JP4339288B2 - Gas introduction apparatus, vapor phase growth apparatus including the same, and vapor phase growth method using the vapor phase growth apparatus - Google Patents

Gas introduction apparatus, vapor phase growth apparatus including the same, and vapor phase growth method using the vapor phase growth apparatus Download PDF

Info

Publication number
JP4339288B2
JP4339288B2 JP2005211576A JP2005211576A JP4339288B2 JP 4339288 B2 JP4339288 B2 JP 4339288B2 JP 2005211576 A JP2005211576 A JP 2005211576A JP 2005211576 A JP2005211576 A JP 2005211576A JP 4339288 B2 JP4339288 B2 JP 4339288B2
Authority
JP
Japan
Prior art keywords
flow
gas
raw material
gas introduction
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005211576A
Other languages
Japanese (ja)
Other versions
JP2007027647A (en
Inventor
修之 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005211576A priority Critical patent/JP4339288B2/en
Publication of JP2007027647A publication Critical patent/JP2007027647A/en
Application granted granted Critical
Publication of JP4339288B2 publication Critical patent/JP4339288B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、ガス導入装置およびそれを備える気相成長装置に関する。   The present invention relates to a gas introduction device and a vapor phase growth apparatus including the same.

2種以上の元素、たとえば元素の周期表における第III族元素と第V族元素とを組合せた化合物半導体は、単体で半導体特性を示すたとえばシリコン(Si)に比べて、禁制帯幅が広く高温動作が可能、電子移動度が高いなどの利点があるけれども、機械的強度が弱く、また厳密な組成制御を必要とするなどの、作製上の難しさを有している。   A compound semiconductor in which two or more elements, for example, a group III element and a group V element in the periodic table of elements are combined, has a wider forbidden band and a higher temperature than silicon (Si), for example, which exhibits semiconductor characteristics alone. Although there are advantages such as being capable of operation and high electron mobility, it has difficulty in fabrication such as low mechanical strength and requiring strict composition control.

このような作製上の難しさを有する化合物半導体を形成する方法としては、加熱される基板上に有機金属化合物をキャリアガスとともに炉内に導入し、基板表面上で、熱分解させるとともに化学反応させて化合物半導体薄膜を形成させる有機金属気相成長法(Metal
Organic Chemical Vapor Deposition;MOCVD法)が用いられている。
As a method of forming a compound semiconductor having such manufacturing difficulties, an organometallic compound is introduced into a furnace together with a carrier gas on a substrate to be heated, and thermally decomposed and chemically reacted on the substrate surface. Metalorganic vapor phase epitaxy (Metal)
Organic Chemical Vapor Deposition (MOCVD method) is used.

基板上に化合物半導体薄膜を形成するMOCVD法には、一般的に横型のCVD炉が用いられる。化合物半導体形成に用いられる横型CVD炉としては、基板の表面全体に均一な組成で均一な厚さの薄膜を形成し得る炉であることが求められる。   A horizontal CVD furnace is generally used for the MOCVD method for forming a compound semiconductor thin film on a substrate. A horizontal CVD furnace used for forming a compound semiconductor is required to be a furnace capable of forming a thin film having a uniform composition and a uniform thickness over the entire surface of a substrate.

図18は従来の横型CVD炉である気相成長装置1の構成を簡略化して示す上面図であり、図19は図18の切断面線A−Aから見た図である。なお、図18では、気相成長装置1の構成を判りやすくするために天板を省略して示す。従来の気相成長装置1では、薄膜を形成する基板2より上流側の反応管3内に、基板面と平行な仕切板4を配設し、その仕切板4の先端部4aの肉厚が連続的に薄くなるように形成することを提案する(特許文献1参照)。   FIG. 18 is a top view showing a simplified configuration of the vapor phase growth apparatus 1 which is a conventional horizontal CVD furnace, and FIG. 19 is a view taken along the section line AA of FIG. In FIG. 18, the top plate is omitted for easy understanding of the configuration of the vapor phase growth apparatus 1. In the conventional vapor phase growth apparatus 1, a partition plate 4 parallel to the substrate surface is disposed in the reaction tube 3 upstream of the substrate 2 on which a thin film is formed, and the thickness of the tip end portion 4 a of the partition plate 4 is large. It is proposed to form the thin film continuously (see Patent Document 1).

図18および図19に示す特許文献1の気相成長装置1では、反応管3の基板2よりも原料ガス流過方向の上流側を、仕切板4で2層の流路5,6(便宜上図19に示す上層を第1流路5、下層を第2流路6と呼ぶ)に仕切り、各流路5,6の原料ガス流過方向上流側の端部であって、反応管3の原料ガス流過方向上流側の端部にそれぞれ形成される第1および第2ガス導入口7,8から、同種または異種の2つの原料ガスがそれぞれ導入される。たとえば化合物半導体としてヒ化ガリウム(GaAs)を形成するとき、キャリアガスに水素ガス(H)を用い、水素ガス+トリメチルガリウム[Ga(CH]と、水素ガス+アルシン(AsH)とが、それぞれ原料ガスとして用いられる。 In the vapor phase growth apparatus 1 of Patent Document 1 shown in FIGS. 18 and 19, two layers of flow paths 5 and 6 (for the sake of convenience) are arranged upstream of the substrate 2 of the reaction tube 3 in the raw material gas flow direction. The upper layer shown in FIG. 19 is partitioned into a first flow path 5 and the lower layer is referred to as a second flow path 6). The same or different two source gases are respectively introduced from the first and second gas inlets 7 and 8 formed at the upstream end of the source gas flow direction. For example, when gallium arsenide (GaAs) is formed as a compound semiconductor, hydrogen gas (H 2 ) is used as a carrier gas, hydrogen gas + trimethylgallium [Ga (CH 3 ) 3 ], and hydrogen gas + arsine (AsH 3 ). Are used as source gases.

気相成長装置1では、第1および第2ガス導入口7,8からそれぞれ導入された原料ガスを各流路ごとに流過させ、仕切板4の原料ガス流過方向先端部4aを通過すると、第1および第2流路5,6を流過した原料ガスが合流する。合流した状態の原料ガスは、高周波電流が通電される高周波コイル9が発生する交番磁界の作用によって加熱される基板2の表面に供給され、熱分解するとともに化学反応して化合物半導体の薄膜を形成する。薄膜形成の原料として使用された後のガスは、さらに流過してガス排出口10から排出される。   In the vapor phase growth apparatus 1, when the raw material gas introduced from the first and second gas introduction ports 7 and 8 is caused to flow through each flow path and passes through the front end 4 a of the raw material gas flow direction of the partition plate 4. The source gases that have passed through the first and second flow paths 5 and 6 join together. The combined source gas is supplied to the surface of the substrate 2 heated by the action of an alternating magnetic field generated by the high-frequency coil 9 to which a high-frequency current is applied, and thermally decomposes and chemically reacts to form a compound semiconductor thin film. To do. The gas after being used as a raw material for forming the thin film further flows and is discharged from the gas discharge port 10.

通常、反応管の流路を複数に仕切る仕切板が設けられると、仕切板のガス流過方向先端部の上流側と下流側とにおけるガス流速差が生じるので、ガスの流れに乱れが生じ、この乱れに起因して薄膜にパーティクルによる欠陥が発生したり、薄膜の組成および厚さの均一性が低下するという問題がある。   Usually, when a partition plate that divides the flow path of the reaction tube into a plurality is provided, a gas flow velocity difference occurs between the upstream side and the downstream side of the gas flow direction front end portion of the partition plate, so that the gas flow is disturbed, Due to this disturbance, there is a problem that defects due to particles are generated in the thin film, and the uniformity of the composition and thickness of the thin film is lowered.

特許文献1で提案される気相成長装置1は、このような問題を解決するものであり、仕切板4のガス流過方向先端部4aの肉厚を連続的に薄くなるように形成することによって、仕切板先端部4aの下流側におけるガス流の渦11発生を抑制し、薄膜の高い成長速度とパーティクルの低減とを図るというものである。   The vapor phase growth apparatus 1 proposed in Patent Document 1 solves such a problem, and is formed such that the thickness of the front end portion 4a of the partition plate 4 in the gas flow direction is continuously reduced. Thus, the generation of the vortex 11 of the gas flow on the downstream side of the front end 4a of the partition plate is suppressed, and the high growth rate of the thin film and the reduction of particles are achieved.

しかしながら、特許文献1の技術には、以下のような問題がある。仕切板先端部4aの肉厚を連続的に薄くすると、全く薄くしない場合と比較して、渦11が発生するガス流速の閾値および同一ガス流速での発生程度を低減することができるけれども、ガス流速条件を高速化するのに伴って仕切板先端部4aの角度をより小さくしなければならないので、仕切板4の大面積にわたって薄くなる先端部4aの剛性の限界、加工上の限界およびコスト上昇などの課題が生じる。   However, the technique of Patent Document 1 has the following problems. If the wall thickness of the front end 4a of the partition plate is continuously reduced, the gas flow rate threshold value at which the vortex 11 is generated and the generation level at the same gas flow rate can be reduced as compared with the case where the partition plate tip portion 4a is not reduced at all. As the flow rate condition is increased, the angle of the partition plate tip 4a must be made smaller. Therefore, the rigidity limit, the processing limit, and the cost increase of the tip portion 4a thinned over a large area of the partition plate 4 are increased. Such issues arise.

また図18および図19に示す気相成長装置1と類似の構成を有し、さらに仕切板の先端部における幅方向の両端側に切欠部を設けることが提案されている(特許文献2参照)。しかしながら、特許文献2の技術においても、仕切板の先端部を連続的に薄くするという構成を含むので、特許文献1と同じ問題がある。   Further, it has been proposed to have a configuration similar to that of the vapor phase growth apparatus 1 shown in FIGS. 18 and 19, and to further provide notches at both ends in the width direction at the front end of the partition plate (see Patent Document 2). . However, the technique of Patent Document 2 also has the same problem as Patent Document 1 because it includes a configuration in which the tip of the partition plate is continuously thinned.

また横型MOCVD炉において、原料ガスを混合し且つ混合ガスの流れを制御するガス絞り部を基板よりも上流側に設け、さらに混合ガスの導入路を基板面にほぼ平行となるように設けることが提案される(特許文献3参照)。特許文献3の装置によれば、第1の原料ガスと第2の原料ガスとが混合された混合ガスは、基板の表面の近傍にまで、該表面に平行に且つ滑らかに供給されるので、基板に高品位な半導体を成膜できるとする。   Further, in the horizontal MOCVD furnace, a gas throttle part for mixing the raw material gas and controlling the flow of the mixed gas is provided on the upstream side of the substrate, and the introduction path of the mixed gas is provided so as to be substantially parallel to the substrate surface. Proposed (see Patent Document 3). According to the apparatus of Patent Document 3, the mixed gas in which the first source gas and the second source gas are mixed is supplied in parallel and smoothly to the surface of the substrate up to the vicinity of the surface. Assume that a high-quality semiconductor can be formed on a substrate.

しかしながら、特許文献3に示される横型MOCVD炉では、混合ガスが流過する導入路と、サブフロー(キャリア)ガスが流過する導入路とを仕切る仕切板のガス流過方向先端部、すなわち混合ガスとサブフロー(キャリア)ガスとの合流部における仕切板の先端部が、仕切板のその他の部分と等厚に形成されるので、合流部の上流側と下流側とにおけるガス流速差が生じ、下流側にガス流の渦が発生して、薄膜の組成、厚さの均一性が低下するという問題がある。   However, in the horizontal MOCVD furnace shown in Patent Document 3, the leading end portion in the gas flow direction of the partition plate that partitions the introduction path through which the mixed gas flows and the introduction path through which the subflow (carrier) gas flows, that is, the mixed gas Since the tip of the partition plate at the junction of the subflow (carrier) gas and the other portion of the partition plate is formed with the same thickness, the difference in gas flow velocity between the upstream side and the downstream side of the junction occurs. There is a problem that the vortex of the gas flow is generated on the side and the uniformity of the composition and thickness of the thin film is lowered.

特開平10−223543号公報JP-A-10-223543 特開2000−277442号公報JP 2000-277442 A 特開2004−63555号公報JP 2004-63555 A

横型MOCVD炉において、複数のガスが合流する仕切板先端部の下流側で生じる渦の発生程度は、仕切板先端部のテーパ角(すなわち、ガス流過方向下流側へ向うのに伴い流路の断面積が増大する流路断面積増大率)と、ガス流速との双方に対する依存性が高いことから、仕切板先端部の下流側近傍にガスが充分に回り込めず、仕切板先端部の下流側が、仕切板先端部の上流側よりも低圧もしくは負圧になることが渦発生の主要な原因であると考えられる。   In a horizontal MOCVD furnace, the degree of vortex generation on the downstream side of the front end of the partition plate where a plurality of gases merge is determined by the taper angle of the front end of the partition plate (i.e., the flow path Since the gas flow velocity is highly dependent on both the gas flow velocity and the gas flow velocity, the gas cannot sufficiently circulate in the vicinity of the downstream side of the front end of the partition plate. It is considered that the main cause of the vortex generation is that the side becomes lower pressure or negative pressure than the upstream side of the front end of the partition plate.

本発明者らは、複数の原料ガスが合流する合流部の下流側において、合流部の上流側よりも低圧もしくは負圧となる領域が発生することを防止することによって、ガス流の渦の発生を低減できるとの知見に基づいて本発明に至ったものである。   The present inventors have prevented the generation of gas flow vortices by preventing the occurrence of a region having a lower pressure or a negative pressure than the upstream side of the joining portion on the downstream side of the joining portion where a plurality of source gases are joined. The present invention has been achieved based on the knowledge that the amount of the above can be reduced.

本発明の目的は、複数の原料ガスをガス流の乱れを生じさせることなく基板の表面へ供給し、つまりは基板上に良質な化合物半導体の薄膜を形成することができるガス導入装置およびそれを備える気相成長装置を提供することである。   An object of the present invention is to supply a plurality of source gases to the surface of a substrate without causing gas flow disturbance, that is, a gas introducing device capable of forming a high-quality compound semiconductor thin film on the substrate and the same It is to provide a vapor phase growth apparatus.

本発明は、処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和に等しいことを特徴とするガス導入装置である。
The present invention is a gas introducing device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on the surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The gas introducing device is characterized by being equal to a sum obtained by adding a height which is a distance in a direction in which the two wall members of each flow path through which a plurality of source gases flow is opposed.

また本発明は、処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
仕切板の厚さは、原料ガスが流過する上流側から下流側へ向うのに伴って、連続的に減少するように形成されることを特徴とするガス導入装置である
The present invention is also a gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on the surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
The thickness of the partition plate is a gas introducing device characterized in that the partition plate is formed so as to continuously decrease as the raw material gas flows from the upstream side to the downstream side.

また本発明は、処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
仕切板の厚さは、原料ガスが流過する上流側から下流側へ向うのに伴って、段階的に減少するように形成されることを特徴とするガス導入装置である
The present invention is also a gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on the surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
The thickness of the partition plate is a gas introduction device that is formed so as to decrease stepwise as the raw material gas flows from the upstream side to the downstream side.

また本発明は、処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
仕切板を2枚含んで3つの流路が形成され、
2枚の仕切板は、
互いに対向する側の面が原料ガス流過方向の先端部まで平面になるように形成されることを特徴とするガス導入装置である
The present invention is also a gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on the surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
Three flow paths are formed including two partition plates,
The two dividers are
The gas introducing device is characterized in that surfaces facing each other are formed so as to be flat up to a tip portion in a raw material gas flow direction.

また本発明は、処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
仕切板は、原料ガスが流過する方向の下流側における少なくとも端部付近が、金属からなることを特徴とするガス導入装置である。
The present invention is also a gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on the surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
The partition plate is a gas introduction device characterized in that at least the vicinity of the end portion on the downstream side in the direction in which the raw material gas flows is made of metal .

また本発明は、前記金属が、ステンレス鋼であることを特徴とする。
また本発明は、処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
ガス導入管の外方に設けられ、ガス導入管を冷却する冷却手段を含むことを特徴とするガス導入装置である。
The present invention, the metal is, you being a stainless steel.
The present invention is also a gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on the surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
A gas introduction apparatus including a cooling unit that is provided outside the gas introduction pipe and cools the gas introduction pipe.

また本発明は、仕切板によって形成される複数の原料ガスがそれぞれ流過する各流路と、仕切板の原料ガス流過方向の先端部を過ぎて複数の原料ガスが合流して形成される1つの合流流路とは、
原料ガスの流過方向に対して垂直な断面における形状が矩形であり、
複数の原料ガスがそれぞれ流過する各流路の原料ガス流過方向に対して垂直な断面積を加算した和と、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路の原料ガス流過方向に対して垂直な断面積とが、等しいことを特徴とするガス導入装置である。
In addition, the present invention is formed by joining a plurality of source gases that pass through each flow path through which a plurality of source gases formed by the partition plate flow, and a front end portion of the partition plate in the source gas flow direction. One confluence channel is
Ri rectangular der shape in cross section perpendicular to the flow-direction of the material gas,
The sum of the cross-sectional areas perpendicular to the source gas flow direction of each flow path through which each of the plurality of source gases flows, and the plurality of source gases merge past the tip of the partition plate in the source gas flow direction. The gas introduction device is characterized in that the cross-sectional area perpendicular to the raw material gas flow direction of one merging channel formed in this manner is equal .

また本発明は、処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
複数の原料ガスがそれぞれ流過する各流路と、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路とは、
放射状に形成されることを特徴とするガス導入装置である
The present invention is also a gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on the surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
Each flow path through which a plurality of source gases flow, and one merged path formed by joining a plurality of source gases past the front end of the partition plate in the source gas flow direction,
The gas introduction device is characterized by being formed in a radial shape.

本発明は、処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる2つの壁部材と、2つの壁部材に対して略垂直かつ対向するように設けられる2つの側壁部材とを有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の厚さは、原料ガスが流過する上流側から下流側へ向うのに伴って連続的または段階的に減少するように形成され、
仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路の原料ガス流過方向に対して垂直な断面積が、
複数の原料ガスがそれぞれ流過する各流路の原料ガス流過方向に対して垂直な断面積を加算した和以下になるように、
仕切板の厚さが連続的または段階的に減少するのに対応して、複数の原料ガスがそれぞれ流過する各流路の前記2つの側壁部材同志が対向する離隔距離を小さくすることを特徴とするガス導入装置である。
The present invention is a gas introducing device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on the surface of a substrate to be processed,
Two wall members provided so as to be opposed to each other and two side wall members provided so as to be substantially perpendicular to and opposed to the two wall members are formed. A gas introduction pipe that forms a flow path for flowing in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The thickness of the partition plate is formed so as to decrease continuously or stepwise as the raw material gas flows from the upstream side to the downstream side,
A cross-sectional area perpendicular to the raw material gas flow direction of one confluence channel formed by joining a plurality of raw material gases past the leading end portion of the raw material gas flow direction of the partition plate,
The sum of the cross-sectional areas perpendicular to the source gas flow direction of each flow path through which each of the plurality of source gases flows is equal to or less than the sum.
Corresponding to the thickness of the partition plate decreasing continuously or stepwise, the separation distance between the two side wall members of each flow path through which a plurality of source gases flow is reduced. This is a gas introduction device.

また本発明は、複数の原料ガスがそれぞれ流過する各流路の原料ガス流過方向に対して垂直な断面積を加算した和と、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路の原料ガス流過方向に対して垂直な断面積とが、等しいことを特徴とする。   Further, the present invention provides a sum obtained by adding a cross-sectional area perpendicular to the flow direction of the raw material gas in each flow path through which a plurality of raw material gases flow, and a plurality of portions past the front end of the flow direction of the raw material gas of the partition plate The cross-sectional area perpendicular | vertical with respect to the raw material gas flow direction of the one confluence | merging flow path formed by combining these raw material gases is equal, It is characterized by the above-mentioned.

本発明は、前記いずれか1つのガス導入装置を備えることを特徴とする気相成長装置である。   The present invention is a vapor phase growth apparatus including any one of the gas introduction devices.

本発明は、前記の気相成長装置を準備し、気相成長装置に備わるガス導入装置によって、処理されるべき基板に原料ガスを導いて供給し、基板の表面に薄膜を形成することを特徴とする気相成長方法である。   The present invention is characterized in that the vapor phase growth apparatus is prepared, and a gas introduction apparatus provided in the vapor phase growth apparatus guides and supplies a source gas to a substrate to be processed to form a thin film on the surface of the substrate. Is a vapor phase growth method.

本発明によれば、被処理基板の表面に薄膜を形成するための原料ガスを導くガス導入装置は、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、ガス導入管の内部空間を原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の高さが、複数の原料ガスがそれぞれ流過する各流路の高さを加算した和以下である構成を有するので、仕切板の上記先端部よりもガス流過方向下流側における渦の発生を抑制することができる。   According to the present invention, a gas introduction device for introducing a raw material gas for forming a thin film on a surface of a substrate to be processed has a gas introduction pipe that forms a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction. And a partition plate that partitions the internal space of the gas introduction pipe into a plurality of flow paths through which a plurality of source gases flow to the middle of the length of the source gas flow direction. A configuration in which the height of one confluence channel formed by joining a plurality of source gases past the tip is less than or equal to the sum of the heights of the respective channels through which the plurality of source gases flow. Since it has, it can suppress generation | occurrence | production of the vortex in the gas flow direction downstream rather than the said front-end | tip part of a partition plate.

た、ガス導入装置は、複数の原料ガスがそれぞれ流過する各流路の高さを加算した和と、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路の高さとが等しい構成を有するので、仕切板の先端部よりも下流側における渦の発生を抑制し、かつガス流速を加減速することなく、一定に保つことができる。 Also, the gas introduction device, a sum obtained by adding the height of each flow path in which a plurality of raw material gas is excessive, respectively stream, a plurality of raw material gas past the feed gas stream over the direction of the distal end portion of the partition plate merges Since the height of one formed confluence channel is equal, the generation of vortices on the downstream side of the front end of the partition plate can be suppressed, and the gas flow rate can be kept constant without acceleration / deceleration. it can.

また本発明によれば、仕切板の厚さは、原料ガスが流過する上流側から下流側へ向うのに伴って、連続的に減少するように形成されるので、隣接する流路を流過して流過層を形成する各層間のガスを、一層滑らかに合流させることができる。   Further, according to the present invention, the thickness of the partition plate is formed so as to decrease continuously as it moves from the upstream side where the raw material gas flows through to the downstream side, so Thus, the gas between the layers forming the flow-through layer can be smoothly joined together.

また本発明によれば、仕切板の厚さは、原料ガスが流過する上流側から下流側へ向うのに伴って、段階的に減少するように形成されるので、厚さが徐々に減少する構成を有する仕切板を低コストで簡易に製作することができる。   Further, according to the present invention, the thickness of the partition plate is formed so as to decrease step by step as the raw material gas flows from the upstream side to the downstream side, so that the thickness gradually decreases. Thus, it is possible to easily produce a partition plate having a configuration to achieve low cost.

また本発明によれば、ガス導入装置は、仕切板を2枚含んで3つの流路が形成され、2枚の仕切板は、互いに対向する側の面が原料ガス流過方向の先端部まで平面になるように形成されるので、シンプルな構造となり、低コストで簡易に製作することができる。   Further, according to the present invention, the gas introduction device includes two partition plates to form three flow paths, and the two partition plates face each other up to the front end portion in the raw material gas flow direction. Since it is formed to be flat, it has a simple structure and can be easily manufactured at low cost.

また本発明によれば、仕切板の原料ガス流過方向の下流側における少なくとも端部付近が金属からなり、その金属がステンレス鋼であることが好ましい。このことによって、仕切板に充分な剛性と高い加工精度を得ることができ、また耐久性に優れる仕切板を低コストで簡易に製作することができる。   According to the present invention, at least the vicinity of the end of the partition plate on the downstream side in the raw material gas flow direction is made of metal, and the metal is preferably stainless steel. Accordingly, sufficient rigidity and high processing accuracy can be obtained for the partition plate, and a partition plate having excellent durability can be easily manufactured at low cost.

また本発明によれば、ガス導入装置には、ガス導入管の外方に設けられてガス導入管を冷却する冷却手段が含まれるので、装置が薄膜形成促進のために加熱昇温される場合であっても、ガス導入管や仕切板を冷却することができ、その熱膨張変形等を抑制することができる。   Further, according to the present invention, since the gas introduction device includes a cooling means provided outside the gas introduction tube to cool the gas introduction tube, the apparatus is heated and heated to promote thin film formation. Even so, the gas introduction pipe and the partition plate can be cooled, and the thermal expansion deformation and the like thereof can be suppressed.

また本発明によれば、仕切板によって形成される複数の原料ガスがそれぞれ流過する各流路と、仕切板の原料ガス流過方向の先端部を過ぎて複数の原料ガスが合流して形成される1つの合流流路とは、原料ガスの流過方向に対して垂直な断面における形状が矩形であるように構成されるので、いわゆる横フロー型の装置において、ガス合流部での渦発生を抑制することができるガス導入装置が実現される。   Further, according to the present invention, each flow path through which a plurality of source gases formed by the partition plate flows and a plurality of source gases merge past the front end portion of the partition plate in the source gas flow direction. The one merged flow path is configured so that the shape in a cross section perpendicular to the flow direction of the raw material gas is rectangular, so in a so-called lateral flow type device, vortex generation at the gas merged portion is generated. A gas introducing device capable of suppressing the above is realized.

た、複数の原料ガスがそれぞれ流過する各流路の原料ガス流過方向に対して垂直な断面積を加算した和と、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路の原料ガス流過方向に対して垂直な断面積とが等しいように構成されるので、いわゆる横フロー型の装置において、ガス合流部での渦発生を抑制することができ、かつガス流速を加減速することなく一定に保つことができるガス導入装置が実現される。
Also, the sum obtained by adding the cross-sectional area perpendicular to the feed gas stream over the direction of each flow channel in which a plurality of raw material gas is excessive respective flow, multiple past the tip of the feed gas stream over the direction of the partition plate material Since the cross-sectional area perpendicular to the raw material gas flow direction of one merging flow path formed by gas merging is equal, in a so-called lateral flow type apparatus, the vortex at the gas merging portion A gas introduction device that can suppress the generation and can keep the gas flow rate constant without acceleration / deceleration is realized.

また本発明によれば、複数の原料ガスがそれぞれ流過する各流路と、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路とは、放射状に形成されるので、たとえば複数の被処理基板に対して放射状にガスを同時に流し、かつガス合流部における渦発生を抑制することができるガス導入装置が実現される。   Further, according to the present invention, each flow path through which a plurality of source gases flow, and one merged path formed by joining a plurality of source gases past the front end portion of the partition plate in the source gas flow direction. Is formed radially, for example, a gas introducing device is realized that can simultaneously flow gas radially to a plurality of substrates to be processed and can suppress the generation of vortices in the gas junction.

本発明によれば、被処理基板の表面に薄膜を形成するための原料ガスを導くガス導入装置は、対向するように設けられる2つの壁部材と、2つの壁部材に対して略垂直かつ対向するように設けられる2つの側壁部材とを有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、仕切板の厚さは、原料ガスが流過する上流側から下流側へ向うのに伴って連続的または段階的に減少するように形成され、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路の原料ガス流過方向に対して垂直な断面積が、複数の原料ガスがそれぞれ流過する各流路の原料ガス流過方向に対して垂直な断面積を加算した和以下になるように、仕切板の厚さが連続的または段階的に減少するのに対応して、複数の原料ガスがそれぞれ流過する各流路の前記2つの側壁部材同志が対向する離隔距離を小さくする構成を有するので、仕切板の先端部よりもガス流過方向下流側における渦の発生を抑制することができる。   According to the present invention, a gas introducing device for introducing a raw material gas for forming a thin film on the surface of a substrate to be processed has two wall members provided so as to face each other, and substantially perpendicular to and opposed to the two wall members. A gas introduction pipe that is formed to have a flow path through which a plurality of different or similar raw material gases flow in a predetermined direction, and an internal space of the gas introduction pipe. And a partition plate that partitions the plurality of flow paths through which the plurality of source gases flow to the middle of the length of the source gas flow direction, and the thickness of the partition plate is from the upstream side to the downstream side where the source gas flows The raw material of one merging channel formed so as to decrease continuously or stepwise as it goes to, and is formed by merging a plurality of source gases past the leading end of the source gas flow direction of the partition plate The cross-sectional area perpendicular to the gas flow direction is Corresponding to the thickness of the partition plate decreasing continuously or step by step so that the cross-sectional area perpendicular to the flow direction of the raw material gas in each flow path is less than the sum. Since the two side wall members of each flow path through which each of the plurality of source gases flow is configured to be spaced apart from each other, the vortex is generated on the downstream side in the gas flow direction from the front end of the partition plate. Can be suppressed.

また本発明によれば、ガス導入装置は、複数の原料ガスがそれぞれ流過する各流路の原料ガス流過方向に対して垂直な断面積を加算した和と、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路の原料ガス流過方向に対して垂直な断面積とが、等しい構成を有するので、仕切板の先端部よりも下流側における渦の発生を抑制し、かつガス流速を加減速することなく、一定に保つことができる。   Further, according to the present invention, the gas introduction device includes the sum of the cross-sectional areas perpendicular to the source gas flow direction of each flow path through which each of the plurality of source gases flows, and the source gas flow rate of the partition plate. Since the cross-sectional area perpendicular to the raw material gas flow direction of a single confluence flow path formed by merging a plurality of raw material gases past the leading end portion in the direction has the same configuration, the leading end portion of the partition plate In addition, the generation of vortices on the downstream side can be suppressed, and the gas flow rate can be kept constant without acceleration / deceleration.

本発明によれば、気相成長装置は、前記いずれかのガス導入装置を備えるので、仕切板で仕切られた各流路を流過するガス流過層の流速について広い設定範囲で、渦を抑制して合流させた原料ガスを基板へ供給し、膜厚および組成が均一な化合物半導体の薄膜を気相成長させることができる。   According to the present invention, since the vapor phase growth apparatus includes any of the gas introduction devices described above, the vortex is generated in a wide setting range with respect to the flow velocity of the gas flow overlayer flowing through each flow path partitioned by the partition plate. A source gas that has been suppressed and merged is supplied to the substrate, and a thin film of a compound semiconductor having a uniform film thickness and composition can be vapor-phase grown.

本発明によれば、前記の気相成長装置を準備し、気相成長装置に備わるガス導入装置によって、処理されるべき基板に原料ガスを導いて供給し、基板の表面に薄膜を形成する。このことによって、原料ガスの合流部付近における渦の発生が抑制されるので、渦近傍での気相反応による不均一な反応生成物の合成を抑制し、原料ガスの利用効率の低下を抑制し、膜質の劣化や不均一性を抑制して、良質な化合物半導体の薄膜を得ることができる。   According to the present invention, the above-mentioned vapor phase growth apparatus is prepared, and the raw material gas is guided and supplied to the substrate to be processed by the gas introduction apparatus provided in the vapor phase growth apparatus, and a thin film is formed on the surface of the substrate. This suppresses the generation of vortices in the vicinity of the merging portion of the source gas, thereby suppressing the synthesis of inhomogeneous reaction products due to the gas phase reaction in the vicinity of the vortex and suppressing the decrease in the utilization efficiency of the source gas. Further, it is possible to obtain a good quality compound semiconductor thin film by suppressing deterioration and non-uniformity of the film quality.

図1は本発明の実施の第1形態であるガス導入装置21を備える気相成長装置20の構成を簡略化して示す上面図であり、図2は図1の切断面線II−IIから見た図である。なお、図1では装置構成を判りやすくするために、ガス導入装置21に備わる2つの壁部材のうちの1つである第1壁部材(天板)23を省略して示す。ガス導入装置21は、気相成長装置20に備えられ、処理されるべき基板22の表面に薄膜を形成するための原料ガスを供給する。   FIG. 1 is a top view showing a simplified configuration of a vapor phase growth apparatus 20 including a gas introduction apparatus 21 according to a first embodiment of the present invention, and FIG. 2 is viewed from a section line II-II in FIG. It is a figure. In FIG. 1, the first wall member (top plate) 23, which is one of the two wall members provided in the gas introduction device 21, is omitted for easy understanding of the device configuration. The gas introduction apparatus 21 is provided in the vapor phase growth apparatus 20 and supplies a source gas for forming a thin film on the surface of the substrate 22 to be processed.

ガス導入装置21は、対向するように設けられる2つの壁部材である第1および第2壁部材23,24と、第1および第2壁部材23,24に対して連接し略垂直かつ対向するように設けられる2つの側壁部材である第1および第2側壁部材25,26とを有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管27と、ガス導入管27の内部に原料ガス流過方向に延びかつ第1および第2壁部材23,24に対して平行に設けられ、ガス導入管27の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路(本実施形態では2つ)に仕切る仕切板28とを含む。   The gas introducing device 21 is connected to the first and second wall members 23 and 24, which are two wall members provided so as to face each other, and the first and second wall members 23 and 24, and is substantially perpendicular and opposed to each other. The first and second side wall members 25 and 26, which are two side wall members provided as described above, are formed, and the gas introduction forms a flow path through which a plurality of different or the same kind of source gases flow in a predetermined direction. The pipe 27 and the gas introduction pipe 27 are provided in parallel to the first and second wall members 23 and 24 and extend in the direction of the raw material gas flow. And a partition plate 28 that partitions into a plurality of flow paths (two in the present embodiment) through which a plurality of source gases flow to the middle of the length in the direction.

ガス導入管27を構成する第1および第2壁部材23,24ならびに第1および第2側壁部材25,26は、たとえば石英からなる。このガス導入管27が備えられる気相成長装置20は、横フロー型の炉であり、第1および第2壁部材23,24は、略水平方向に配して設けられ、第1および第2側壁部材25,26は、第1および第2壁部材23,24に対して連接し略垂直かつ対向するように配して設けられる。したがって、第1および第2壁部材23,24ならびに第1および第2側壁部材25,26によって、外方空間と隔され、原料ガスを予め定める方向に流過させることができる流路であるガス導入管27が構成される。なお、第1壁部材23は第2壁部材24よりも上方に配されるので、第1壁部材23を以後天板23と呼び、第2壁部材24を以後底板24と呼ぶ。   The first and second wall members 23 and 24 and the first and second side wall members 25 and 26 constituting the gas introduction pipe 27 are made of, for example, quartz. The vapor phase growth apparatus 20 provided with the gas introduction pipe 27 is a horizontal flow type furnace, and the first and second wall members 23 and 24 are arranged in a substantially horizontal direction. The side wall members 25, 26 are arranged so as to be connected to the first and second wall members 23, 24 so as to be substantially vertical and opposed to each other. Therefore, the gas which is a flow path which is separated from the outer space by the first and second wall members 23 and 24 and the first and second side wall members 25 and 26 and allows the source gas to flow in a predetermined direction. An introduction pipe 27 is configured. Since the first wall member 23 is disposed above the second wall member 24, the first wall member 23 is hereinafter referred to as a top plate 23, and the second wall member 24 is hereinafter referred to as a bottom plate 24.

ガス導入管27を構成する天板23および底板24は、ガスが導入される側の端部付近がテーパ形状に形成され、天板23および底板24にそれぞれ連接される第1および第2側壁部材25,26も、ガスが導入される側の端部付近では、対向する離隔距離がガスの導入される側の端部へ近づくのに伴って短くなるように設けられる。したがって、ガス導入管27は、ガス流過方向の下流側へ進むのに伴ってガス流路が水平方向に拡大し、その後第1および第2側壁部材25,26の対向する離隔距離として定まる流路幅が一定になるように構成される。ガス導入管27の流路幅が一定の部分が、さらにガス流過方向の下流側まで延びて気相成長装置20の反応管41を構成する。なお、気相成長装置20の反応管41部分の構成については後述する。   The top plate 23 and the bottom plate 24 constituting the gas introduction pipe 27 are formed in a tapered shape in the vicinity of the end portion on the gas introduction side, and are connected to the top plate 23 and the bottom plate 24, respectively. 25 and 26 are also provided in the vicinity of the end portion on the gas introduction side so that the opposing separation distance becomes shorter as the end portion on the gas introduction side approaches. Therefore, in the gas introduction pipe 27, the gas flow path expands in the horizontal direction as it proceeds downstream in the gas flow excess direction, and then the flow determined as the separation distance between the first and second side wall members 25, 26 facing each other. It is configured so that the road width is constant. A portion where the flow path width of the gas introduction pipe 27 is constant extends further to the downstream side in the gas flow direction to constitute the reaction pipe 41 of the vapor phase growth apparatus 20. The configuration of the reaction tube 41 portion of the vapor phase growth apparatus 20 will be described later.

ガス導入管27のガスが導入される側の端部27aには、原料ガスをガス導入管27内へ導入するガス導入口29,30が形成される。前述のように、本実施の形態では、水平方向に延びて設けられる1枚の仕切板28によって、ガス導入管27は上下に2つの流路に仕切られるので、上側の流路を第1流路31と呼び、下側の流路を第2流路32と呼ぶ。したがって、上記の第1流路31に形成されるガス導入口29を第1ガス導入口29と呼び、第2流路32に形成されるガス導入口30を第2ガス導入口30と呼ぶ。   Gas introduction ports 29 and 30 for introducing the raw material gas into the gas introduction pipe 27 are formed at the end portion 27a on the gas introduction pipe 27 where the gas is introduced. As described above, in the present embodiment, the gas introduction pipe 27 is divided into two flow paths up and down by one partition plate 28 that extends in the horizontal direction. The channel 31 is called the lower channel and the second channel 32 is called. Therefore, the gas inlet 29 formed in the first flow path 31 is referred to as a first gas inlet 29, and the gas inlet 30 formed in the second flow path 32 is referred to as a second gas inlet 30.

第1および第2ガス導入口29,30には、短管状の導入接続部材33がそれぞれ接続され、導入接続部材33を介して、気相成長装置20に備わる不図示のガス供給装置から、同種または異種の原料ガスが、第1および第2流路31,32にそれぞれ導入される。   A short tubular introduction connecting member 33 is connected to each of the first and second gas introduction ports 29 and 30, and the same kind is supplied from a gas supply device (not shown) included in the vapor phase growth apparatus 20 via the introduction connecting member 33. Alternatively, different source gases are introduced into the first and second flow paths 31 and 32, respectively.

第1および第2流路31,32にそれぞれ導入される原料ガスとしては、基板22上に形成する薄膜が、たとえばヒ化ガリウムの場合、[トリメチルガリウムと水素ガスとの混合ガス]、および[アルシンと水素ガスとの混合ガス]が挙げられる。これらの混合ガスがそれぞれ充填された高圧ガスボンベから、圧力/流量調整弁を介して、圧力と流量とが調整された混合ガスが、第1および第2流路31,32にそれぞれ導入される。   As source gases introduced into the first and second flow paths 31 and 32, respectively, when the thin film formed on the substrate 22 is gallium arsenide, for example, [a mixed gas of trimethylgallium and hydrogen gas], and [ Mixed gas of arsine and hydrogen gas]. From the high-pressure gas cylinders filled with these mixed gases, the mixed gases whose pressure and flow rate are adjusted are introduced into the first and second flow paths 31 and 32 through the pressure / flow rate adjusting valve, respectively.

ガス導入管27の内部を上下2つの第1および第2流路31,32に仕切る仕切板28は、たとえばステンレス鋼などの金属からなる平板状の部材である。この仕切板28の特徴は、ガス導入管27の流路幅が一定になる部位の付近からガス流過方向下流側の先端部28aまでの部分(ここではこの部分を先端部付近と呼ぶ)において、その厚さが、原料ガスが流過する上流側から下流側へ向うのに伴って、連続的に減少するように形成されることである。本実施形態では、仕切板28は、その先端部付近において、第1流路31に臨む側の面のみが傾斜面になるように研削されて肉厚が連続的に減少するように形成される。   The partition plate 28 that partitions the inside of the gas introduction pipe 27 into upper and lower first and second flow paths 31 and 32 is a flat plate member made of a metal such as stainless steel. The partition plate 28 is characterized in that the portion from the vicinity of the portion where the flow path width of the gas introduction pipe 27 is constant to the distal end portion 28a downstream in the gas flow direction (this portion is referred to as the vicinity of the distal end portion here). The thickness is formed so as to decrease continuously as the raw material gas flows from the upstream side to the downstream side. In the present embodiment, the partition plate 28 is formed so that only the surface facing the first flow path 31 becomes an inclined surface in the vicinity of the front end portion, and the thickness continuously decreases. .

このように仕切板28の先端部付近の肉厚が連続的に減少するように形成されることによって、第1および第2流路31,32をそれぞれ流過して仕切板28の先端部28aを過ぎた原料ガス同志が、滑らかに合流することができる。   In this way, the thickness near the front end of the partition plate 28 is formed so as to continuously decrease, so that the first and second flow paths 31 and 32 flow through the front end 28a of the partition plate 28, respectively. The raw material gases that have passed through can smoothly merge.

さらにガス導入装置21では、仕切板28の原料ガス流過方向の先端部28aを過ぎ、複数の原料ガスをそれぞれ流過させる第1流路31と第2流路32とを合流して形成される1つの合流流路34の天板23と底板24とが対向する方向の距離である高さhが、原料ガスが流過する第1流路31の天板23と底板24とが対向する方向の距離である高さ(h1もしくはh3)と、第2流路32の天板23と底板24とが対向する方向の距離である高さ(h2もしくはh4)とを加算した和(h1+h2もしくはh3+h4)以下(h≦h3+h4≦h1+h2)であることを特徴とする。   Further, the gas introduction device 21 is formed by joining the first flow path 31 and the second flow path 32 that pass through the front end portion 28a of the partition plate 28 in the flow direction of the raw material gas and respectively flow a plurality of raw material gases. The height h, which is the distance in the direction in which the top plate 23 and the bottom plate 24 of one merging flow path 34 face each other, is opposed to the top plate 23 and the bottom plate 24 of the first flow path 31 through which the raw material gas flows. The sum (h1 + h2) or the sum of the height (h1 or h3) that is the distance in the direction and the height (h2 or h4) that is the distance in the direction in which the top plate 23 and the bottom plate 24 of the second flow path 32 face each other. h3 + h4) or less (h ≦ h3 + h4 ≦ h1 + h2).

上記の流路高さの関係を満足することができるように、本実施形態のガス導入装置21においては、仕切板28の先端部付近の肉厚が連続的に減少するのに伴い、仕切板28の傾斜面に対向して配置される天板23の第1流路31に臨む内側の面が、仕切板28の肉厚減少に対応するように、ガス流過方向下流側へ向うのに伴って、第1流路31内へ徐々にかつ連続的にその突出量を増大するように突出して形成される。天板23の第1流路31の内方への連続的な突出量の増大は、本実施形態のように天板23の肉厚を徐々に増すようにして構成されてもよく、またこれに限定されることなく、天板23を曲げ加工することによって傾斜面を有するように形成されるものであってもよい。   In the gas introducing device 21 of the present embodiment, as the thickness of the vicinity of the front end portion of the partition plate 28 continuously decreases, the partition plate can be satisfied so that the above-described flow path height relationship can be satisfied. The inner surface facing the first flow path 31 of the top plate 23 arranged to face the inclined surface 28 is directed toward the downstream side in the gas flow direction so as to correspond to the thickness reduction of the partition plate 28. Along with this, the first flow path 31 is formed so as to gradually and continuously increase its protruding amount. The continuous increase in the amount of protrusion of the top plate 23 inward of the first flow path 31 may be configured to gradually increase the thickness of the top plate 23 as in the present embodiment. Without being limited thereto, the top plate 23 may be formed to have an inclined surface by bending.

なお、第1流路31の1つの流路高さh1は、仕切板28に肉厚を減少させるための傾斜面が形成されない平坦部における流路高さであり、第1流路31のもう1つの流路高さh3は、仕切板28に肉厚を減少させるための傾斜面が形成される部分における流路高さである。第1流路31の1つの流路高さh1と、もう1つの流路高さh3とは、天板23の第1流路31内方への突出形状を調整することによって同一(h1=h3)に形成されることが好ましく、異なる高さとなる場合であっても、もう1つの流路高さh3が1つの流路高さh1よりも小さく(h3<h1)なるように形成される。   Note that one flow path height h1 of the first flow path 31 is a flow path height in a flat portion where an inclined surface for reducing the thickness of the partition plate 28 is not formed. One flow path height h3 is a flow path height in a portion where an inclined surface for reducing the wall thickness is formed on the partition plate 28. One flow path height h1 of the first flow path 31 and the other flow path height h3 are the same by adjusting the protruding shape of the top plate 23 into the first flow path 31 (h1 = h3) is preferably formed, and even when the heights are different, another channel height h3 is formed to be smaller than one channel height h1 (h3 <h1). .

また、第2流路32の1つの流路高さh2は、仕切板28に肉厚を減少させるための傾斜面が形成されない平坦部における流路高さであり、第2流路32のもう1つの流路高さh4は、仕切板28に肉厚を減少させるための傾斜面が形成される部分における流路高さである。ただし、本実施形態では、仕切板28の第2流路32を臨む側の面には傾斜面が形成されずに平坦であるので、1つの流路高さh2ともう1つの流路高さh4とは同一(h2=h4)である。ただし、第2流路32の1つの流路高さh2と、もう1つの流路高さh4とが異なる高さに形成される場合、上記の第1流路31と同様に、もう1つの流路高さh4が、1つの流路高さh2よりも小さく(h4<h2)なるように形成されることが好ましい。   In addition, one flow path height h2 of the second flow path 32 is a flow path height in a flat portion where an inclined surface for reducing the thickness of the partition plate 28 is not formed. One flow path height h4 is a flow path height in a portion where an inclined surface for reducing the wall thickness is formed on the partition plate 28. However, in this embodiment, since the inclined plate is not formed on the surface facing the second flow path 32 of the partition plate 28 and is flat, one flow path height h2 and another flow path height. h4 is the same (h2 = h4). However, when one channel height h2 of the second channel 32 and the other channel height h4 are formed at different heights, another one is formed in the same manner as the first channel 31 described above. The channel height h4 is preferably formed to be smaller than one channel height h2 (h4 <h2).

ガス導入装置21では、仕切板28の先端部28aにおいて、第1流路31を流過した原料ガスと、第2流路32を流過した原料ガスとが、合流流路34のガス流過方向の開始端で合流(複数の原料ガスが仕切板28の先端部28aを過ぎた直近部分において合流するので、以後この部分を合流部と呼ぶことがある)する際、合流部の上流側の流路高さの和が、合流部の下流側における合流流路高さ以下、換言すれば、合流部の下流側における合流流路高さhは、合流部の上流側の流路高さの和(h1+h2もしくはh3+h4)よりも増大しないように構成される。   In the gas introduction device 21, the raw material gas that has flowed through the first flow path 31 and the raw material gas that has flowed through the second flow path 32 at the leading end portion 28 a of the partition plate 28 pass through the gas flow in the merging flow path 34. When merging at the start end of the direction (since a plurality of source gases merge at the nearest portion past the front end portion 28a of the partition plate 28, this portion may hereinafter be referred to as a merging portion). The sum of the channel heights is equal to or less than the merged channel height on the downstream side of the junction, in other words, the junction channel height h on the downstream side of the junction is equal to the channel height on the upstream side of the junction. It is configured not to increase more than the sum (h1 + h2 or h3 + h4).

本実施形態のガス導入装置21では、第1側壁部材25と第2側壁部材26とで形成される流路幅は、合流部の上流側と下流側とで一定になるように形成され、流路高さは、少なくとも合流部の下流側が上流側の流路高さの和よりも増大しないように形成されるので、結果として、ガス流過方向に対して垂直な断面における合流流路34の断面積は、合流部よりも上流側の第1および第2流路31,32のガス流過方向に対して垂直な断面積の和よりも増大しないように形成される。なお、このときの各流路のガス流過方向に対して垂直な断面の形状は、それぞれ矩形を呈する。   In the gas introduction device 21 of the present embodiment, the flow path width formed by the first side wall member 25 and the second side wall member 26 is formed so as to be constant between the upstream side and the downstream side of the joining portion. Since the path height is formed so that at least the downstream side of the merging portion does not increase more than the sum of the upstream channel heights, as a result, the merging channel 34 in a cross section perpendicular to the gas flow direction is obtained. The cross-sectional area is formed so as not to increase more than the sum of the cross-sectional areas perpendicular to the gas flow direction of the first and second flow paths 31 and 32 on the upstream side of the junction. In addition, the shape of the cross section perpendicular | vertical with respect to the gas flow direction of each flow path at this time exhibits a rectangle, respectively.

このことによって、仕切板28の先端部28aの下流側、すなわち合流部の下流側において、流路の拡大に起因する低圧もしくは負圧の領域の発生が防止されるので、これに伴うガス流の乱れすなわち渦の発生が抑制され、均一な状態に合流/混合された原料ガスを基板22へ供給することができる。   This prevents the generation of a low-pressure or negative-pressure region due to the expansion of the flow path on the downstream side of the front end portion 28a of the partition plate 28, that is, the downstream side of the merging portion. Disturbance, that is, generation of vortices is suppressed, and the source gas mixed / mixed in a uniform state can be supplied to the substrate 22.

ガス導入管27は、合流部よりもさらにガス流過方向下流側へ延びて、気相成長装置20の上記反応管41を構成する。反応管41部分における底板24には、合流流路34に臨んで開口部42が形成され、該開口部42を封止するようにして基板22を収容するトレイ43が設けられる。トレイ43は、基板22を載置した状態で、駆動手段によって駆動されるように構成されてもよい。   The gas introduction pipe 27 extends further to the downstream side in the gas flow direction than the junction, and constitutes the reaction pipe 41 of the vapor phase growth apparatus 20. An opening 42 is formed in the bottom plate 24 in the reaction tube 41 portion so as to face the merging flow path 34, and a tray 43 for accommodating the substrate 22 is provided so as to seal the opening 42. The tray 43 may be configured to be driven by a driving unit in a state where the substrate 22 is placed.

反応管41の外方であって、トレイ43の下方には、加熱手段44が設けられる。加熱手段44としては、高周波加熱装置、赤外線加熱装置などを用いることができる。加熱手段44でトレイ43を介して基板22を加熱昇温させ、昇温した基板22に触れる原料ガスの熱分解と化学反応とを促進する。   A heating means 44 is provided outside the reaction tube 41 and below the tray 43. As the heating means 44, a high-frequency heating device, an infrared heating device, or the like can be used. The substrate 22 is heated and heated via the tray 43 by the heating means 44, and the thermal decomposition and chemical reaction of the raw material gas that touches the heated substrate 22 are promoted.

気相成長装置20では、ガス導入装置21によって、ガス流れに乱れすなわち渦が発生せず均一な状態で合流/混合された原料ガスが、合流流路34内にその表面を露出してトレイ43上に載置される基板22に供給されるので、不均一な反応生成物の合成を抑制し、膜厚および組成が均一な良質の化合物半導体の薄膜を気相成長させることができる。   In the vapor phase growth apparatus 20, the raw material gas that is joined / mixed in a uniform state without turbulence, that is, vortex is not generated by the gas introduction device 21, has its surface exposed in the joining flow path 34, and the tray 43. Since it is supplied to the substrate 22 placed thereon, synthesis of non-uniform reaction products can be suppressed, and a high-quality compound semiconductor thin film having a uniform film thickness and composition can be vapor-phase grown.

基板22表面での化合物半導体の薄膜を形成することに用いられた原料ガスは、さらにガス流過方向の下流側へ流過し、反応管41(ガス導入管27)のガス導入側の反対側端部に形成されるガス排出口45から排出され、ガス排出口45に接続される不図示のガス回収装置で所定の処理が施された後、排気される。   The source gas used to form the compound semiconductor thin film on the surface of the substrate 22 flows further downstream in the gas flow direction, and is opposite to the gas introduction side of the reaction tube 41 (gas introduction tube 27). The gas is exhausted from a gas exhaust port 45 formed at the end, subjected to a predetermined process by a gas recovery device (not shown) connected to the gas exhaust port 45, and then exhausted.

なお、第1および第2流路31,32の高さを加算した和(h1+h2もしくはh3+h4)と、合流流路34の高さhとは、等しい(h=h3+h4=h1+h2)ことがより好ましく、このような構成とすることによって、仕切板の先端部よりも下流側における渦の発生を抑制し、かつガス流速を加減速することなく、一定に保つことができる。   The sum (h1 + h2 or h3 + h4) obtained by adding the heights of the first and second flow paths 31 and 32 and the height h of the merge flow path 34 are more preferably equal (h = h3 + h4 = h1 + h2). With such a configuration, the generation of vortices on the downstream side of the front end of the partition plate can be suppressed, and the gas flow rate can be kept constant without acceleration / deceleration.

図3は本発明の実施の第2形態であるガス導入装置51を備える気相成長装置50の構成を簡略化して示す上面図であり、図4は図3の切断面線IV−IVから見た図である。本実施形態のガス導入装置51を備える気相成長装置50は、実施の第1形態であるガス導入装置21を備える気相成長装置20に類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 3 is a top view showing a simplified configuration of a vapor phase growth apparatus 50 including a gas introduction apparatus 51 according to the second embodiment of the present invention, and FIG. 4 is viewed from a section line IV-IV in FIG. It is a figure. The vapor phase growth apparatus 50 including the gas introduction apparatus 51 of the present embodiment is similar to the vapor phase growth apparatus 20 including the gas introduction apparatus 21 according to the first embodiment, and corresponding portions are denoted by the same reference numerals. Therefore, the description is omitted.

ガス導入装置51を備える気相成長装置50において注目すべきは、ガス導入管52の内部空間を第1および第2流路31,32に仕切る仕切板55が、その先端部付近において、第1流路31に臨む側の面と、第2流路32に臨む側の面との両方に、肉厚を減少させるための傾斜部を有することである。   It should be noted in the vapor phase growth apparatus 50 provided with the gas introduction device 51 that the partition plate 55 that partitions the internal space of the gas introduction pipe 52 into the first and second flow paths 31 and 32 is the first in the vicinity of the tip portion. In other words, both the surface facing the flow channel 31 and the surface facing the second flow channel 32 have inclined portions for reducing the thickness.

仕切板55は、第1および第2流路31,32に臨む側に傾斜部がそれぞれ形成されるので、合流流路34の高さhが、合流前の第1および第2流路31,32の流路高さの和(h1+h2もしくはh3+h4)以下になるようにするために、ガス導入装置51では、天板53と底板54との両方が、第1流路31および第2流路32のそれぞれに対して内方に突出するように形成される。   Since the partition plate 55 is formed with inclined portions on the sides facing the first and second flow paths 31 and 32, the height h of the merge flow path 34 is the first and second flow paths 31 and 3 before the merge. In the gas introduction device 51, both the top plate 53 and the bottom plate 54 are connected to the first flow channel 31 and the second flow channel 32 so that the flow rate height is equal to or less than the sum (h1 + h2 or h3 + h4). Are formed so as to protrude inwardly.

仕切板55の両面に傾斜部が形成される場合においても、流路高さは、少なくとも合流部の下流側が上流側の流路高さの和よりも増大しないように形成され、第1側壁部材25と第2側壁部材26とで形成される流路幅は、合流部の上流側と下流側とで一定になるように形成されるので、ガス流過方向に対して垂直な断面における合流流路34の断面積は、合流部よりも上流側の第1および第2流路31,32のガス流過方向に対して垂直な断面積の和よりも増大しないように形成される。このことによって、本実施形態のガス導入装置51を備える気相成長装置50も実施の第1形態のガス導入装置21を備える気相成長装置20と同様の効果を奏することができる。   Even in the case where the inclined portions are formed on both surfaces of the partition plate 55, the flow path height is formed such that at least the downstream side of the merge part does not increase more than the sum of the upstream flow path heights, and the first side wall member 25 and the second side wall member 26 are formed so that the flow path width is constant between the upstream side and the downstream side of the merging portion, so that the merging flow in a cross section perpendicular to the gas flow direction. The cross-sectional area of the passage 34 is formed so as not to increase more than the sum of the cross-sectional areas perpendicular to the gas flow direction of the first and second flow paths 31 and 32 on the upstream side of the junction. As a result, the vapor phase growth apparatus 50 including the gas introduction apparatus 51 of the present embodiment can achieve the same effects as the vapor phase growth apparatus 20 including the gas introduction apparatus 21 of the first embodiment.

図5および図6は、実施の第2形態の変形事例となるガス導入装置を備える気相成長装置の構成を簡略化して示す断面図である。図5に示すガス導入装置61を備える気相成長装置60は、ガス導入管62を仕切る仕切板65の傾斜部における第1および第2流路31,32の流路高さh3,h4が、仕切板65の傾斜部以外の平坦部における第1および第2流路31,32の流路高さh1,h2よりも、それぞれ小さい場合の事例を示す。   5 and 6 are cross-sectional views showing a simplified configuration of a vapor phase growth apparatus including a gas introduction device as a modified example of the second embodiment. The vapor phase growth apparatus 60 provided with the gas introduction apparatus 61 shown in FIG. 5 has flow path heights h3 and h4 of the first and second flow paths 31 and 32 in the inclined portion of the partition plate 65 that partitions the gas introduction pipe 62. An example in which the flow path heights h1 and h2 of the first and second flow paths 31 and 32 in the flat part other than the inclined part of the partition plate 65 are smaller than each other will be described.

このとき、仕切板65の傾斜部において、天板63および底板64が第1および第2流路31,32の内方へ突出する突出量は、ガス流過方向の下流側へ向うのに伴って増大され、このことによって、第1および第2流路31,32の流路高さh3,h4が、ガス流過方向の下流側へ向うのに伴って徐々に減少していくように形成される。   At this time, the amount of protrusion of the top plate 63 and the bottom plate 64 protruding inward of the first and second flow paths 31 and 32 in the inclined portion of the partition plate 65 is directed toward the downstream side in the gas flow direction. As a result, the flow path heights h3 and h4 of the first and second flow paths 31 and 32 are formed so as to gradually decrease toward the downstream side in the gas flow direction. Is done.

一方、図6に示すガス導入装置71を備える気相成長装置70は、ガス導入管72を仕切る仕切板75の傾斜部における第1および第2流路31,32の流路高さh3,h4が、仕切板75の傾斜部以外の平坦部における第1および第2流路31,32の流路高さh1,h2と等しい場合の事例を示す。   On the other hand, the vapor phase growth apparatus 70 provided with the gas introduction device 71 shown in FIG. 6 has the channel heights h3 and h4 of the first and second channels 31 and 32 in the inclined portion of the partition plate 75 that partitions the gas introduction pipe 72. Shows an example in which the channel heights h1 and h2 of the first and second channels 31 and 32 in the flat portion other than the inclined portion of the partition plate 75 are equal.

このとき、仕切板75の傾斜部において、天板73および底板74が第1および第2流路31,32の内方へ突出する突出量は、ガス流過方向の下流側へ向うのに伴って増大されるけれども、その増大量が仕切板75の傾斜部の傾斜に対応するので、第1および第2流路31,32の流路高さh3,h4が、仕切板75の平坦部における流路高さh1,h2と等しくなるように形成される。   At this time, in the inclined portion of the partition plate 75, the amount of protrusion of the top plate 73 and the bottom plate 74 protruding inwardly of the first and second flow paths 31 and 32 is accompanied by going toward the downstream side in the gas flow direction. However, since the increase amount corresponds to the inclination of the inclined portion of the partition plate 75, the channel heights h3 and h4 of the first and second channels 31 and 32 are in the flat portion of the partition plate 75. It is formed to be equal to the flow path heights h1 and h2.

図7は、本発明の実施の第3形態であるガス導入装置81を備える気相成長装置80の構成を簡略化して示す断面図である。本実施形態の気相成長装置80は、実施の第1形態であるガス導入装置21を備える気相成長装置20に類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 7 is a cross-sectional view showing a simplified configuration of a vapor phase growth apparatus 80 including a gas introduction apparatus 81 according to the third embodiment of the present invention. The vapor phase growth apparatus 80 of this embodiment is similar to the vapor phase growth apparatus 20 including the gas introduction device 21 according to the first embodiment, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. .

ガス導入装置81を備える気相成長装置80において注目すべきは、ガス導入管82を2つの第1および第2流路31,32に仕切る仕切板85の厚さが、原料ガスが流過する上流側から下流側へ向うのに伴って、段階的に減少するように形成されることである。   It should be noted that in the vapor phase growth apparatus 80 including the gas introduction apparatus 81, the thickness of the partition plate 85 that divides the gas introduction pipe 82 into the two first and second flow paths 31 and 32 allows the raw material gas to flow. It is formed so as to decrease stepwise as it goes from the upstream side to the downstream side.

ガス導入装置81においては、仕切板85の第1流路31を臨む側の面に、段階的な肉厚減少部分が形成される。したがって、仕切板85の平坦部における第1流路31の流路高さh1に対して、仕切板85の段階的な肉厚減少部分における第1流路31の流路高さh3が増大しないように、天板83の第1流路31に臨む側が、仕切板85の段階的な肉厚減少に対応し、段階的に肉厚が増大するように第1流路31の内方に向って突出して形成される。   In the gas introducing device 81, a stepwise thickness reduction portion is formed on the surface of the partition plate 85 facing the first flow path 31. Therefore, the flow path height h3 of the first flow path 31 in the stepwise thickness reduction portion of the partition plate 85 does not increase with respect to the flow path height h1 of the first flow path 31 in the flat portion of the partition plate 85. As described above, the side of the top plate 83 facing the first flow path 31 corresponds to the stepwise decrease in the thickness of the partition plate 85, and faces inward of the first flow path 31 so that the thickness increases stepwise. Projecting.

なお、仕切板85および天板83の内面に段階的な肉厚変化部を形成すると、当該肉厚変化部において、流路が屈曲的に変更されるので、ガスの流れも屈曲的に変化するけれども、肉厚変化の各段階の変化量が0.5mm以下の程度であれば、ガスの流れに大きな影響を与えることはない。このような段階的に肉厚が減少する仕切板85および天板83は、肉厚を連続的に減少させる場合に比べて加工が容易なので、部材を低コストで簡易に製作することができる。   If a stepwise thickness change portion is formed on the inner surfaces of the partition plate 85 and the top plate 83, the flow path is flexibly changed in the thickness change portion, so that the gas flow also flexibly changes. However, if the amount of change at each stage of thickness change is about 0.5 mm or less, the gas flow is not greatly affected. Since the partition plate 85 and the top plate 83 whose thickness decreases in stages are easier to process than the case where the thickness is continuously decreased, the members can be easily manufactured at low cost.

図8は、本発明の実施の第4形態であるガス導入装置91を備える気相成長装置90の構成を簡略化して示す断面図である。本実施の形態のガス導入装置91を備える気相成長装置90は、実施の第3形態のガス導入装置81を備える気相成長装置80に類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 8 is a cross-sectional view showing a simplified configuration of a vapor phase growth apparatus 90 including a gas introduction apparatus 91 according to the fourth embodiment of the present invention. The vapor phase growth apparatus 90 including the gas introduction apparatus 91 according to the present embodiment is similar to the vapor phase growth apparatus 80 including the gas introduction apparatus 81 according to the third embodiment, and corresponding portions are denoted by the same reference numerals. Therefore, the description is omitted.

ガス導入装置91において注目すべきは、ガス導入管92の内部空間を第1および第2流路31,32に仕切る仕切板95が、第1流路31に臨む側の面と、第2流路32に臨む側の面との両方に、段階的な肉厚減少部分が形成されることである。   It should be noted in the gas introduction device 91 that the partition plate 95 that divides the internal space of the gas introduction pipe 92 into the first and second flow paths 31 and 32, the surface facing the first flow path 31, and the second flow A stepwise thickness reduction portion is formed on both the side facing the path 32.

ガス導入装置91においては、仕切板95が第1および第2流路31,32をそれぞれ臨む両側の面に、段階的な肉厚減少部分が形成される。したがって、仕切板85の段階的な肉厚減少部分に対応して、天板93の内面に段階的に肉厚が増大する部分が第1流路31の内方に向って突出して形成されるとともに、仕切板95の平坦部における第2流路32の流路高さh2に対して、仕切板95の段階的な肉厚減少部分における第2流路32の流路高さh4が増大しないように、底板94の第2流路32に臨む側が、仕切板95の段階的な肉厚減少に対応し、段階的に肉厚が増大するように、第2流路32の内方に向って突出して形成される。   In the gas introduction device 91, stepwise thickness reduction portions are formed on both sides of the partition plate 95 facing the first and second flow paths 31 and 32, respectively. Therefore, corresponding to the stepwise thickness reduction portion of the partition plate 85, a portion where the thickness increases stepwise is formed on the inner surface of the top plate 93 so as to protrude inward of the first flow path 31. At the same time, the flow path height h4 of the second flow path 32 in the stepwise thickness reduction portion of the partition plate 95 does not increase with respect to the flow path height h2 of the second flow path 32 in the flat portion of the partition plate 95. As described above, the side of the bottom plate 94 facing the second flow path 32 corresponds to the stepwise decrease in the thickness of the partition plate 95 and is directed inward of the second flow path 32 so that the thickness increases stepwise. Projecting.

実施の第3および第4形態のいずれにおいても、第1側壁部材25と第2側壁部材26とで形成される流路幅は、合流部の上流側と下流側とで一定になるように形成され、少なくとも合流部の下流側の流路高さが上流側の流路高さの和よりも増大しないように形成される。したがって、ガス流過方向に対して垂直な断面における合流流路34の断面積は、合流部よりも上流側の第1および第2流路31,32のガス流過方向に対して垂直な断面積の和よりも増大しないように形成される。   In any of the third and fourth embodiments, the width of the flow path formed by the first side wall member 25 and the second side wall member 26 is formed to be constant between the upstream side and the downstream side of the joining portion. In addition, at least the downstream channel height of the junction is formed so as not to increase more than the sum of the upstream channel heights. Therefore, the cross-sectional area of the merging flow path 34 in a cross section perpendicular to the gas flow direction is a cross section perpendicular to the gas flow direction of the first and second flow paths 31 and 32 upstream of the merging portion. It is formed so as not to increase more than the sum of the areas.

図9は、本発明の実施の第5形態であるガス導入装置101を備える気相成長装置100の構成を示す断面図である。本実施形態のガス導入装置101を備える気相成長装置100は、第2形態のガス導入装置51を備える気相成長装置50と第4形態のガス導入装置91を備える気相成長装置90とに類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 9 is a cross-sectional view showing a configuration of a vapor phase growth apparatus 100 including a gas introduction device 101 according to the fifth embodiment of the present invention. The vapor phase growth apparatus 100 including the gas introduction apparatus 101 according to the present embodiment includes a vapor phase growth apparatus 50 including the gas introduction apparatus 51 according to the second embodiment and a vapor growth apparatus 90 including the gas introduction apparatus 91 according to the fourth embodiment. Similar parts corresponding to each other are designated by the same reference numerals and description thereof is omitted.

ガス導入装置101を備える気相成長装置100において注目すべきは、実施の第4形態におけるような両面に段階的な肉厚減少部分を有する仕切板95と、仕切板95の肉厚減少に対応し、実施の第2形態におけるようなガス流過方向下流側へ向うのに伴って、第1および第2流路31,32内へ徐々にかつ連続的にその突出量を増大するように突出して形成される天板53および底板54を有するガス導入管52とが組合されて備えられることである。   What should be noted in the vapor phase growth apparatus 100 including the gas introduction apparatus 101 is a partition plate 95 having stepwise thickness reduction portions on both sides as in the fourth embodiment, and corresponds to the thickness reduction of the partition plate 95. Then, as it goes downstream in the gas flow direction as in the second embodiment, it protrudes into the first and second flow paths 31 and 32 so as to gradually and continuously increase the protruding amount. And a gas introduction pipe 52 having a top plate 53 and a bottom plate 54 formed in combination.

図10は、本発明の実施の第6形態であるガス導入装置103を備える気相成長装置102の構成を示す断面図である。本実施形態のガス導入装置103を備える気相成長装置102は、第1形態のガス導入装置21を備える気相成長装置20と第3形態のガス導入装置81を備える気相成長装置80とに類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 10 is a cross-sectional view showing a configuration of a vapor phase growth apparatus 102 including a gas introduction apparatus 103 according to the sixth embodiment of the present invention. The vapor phase growth apparatus 102 including the gas introduction apparatus 103 according to the present embodiment includes a vapor phase growth apparatus 20 including the gas introduction apparatus 21 according to the first embodiment and a vapor growth apparatus 80 including the gas introduction apparatus 81 according to the third embodiment. Similar parts corresponding to each other are designated by the same reference numerals and description thereof is omitted.

ガス導入装置103を備える気相成長装置102において注目すべきは、実施の第1形態におけるような片面に連続的な肉厚減少部分である傾斜部を有する仕切板28と、実施の第3形態におけるような仕切板85の段階的な肉厚減少に対応し、段階的に肉厚が増大するように第1流路31の内方に向って突出して形成される天板83を有するガス導入管82とが組合されて備えられることである。   It should be noted that in the vapor phase growth apparatus 102 including the gas introduction apparatus 103, the partition plate 28 having an inclined portion which is a continuous thickness reduction portion on one side as in the first embodiment, and the third embodiment. In response to the gradual decrease in the thickness of the partition plate 85 as described above, the gas introduction having the top plate 83 formed to protrude inward of the first flow path 31 so as to increase the gradual thickness. The tube 82 is provided in combination.

図9および図10に示すような、ガス導入管と仕切板とを組合せてなる実施の第5および第6形態のガス導入装置を備える気相成長装置おいても、上記実施の第1〜第4形態のガス導入装置を備える気相成長装置と同様の効果を奏することができる。   Also in the vapor phase growth apparatus provided with the gas introduction device according to the fifth and sixth embodiments, which is a combination of the gas introduction pipe and the partition plate, as shown in FIGS. Effects similar to those of the vapor phase growth apparatus including the four types of gas introduction apparatuses can be obtained.

図11は、本発明の実施の第7形態であるガス導入装置111を備える気相成長装置110の構成を示す断面図である。本実施形態のガス導入装置111を備える気相成長装置110は、実施の第2形態のガス導入装置51を備える気相成長装置50に類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 11 is a cross-sectional view showing a configuration of a vapor phase growth apparatus 110 including a gas introduction apparatus 111 according to the seventh embodiment of the present invention. The vapor phase growth apparatus 110 including the gas introduction apparatus 111 of the present embodiment is similar to the vapor phase growth apparatus 50 including the gas introduction apparatus 51 of the second embodiment, and corresponding portions are denoted by the same reference numerals. The description is omitted.

ガス導入装置111において注目すべきは、2枚の第1および第2仕切板115,116を有し、ガス導入管112の内部空間を2枚の仕切板115,116で仕切ることによって3つの第1〜第3流路117,118,119が形成されることである。第1〜第3流路117,118,119は、天板113から底板114に向ってこの順序で形成される。したがって、ガス導入装置111においては、ガス導入口も第1〜第3流路117,118,119のそれぞれに対して形成され、各ガス導入口109a,109b,109cに設けられる導入接続部材33を介して、3種類の原料ガスを第1〜第3流路117,118,119にそれぞれ導入することができる。   It should be noted that the gas introduction device 111 has two first and second partition plates 115 and 116, and the inner space of the gas introduction pipe 112 is partitioned by the two partition plates 115 and 116. That is, the first to third flow paths 117, 118, and 119 are formed. The first to third flow paths 117, 118, and 119 are formed in this order from the top plate 113 toward the bottom plate 114. Therefore, in the gas introduction device 111, gas introduction ports are also formed for the first to third flow paths 117, 118, and 119, respectively, and the introduction connection members 33 provided in the gas introduction ports 109a, 109b, and 109c are provided. Thus, three kinds of source gases can be introduced into the first to third flow paths 117, 118, and 119, respectively.

また第1仕切板115は、第1流路117に臨む側の面における先端部付近に傾斜部が形成されて肉厚が連続的に減少し、第2仕切板116は、第3流路119に臨む側の面における先端部付近に傾斜部が形成されて肉厚が連続的に減少する。したがって、第1および第2仕切板115,116は、それぞれ第2流路118に臨み、互いに対向する側の面が原料ガス流過方向のそれぞれの先端部115a,116aまで平面になるように形成される。   In addition, the first partition plate 115 is formed with an inclined portion in the vicinity of the tip portion on the surface facing the first flow path 117, and the thickness thereof continuously decreases, and the second partition plate 116 has a third flow path 119. An inclined portion is formed in the vicinity of the tip portion on the surface facing the surface, and the thickness is continuously reduced. Therefore, the first and second partition plates 115 and 116 are formed so as to face the second flow path 118 and the surfaces facing each other are flat to the respective front end portions 115a and 116a in the raw material gas flow direction. Is done.

天板113および底板114が、第1および第2仕切板115,116のそれぞれの傾斜部に対応し、第1および第3流路117,119の内方へ突出する突出量は、ガス流過方向の下流側へ向うのに伴って増大され、合流流路34の流路高さhが、合流前の第1〜第3流路117,118,119の流路高さの和(h1+h2+h3もしくはh4+h5+h6)以下になるように形成されることは、前述の各実施形態と同様である。   The top plate 113 and the bottom plate 114 correspond to the inclined portions of the first and second partition plates 115 and 116, respectively, and the amount of protrusion protruding inward of the first and third flow paths 117 and 119 is the amount of gas flow. The flow path height h of the merging flow path 34 is increased as it goes to the downstream side in the direction, and the sum of the flow path heights of the first to third flow paths 117, 118, 119 before merging (h1 + h2 + h3 or h4 + h5 + h6) is formed to be equal to or less than that in the above-described embodiments.

第1〜第3流路117,118,119を流過する3層のガスを同位置で合流させる場合、第1仕切板115の天板113を臨む側と、第2仕切板116の底板114を臨む側とに、それぞれ肉厚が連続的に減少する傾斜部を形成し、仕切板同志が対向する側の面が平面のままで、天板113および底板114の内方への突出量を調整することによって、流路高さの関係を満足させるようにすると、仕切板115,116ならびに天板113および底板114の製作が簡単で、製作コストを低減することができる。   When the three layers of gas flowing through the first to third flow paths 117, 118, and 119 are joined at the same position, the side facing the top plate 113 of the first partition plate 115 and the bottom plate 114 of the second partition plate 116. Inclined portions where the wall thickness continuously decreases on the side facing each other, and the surface on the side facing the partition plates remains flat, and the amount of inward projection of the top plate 113 and the bottom plate 114 is increased. If the relationship between the flow path heights is satisfied by adjustment, the partition plates 115 and 116, the top plate 113, and the bottom plate 114 can be easily manufactured, and the manufacturing cost can be reduced.

たとえば、一方の仕切板の天板または底板に臨む側の面を、仕切板の先端部まで平面になるようにすると、他方の仕切板については、仕切板同志で形成される流路の高さを増大させないようにするために、他方の仕切板の先端部を曲げて取付けなければならず、加工組立てが困難である。   For example, if the surface of one partition plate facing the top plate or the bottom plate is made flat to the tip of the partition plate, the height of the flow path formed by the partition plates for the other partition plate In order not to increase the distance, it is necessary to bend and attach the tip of the other partition plate, which makes it difficult to work and assemble.

図12は、本発明の実施の第8形態であるガス導入装置121を備える気相成長装置120の構成を簡略化して示す断面図である。本実施形態のガス導入装置121を備える気相成長装置120は、実施の第7形態のガス導入装置111を備える気相成長装置110に類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 12 is a cross-sectional view showing a simplified configuration of a vapor phase growth apparatus 120 including a gas introduction device 121 according to an eighth embodiment of the present invention. The vapor phase growth apparatus 120 including the gas introduction apparatus 121 of the present embodiment is similar to the vapor phase growth apparatus 110 including the gas introduction apparatus 111 of the seventh embodiment, and corresponding portions are denoted by the same reference numerals. The description is omitted.

ガス導入装置121において注目すべきは、第1仕切板115よりも第2仕切板126の方がガス流過方向の長さが長く、第1流路117を流過する原料ガスと第2流路118を流過する原料ガスとが合流する位置と、第3流路119を流過する原料ガスと残余の流路を流過する原料ガスとが合流する位置とが、異なることである。このガス導入装置121において、底板124が第3流路119の内方に突出する量は、第2仕切板126の傾斜部形状および長さに対応するように設定される。   It should be noted in the gas introduction device 121 that the second partition plate 126 is longer in the gas flow direction than the first partition plate 115, and the source gas and the second flow flowing through the first flow path 117. The position where the raw material gas flowing through the path 118 merges is different from the position where the raw material gas flowing through the third flow path 119 and the raw material gas flowing through the remaining flow path merge. In this gas introduction device 121, the amount by which the bottom plate 124 projects inward of the third flow path 119 is set to correspond to the shape and length of the inclined portion of the second partition plate 126.

本実施形態のガス導入装置121を備える気相成長装置120も、実施の第7形態のガス導入装置111を備える気相成長装置110と同様の効果を奏することができる。   The vapor phase growth apparatus 120 including the gas introduction apparatus 121 of the present embodiment can also achieve the same effects as the vapor phase growth apparatus 110 including the gas introduction apparatus 111 of the seventh embodiment.

なお、実施の第7および第8形態のガス導入装置111,121では、仕切板を連続的に肉厚減少させ、これに対向する天板および底板もガス導入管の内部への突出量を連続的に増加させるように構成されるけれども、これに限定されることなく、仕切板、天板、底板のいずれか、またはこれらの全てがその肉厚もしくは突出量が段階的に変化するように構成されても同様の効果を得ることができる。   In the gas introduction devices 111 and 121 according to the seventh and eighth embodiments, the partition plate is continuously reduced in thickness, and the top plate and the bottom plate facing the partition plate continuously project the amount of projection into the gas introduction pipe. However, the present invention is not limited to this, and any one of the partition plate, the top plate, the bottom plate, or all of them is configured so that the thickness or the protruding amount thereof changes stepwise. Even if it is done, the same effect can be acquired.

図13は本発明の実施の第9形態であるガス導入装置131を備える気相成長装置130の構成を簡略化して示す上面図であり、図14は図13の切断面線XIV−XIVから見た図である。本実施形態のガス導入装置131を備える気相成長装置130は、実施の第1形態のガス導入装置21を備える気相成長装置20に類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 13 is a top view showing a simplified configuration of a vapor phase growth apparatus 130 including a gas introduction apparatus 131 according to the ninth embodiment of the present invention, and FIG. 14 is viewed from the section line XIV-XIV in FIG. It is a figure. The vapor phase growth apparatus 130 including the gas introduction apparatus 131 of the present embodiment is similar to the vapor phase growth apparatus 20 including the gas introduction apparatus 21 of the first embodiment, and corresponding portions are denoted by the same reference numerals. The description is omitted.

ガス導入装置131において注目すべきは、ガス導入管132と、ガス導入管132に連接しガス導入管132のガス流過方向下流側に延長して設けられる反応管137とが異なる素材で構成され、ガス導入管132の外方に設けられてガス導入管132を冷却する冷却手段138を含むことである。   It should be noted in the gas introduction device 131 that the gas introduction pipe 132 and the reaction pipe 137 connected to the gas introduction pipe 132 and extending downstream in the gas flow direction of the gas introduction pipe 132 are made of different materials. The cooling means 138 is provided outside the gas introduction pipe 132 and cools the gas introduction pipe 132.

ガス導入装置131のガス導入管132を構成する天板133と底板134と第1および第2側壁部材135,136とは、金属たとえばステンレス鋼で形成される。ステンレス鋼は、高い剛性と優れた加工性とを有するので、高精度にかつ低コストで所望の形状のガス導入管132を得ることができる。一方、ガス導入管132のガス流過方向下流側においてガス導入管132に連接される反応管137は、基板22を加熱する際の温度上昇に伴う熱膨張、また反応生成付着物を薬液で除去クリーニングすることなどを考慮し、たとえば石英で形成される。   The top plate 133, the bottom plate 134, and the first and second side wall members 135 and 136 constituting the gas introduction pipe 132 of the gas introduction device 131 are made of metal such as stainless steel. Since stainless steel has high rigidity and excellent workability, it is possible to obtain the gas introduction pipe 132 having a desired shape with high accuracy and low cost. On the other hand, the reaction tube 137 connected to the gas introduction tube 132 on the downstream side in the gas flow direction of the gas introduction tube 132 removes thermal expansion caused by a temperature rise when the substrate 22 is heated and reaction product deposits with a chemical solution. For example, quartz is formed in consideration of cleaning.

ガス導入管132を形成するステンレス鋼は、反応管137を形成する石英に比べて、熱膨張率が高いので、基板22の加熱に伴う温度上昇に起因する変形等の悪影響が憂慮される。したがって、本実施形態のガス導入装置131には、ガス導入管132の外方に冷却手段138が設けられる。   Since the stainless steel forming the gas introduction tube 132 has a higher coefficient of thermal expansion than the quartz forming the reaction tube 137, adverse effects such as deformation due to a temperature rise accompanying heating of the substrate 22 are a concern. Therefore, the gas introduction device 131 of the present embodiment is provided with the cooling means 138 outside the gas introduction pipe 132.

冷却手段138は、ガス導入管132の外周に1つの封止空間を形成するように設けられる冷却槽141と、冷却槽141に接続されて冷却槽141の内部に冷媒144を供給する冷媒供給管142と、冷却槽141に接続されて冷却槽141の内部の冷媒144を排出する冷媒排出管143と、冷媒供給管142に接続されて冷媒144を供給するととともに冷媒排出管143にも接続されて冷媒排出管143を通じて冷媒144が回収される不図示の冷媒供給源とを含んで構成される。冷媒144としては、たとえば水が好適に用いられる。冷媒144として水を用いる場合、冷媒供給源としては、たとえば水槽と圧送ポンプとを組合せたものが用いられる。   The cooling means 138 includes a cooling tank 141 provided so as to form one sealed space on the outer periphery of the gas introduction pipe 132, and a refrigerant supply pipe that is connected to the cooling tank 141 and supplies the refrigerant 144 to the inside of the cooling tank 141. 142, a refrigerant discharge pipe 143 that is connected to the cooling tank 141 and discharges the refrigerant 144 inside the cooling tank 141, is connected to the refrigerant supply pipe 142 and supplies the refrigerant 144, and is also connected to the refrigerant discharge pipe 143. And a refrigerant supply source (not shown) from which the refrigerant 144 is recovered through the refrigerant discharge pipe 143. For example, water is preferably used as the refrigerant 144. When water is used as the refrigerant 144, for example, a combination of a water tank and a pressure pump is used as the refrigerant supply source.

冷却槽141内に冷媒であるたとえば水144を循環させることによって、ガス導入管132およびその内方の仕切板28を冷却してその温度上昇を抑制することができる。この温度上昇の抑制によって、ガス導入管132および仕切板28の熱膨張変形を抑制することができるので、ガス導入装置131における原料ガスの合流部周辺の形状変化、すなわちガス流れの乱れを抑制することができる。   By circulating, for example, water 144, which is a refrigerant, in the cooling tank 141, the gas introduction pipe 132 and the inner partition plate 28 can be cooled to suppress an increase in temperature. By suppressing the temperature rise, it is possible to suppress the thermal expansion deformation of the gas introduction pipe 132 and the partition plate 28, and therefore, the shape change around the confluence portion of the source gas in the gas introduction device 131, that is, the disturbance of the gas flow is suppressed. be able to.

本実施形態では、ガス導入管132と反応管137との2ピースに分割した場合を例示するけれども、これに限定されることなく、ガス流路をなす管が、素材の異なる3ピース以上に分割される構成であってもよい。ガス流路をなす管が、複数のピースに分割される場合、仕切板が同様に分割される構成であってもよい。   In the present embodiment, the case where the gas introduction pipe 132 and the reaction pipe 137 are divided into two pieces is illustrated, but the present invention is not limited to this, and the pipe forming the gas flow path is divided into three or more pieces of different materials. It may be configured. When the pipe | tube which makes a gas flow path is divided | segmented into several pieces, the structure by which a partition plate is divided | segmented similarly may be sufficient.

また、本実施形態では、第1および第2流路31,32の2層の原料ガスを合流させる場合を例示するけれども、流路が3つ以上あり3層以上の層のガスを合流させるように構成されてもよい。   Further, in this embodiment, the case where the two layers of source gases of the first and second flow paths 31 and 32 are merged is illustrated, but there are three or more flow paths so that the gases of three or more layers are merged. May be configured.

なお、本実施形態では、仕切板を連続的に肉厚減少させ、これに対向する天板のガス導入管の内部への突出量を連続的に増加させるように構成されるけれども、これに限定されることなく、仕切板、天板もしくは底板のいずれか、またはこれらの全てがその肉厚もしくは突出量が段階的に変化するように構成されても同様の効果を得ることができる。   In the present embodiment, the partition plate is continuously reduced in thickness and the amount of protrusion of the top plate facing the partition plate to the inside of the gas introduction pipe is continuously increased. However, the present invention is not limited to this. The same effect can be obtained even if any of the partition plate, the top plate, the bottom plate, or all of them are configured such that the thickness or the amount of protrusion changes stepwise.

図15は、本発明の実施の第10形態のガス導入装置151を備える気相成長装置150の構成を簡略化して示す部分断面斜視図である。本実施の形態のガス導入装置151を備える気相成長装置150は、基本構成において実施の第1形態のガス導入装置21を備える気相成長装置20に類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 15 is a partial cross-sectional perspective view showing a simplified configuration of the vapor phase growth apparatus 150 including the gas introduction apparatus 151 according to the tenth embodiment of the present invention. The vapor phase growth apparatus 150 including the gas introduction apparatus 151 according to the present embodiment is similar to the vapor phase growth apparatus 20 including the gas introduction apparatus 21 according to the first embodiment in the basic configuration, and the same reference is made to corresponding parts. The reference numerals are attached and the description is omitted.

ガス導入装置151を備える気相成長装置150において注目すべきは、原料ガスがそれぞれ流過する第1および第2流路31,32と、仕切板152の原料ガス流過方向の先端部152aを過ぎ2層の原料ガスが合流して形成される1つの合流流路34とが、放射状に形成されることである。   It should be noted in the vapor phase growth apparatus 150 including the gas introduction apparatus 151 that the first and second flow paths 31 and 32 through which the source gas flows and the front end 152a of the partition plate 152 in the direction of the source gas flow are provided. One merging flow path 34 formed by merging two layers of source gas is formed radially.

ガス導入装置151においては、天板153、底板154および仕切板152が、上面(平面)から見た形状がいずれも円形になるように形成される。天板153と底板154とによって構成されるガス導入管155に原料ガスを導入する第1および第2ガス導入口156,157は、天板153と仕切板152とにおける円形の中心部分に開口部を形成することによって設けられる。   In the gas introduction device 151, the top plate 153, the bottom plate 154, and the partition plate 152 are formed so that all of the shapes viewed from the upper surface (plane) are circular. The first and second gas introduction ports 156 and 157 for introducing the raw material gas into the gas introduction pipe 155 constituted by the top plate 153 and the bottom plate 154 are opened at the circular center portion of the top plate 153 and the partition plate 152. It is provided by forming.

ガス導入口156,157からガス導入管155に原料ガスを導入するための導入接続部材として本実施形態では2層管158が用いられ、2層管158は天板153に対して垂直になるようにガス導入口156,157に接続される。導入接続部材である2層管158は、外管159と内管160とで形成される外層流路161が仕切板152と天板153とで構成される第1流路31に接続され、内管160の内部空間である内層流路162が仕切板152と底板154とで構成される第2流路32に接続される。   In this embodiment, a two-layer pipe 158 is used as an introduction connecting member for introducing the source gas from the gas introduction ports 156 and 157 into the gas introduction pipe 155 so that the two-layer pipe 158 is perpendicular to the top plate 153. Are connected to gas inlets 156 and 157. The two-layer pipe 158 that is an introduction connecting member is connected to the first flow path 31 in which the outer layer flow path 161 formed by the outer pipe 159 and the inner pipe 160 is formed by the partition plate 152 and the top plate 153. An inner layer flow path 162 that is an internal space of the pipe 160 is connected to the second flow path 32 configured by the partition plate 152 and the bottom plate 154.

したがって、原料ガスは、2層管158の外層流路161によって、ガス導入管155に対して一旦垂直に供給された後、仕切板152に当って流路を90度曲げられて、天板153と仕切板152とに沿って水平方向へ放射状に第1流路31を流過する。またもう一つの原料ガスは、2層管158の内層流路162によって、ガス導入管155に対して一旦垂直に供給された後、底板154に当って流路を90度曲げられて、底板154と仕切板152とに沿って水平方向へ放射状に第2流路32を流過する。   Therefore, the source gas is once supplied vertically to the gas introduction pipe 155 by the outer layer flow path 161 of the two-layer pipe 158, and then the flow path is bent 90 degrees against the partition plate 152, so that the top plate 153 The first flow path 31 is allowed to flow radially in the horizontal direction along the partition plate 152. The other source gas is once supplied vertically to the gas introduction pipe 155 by the inner layer flow path 162 of the two-layer pipe 158, and then the flow path is bent by 90 degrees against the bottom plate 154. And the partition plate 152, the second flow path 32 flows radially in the horizontal direction.

ガス導入装置151および気相成長装置150では、第1および第2流路31,32ならびに合流流路34の流路幅が、中心から半径方向の外方へ向うのに伴い半径に比例して増大するので、各流路の流路高さが半径と逆比例して減少するように形成すれば、合流部の上流側と下流側とを通じて、流路断面積を一定もしくは増大しないようにし、合流部の下流側で低圧もしくは負圧の領域が発生しないようにすることができる。   In the gas introduction apparatus 151 and the vapor phase growth apparatus 150, the first and second flow paths 31, 32 and the flow path 34 are proportional to the radius in the radial direction from the center toward the outer side. Therefore, if the flow path height of each flow path is reduced so as to be inversely proportional to the radius, the cross-sectional area of the flow path should not be constant or increased through the upstream side and the downstream side of the merge portion. It is possible to prevent a low pressure or negative pressure region from occurring on the downstream side of the joining portion.

本実施形態の気相成長装置150は、導入接続部材である2層管158を中心にして放射状に複数の基板22を載置し、複数の基板22に対して同時に原料ガスを供給して薄膜を形成することができるので、効率的な生産を実現できる。   The vapor phase growth apparatus 150 of this embodiment places a plurality of substrates 22 radially around a two-layer tube 158 which is an introduction connecting member, and supplies a raw material gas to the plurality of substrates 22 at the same time. Therefore, efficient production can be realized.

また、本実施形態では、第1および第2流路31,32の2層の原料ガスを合流させる場合を例示するけれども、流路が3つ以上あり3層以上の層のガスを合流させるように構成されてもよい。また、本実施形態では、仕切板を連続的に肉厚減少させ、これに対向する天板のガス導入管の内部への突出量を連続的に増加させるように構成されるけれども、これに限定されることなく、仕切板、天板もしくは底板のいずれか、またはこれらの全てがその肉厚もしくは突出量が段階的に変化するように構成されても同様の効果を得ることができる。   Further, in this embodiment, the case where the two layers of source gases of the first and second flow paths 31 and 32 are merged is illustrated, but there are three or more flow paths so that the gases of three or more layers are merged. May be configured. In the present embodiment, the partition plate is continuously reduced in thickness, and the amount of protrusion of the top plate facing the partition plate into the gas introduction pipe is continuously increased. However, the present invention is not limited to this. The same effect can be obtained even if any of the partition plate, the top plate, the bottom plate, or all of them are configured such that the thickness or the amount of protrusion changes stepwise.

図16は本発明の実施の第11形態のガス導入装置171を備える気相成長装置170の構成を簡略化して示す上面図であり、図17は図16の切断面線XVII−XVIIから見た図である。本実施の形態のガス導入装置171を備える気相成長装置170は、ガス流過方向における合流部下流側における構成が実施の第1形態の気相成長装置20に類似するので、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 16 is a top view showing a simplified configuration of the vapor phase growth apparatus 170 including the gas introduction apparatus 171 according to the eleventh embodiment of the present invention, and FIG. 17 is seen from the section line XVII-XVII in FIG. FIG. The vapor phase growth apparatus 170 provided with the gas introduction apparatus 171 of the present embodiment is similar to the vapor phase growth apparatus 20 of the first embodiment in that the configuration on the downstream side of the merging portion in the gas flow direction is similar. Are denoted by the same reference numerals and description thereof is omitted.

ガス導入装置171は、対向するように設けられる2つの天板173および底板174と、天板173および底板174に対して略垂直かつ対向するように設けられる2つの第1および第2側壁部材176,177とを有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管172と、ガス導入管172の内部に原料ガス流過方向に延びかつ天板173および底板174に対して平行に設けられ、ガス導入管172の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する第1および第2流路31,32に仕切る仕切板175とを含む。   The gas introduction device 171 includes two top plates 173 and a bottom plate 174 provided so as to face each other, and two first and second side wall members 176 provided so as to be substantially perpendicular to and opposed to the top plate 173 and the bottom plate 174. , 177 and a gas introduction pipe 172 forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction, and extending inside the gas introduction pipe 172 in the raw material gas flow direction. The first and second flows are provided in parallel to the top plate 173 and the bottom plate 174, and a plurality of source gases flow through the internal space of the gas introduction pipe 172 to the middle of the length in the source gas flow direction. And a partition plate 175 that partitions the paths 31 and 32.

ガス導入装置171における仕切板175の厚さは、原料ガスが流過する上流側から下流側へ向うのに伴って連続的に減少するように形成される。ガス導入装置171においては、仕切板175の原料ガス流過方向の先端部175aを過ぎ複数の原料ガスが合流して形成される1つの合流流路34の原料ガス流過方向に対して垂直な断面積が、複数の原料ガスがそれぞれ流過する第1および第2流路31,32の原料ガス流過方向に対して垂直な断面積を加算した和以下になるように、仕切板175の厚さが連続的に減少するのに対応して、第1および第2流路31,32の側壁部材176,177同志が対向する離隔距離を小さくする。   The thickness of the partition plate 175 in the gas introduction device 171 is formed so as to continuously decrease from the upstream side where the raw material gas flows to the downstream side. In the gas introduction device 171, the partition plate 175 passes through the front end portion 175 a in the raw material gas flow direction, and is perpendicular to the raw material gas flow direction of one confluence channel 34 formed by joining a plurality of raw material gases. The partition plate 175 has a cross-sectional area equal to or less than the sum of the cross-sectional areas perpendicular to the source gas flow direction of the first and second flow paths 31 and 32 through which the plurality of source gases flow. Corresponding to the continuous decrease in thickness, the separation distance between the side wall members 176 and 177 of the first and second flow paths 31 and 32 is reduced.

本実施形態の天板173および底板174は、第1および第2流路31,32にそれぞれ臨む内壁面が平坦になるように形成される。したがって、仕切板175の肉厚が先端部付近においてガス流過方向下流側に向って肉厚が連続的に減少するにも関らず、何ら構成上の変化を与えないと、合流部の下流側において流路断面積が増大する。そこで、本実施形態のガス導入装置171では、仕切板175の肉厚減少に対応するように、側壁部材176,177同志が対向する離隔距離、すなわち流路幅を減少させることによって、流路幅×流路高さで得られるガス流過方向に対して垂直な断面における流路断面積が合流前後で増大しないように構成される。   The top plate 173 and the bottom plate 174 of the present embodiment are formed so that the inner wall surfaces facing the first and second flow paths 31 and 32 are flat. Therefore, even if the thickness of the partition plate 175 continuously decreases toward the downstream side in the gas flow direction in the vicinity of the front end portion, if no structural change is given, the downstream of the junction portion On the side, the channel cross-sectional area increases. Therefore, in the gas introduction device 171 of the present embodiment, the flow path width is reduced by reducing the separation distance between the side wall members 176 and 177, that is, the flow path width, so as to correspond to the reduction in the thickness of the partition plate 175. X The flow path cross-sectional area in a cross section perpendicular to the gas flow direction obtained at the flow path height is configured not to increase before and after the merge.

仕切板175の平坦部における第1流路31の流路高さをh1とし、第2流路32の流路高さをh2とし、流路幅をw1とする。仕切板175が連続的に肉厚減少する傾斜部の任意の位置での第1流路31の流路高さをh3とし、第2流路32の流路高さをh4とし、流路幅をw2とする。仕切板175の先端部175aよりもガス流過方向下流側、すなわち合流部よりも下流側における合流流路34の流路高さをhとし、流路幅をw3とすると、合流流路34の前記断面積はw3×h=S3で与えられ、仕切板175の傾斜部における第1流路31および第2流路31,32の前記断面積の和はw2×(h3+h4)=S2で与えられ、仕切板175の平坦部における第1流路31および第2流路31,32の前記断面積の和はw1×(h1+h2)=S1で与えられる。   The channel height of the first channel 31 in the flat portion of the partition plate 175 is h1, the channel height of the second channel 32 is h2, and the channel width is w1. The flow path height of the first flow path 31 at an arbitrary position of the inclined portion where the partition plate 175 continuously decreases in thickness is h3, the flow path height of the second flow path 32 is h4, and the flow path width. Is w2. If the flow path height of the merge flow path 34 on the downstream side in the gas flow direction from the front end 175a of the partition plate 175, that is, the downstream side of the merge section is h, and the flow path width is w3, the merge flow path 34 The cross-sectional area is given by w3 × h = S3, and the sum of the cross-sectional areas of the first flow path 31 and the second flow paths 31, 32 at the inclined portion of the partition plate 175 is given by w2 × (h3 + h4) = S2. The sum of the cross-sectional areas of the first flow path 31 and the second flow paths 31 and 32 in the flat portion of the partition plate 175 is given by w1 × (h1 + h2) = S1.

本実施形態のガス導入装置171では、ガス流過方向の下流側が上流側よりも低圧または負圧にならないように、仕切板175の傾斜部における流路断面積S2が、仕切板の平坦部における流路断面積S1以下(S2≦S1)になるように、また合流流路34の断面積(S3)が、合流部よりも上流側である仕切板175の傾斜部の流路断面積S2以下(S3≦S2)になるように、流路高さおよび流路幅が設定される。   In the gas introducing device 171 of the present embodiment, the flow path cross-sectional area S2 in the inclined portion of the partition plate 175 is in the flat portion of the partition plate so that the downstream side in the gas flow direction does not become lower pressure or negative pressure than the upstream side. The cross-sectional area (S3) of the merging channel 34 is equal to or smaller than the channel cross-sectional area S2 of the inclined portion of the partition plate 175 upstream of the merging portion so that the channel cross-sectional area S1 or less (S2 ≦ S1). The channel height and the channel width are set so as to satisfy (S3 ≦ S2).

なお、天板173と底板174の内壁面がそれぞれ平坦に形成されることから、仕切板175の平坦部よりも傾斜部の方が流路高さは高くなるので、仕切板175の平坦部における流路幅w1は、仕切板175の傾斜部における流路幅w2よりも大きくなる(w2<w1)ように、第1側壁部材176と第2側壁部材177との離隔距離が定められる。同様に、仕切板175の傾斜部における第1および第2流路31,32よりも合流流路34の方が流路高さは高くなるので、仕切板175の傾斜部における流路幅w2は、合流流路34における流路幅w3よりも大きくなる(w3<w2)ように、第1側壁部材176と第2側壁部材177との離隔距離すなわち流路幅が定められる。   In addition, since the inner wall surfaces of the top plate 173 and the bottom plate 174 are formed flat, the flow path height is higher in the inclined portion than in the flat portion of the partition plate 175. Therefore, in the flat portion of the partition plate 175, The separation distance between the first side wall member 176 and the second side wall member 177 is determined so that the flow path width w1 is larger than the flow path width w2 in the inclined portion of the partition plate 175 (w2 <w1). Similarly, since the flow path height of the merged flow path 34 is higher than that of the first and second flow paths 31 and 32 in the inclined portion of the partition plate 175, the flow path width w2 in the inclined portion of the partition plate 175 is The separation distance between the first side wall member 176 and the second side wall member 177, that is, the channel width is determined so as to be larger than the channel width w3 in the merging channel 34 (w3 <w2).

このようにして、上記の合流部の上流側と下流側とにおける流路断面積の関係(S3≦S2≦S1)が満足されるように、各流路の流路幅および流路高さが設定される。合流部の上流側と下流側とにおける流路断面積の関係は、同一(S1=S2=S3)であることが好ましく、このような構成とすることによって、仕切板175の先端部175aよりも下流側における渦の発生を抑制し、かつガス流速を加減速することなく、一定に保つことができる。   In this way, the flow channel width and flow channel height of each flow channel are set so that the relationship (S3 ≦ S2 ≦ S1) of the flow channel cross-sectional areas on the upstream side and the downstream side of the above-described merging portion is satisfied. Is set. It is preferable that the relationship between the flow path cross-sectional areas on the upstream side and the downstream side of the joining portion is the same (S1 = S2 = S3). With such a configuration, it is more than the front end portion 175a of the partition plate 175. The generation of vortices on the downstream side can be suppressed, and the gas flow rate can be kept constant without acceleration / deceleration.

このガス導入装置171を備える気相成長装置170は、仕切板175で仕切られた第1および第2流路31,32を流過するガス流過層の流速について広い設定範囲で、渦を抑制して合流させた原料ガスを基板22へ供給することができるので、膜厚および組成が均一な化合物半導体の薄膜を基板22の表面に気相成長させることができる。   The vapor phase growth apparatus 170 including the gas introduction device 171 suppresses vortices in a wide setting range with respect to the flow velocity of the gas flow overlayer flowing through the first and second flow paths 31 and 32 partitioned by the partition plate 175. Since the combined source gases can be supplied to the substrate 22, a compound semiconductor thin film having a uniform thickness and composition can be vapor-phase grown on the surface of the substrate 22.

また、本実施形態では、第1および第2流路31,32の2層の原料ガスを合流させる場合を例示するけれども、流路が3つ以上あり3層以上の層のガスを合流させるように構成されてもよい。また、本実施形態では、仕切板を連続的に肉厚減少させるように構成されるけれども、これに限定されることなく、仕切板の肉厚が段階的に変化するように構成されても同様の効果を得ることができる。   Further, in this embodiment, the case where the two layers of source gases of the first and second flow paths 31 and 32 are merged is illustrated, but there are three or more flow paths so that the gases of three or more layers are merged. May be configured. Further, in the present embodiment, the partition plate is configured to continuously reduce the wall thickness, but the present invention is not limited to this, and the same is true even if the partition plate is configured so that the wall thickness changes stepwise. The effect of can be obtained.

上記の実施の第1〜第11形態に示すいずれかの気相成長装置を準備し、気相成長装置に備わるガス導入装置によって、処理されるべき基板22に原料ガスを導いて供給し、基板22の表面に薄膜を形成する気相成長方法も、本発明の実施の態様である。この気相成長方法によれば、原料ガスの合流部付近における渦の発生が抑制されるので、渦近傍での気相反応による不均一な反応生成物の合成を抑制し、原料ガスの利用効率の低下を抑制し、膜質の劣化や不均一性を抑制して、良質な化合物半導体の薄膜を得ることができる。   Any one of the vapor phase growth apparatuses shown in the first to eleventh embodiments described above is prepared, and the raw material gas is guided and supplied to the substrate 22 to be processed by the gas introduction apparatus provided in the vapor phase growth apparatus. A vapor phase growth method for forming a thin film on the surface 22 is also an embodiment of the present invention. According to this vapor phase growth method, generation of vortices in the vicinity of the confluence of source gases is suppressed, so that synthesis of heterogeneous reaction products due to gas phase reactions in the vicinity of the vortices is suppressed, and utilization efficiency of source gases is increased. It is possible to obtain a high-quality compound semiconductor thin film by suppressing the deterioration of the film and the deterioration and non-uniformity of the film quality.

以上に述べたように、本実施の形態では、仕切板は全体が金属製もしくは石英製等であるけれども、これに限定されることなく、先端部のみが金属製で残部がたとえば石英などからなるものであってもよい。   As described above, in the present embodiment, the partition plate is entirely made of metal or quartz, but is not limited to this, and only the tip portion is made of metal and the remaining portion is made of, for example, quartz. It may be a thing.

本発明の実施の第1形態であるガス導入装置21を備える気相成長装置20の構成を簡略化して示す上面図である。It is a top view which simplifies and shows the structure of the vapor phase growth apparatus 20 provided with the gas introduction apparatus 21 which is 1st Embodiment of this invention. 図1の切断面線II−IIから見た図である。It is the figure seen from the cut surface line II-II of FIG. 本発明の実施の第2形態であるガス導入装置51を備える気相成長装置50の構成を簡略化して示す上面図である。It is a top view which simplifies and shows the structure of the vapor phase growth apparatus 50 provided with the gas introduction apparatus 51 which is 2nd Embodiment of this invention. 図3の切断面線IV−IVから見た図である。It is the figure seen from cut surface line IV-IV of FIG. 実施の第2形態の変形事例となるガス導入装置を備える気相成長装置の構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the structure of the vapor phase growth apparatus provided with the gas introducing device used as the modification example of 2nd Embodiment. 実施の第2形態の変形事例となるガス導入装置を備える気相成長装置の構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the structure of the vapor phase growth apparatus provided with the gas introducing device used as the modification example of 2nd Embodiment. 本発明の実施の第3形態であるガス導入装置81を備える気相成長装置80の構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the structure of the vapor phase growth apparatus 80 provided with the gas introduction apparatus 81 which is 3rd Embodiment of this invention. 本発明の実施の第4形態であるガス導入装置91を備える気相成長装置90の構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the structure of the vapor phase growth apparatus 90 provided with the gas introduction apparatus 91 which is 4th Embodiment of this invention. 本発明の実施の第5形態であるガス導入装置101を備える気相成長装置100の構成を示す断面図である。It is sectional drawing which shows the structure of the vapor phase growth apparatus 100 provided with the gas introduction apparatus 101 which is 5th Embodiment of this invention. 本発明の実施の第6形態であるガス導入装置103を備える気相成長装置102の構成を示す断面図である。It is sectional drawing which shows the structure of the vapor phase growth apparatus 102 provided with the gas introduction apparatus 103 which is 6th Embodiment of this invention. 本発明の実施の第7形態であるガス導入装置111を備える気相成長装置110の構成を示す断面図である。It is sectional drawing which shows the structure of the vapor phase growth apparatus 110 provided with the gas introduction apparatus 111 which is 7th Embodiment of this invention. 本発明の実施の第8形態であるガス導入装置121を備える気相成長装置120の構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the structure of the vapor phase growth apparatus 120 provided with the gas introducing device 121 which is 8th Embodiment of this invention. 本発明の実施の第9形態であるガス導入装置131を備える気相成長装置130の構成を簡略化して示す上面図である。It is a top view which simplifies and shows the structure of the vapor phase growth apparatus 130 provided with the gas introduction apparatus 131 which is 9th Embodiment of this invention. 図13の切断面線XIV−XIVから見た図である。It is the figure seen from the cut surface line XIV-XIV of FIG. 本発明の実施の第10形態のガス導入装置151を備える気相成長装置150の構成を簡略化して示す部分断面斜視図である。It is a fragmentary sectional perspective view which simplifies and shows the structure of the vapor phase growth apparatus 150 provided with the gas introducing device 151 of Embodiment 10 of this invention. 本発明の実施の第11形態のガス導入装置171を備える気相成長装置170の構成を簡略化して示す上面図である。It is a top view which simplifies and shows the structure of the vapor phase growth apparatus 170 provided with the gas introduction apparatus 171 of 11th Embodiment of this invention. 図16の切断面線XVII−XVIIから見た図である。It is the figure seen from the cut surface line XVII-XVII of FIG. 従来の横型CVD炉である気相成長装置1の構成を簡略化して示す上面図である。It is a top view which simplifies and shows the structure of the vapor phase growth apparatus 1 which is the conventional horizontal type | mold CVD furnace. 図18の切断面線A−Aから見た図である。It is the figure seen from cut surface line AA of FIG.

符号の説明Explanation of symbols

20 気相成長装置
21 ガス導入装置
22 基板
23 天板
24 底板
25 第1側壁部材
26 第2側壁部材
27 ガス導入管
28 仕切板
31 第1流路
32 第2流路
34 合流流路
41 反応管
43 トレイ
44 加熱手段

DESCRIPTION OF SYMBOLS 20 Vapor growth apparatus 21 Gas introduction apparatus 22 Substrate 23 Top plate 24 Bottom plate 25 1st side wall member 26 2nd side wall member 27 Gas introduction pipe 28 Partition plate 31 1st flow path 32 2nd flow path 34 Merge flow path 41 Reaction tube 43 Tray 44 Heating means

Claims (13)

処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和に等しいことを特徴とするガス導入装置。
A gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on a surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
A gas introduction device characterized by being equal to a sum of heights, which are distances in a direction in which the two wall members of each flow path through which a plurality of source gases flow, face each other.
処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
仕切板の厚さは、原料ガスが流過する上流側から下流側へ向うのに伴って、連続的に減少するように形成されることを特徴とするガス導入装置。
A gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on a surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
The thickness of the partition plate, from the upstream side of the raw material gas flows through along with the other side to the downstream side, characterized and to Ruga scan introducing device to be formed so as to decrease continuously.
処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
仕切板の厚さは、原料ガスが流過する上流側から下流側へ向うのに伴って、段階的に減少するように形成されることを特徴とするガス導入装置。
A gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on a surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
The thickness of the partition plate, from the upstream side of the raw material gas flows through along with the other side to the downstream side, characterized and to Ruga scan introducing device to be formed so as to decrease stepwise.
処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
仕切板を2枚含んで3つの流路が形成され、
2枚の仕切板は、
互いに対向する側の面が原料ガス流過方向の先端部まで平面になるように形成されることを特徴とするガス導入装置。
A gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on a surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
Three flow paths are formed including two partition plates,
The two dividers are
Features and to Ruga scan introducing device that has a side surface opposite to each other are formed to be flat to the distal end of the feed gas stream over direction.
処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
仕切板は、原料ガスが流過する方向の下流側における少なくとも端部付近が、金属からなることを特徴とするガス導入装置。
A gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on a surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
Partition plate, at least near the end, features and be Ruga scan introducing device that consists of a metal in the downstream side in the direction the material gas flows through.
前記金属が、ステンレス鋼であることを特徴とする請求項5記載のガス導入装置。 6. The gas introducing device according to claim 5 , wherein the metal is stainless steel. 処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
ガス導入管の外方に設けられ、ガス導入管を冷却する冷却手段を含むことを特徴とするガス導入装置。
A gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on a surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
Provided outward of the gas inlet tube, features and be Ruga scan introducing device further comprising a cooling means for cooling the gas introduction pipe.
仕切板によって形成される複数の原料ガスがそれぞれ流過する各流路と、仕切板の原料ガス流過方向の先端部を過ぎて複数の原料ガスが合流して形成される1つの合流流路とは、
原料ガスの流過方向に対して垂直な断面における形状が矩形であり、
複数の原料ガスがそれぞれ流過する各流路の原料ガス流過方向に対して垂直な断面積を加算した和と、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路の原料ガス流過方向に対して垂直な断面積とが、等しいことを特徴とするガス導入装置。
Each flow path through which a plurality of source gases flow formed by the partition plate, and one merge channel formed by a plurality of source gas merging past the front end portion of the partition plate in the source gas flow direction Is
Ri rectangular der shape in cross section perpendicular to the flow-direction of the material gas,
The sum of the cross-sectional areas perpendicular to the source gas flow direction of each flow path through which each of the plurality of source gases flows, and the plurality of source gases merge past the tip of the partition plate in the source gas flow direction. and the cross-sectional area perpendicular to one of the feed gas stream over the direction of the converging channels being formed by the, features and be Ruga scan introducing device is equal.
処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる少なくとも2つの壁部材を有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の原料ガス流過方向の先端部を過ぎ、複数の原料ガスが合流して形成される1つの合流流路の前記2つの壁部材が対向する方向の距離である高さが、
複数の原料ガスがそれぞれ流過する各流路の前記2つの壁部材が対向する方向の距離である高さを加算した和以下であり、
複数の原料ガスがそれぞれ流過する各流路と、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路とは、
放射状に形成されることを特徴とするガス導入装置。
A gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on a surface of a substrate to be processed,
A gas introduction pipe formed with at least two wall members provided so as to be opposed to each other, and forming a flow path for allowing a plurality of different or similar raw material gases to flow in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The height that is the distance in the direction in which the two wall members of the single confluence channel formed by joining the plural raw material gas passes through the front end of the raw material gas flow direction of the partition plate,
The sum of the heights, which are the distances in the direction in which the two wall members of each flow path through which each of the plurality of source gases flow, is opposite,
Each flow path through which a plurality of source gases flow, and one merged path formed by joining a plurality of source gases past the front end of the partition plate in the source gas flow direction,
A gas introduction device characterized by being formed radially.
処理されるべき基板の表面に薄膜を形成するための原料ガスを供給することができるように原料ガスを導くガス導入装置であって、
対向するように設けられる2つの壁部材と、2つの壁部材に対して略垂直かつ対向するように設けられる2つの側壁部材とを有して形成され、異種または同種の複数の原料ガスを予め定める方向に流過させる流路をなすガス導入管と、
ガス導入管の内部に原料ガス流過方向に延びかつ前記2つの壁部材に対して平行に設けられ、ガス導入管の内部空間を、原料ガス流過方向の長さの途中まで複数の原料ガスがそれぞれ流過する複数の流路に仕切る仕切板とを含み、
仕切板の厚さは、原料ガスが流過する上流側から下流側へ向うのに伴って連続的または段階的に減少するように形成され、
仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路の原料ガス流過方向に対して垂直な断面積が、
複数の原料ガスがそれぞれ流過する各流路の原料ガス流過方向に対して垂直な断面積を加算した和以下になるように、
仕切板の厚さが連続的または段階的に減少するのに対応して、複数の原料ガスがそれぞれ流過する各流路の前記2つの側壁部材同志が対向する離隔距離を小さくすることを特徴とするガス導入装置。
A gas introduction device for introducing a raw material gas so as to supply a raw material gas for forming a thin film on a surface of a substrate to be processed,
Two wall members provided so as to be opposed to each other and two side wall members provided so as to be substantially perpendicular to and opposed to the two wall members are formed. A gas introduction pipe that forms a flow path for flowing in a predetermined direction;
A plurality of source gases extending in the direction of the source gas flow inside the gas introduction pipe and provided in parallel to the two wall members, and extending through the internal space of the gas introduction pipe to the middle of the length in the direction of the source gas flow Each including a partition plate that partitions into a plurality of flow paths that flow through,
The thickness of the partition plate is formed so as to decrease continuously or stepwise as the raw material gas flows from the upstream side to the downstream side,
A cross-sectional area perpendicular to the raw material gas flow direction of one confluence channel formed by joining a plurality of raw material gases past the leading end portion of the raw material gas flow direction of the partition plate,
The sum of the cross-sectional areas perpendicular to the source gas flow direction of each flow path through which each of the plurality of source gases flows is equal to or less than the sum.
Corresponding to the thickness of the partition plate decreasing continuously or stepwise, the separation distance between the two side wall members of each flow path through which a plurality of source gases flow is reduced. Gas introduction device.
複数の原料ガスがそれぞれ流過する各流路の原料ガス流過方向に対して垂直な断面積を加算した和と、仕切板の原料ガス流過方向の先端部を過ぎ複数の原料ガスが合流して形成される1つの合流流路の原料ガス流過方向に対して垂直な断面積とが、等しいことを特徴とする請求項10記載のガス導入装置。 The sum of the cross-sectional areas perpendicular to the source gas flow direction of each flow path through which each of the plurality of source gases flows, and the plurality of source gases merge past the tip of the partition plate in the source gas flow direction. The gas introduction device according to claim 10 , wherein a cross-sectional area perpendicular to a raw material gas flow direction of one merging flow path formed in the same manner is equal. 請求項1〜11のいずれか1つに記載のガス導入装置を備えることを特徴とする気相成長装置。 A vapor phase growth apparatus comprising the gas introduction device according to any one of claims 1 to 11 . 請求項12記載の気相成長装置を準備し、
気相成長装置に備わるガス導入装置によって、処理されるべき基板に原料ガスを導いて供給し、基板の表面に薄膜を形成することを特徴とする気相成長方法。
A vapor phase growth apparatus according to claim 12 is prepared,
A vapor phase growth method comprising: forming a thin film on a surface of a substrate by introducing and supplying a source gas to the substrate to be processed by a gas introduction device provided in the vapor phase growth apparatus.
JP2005211576A 2005-07-21 2005-07-21 Gas introduction apparatus, vapor phase growth apparatus including the same, and vapor phase growth method using the vapor phase growth apparatus Expired - Fee Related JP4339288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211576A JP4339288B2 (en) 2005-07-21 2005-07-21 Gas introduction apparatus, vapor phase growth apparatus including the same, and vapor phase growth method using the vapor phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211576A JP4339288B2 (en) 2005-07-21 2005-07-21 Gas introduction apparatus, vapor phase growth apparatus including the same, and vapor phase growth method using the vapor phase growth apparatus

Publications (2)

Publication Number Publication Date
JP2007027647A JP2007027647A (en) 2007-02-01
JP4339288B2 true JP4339288B2 (en) 2009-10-07

Family

ID=37787969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211576A Expired - Fee Related JP4339288B2 (en) 2005-07-21 2005-07-21 Gas introduction apparatus, vapor phase growth apparatus including the same, and vapor phase growth method using the vapor phase growth apparatus

Country Status (1)

Country Link
JP (1) JP4339288B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481415B2 (en) * 2011-03-09 2014-04-23 株式会社東芝 Vapor growth apparatus and vapor growth method

Also Published As

Publication number Publication date
JP2007027647A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5172617B2 (en) Vapor growth apparatus and vapor growth method
JP4193883B2 (en) Metalorganic vapor phase epitaxy system
US5392730A (en) Method for depositing compound semiconductor crystal
CN101413112B (en) Multi-gas straight channel showerhead
KR100816969B1 (en) Chemical vapor deposition reactor
US7378127B2 (en) Chemical vapor deposition methods
KR20070107782A (en) Chemical vapor deposition reactor having multiple inlets
CN104350185A (en) Gas injection components for deposition systems and related methods
US20030113451A1 (en) System and method for preferential chemical vapor deposition
CN210030883U (en) Chemical vapor deposition apparatus with multi-zone ejector block
JP4339288B2 (en) Gas introduction apparatus, vapor phase growth apparatus including the same, and vapor phase growth method using the vapor phase growth apparatus
JP5015085B2 (en) Vapor growth equipment
US20010032588A1 (en) Semiconductor film deposition apparatus
JP3485285B2 (en) Vapor phase growth method and vapor phase growth apparatus
US6544869B1 (en) Method and apparatus for depositing semiconductor film and method for fabricating semiconductor device
JP5011999B2 (en) Vapor growth equipment
JP2021114541A (en) Vapor phase growth apparatus
CN219653120U (en) Air outlet plate and air inlet device
JP7336841B2 (en) Vapor deposition system
JP2013171972A (en) Vapor phase growth apparatus and vapor phase growth method
TWI586830B (en) Deposition systems having access gates at desirable locations, and related methods
JPH116068A (en) Low pressure vapor growth equipment
JP2007242871A (en) Vapor-phase growth apparatus
JP2004063555A (en) Semiconductor fabricating apparatus and its fabricating process
JP2010100925A (en) Vapor deposition apparatus and vapor deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Ref document number: 4339288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees