, and then from the corner control to the control of the cut control means. By converting the control to cut control, then from the cut control to the corner control again, and then from the corner control to the perfect circle machining control, the circular chamfer is formed at the corner of the round portion 9 and the cut portion 7. The round part and the cut part of the lens with or without the part 8 are continuously processed without separating the grindstone from the lens.

また本願請求項3の発明に係るレンズの外周加工方法は、前記請求項1記載の外周加工装置を用い、ワーク軸の回転角が前記制御変換角度演算手段で演算された制御変換角度に達する毎に、真円加工制御から、4回の面取半径ゼロの角部制御と、これらの角部制御の間に行われる3回のカット制御と、次の真円加工制御とに制御を変換することにより、真円部9とカット部7との角部に直線面取部11を有するレンズの当該真円部とカット部とをレンズから砥石を離隔させることなく連続加工するというものである。   Further, the lens outer periphery processing method according to the third aspect of the present invention uses the outer periphery processing apparatus according to the first aspect, and each time the rotation angle of the workpiece axis reaches the control conversion angle calculated by the control conversion angle calculation means. Further, the control is converted from the round control to four corner control with zero chamfer radius, three cut control performed between these corner controls, and the next round control. Thus, the perfect circle portion and the cut portion of the lens having the straight chamfered portion 11 at the corner portion between the perfect circle portion 9 and the cut portion 7 are continuously processed without separating the grindstone from the lens.

この発明によれば、円形のレンズの外周の一部を切除するDカットやHカット、あるいは多角形のレンズを得るためのレンズ外周のカット加工を、レンズ外周の真円加工を行うレンズ芯取機上で真円加工と同時にレンズから砥石を離隔させることなく行うことが可能になる。従って、異形レンズのカット加工を芯取り加工と同時に一工程で行うことが可能になると共に、レンズから砥石を離隔させることなく連続的に外周加工してゆくので、真円部とカット部との境を滑らかな円弧や角で接続することが可能で、当該角部に不連続な切削力が働くことによる欠けが生じたり、砥石の離隔と再接触に起因する段差が生じたりするのを避けることができる。   According to the present invention, the lens centering that performs round processing on the outer periphery of the lens in order to cut the outer periphery of the lens in order to obtain a D-cut or H-cut that cuts a part of the outer periphery of the circular lens or a polygonal lens. It becomes possible to carry out without rounding the grindstone from the lens at the same time as processing a perfect circle on the machine. Therefore, it is possible to perform the cutting process of the deformed lens in one step at the same time as the centering process, and the outer periphery is continuously processed without separating the grindstone from the lens. It is possible to connect the boundary with smooth arcs and corners to avoid chipping due to discontinuous cutting force acting on the corners and steps due to separation and re-contact of the grindstone. be able to.

以下、図面を参照して、この発明の実施形態を説明する。図1はこの発明のレンズ芯取機の一例を示す図で、13はコラム、1a及び1bは同一垂直線上に配置された上下のワーク軸、6は砥石、14は砥石台、15はZスライド、40はNC装置である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing an example of a lens centering machine according to the present invention, wherein 13 is a column, 1a and 1b are upper and lower work shafts arranged on the same vertical line, 6 is a grindstone, 14 is a grindstone base, and 15 is a Z slide. , 40 is an NC device.

下ワーク軸1bは、コラム13に回転自在かつ上下動不能に軸支されている。下ワーク軸1bの上端には、上向きカップ状の下ホルダ4が装着され、下端には下従動歯車18が固定されている。上ワーク軸1aは、コラム13に上下移動自在かつ上方に弱い力で付勢して装着された軸受ケース(図示せず)に軸支されており、下端には下向きカップ状の上ホルダ3が装着され、上端には上従動歯車16が固定されている。   The lower work shaft 1b is pivotally supported by the column 13 so as to be rotatable and not movable up and down. An upper cup-shaped lower holder 4 is attached to the upper end of the lower work shaft 1b, and a lower driven gear 18 is fixed to the lower end. The upper work shaft 1a is pivotally supported by a bearing case (not shown) that is mounted on the column 13 so as to be movable up and down and urged upward with a weak force. The upper driven gear 16 is fixed to the upper end.

上従動歯車16の軸心上部には、スラスト軸受が内蔵され、その上方にクランプシリンダ23が配置されている。このクランプシリンダの下向きのロッド24が伸長して、前記スラスト軸受を押圧することにより、上ワーク軸1aが下降して、上ホルダ3と下ホルダ4との間でレンズ5を挟持する。   A thrust bearing is built in the upper part of the shaft center of the upper driven gear 16, and a clamp cylinder 23 is arranged above it. When the downward rod 24 of the clamp cylinder extends and presses the thrust bearing, the upper work shaft 1a is lowered and the lens 5 is sandwiched between the upper holder 3 and the lower holder 4.

ワーク軸1(1a、1b)に隣接して駆動軸28が平行に軸支されており、この駆動軸の下端がサーボモータ29に連結されている。駆動軸28には、上下に駆動歯車30、31が固定されており、それぞれ上下の従動歯車16、18に噛合している。上従動歯車16は、歯幅を大きくしてあり、レンズ5の装脱の際に上ワーク軸1aが上動したときも、上駆動歯車30との噛合が外れないようになっている。   A drive shaft 28 is supported in parallel with the work shaft 1 (1a, 1b), and the lower end of the drive shaft is connected to a servo motor 29. Drive gears 30 and 31 are fixed to the drive shaft 28 in the upper and lower directions, and mesh with the upper and lower driven gears 16 and 18, respectively. The upper driven gear 16 has a larger tooth width so that the upper drive gear 30 is not disengaged even when the upper work shaft 1a is moved upward when the lens 5 is attached or detached.

砥石6は、砥石台14に垂直軸回りに自由回転可能に軸支されている。砥石台14は、直動ガイド33とX方向送りモータ35で回転駆動される送りねじ34とで砥石6の切り込み方向(X方向)に移動位置決め自在にして、Zスライド15に装着されている。Zスライド15は、垂直方向の直動ガイド36及びZ方向送りモータ38で回転駆動される送りねじ37で垂直方向(Z方向)に移動位置決め自在にして、コラム13に装着されている。X方向及びZ方向の送りモータ35、38及び前述したワーク駆動モータ29は、NC装置40によって制御されるサーボモータで、サーボアンプ41a、41b、41cを介してNC装置40でその回転角を制御されている。   The grindstone 6 is pivotally supported on the grindstone base 14 so as to be freely rotatable about a vertical axis. The grindstone base 14 is mounted on the Z slide 15 so that it can be moved and positioned in the cutting direction (X direction) of the grindstone 6 by a linear motion guide 33 and a feed screw 34 that is rotationally driven by an X direction feed motor 35. The Z slide 15 is mounted on the column 13 such that the Z slide 15 can be moved and positioned in the vertical direction (Z direction) by a feed screw 37 rotated by a vertical linear motion guide 36 and a Z direction feed motor 38. The X-direction and Z-direction feed motors 35 and 38 and the above-described work drive motor 29 are servo motors controlled by the NC device 40, and their rotation angles are controlled by the NC device 40 via servo amplifiers 41a, 41b and 41c. Has been.

NC装置40は、指定されたレンズのカット高さHと面取半径aに基づいて制御を変換するときのワーク軸1の角度α、βを演算する制御変換角度演算手段42と、演算したワーク軸1の隣接する制御変換角度の間でワーク軸1の回転角に関連付けて砥石台14をレンズ外周加工位置より小径側の位置に移動させる外周カット制御手段43及び角部制御手段44とを備えている。   The NC device 40 includes a control conversion angle calculation means 42 for calculating the angles α and β of the workpiece shaft 1 when the control is converted based on the specified lens cut height H and chamfer radius a, and the calculated workpiece. An outer peripheral cut control means 43 and a corner control means 44 for moving the grindstone table 14 to a position on the smaller diameter side from the lens outer peripheral processing position in association with the rotation angle of the work shaft 1 between adjacent control conversion angles of the shaft 1 are provided. ing.

レンズのカット部分の高さH(図2参照)とカット部と真円部との境目に設ける円弧面取の半径a(a>=0。a=0では面取部が形成されないが、角部加工への制御変換は行われる。)が指定されたとき、上記制御変換角度演算手段42は、真円と円弧面取との制御変換角度αと円弧面取とカットとの制御変換角度βとを次式で演算する。
cosα=(H-a)/(r-a)
tanβ=(r-a)sinα/(R+H)
ここで、Rは研削砥石の半径、rはレンズの半径である。
Arc chamfer radius a (a> = 0 at the boundary between the height H of the cut portion of the lens (see FIG. 2) and the cut portion and the perfect circle portion (a> = 0. The control conversion angle calculation means 42 controls the control conversion angle α between the perfect circle and the arc chamfer, and the control conversion angle β between the arc chamfer and the cut. And is calculated by the following equation.
cosα = (Ha) / (ra)
tanβ = (ra) sinα / (R + H)
Here, R is the radius of the grinding wheel, and r is the radius of the lens.

また、カット制御手段43は、レンズ中心から砥石中心までの距離Xをカット中心Pを0度とするワーク軸の回転角θに対して式
X=(R+H)/cosθ
の関係となるように砥石台14を制御し、角部制御手段44は式
X=(r-a)cos(α-θ)+(R+a)cosσ
ただし、sinσ=(r-a)sin(α-θ)/(R+a)
の関係となるように砥石台14を制御する。
Further, the cut control means 43 is an expression for the rotation angle θ of the workpiece axis with the distance X from the lens center to the grindstone center and the cut center P being 0 degree.
X = (R + H) / cosθ
The grindstone table 14 is controlled so that the relationship of
X = (ra) cos (α-θ) + (R + a) cosσ
However, sinσ = (ra) sin (α-θ) / (R + a)
The grinding wheel base 14 is controlled so as to satisfy the following relationship.

なお、これらの式の意味するところは、図2に示されている。図中、5は加工されるレンズ、6は回転砥石であり、7はカット高さHのカット部、Pはカット部7の中点、8は面取半径aの円弧面取部、Qは円弧面取部の円弧中心、Aは円弧面取部8と真円部9の接点、Bは円弧面取部8とカット部7との接点である。図に想像線で示す円は半径r−aの円、想像線で示す直線はレンズ中心までの距離がH−aの直線で、この両想像線の交点位置に円弧面取部8の円弧中心Qがある。レンズの回転角θは、カット中心Pを0度としている。なお図2に示したレンズ5の形状は加工後の形状である。   The meanings of these equations are shown in FIG. In the figure, 5 is a lens to be processed, 6 is a rotating grindstone, 7 is a cut portion with a cut height H, P is a midpoint of the cut portion 7, 8 is an arc chamfered portion with a chamfer radius a, and Q is The arc center of the arc chamfered portion, A is a contact point between the arc chamfered portion 8 and the perfect circle portion 9, and B is a contact point between the arc chamfered portion 8 and the cut portion 7. The circle indicated by an imaginary line in the figure is a circle having a radius ra, the straight line indicated by an imaginary line is a straight line having a distance Ha to the center of the lens, and the arc center of the circular chamfered portion 8 is at the intersection of these imaginary lines. There is Q. With respect to the rotation angle θ of the lens, the cut center P is 0 degree. The shape of the lens 5 shown in FIG. 2 is a shape after processing.

図2で、接点Aは直線OQ上にあり、A点を研削するときの砥石中心も直線OQ上にあるから、点Aを研削するときのレンズの回転角αは、
cosα=(H-a)/(r-a)
である。
In FIG. 2, the contact point A is on the straight line OQ, and the grinding wheel center when grinding the point A is also on the straight line OQ. Therefore, the rotation angle α of the lens when grinding the point A is
cosα = (Ha) / (ra)
It is.

接点Bは、点Qから直線OPと平行に引いた線とカット部7との交点であるから、この点Bを砥石が研削するときのレンズの回転角βは、(R+H)tanβ=(r-a)sinαより、
tanβ=(r-a)sinα/(R+H)
である。
Since the contact point B is an intersection of a line drawn in parallel with the straight line OP from the point Q and the cut portion 7, the rotation angle β of the lens when the grindstone grinds this point B is (R + H) tan β = From (ra) sinα,
tanβ = (ra) sinα / (R + H)
It is.

カット部7を加工しているときのレンズ中心から砥石中心までの距離Xは、半径OPを0度とするレンズ回転角をθとして、Xcosθ=R+Hから、
X=(R+H)/cosθ
である。また、円弧面取部8を加工しているときの距離Xは、図2に示すように角度σをとって、
X=(r-a)cos(α-θ)+(R+a)cosσ
で表され、(R+a)sinσ=(r-a)sin(α-θ)であるから、上記角度σは、sinσ=(r-a)sin(α-θ)/(R+a)で求められる。
The distance X from the center of the lens to the center of the grindstone when the cut portion 7 is processed is from Xcosθ = R + H, where θ is the lens rotation angle with the radius OP being 0 degrees,
X = (R + H) / cosθ
It is. Further, the distance X when the circular chamfered portion 8 is processed takes an angle σ as shown in FIG.
X = (ra) cos (α-θ) + (R + a) cosσ
Since (R + a) sinσ = (ra) sin (α−θ), the angle σ is obtained by sinσ = (ra) sin (α−θ) / (R + a).

NC装置40は、θ=−180度〜−αの範囲及びα〜180度の範囲では、真円の芯取加工時の砥石位置、すなわちX=R+rの位置となるように砥石6を制御し、θ=−α〜−βの範囲及びθ=β〜αの範囲では角部制御手段44の指令に従ってワーク駆動モータ29とX送りモータ35とを制御し、またθ=−β〜βの範囲ではカット制御手段43の指令に従ってワーク駆動モータ29とX送りモータ35とを制御する。   The NC device 40 controls the grindstone 6 so that the position of the grindstone during the centering of a perfect circle, that is, the position of X = R + r, is in the range of θ = −180 degrees to −α and α to 180 degrees. In the range of θ = −α to −β and in the range of θ = β to α, the workpiece drive motor 29 and the X feed motor 35 are controlled according to the command of the corner control means 44, and the range of θ = −β to β. Then, the work drive motor 29 and the X feed motor 35 are controlled in accordance with a command from the cut control means 43.

加工するレンズ5は、上ワーク軸1aが上動した状態で、図示しないローダのハンドで上面を真空吸着されて、下ホルダ4上に置かれる。ローダが退避した後、クランプシリンダ23に低圧の空気圧が供給され、レンズ5を上下のホルダ3、4で軽く挟持する。この状態でサーボモータ29を高速回転させると、上下のワーク軸が高速同期回転し、レンズ5はその球面の曲率に従って安定位置に移動し、光軸がワーク軸1a、1bの軸心に一致する。そこでクランプシリンダ23に所定圧の空気圧を供給してレンズ5をクランプし、サーボモータ29を所定の回転数で回転して、砥石6によりレンズ5の外周加工を行う。   The lens 5 to be processed is placed on the lower holder 4 with the upper surface of the upper work shaft 1 a moved upward, with the upper surface being vacuum-sucked by a loader hand (not shown). After the loader is retracted, low pressure air pressure is supplied to the clamp cylinder 23, and the lens 5 is lightly held between the upper and lower holders 3 and 4. When the servo motor 29 is rotated at a high speed in this state, the upper and lower workpiece axes rotate at a high speed, the lens 5 moves to a stable position according to the curvature of the spherical surface, and the optical axis coincides with the axis of the workpiece axes 1a and 1b. . Therefore, the air pressure of a predetermined pressure is supplied to the clamp cylinder 23 to clamp the lens 5, the servo motor 29 is rotated at a predetermined rotation number, and the outer periphery of the lens 5 is processed by the grindstone 6.

外周加工は、真円部分から開始される。ワーク軸をゆっくりと回転させながら砥石中心がレンズ中心からR+rの距離となるまで砥石台14を送り込んで固定し、切り込み量に応じた速度でワーク軸1a、1bを回転させながら真円部の加工を行う。ワーク駆動軸の回転角が−αに達するとNC装置の制御が角部制御手段に切替えられ、更に−βに達するとカット制御手段に切替えられる。角部制御手段44及びカット制御手段43は、上述した関係に従ってワーク駆動モータ29とX送りモータ35の回転角を制御する。このとき、ワークの切り込み量の増加に応じて、ワーク駆動モータの回転をレンズの回転速度が遅くなる方向に変化させる。そしてワーク駆動軸1の回転角がβに達したら、制御を再び角部制御手段44に戻し、更に回転角がにαに達したら、制御を最初の真円加工状態に戻す。   The outer peripheral machining is started from a perfect circle portion. While rotating the workpiece axis slowly, the grinding wheel base 14 is fed and fixed until the center of the grinding wheel reaches the distance R + r from the lens center, and the round part is processed while rotating the workpiece axes 1a and 1b at a speed corresponding to the cutting depth. I do. When the rotation angle of the work drive shaft reaches -α, the control of the NC device is switched to the corner control means, and when it reaches -β, the control is switched to the cut control means. The corner control means 44 and the cut control means 43 control the rotation angles of the work drive motor 29 and the X feed motor 35 in accordance with the relationship described above. At this time, the rotation of the work drive motor is changed in a direction in which the rotation speed of the lens becomes slower in accordance with the increase in the cut amount of the work. When the rotation angle of the workpiece drive shaft 1 reaches β, the control is returned to the corner control means 44 again, and when the rotation angle reaches α, the control is returned to the initial round processing state.

なお、上記の加工は、レンズの1回転で所望の仕上がり寸法にまで加工する必要はなく、レンズ1回転毎にレンズの半径rを所望の仕上がり半径に徐々に近づくように逓減しながら、またカット高さHも所望のカット高さになるように始めはrに近い値から徐々に小さくして最終的に所望のカット高さになるように変化させてゆけばよい。   The above-described processing does not require processing to the desired finished size by one rotation of the lens, and the lens radius r is gradually decreased so as to gradually approach the desired finished radius every time the lens rotates. The height H may be gradually reduced from a value close to r so that the height H becomes a desired cut height, and finally changed to a desired cut height.

以上のようにしてレンズの外周加工が終了したら、サーボモータ29を停止し、クランプシリンダ23の空気圧を開放し、上ワーク軸1aを上動させて、前記ローダの真空吸着により、加工済レンズを搬出する。   When the outer periphery processing of the lens is completed as described above, the servo motor 29 is stopped, the air pressure of the clamp cylinder 23 is released, the upper work shaft 1a is moved up, and the processed lens is removed by vacuum suction of the loader. Take it out.

上記の加工で、面取半径aを0として加工を行えば、真円部9とカット部7との角に面取のないカット加工が実現される。この場合の加工形状は、従来方法による加工形状と同じであるが、真円部9からカット部7へ、またカット部7から真円部9への加工が砥石をレンズから離隔させることなく連続的に行われるので、角部に不連続な切削応力が作用することがなく、加工中における角部の欠けを防止できる。   If the chamfering radius a is set to 0 in the above processing, a cutting process without chamfering at the corners of the perfect circle portion 9 and the cut portion 7 is realized. The processing shape in this case is the same as the processing shape by the conventional method, but the processing from the perfect circle part 9 to the cut part 7 and from the cut part 7 to the perfect circle part 9 is continuous without separating the grindstone from the lens. Therefore, discontinuous cutting stress does not act on the corner portion, and chipping of the corner portion during machining can be prevented.

以上の例は、カット部7の角に円弧面取を行う例であるが、直線面取を行うこともできる。直線面取は、カット加工と同じ接線方向の直線加工であるから、図3に示すように、そのカット高さをG、面取角度をφとすると、直線面取部12の加工は、レンズ中心から砥石中心までの距離Xを、
θ>0では、X=(R+G)/cos(θ+φ)
θ<0では、X=(R+G)/cos(θ−φ)
となる。従って、カット手段43にこれらの数値を指定することにより、直線面取部11の加工が可能である。
The above example is an example in which circular chamfering is performed at the corner of the cut portion 7, but linear chamfering can also be performed. Since the straight chamfering is the same tangential straight line processing as the cutting process, as shown in FIG. 3, when the cutting height is G and the chamfering angle is φ, the processing of the straight chamfering portion 12 is the lens. The distance X from the center to the center of the grinding wheel is
When θ> 0, X = (R + G) / cos (θ + φ)
When θ <0, X = (R + G) / cos (θ−φ)
It becomes. Therefore, the linear chamfered portion 11 can be processed by designating these numerical values in the cutting means 43.

真円加工から直線面取部11のカット加工に制御変換するときは、a=0として真円加工から円弧面取加工へ、円弧面取加工から直線面取部のカット加工へと制御を変換する。変換するときの角度は、
cosα=G/r
tanβ=rsinα/(R+G)
としてφ+α、φ+βで与えられる。
When converting control from round processing to cut processing of the straight chamfer 11, control is converted from round processing to circular chamfering, and control from circular chamfering to cutting of straight chamfered portions with a = 0. To do. The angle when converting is
cosα = G / r
tanβ = rsinα / (R + G)
As φ + α and φ + β.

また、真円部9からカット部7への制御の変換は、カット制御→円弧面取制御→カット制御の手順で行われ、それぞれの制御を変換するときの角度γとδは、図3を参照して、点Bをカット面と面取面との交点とし、レンズ中心Oから面取面に引いた垂線と点Bとの角度をεとして、
Gtanεtanφ=G-H/cosφより
tanε=1/tanφ-H/Gsinφ
よりεが求まるので、この角度εを用いて、
(G+R)tan(γ-φ)=Gtanε
(H+R)tanδ=Htan(φ+ε)
の関係から求めることができる。そして角度γからδの間では砥石中心を
X=Gcos(θ-φ)+Rcos(θ-φ)
の関係で制御してやればよい。なお、カット部7の加工は、前述した円弧面取の場合と同様に、角度−δからδの範囲で
X=(H+R)/cosθ
となるように制御すればよい。
Further, the control conversion from the perfect circle portion 9 to the cut portion 7 is performed in the procedure of cut control → circular chamfering control → cut control. The angles γ and δ when converting each control are shown in FIG. Referring to point B as the intersection of the cut surface and the chamfered surface, and the angle between the perpendicular drawn from the lens center O to the chamfered surface and point B as ε,
From Gtanεtanφ = GH / cosφ
tanε = 1 / tanφ-H / Gsinφ
Since ε is obtained from this, using this angle ε,
(G + R) tan (γ-φ) = Gtanε
(H + R) tanδ = Htan (φ + ε)
It can be obtained from the relationship. And between the angles γ and δ,
X = Gcos (θ-φ) + Rcos (θ-φ)
It is only necessary to control the relationship. The cut portion 7 is processed in the range of the angle −δ to δ as in the case of the circular chamfering described above.
X = (H + R) / cosθ
Control may be performed so that

レンズ芯取機の要部の側面構造と制御系を示す図The figure which shows the side structure and control system of the principal part of the lens centering machine レンズの回転角と回転砥石の位置関係を説明する図The figure explaining the positional relationship between the rotation angle of the lens and the rotating wheel 直線面取を行うときのレンズの回転角と回転砥石の位置関係を説明する図The figure explaining the positional relationship between the rotation angle of the lens and the rotating grindstone when performing straight chamfering 従来のカット加工の一例を示した説明図Explanatory drawing showing an example of conventional cutting

符号の説明Explanation of symbols

1a 上ワーク軸
1b 下ワーク軸
3 上ホルダ
4 下ホルダ
6 砥石
7 カット高さHのカット部
8 面取半径aの円弧面取部
9 真円部
11 直線面取部
14 砥石部
29 サーボモータ
35 X方向送りモータ
40 NC装置
A 円弧面取部8と真円部9の接点
α ワーク軸1の角度
β ワーク軸1の角度
1a Upper workpiece axis
1b Lower work shaft 3 Upper holder 4 Lower holder 6 Grinding stone 7 Cut part with cut height H 8 Arc chamfer part with chamfer radius a 9 Round part
11 Straight chamfer
14 Grinding wheel
29 Servo motor
35 X direction feed motor
40 NC unit A Contact point between circular chamfered part 8 and perfect circle part 9 Angle of workpiece axis 1 Angle of workpiece axis 1

Claims (3)

対向端にカップ状のレンズホルダ(3,4)を備えた一対のワーク軸(1a,1b)を回転駆動するワーク駆動モータ(29)と、前記ワーク軸の軸直角方向に進退する砥石台(14)に装着されて前記レンズホルダに保持されたレンズの外周を加工する回転砥石(6)と、前記砥石台を進退させるX送りモータ(35)と、当該X送りモータ及び前記ワーク駆動モータの回転角を制御するNC装置(40)とを備え、当該NC装置は、レンズ外周の一部を直線的に切除したカット部(7)を加工するときのワーク軸の回転角と砥石位置との関係を制御するカット制御手段と、前記カット部相互ないしカット部と真円部(9)との角部に円弧面取部(8)を形成するときのワーク軸の回転角と砥石位置との関係を制御する角部制御手段と、前記カット部のレンズ中心からの距離をH、当該カット部とレンズの真円部との境に設ける円弧面取の円弧半径をa、前記回転砥石の半径をR、レンズの半径をrとして、cosα=(H-a)/(r-a)、tanβ=(r-a)sinα/(R+H)で与えられるワーク軸の角度(α)及び(β)を演算する制御変換角度演算手段とを備えている、レンズの外周加工装置。 A work drive motor (29) that rotationally drives a pair of work shafts (1a, 1b) provided with cup-shaped lens holders (3,4) at opposite ends, and a grindstone base that moves forward and backward in the direction perpendicular to the axis of the work shaft ( 14) a rotating grindstone (6) for processing the outer periphery of the lens held by the lens holder, an X feed motor (35) for advancing and retracting the grindstone table, and the X feed motor and the work drive motor. An NC device (40) for controlling the rotation angle, and the NC device has a rotation angle of the work shaft and a grinding wheel position when machining a cut portion (7) obtained by linearly cutting a part of the lens outer periphery. Cut control means for controlling the relationship between the rotation angle of the workpiece axis and the grinding wheel position when the arc chamfered portion (8) is formed at the corner portion between the cut portions or between the cut portion and the perfect circle portion (9). a corner control means for controlling the relationship, the distance from the lens center of the cut portion H, the cutting portion and Le Cosα = (Ha) / (ra), tanβ = (ra) sinα, where a is the arc radius of the circular chamfer provided at the boundary with the true circle part of the groove A lens outer peripheral processing apparatus comprising: a control conversion angle calculation means for calculating angles (α) and (β) of a workpiece axis given by / (R + H) . 請求項1記載の外周加工装置を用い、ワーク軸の回転角が前記制御変換角度演算手段が演算した角度に達したときに、回転砥石を定位置に保持してレンズの外周を真円に加工する真円加工制御から前記角部制御による角部制御へ、次いで前記カット制御手段によるカット制御へ、次いで再び前記角部制御へ、次いで前記真円加工制御へと制御を変換することにより、真円部(9)とカット部(7)との角部に円弧面取部(8)を有し又は有しないレンズの当該真円部とカット部とをレンズから砥石を離隔させることなく連続加工する、レンズの外周加工方法。 When the rotation angle of the workpiece axis reaches the angle calculated by the control conversion angle calculation means , the outer periphery of the lens is processed into a perfect circle by holding the rotating grindstone at a fixed position when the rotation angle of the workpiece axis reaches the angle calculated by the control conversion angle calculation means. to the corner control by the corner control roundness machining control, then to the cut control by said cut control means, and then to the corner portion control again, followed by converting the control to the perfect circle machining control, true Continuous processing of the round part and the cut part of the lens with or without the circular chamfered part (8) at the corners of the circular part (9) and the cut part (7) without separating the grindstone from the lens. The outer periphery processing method of a lens. 請求項1記載の外周加工装置を用い、ワーク軸の回転角が前記制御変換角度演算手段が演算した角度に達する毎に、前記真円加工制御から、4回の面取半径ゼロの前記角部制御と、これらの角部制御の間に行われる3回の前記カット制御と、次の前記真円加工制御とに制御を変換することにより、真円部(9)とカット部(7)との角部に直線面取部(11)を有するレンズの当該真円部とカット部とをレンズから砥石を離隔させることなく連続加工する、レンズの外周加工方法。 Using the periphery processing device according to claim 1, in each rotation angle of the workpiece shaft reaches the angle where the control converting angle calculating means is calculated, the roundness machining control, the corners of the four chamfered zero radius control and, with the cut control of three performed between these corners controlled by converting the control to the next of the perfect circle machining control, perfect circle section (9) cutting portion (7) A method for processing an outer periphery of a lens, in which the round portion and the cut portion of the lens having the linear chamfered portion (11) at the corner portion thereof are continuously processed without separating the grindstone from the lens.
JP2003363685A 2003-10-23 2003-10-23 Lens peripheral processing apparatus and processing method Expired - Fee Related JP4340512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363685A JP4340512B2 (en) 2003-10-23 2003-10-23 Lens peripheral processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363685A JP4340512B2 (en) 2003-10-23 2003-10-23 Lens peripheral processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2005125453A JP2005125453A (en) 2005-05-19
JP4340512B2 true JP4340512B2 (en) 2009-10-07

Family

ID=34642932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363685A Expired - Fee Related JP4340512B2 (en) 2003-10-23 2003-10-23 Lens peripheral processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP4340512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101394231B1 (en) * 2012-09-27 2014-05-15 주식회사 휴비츠 Method for processing eyeglass lens

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065739B2 (en) * 2007-04-10 2012-11-07 オリンパス株式会社 Optical element chamfering method, chamfering device
JP6061830B2 (en) 2013-09-27 2017-01-18 オリンパス株式会社 Lens processing apparatus and lens processing method
CN113070763A (en) * 2021-05-06 2021-07-06 重庆市腾龙磨料磨具有限公司 Chamfering grinding machine for round workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101394231B1 (en) * 2012-09-27 2014-05-15 주식회사 휴비츠 Method for processing eyeglass lens

Also Published As

Publication number Publication date
JP2005125453A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP4837448B2 (en) Precision roll lathe
TWI430862B (en) Gear processing machinery
JP4312508B2 (en) Vertical lathe
JP4381780B2 (en) Spiral bevel gear CNC machining apparatus and spiral bevel gear machining method by CNC machining apparatus
JP2006062077A (en) Grinding method and device for profile of workpiece
JP2021164988A (en) Workpiece chamfering device, tooth processing center including the same, and processing method using workpiece chamfering device
JP2002103139A (en) Gear grinding method, turret head for gear grinding, and gear grinding tool
JP5262576B2 (en) Thread groove grinding device rest device and thread groove grinding device
JP4340512B2 (en) Lens peripheral processing apparatus and processing method
JP2005022034A (en) Machine tool
JP2006320970A (en) Machining device
CN1192832C (en) Method and device for working cavity walls in continuous casting crystallizer
JP4712586B2 (en) NC machine tool
TWI597114B (en) Horizontal turning machine for milling machines (1)
WO2021192144A1 (en) Method for manufacturing fresnel lens mold, machining apparatus, and cutting tool
CN211222801U (en) Single-arm engraving machine
JP2014054679A (en) Nc knurling lathe
JPS6254659A (en) Chip receiving-groove machinging device for circumferential cutting tool with hemispherical end section
JP2011083842A (en) Method and apparatus for making groove
JPH1190799A (en) Machine tool for crank pin machining and machining method for crank pin
JP3170483B2 (en) Curved surface processing method
KR200373282Y1 (en) surface grinder for working body
JP4494921B2 (en) Grinder
JP2005007548A (en) Vertical lathe
CN219152409U (en) Multi-arc chamfering device for glass lenses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Ref document number: 4340512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150710

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees