JP4336928B2 - Vibration control rack - Google Patents

Vibration control rack Download PDF

Info

Publication number
JP4336928B2
JP4336928B2 JP2001016681A JP2001016681A JP4336928B2 JP 4336928 B2 JP4336928 B2 JP 4336928B2 JP 2001016681 A JP2001016681 A JP 2001016681A JP 2001016681 A JP2001016681 A JP 2001016681A JP 4336928 B2 JP4336928 B2 JP 4336928B2
Authority
JP
Japan
Prior art keywords
rack
joint
brace
side direction
vibration control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001016681A
Other languages
Japanese (ja)
Other versions
JP2002220106A (en
Inventor
修 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2001016681A priority Critical patent/JP4336928B2/en
Publication of JP2002220106A publication Critical patent/JP2002220106A/en
Application granted granted Critical
Publication of JP4336928B2 publication Critical patent/JP4336928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Warehouses Or Storage Devices (AREA)

Description

【0001】
【発明の利用分野】
この発明は自動倉庫などに用いる制震ラックに関する。
【0002】
【従来技術】
自動倉庫などに用いるラックでは耐震性が要求され、特に高層になればなるほど耐震性が強く要求される。そして必要な耐震性に合わせて、柱等の剛性を高めると、ラックのコストが増すばかりでなく、太い柱のために間口が狭くなることになる。
【0003】
【発明の課題】
この発明の基本的課題は、短辺方向にも長辺方向にも地震エネルギーを吸収でき、耐震性が高いため軽量化が容易な制震ラックを提供することにある。
この発明での追加の課題は、長辺方向の制震ジョイントやブレスの配置を合理化することにある。
【0004】
【発明の構成】
この発明の制震ラックは、各層の高さがほぼ一定のラックの短辺方向の前後の各柱に、上下の柱部材を結合し、かつ上側の柱部材の上方への移動を許容しながら地震エネルギーを吸収するための第1のジョイントを設け、ラックの長辺方向の支柱間にブレスを交差させて配置し、かつ該交差位置に、ブレスを結合すると共に、ブレスの移動を塑性変形により許容しながら地震エネルギーを吸収するための第2のジョイントを設け、さらに前記第2のジョイントで結合したブレスを、長辺方向に沿って見たラック側面の底辺の両端部と上辺の中央部とを結ぶ線の付近に配設したものである。制震ラックは例えば自動倉庫のラックに用いる。
【0005】
この発明はまた、複数の層からなり、層の高さがラックの下側で大きく、上側で小さいラックの、短辺方向の前後の各柱に、上下の柱部材を結合し、かつ上側の柱部材の上方への移動を許容しながら地震エネルギーを吸収するための第1のジョイントを設け、ラックの長辺方向の支柱間にブレスを交差させて配置し、かつ該交差位置に、ブレスを結合すると共に、ブレスの移動を塑性変形により許容しながら地震エネルギーを吸収するための第2のジョイントを設け、さらに前記第2のジョイントで結合したブレスを、長辺方向に沿って見たラック側面の対角線付近に配設した、制震ラックにある。
【0007】
【発明の作用と効果】
ラックの構造は一般に、高さが大きく、長辺方向の長さが大きく、短辺方向の長さが短いものが多い。短辺方向の長さが短いため、ラックでは一般に短辺方向の剛性が不足する。
この発明では、短辺方向の前後の柱に対して、上下の柱部材を結合する第1のジョイントで、上側の柱部材の上方移動を許容し、かつ上方移動の間に地震エネルギーを吸収する。このようにすると、短辺方向に加わる水平力によって柱に加わる引き抜き力を、柱部材の上方移動で逃がしながら、地震エネルギーを吸収できる。
次に長辺方向では、ブレスを結合する第2のジョイントを用いて、地震エネルギーを吸収する。第2のジョイントはブレスの交差部に設け、塑性変形によりブレスの移動を許容し、この間に地震エネルギーを吸収する。
これらのためこの発明では、剛性が不足しやすい短辺方向に対して、第1のジョイントで上側の柱部材の上方移動を許容して引き抜き力を吸収し、長辺方向には第2のジョイントの塑性変形により地震エネルギーを吸収する。この発明の制震ラックは、地震時に倒壊する恐れが少なく、地震による柱やブレスやラチス等の損傷も少なく、また軽量化や高層化が容易である。
【0008】
第2のジョイントをリング状に構成してブレスを取り付けると、第2のジョイントはリング状の単純な構造となるので製造が容易になる。またリングの周面にブレスを通して固定できるので、ブレスの取り付けも容易で、ブレスの長さを調整するためのターンバックルも不要になる。さらに第2のジョイントには基本的に方向性が無く、ブレスをはり渡した長方形のエリアの縦横比などによる制約もない。
【0009】
ラックの長辺方向に加わる地震力の程度は、位置によって異なる。例えば長辺方向に沿って見たラックの側面では、底辺中央部に加わる地震力は他の部分に比べて僅かである。そこでこの発明では、第2のジョイントで結合したブレスを、層の高さがラックの下側で大きく、上側では小さいラックに対しては、長辺方向に沿って見たラック側面の対角線付近に配設する。また各層の高さがほぼ一定のラックに対しては、側面の底辺の両端部と上辺の中央部とを結ぶ線の付近に配設する。これらの線の付近は地震力が強く加わる線上にあり、この線の付近で地震力をブレスで受けて、第2のジョイントで効率的に吸収する。
【0010】
【実施例】
図1〜図10に、実施例とその変形とを示す。図1に、実施例の制震ラック2の短辺方向のモデルを示す。4,6,8は左側の柱部材で、これらを制震ジョイント10,12で上下方向に結合して左側の柱とし、5,7,9は右側の柱部材で、これらを制震ジョイント11,13で結合して右側の柱部材とする。14は梁で、上下方向に複数本設け、16は短辺方向のブレスで、設けなくても良い。制震ラック2は単独でラックとして用いても良いが、例えば自動倉庫のラックとして用いる。また2つのラックを背中合わせに結合して、ラックユニットとして用いる場合、ラックユニットの中央部と短辺方向の前後両端の計3ヶ所等に支柱を設けることがある。このような場合、制震ジョイントが必要なのは前後方向の両端の柱で、中央部の柱に制震ジョイントを設ける必要はない。制震ジョイント10〜13のうち、下側の制震ジョイント10,11は必ず設け、上側の制震ジョイント12,13は高層の例えば高さ20m以上、好ましくは30m以上のラックに設ける。下側の制震ジョイント10,11を設けるのに適した位置は、上下の柱部材間の接続位置で、制震ラック2の高さの1/2以下の場所、特に好ましくは1/3以下の場所である。また上側の制震ジョイント12,13を設ける場合、制震ラック2の高さが20m以上、特に30m以上の場合に設けるのが好ましく、好ましい設置位置は制震ラック2の高さ方向に沿って上から1/3以内の場所である。
【0011】
図1の左側に制震ラック2に地震力が加わる前の状態を示し、右側に地震力が加わった状態を示す。図1の右側では、白抜き矢印のように、左から右へと制震ラック2を倒壊させようとする水平力が加わったものとする。するとこの時、地震による水平力で左側の柱部材6を上側に持ち上げる力が働き、この反作用で右側の柱部材7には下側に押し込もうとする力が働く。この結果、制震ジョイント10には柱部材6を上側に持ち上げる力が加わり、制震ジョイント11には圧縮力が加わる。ここで後述のように、制震ジョイント10の塑性変形で左側の柱部材6の上方移動を許容し、この塑性変形によって地震エネルギーを吸収する。また柱部材6の上方移動により、右側の制震ジョイント11に加わる圧縮力が軽減される。左側の制震ジョイント10が塑性変形すると、次の逆向きの振動で右側の制震ジョイント11が塑性変形して、右側の柱部材7が上方に持ち上げられる運動が生じる。この運動の反作用で、左側の制震ジョイント10は圧縮されてほぼ元の形状に戻る。
【0012】
図2に、制震ラック2の長辺方向に沿って見た側面をモデル的に示す。制震ラック2は短辺方向の長さに比べて長辺方向の長さが大きいので、前後の柱が多数本平行に表れ、前後の各柱に対して制震ジョイント10,11を設ける。柱と柱とを対角線状に結ぶようにブレス24を配置し、ブレスが交差する位置で制震ジョイント26を設ける。ブレス24と制震ジョイント26との組み合わせは、図2では、制震ラック2の長辺方向底辺の両端と、長辺方向上辺の中央部とを結ぶ線に沿って設け、これ以外の位置には特にブレス24や制震ジョイント26を設ける必要はない。制震ラック2は各層の高さがほぼ一定で、このような場合、地震力(地震時の水平力)は底辺の両端部に大きく加わり、この位置で制震ジョイント26が塑性変形するため、連鎖的にラック2の長辺方向側面の上部中央へと加わりやすいためである。このため、制震ジョイント26は、制震ラック2の長辺方向底辺の両端と、長辺方向上辺の中央部とを結ぶ線に沿って設ける。
【0013】
実施例では、これ以外の位置には、例えば剛性の低い材料からなる一般ブレス28を設けた。なお一般ブレス28もブレス24も設けない間口を設けても良い。例えば図2の場合、底辺中央部と、左右両端付近の高さ方向の中間部付近にステーション30を設けて、この部分ではブレス24,28を設けず、フォークリフト等でラック内の物品を搬出入できるようにした。
【0014】
図3に変形例の制震ラック32を示す。この図は、制震ラック32の長辺方向側面を示し、短辺方向前後の柱が多数平行に表れ、これらを梁14で結合すると共に、支柱間に対角線状にブレス24と制震ジョイント26との組み合わせを配設する。またブレス24を設けない間口に対して、一般ブレス28で柱間を結合した。図3では層の高さが制震ラック32の下側で大きく、上側では小さくしてある。このような構造の場合、長辺方向に沿って加わる地震時の水平力は、長辺方向側面の底部の頂点から対角線に沿って上辺の頂点へと伝わりやすい。そこで長辺方向側面の底部両端と上辺の対角線方向の両端とを結ぶ線の付近に、ブレス24と制震ジョイント26との組み合わせを配置した。これ以外の間口に対しては、図2の場合と同様に一般ブレス28を設けるが、一般ブレス28は特に設けなくても良い。
【0015】
図4、図5に制震ジョイント26へのブレス24の取り付けを示す。制震ジョイント26は低降伏点鋼のリングで構成され、その周面を貫通するように4本のブレス24を取り付けてある。34はブレス24に設けたネジ部、36は制震ジョイント26に設けた貫通孔、38は固着用のナットである。そしてブレス24を貫通孔36を介して制震ジョイント26のリング内に通し、ナット38で締め付けると、ターンバックル等を用いずに、ブレス24を取り付けることができる。
【0016】
図6に、地震時の制震ジョイント26の変形を示す。ブレス24に矢印方向の力が加わった場合、制震ジョイント26は一点鎖線のように変形し、これによって地震エネルギーを吸収する。制震ジョイント26は、その軸方向に直角な面では基本的に方向性がないので、ブレス24の向きに塑性変形しやすいように、ブレス24の向きに合わせて、形状を工夫する必要はない。また例えば図6の右上と左下とに引き延ばそうとする力が働き変形した場合、次の振動で左上と右下に引き延ばそうとする力が加わるので、ほぼ元の形に戻ることになる。このためリング状の制震ジョイント26を用いると、ブレス24の取り付けにターンバックルが不要で、貫通孔を通してナットなどで締めると取り付けられ、方向性がないので設置が容易で、かつ塑性変形を繰り返して地震エネルギーを吸収できる。
【0017】
図7に、制震ジョイント26の変形による地震エネルギーの吸収をモデル的に示すと、地震力が小さい間は制震ジョイント26は弾性変形し、地震力が大きくなると塑性変形を開始する。そして図7のループ状に変形を繰り返し、このループで囲まれた面積分の地震エネルギーを吸収できる。
【0018】
図8,図9に、前後の柱での上下の柱部材の連結に用いた、板状をした制震ジョイント10の構成を示す。なお制震ジョイント11〜13も同様の構成である。42は上下一対のフランジ部で、この部分に柱部材4,6を溶接等で取り付け、44は両端の補強部で、ボルト46とナット48等で上下に結合する。フランジ部42には低降伏点鋼等の塑性変形しやすい材料を用い、補強部44には普通鋼等の相対的に塑性変形しにくい材料を用いる。
【0019】
図8の左側に通常時の制震ジョイント10の姿を示し、右側に地震波で塑性変形した後の状態を示す。地震時に水平力が加わると、制震ラックの短辺方向の一方の柱には上方向の引き抜き力が加わる。この引き抜き力がフランジ部42の弾性限界を超えると、一対のフランジ部42が上下に塑性変形して、フランジ42,42間に隙間が生じる。この時制震ジョイント10の両端は補強部44で補強されているので塑性変形は生じない。そしてフランジ部42,42の塑性変形分のエネルギーが吸収される。次の地震波では柱部材6には下向きの押し込み力が働き、この押し込み力でフランジ部42,42間の隙間が閉じて、元の状態に復帰する。
【0020】
図8,図9には、板状の制震ジョイント10の塑性変形を利用した例を示したが、上側の柱部材の上方移動を許容し、かつ上側の柱部材の水平移動を禁止し、上下方向の移動の間に地震エネルギーを吸収できるジョイントであればよい。このような制震ジョイントの変形例を図10に示す。50,50はフランジで、上側の柱部材6と下側の柱部材4の端部にフランジ50,50を設けて、フランジ50,50を突き当ててある。52は上下の柱部材4,6のいずれかに固着した筒体で、他方の柱部材の内側に収容され、上側の柱部材6が上方に移動した場合に、水平移動するのを防止する。54,56はブラケットで、58はその間に設けたダンパである。
【0021】
図10の変形例の場合、地震力により上側の柱部材6が上方に移動すると、フランジ50,50は離れるが、筒体52により柱部材4,6が水平方向にずれるのを防止する。そしてこの上方移動時にダンパ58を用いて地震エネルギーを吸収する。逆向きの地震波が加わると、上側の柱部材6は下降してフランジ50,50は密着し、この下降を利用してダンパ58により同様に地震エネルギーを吸収する。
【0022】
実施例では、剛性が不足しやすいラックの短辺方向について、前後の各柱に制震ジョイント10,11等を設けて、上側の柱部材の上方移動を許容しながら、ジョイントの塑性変形を利用して地震エネルギーを吸収する。これによって短辺方向の制震性を格段に高め、短辺方向での倒壊等を防止する。次にラックの長辺方向にはブレス24と制震ジョイント26との組み合わせを用い、地震によりブレス24が引き延ばされると、それに伴ってリング状の制震ジョイント26が塑性変形して、地震エネルギーを吸収する。制震ジョイント26は次の地震波で例えば90゜逆の方向に引き延ばされて、繰り返し地震エネルギーを吸収できる。
【0023】
さらにブレス24と制震ジョイント26との組み合わせは、ラックの長辺方向底辺の両端と上辺中央部とを結ぶ線の付近や、ラックの長辺方向側面の対角線付近に設ければ良く、ラックの長辺方向側面全体に設ける必要はないので、取り付けも容易である。そしてブレス24や制震ジョイント26を設けない間口には、ステーション等を設けることができる。さらに制震ジョイント26は単純なリング状の形状で、ターンバックルが不要である。また取り付けも容易で、方向性がないのでブレス間の公差角に合わせて形状を工夫する必要がない。
【図面の簡単な説明】
【図1】 実施例の制震ラックの短辺方向側面図
【図2】 実施例の制震ラックの長辺方向側面図
【図3】 他の実施例での制震ラックの長辺方向側面図
【図4】 実施例でブレス間の結合に用いたリング状制震ジョイントの正面図
【図5】 実施例のリング状制震ジョイントの側面図
【図6】 実施例でのリング状制震ジョイントの塑性変形を示す図
【図7】 実施例でのリング状制震ジョイントでの制震機構を示す図
【図8】 実施例で柱の接続に用いた制震ジョイントの側面図
【図9】 実施例で用いた制震ジョイントの平面図
【図10】 柱間の接続用の制震ジョイントの変形例を示す側面図
【符号の説明】
2,32 制震ラック
4〜9 柱部材
10〜13,26 制震ジョイント
14,20 梁
16,24 ブレス
28 一般ブレス
30 ステーション
34 ネジ部
36 貫通孔
38 ナット
42 フランジ部
44 補強部
46 ボルト
48 ナット
50 フランジ
52 筒体
54,56 ブラケット
58 ダンパ
[0001]
[Field of the Invention]
The present invention relates to a vibration control rack used for an automatic warehouse or the like.
[0002]
[Prior art]
Racks used in automatic warehouses and the like are required to have earthquake resistance, and the earthquake resistance is particularly required as the height increases. Increasing the rigidity of the pillars in accordance with the required earthquake resistance not only increases the cost of the rack, but also narrows the frontage due to the thick pillars.
[0003]
[Problems of the Invention]
A basic object of the present invention is to provide a vibration control rack that can absorb seismic energy both in the short side direction and in the long side direction and is easy to reduce in weight because of its high earthquake resistance .
An additional problem in the present invention is to rationalize the arrangement of the vibration control joints and braces in the long side direction.
[0004]
[Structure of the invention]
The seismic control rack according to the present invention connects upper and lower column members to the front and rear columns in the short side direction of the rack having a substantially constant height of each layer , and allows the upper column member to move upward. The first joint for absorbing the seismic energy is provided, the braces are arranged between the columns in the long side direction of the rack, and the braces are connected to the intersecting positions, and the movement of the braces is made by plastic deformation. allowable setting only the second joint to absorb seismic energy while further the second breath bound in the joint, both end portions of the bottom and top side of the central portion of the rack side as viewed along the longitudinal direction Are arranged in the vicinity of a line connecting the two. The vibration control rack is used for an automatic warehouse rack, for example.
[0005]
The present invention is also composed of a plurality of layers, the upper and lower column members are coupled to the front and rear columns of the rack in the short side direction of the rack whose layer height is large at the lower side of the rack and smaller at the upper side, and A first joint for absorbing seismic energy while allowing the column member to move upward is provided, and the braces are arranged so as to cross between the columns in the long side direction of the rack. A side surface of the rack in which a second joint for absorbing seismic energy while allowing the movement of the brace by plastic deformation is provided and the brace joined by the second joint is viewed along the long side direction. It is in a seismic control rack arranged near the diagonal of.
[0007]
[Operation and effect of the invention]
In general, a rack has a large height, a large length in the long side direction, and a short length in the short side direction. Since the length in the short side direction is short, the rack generally lacks the rigidity in the short side direction.
In this invention, the first joint that connects the upper and lower column members to the front and rear columns in the short side direction allows the upper column member to move upward and absorbs seismic energy during the upward movement. . In this way, seismic energy can be absorbed while the pulling force applied to the column by the horizontal force applied in the short side direction is released by the upward movement of the column member.
Next, in the long side direction, the seismic energy is absorbed using the second joint for connecting the brace. The second joint is provided at the intersection of the brace, allows the brace to move by plastic deformation, and absorbs seismic energy during this time.
Therefore, in the present invention, the first joint allows the upper column member to move upward with respect to the short side direction where rigidity is likely to be insufficient, and absorbs the pull-out force, and the long side direction uses the second joint. The seismic energy is absorbed by plastic deformation. The seismic control rack according to the present invention is less likely to collapse during an earthquake, damage to pillars, braces, lattices, and the like due to the earthquake is small, and it is easy to reduce the weight and increase the height .
[0008]
When the second joint is configured in a ring shape and a brace is attached, the second joint has a simple ring-shaped structure, which facilitates manufacture . In addition, since the brace can be fixed to the peripheral surface of the ring, it is easy to attach the brace and no turnbuckle is required to adjust the length of the brace. Further, the second joint basically has no directionality, and there is no restriction due to the aspect ratio of the rectangular area across the breath.
[0009]
The degree of seismic force applied in the long side direction of the rack varies depending on the position. For example, on the side surface of the rack as viewed along the long side direction, the seismic force applied to the bottom center is small compared to other parts. Therefore, in the present invention, the breath bound in the second joint, greatly lower rack height of the layer, for small rack in the upper, near the diagonal of the rack side as viewed along the longitudinal direction Arrange. In addition, for a rack having a substantially constant height in each layer, the rack is disposed in the vicinity of a line connecting both ends of the bottom of the side surface and the center of the upper side. The vicinity of these lines is on the line where the seismic force is strongly applied, and the seismic force is received by the breath in the vicinity of this line and efficiently absorbed by the second joint.
[0010]
【Example】
1 to 10 show an embodiment and its modifications. In FIG. 1, the model of the short side direction of the damping rack 2 of an Example is shown. Reference numerals 4, 6, and 8 are left column members, which are vertically coupled by vibration control joints 10 and 12 to form a left column, and 5, 7, and 9 are right column members, and these are vibration control joints 11. , 13 to form a right column member. Reference numeral 14 is a beam, and a plurality of beams are provided in the vertical direction, and 16 is a brace in the short side direction. The vibration control rack 2 may be used alone as a rack, but for example, as a rack for an automatic warehouse. In addition, when two racks are combined back to back and used as a rack unit, support columns may be provided at a total of three places, such as the center of the rack unit and both front and rear ends in the short side direction. In such a case, seismic joints are required for the columns at both ends in the front-rear direction, and it is not necessary to provide seismic joints for the central column. Of the vibration control joints 10 to 13, the lower vibration control joints 10 and 11 are necessarily provided, and the upper vibration control joints 12 and 13 are provided in a high-rise rack having a height of 20 m or more, preferably 30 m or more. The position suitable for providing the lower vibration control joints 10 and 11 is the connection position between the upper and lower column members, and is preferably a place that is 1/2 or less of the height of the vibration control rack 2, particularly preferably 1/3 or less. Is the place. When the upper vibration control joints 12 and 13 are provided, it is preferable to provide the vibration control rack 2 when the height of the vibration control rack 2 is 20 m or more, particularly 30 m or more, and a preferable installation position is along the height direction of the vibration control rack 2. It is within 1/3 from the top.
[0011]
The state before the seismic force is applied to the damping rack 2 is shown on the left side of FIG. 1, and the state where the seismic force is applied to the right side. On the right side of FIG. 1, it is assumed that a horizontal force is applied to collapse the damping rack 2 from the left to the right as indicated by the white arrow. Then, at this time, a force that lifts the left column member 6 upward by a horizontal force due to the earthquake acts, and a force that pushes the right column member 7 downward acts by this reaction. As a result, a force for lifting the column member 6 upward is applied to the vibration control joint 10, and a compression force is applied to the vibration control joint 11. Here, as will be described later, the left column member 6 is allowed to move upward by plastic deformation of the vibration control joint 10, and the seismic energy is absorbed by this plastic deformation. Further, the upward movement of the column member 6 reduces the compressive force applied to the right vibration control joint 11. When the left vibration control joint 10 is plastically deformed, the right vibration control joint 11 is plastically deformed by the next reverse vibration, and the right column member 7 is lifted upward. By the reaction of this movement, the left vibration control joint 10 is compressed and returns to its original shape.
[0012]
In FIG. 2, the side surface seen along the long side direction of the damping rack 2 is shown in model form. Since the damping rack 2 has a length in the long side direction that is larger than a length in the short side direction, a large number of front and rear columns appear in parallel, and the damping joints 10 and 11 are provided for the front and rear columns. The brace 24 is arranged so as to connect the pillars diagonally, and a vibration control joint 26 is provided at a position where the braces intersect. In FIG. 2, the combination of the brace 24 and the vibration control joint 26 is provided along a line connecting both ends of the bottom side in the long side direction of the vibration control rack 2 and the central portion of the upper side in the long side direction, and is located at other positions. In particular, it is not necessary to provide the brace 24 or the vibration control joint 26. The height of each layer of the damping rack 2 is almost constant. In such a case, the seismic force (horizontal force at the time of earthquake) is greatly applied to both ends of the bottom, and the damping joint 26 is plastically deformed at this position. This is because it is easy to add to the upper center of the side surface in the long side direction of the rack 2 in a chain. For this reason, the damping joint 26 is provided along the line which connects the both ends of the long side direction base of the damping rack 2 and the center part of the long side upper side.
[0013]
In the embodiment, the general brace 28 made of a material having low rigidity is provided at other positions. An opening may be provided in which neither the general brace 28 nor the brace 24 is provided. For example, in the case of FIG. 2, the station 30 is provided near the center of the bottom and the middle in the height direction near both left and right ends. The braces 24 and 28 are not provided in this portion, and the articles in the rack are carried in and out by a forklift or the like. I was able to do it.
[0014]
FIG. 3 shows a modified damping rack 32. This figure shows the side surface of the seismic control rack 32 in the long side direction, and a large number of columns in front and back in the short side direction appear in parallel, and these are connected by the beam 14, and the brace 24 and the vibration control joint 26 are diagonally arranged between the columns. A combination with is arranged. Further, the pillars were joined by the general breath 28 to the front opening where the breath 24 was not provided. In FIG. 3, the height of the layer is large on the lower side of the damping rack 32 and smaller on the upper side. In the case of such a structure, the horizontal force at the time of an earthquake applied along the long side direction is easily transmitted from the bottom vertex of the side surface in the long side direction to the top vertex along the diagonal line. Therefore, a combination of the brace 24 and the vibration control joint 26 is arranged in the vicinity of a line connecting the bottom ends of the long side surface and the diagonal ends of the top side. The general breath 28 is provided for the other opening as in the case of FIG. 2, but the general breath 28 may not be provided.
[0015]
4 and 5 show the attachment of the brace 24 to the vibration control joint 26. FIG. The damping joint 26 is composed of a ring of low yield point steel, and four braces 24 are attached so as to penetrate the peripheral surface. Reference numeral 34 denotes a screw portion provided in the brace 24, 36 denotes a through hole provided in the vibration control joint 26, and 38 denotes a fixing nut. When the brace 24 is passed through the ring of the vibration control joint 26 through the through hole 36 and tightened with the nut 38, the brace 24 can be attached without using a turnbuckle or the like.
[0016]
In FIG. 6, the deformation | transformation of the damping joint 26 at the time of an earthquake is shown. When force in the direction of the arrow is applied to the brace 24, the vibration control joint 26 is deformed like a one-dot chain line, thereby absorbing the seismic energy. Since the vibration control joint 26 is basically non-directional in a plane perpendicular to the axial direction thereof, it is not necessary to devise a shape in accordance with the direction of the brace 24 so that plastic deformation easily occurs in the direction of the brace 24. . Further, for example, when a force to extend to the upper right and lower left in FIG. 6 is applied and deformed, a force to extend to the upper left and lower right in the next vibration is applied, so that the original shape is almost restored. For this reason, when the ring-shaped seismic joint 26 is used, a turnbuckle is not required for the attachment of the brace 24, it can be attached by tightening with a nut or the like through the through-hole, and since there is no direction, installation is easy and plastic deformation is repeated. Can absorb seismic energy.
[0017]
FIG. 7 schematically shows the absorption of seismic energy due to the deformation of the seismic joint 26. The seismic joint 26 is elastically deformed while the seismic force is small, and plastic deformation starts when the seismic force is increased. Then, deformation is repeated in the loop shape of FIG. 7, and the seismic energy for the area surrounded by this loop can be absorbed.
[0018]
FIG. 8 and FIG. 9 show the configuration of the plate-like vibration control joint 10 used for connecting the upper and lower column members at the front and rear columns. The vibration control joints 11 to 13 have the same configuration. Reference numeral 42 denotes a pair of upper and lower flange portions, and column members 4 and 6 are attached to these portions by welding or the like, and 44 is a reinforcing portion at both ends, which are vertically connected by bolts 46 and nuts 48 or the like. The flange portion 42 is made of a material that is easily plastically deformed, such as a low yield point steel, and the reinforcing portion 44 is made of a material that is relatively difficult to be plastically deformed, such as plain steel.
[0019]
The left side of FIG. 8 shows the shape of the vibration control joint 10 in a normal state, and the right side shows a state after plastic deformation by a seismic wave. When a horizontal force is applied during an earthquake, an upward pulling force is applied to one column in the short side direction of the damping rack. When the pulling force exceeds the elastic limit of the flange portion 42, the pair of flange portions 42 are plastically deformed up and down, and a gap is generated between the flanges 42 and 42. At this time, since both ends of the vibration control joint 10 are reinforced by the reinforcing portions 44, plastic deformation does not occur. And the energy of the plastic deformation of the flange parts 42 and 42 is absorbed. In the next seismic wave, a downward pushing force acts on the column member 6, and the pushing force closes the gap between the flange portions 42 and 42, and the original state is restored.
[0020]
FIGS. 8 and 9 show an example using plastic deformation of the plate-like vibration control joint 10. However, the upper column member is allowed to move upward and the upper column member is not allowed to move horizontally, Any joint that can absorb seismic energy during vertical movement is acceptable. A modification of such a vibration control joint is shown in FIG. 50 and 50 are flanges. The flanges 50 and 50 are provided at the ends of the upper column member 6 and the lower column member 4, and the flanges 50 and 50 are abutted against each other. Reference numeral 52 denotes a cylindrical body fixed to one of the upper and lower column members 4 and 6, which is accommodated inside the other column member, and prevents horizontal movement when the upper column member 6 moves upward. Reference numerals 54 and 56 denote brackets, and 58 denotes a damper provided therebetween.
[0021]
In the modified example of FIG. 10, when the upper column member 6 moves upward due to the seismic force, the flanges 50 and 50 are separated, but the cylindrical member 52 prevents the column members 4 and 6 from being displaced in the horizontal direction. During this upward movement, the damper 58 is used to absorb the seismic energy. When a seismic wave in the reverse direction is applied, the upper column member 6 is lowered and the flanges 50 and 50 are brought into close contact with each other.
[0022]
In the embodiment, with respect to the short side direction of the rack where rigidity is apt to be insufficient, vibration control joints 10, 11 and the like are provided on the front and rear columns, and the plastic deformation of the joint is used while allowing the upper column member to move upward. To absorb seismic energy. This significantly improves the vibration control in the short side direction and prevents collapse in the short side direction. Next, a combination of a brace 24 and a vibration control joint 26 is used in the long side direction of the rack. When the brace 24 is extended by an earthquake, the ring-shaped vibration control joint 26 is plastically deformed and the seismic energy is increased. To absorb. The seismic control joint 26 is extended by the next seismic wave, for example, in the opposite direction of 90 °, and can repeatedly absorb seismic energy.
[0023]
Further, the combination of the brace 24 and the vibration control joint 26 may be provided in the vicinity of a line connecting both ends of the bottom side in the long side of the rack and the center of the top side, or in the vicinity of a diagonal line on the side in the long side of the rack. Since it is not necessary to provide the entire side surface in the long side direction, attachment is easy. And a station etc. can be provided in the frontage which does not provide the brace | brass 24 and the damping joint 26. FIG. Furthermore, the damping joint 26 has a simple ring shape and does not require a turnbuckle. In addition, it is easy to mount and has no directionality, so there is no need to devise a shape in accordance with the tolerance angle between the breaths.
[Brief description of the drawings]
[Fig. 1] Side view in the short side direction of the damping rack according to the embodiment [Fig. 2] Side view in the long side direction of the damping rack according to the embodiment [Fig. 3] Side view in the long side of the damping rack according to the other embodiment [Fig. 4] Front view of ring-shaped damping joint used for coupling between braces in the embodiment [Fig. 5] Side view of ring-shaped damping joint of the embodiment [Fig. 6] Ring-shaped damping in the embodiment Figure showing joint plastic deformation [Figure 7] Figure showing the damping mechanism of the ring-shaped damping joint in the embodiment [Figure 8] Side view of the damping joint used for connecting the columns in the embodiment [Figure 9] ] Plan view of the damping joint used in the embodiment [Fig. 10] Side view showing a modified example of the damping joint for connection between columns [Explanation of symbols]
2,32 Damping rack 4-9 Column members 10-13,26 Damping joint 14,20 Beam 16,24 Breath 28 General brace 30 Station 34 Screw part 36 Through hole 38 Nut 42 Flange part 44 Reinforcement part 46 Bolt 48 Nut 50 Flange 52 Cylinder 54, 56 Bracket 58 Damper

Claims (2)

各層の高さがほぼ一定のラックの短辺方向の前後の各柱に、上下の柱部材を結合し、かつ上側の柱部材の上方への移動を許容しながら地震エネルギーを吸収するための第1のジョイントを設け、
ラックの長辺方向の支柱間にブレスを交差させて配置し、かつ該交差位置に、ブレスを結合すると共に、ブレスの移動を塑性変形により許容しながら地震エネルギーを吸収するための第2のジョイントを設け、
さらに前記第2のジョイントで結合したブレスを、長辺方向に沿って見たラック側面の底辺の両端部と上辺の中央部とを結ぶ線の付近に配設した、制震ラック。
The upper and lower pillar members are connected to the front and rear pillars in the short side direction of the rack whose height of each layer is substantially constant , and the upper pillar member is allowed to move upward while absorbing the seismic energy. 1 joint,
A second joint for arranging a brace between struts in the long side direction of the rack and coupling the brace at the intersecting position and absorbing seismic energy while allowing movement of the brace by plastic deformation the setting,
Furthermore, the vibration control rack which arrange | positioned the braces couple | bonded by the said 2nd joint in the vicinity of the line | wire which connects the both ends of the bottom of the rack side surface seen along the long side direction, and the center part of an upper side .
複数の層からなり、層の高さがラックの下側で大きく、上側で小さいラックの、短辺方向の前後の各柱に、上下の柱部材を結合し、かつ上側の柱部材の上方への移動を許容しながら地震エネルギーを吸収するための第1のジョイントを設け、
ラックの長辺方向の支柱間にブレスを交差させて配置し、かつ該交差位置に、ブレスを結合すると共に、ブレスの移動を塑性変形により許容しながら地震エネルギーを吸収するための第2のジョイントを設け、
さらに前記第2のジョイントで結合したブレスを、長辺方向に沿って見たラック側面の対角線付近に配設した、制震ラック。
The upper and lower column members are connected to the front and rear columns of the rack in the short side direction of the rack having a plurality of layers, the height of the layer being large on the lower side of the rack and small on the upper side , and above the upper column member. Providing a first joint to absorb seismic energy while allowing movement of
A second joint for arranging a brace between struts in the long side direction of the rack and coupling the brace at the intersecting position and absorbing seismic energy while allowing movement of the brace by plastic deformation the setting,
Furthermore, the vibration control rack which arrange | positioned the braces couple | bonded by the said 2nd joint in the diagonal vicinity of the rack side surface seen along the long side direction .
JP2001016681A 2001-01-25 2001-01-25 Vibration control rack Expired - Fee Related JP4336928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001016681A JP4336928B2 (en) 2001-01-25 2001-01-25 Vibration control rack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001016681A JP4336928B2 (en) 2001-01-25 2001-01-25 Vibration control rack

Publications (2)

Publication Number Publication Date
JP2002220106A JP2002220106A (en) 2002-08-06
JP4336928B2 true JP4336928B2 (en) 2009-09-30

Family

ID=18883002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001016681A Expired - Fee Related JP4336928B2 (en) 2001-01-25 2001-01-25 Vibration control rack

Country Status (1)

Country Link
JP (1) JP4336928B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101574598B1 (en) 2012-10-05 2015-12-04 가부시키가이샤 도요다 지도숏키 Goods storage rack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399868B2 (en) * 2014-09-08 2018-10-03 大成建設株式会社 Seismic isolation system for automatic warehouse racks
IT202000012769A1 (en) 2020-05-28 2021-11-28 Rosss S P A STORAGE SHELVING

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101574598B1 (en) 2012-10-05 2015-12-04 가부시키가이샤 도요다 지도숏키 Goods storage rack

Also Published As

Publication number Publication date
JP2002220106A (en) 2002-08-06

Similar Documents

Publication Publication Date Title
JP3842484B2 (en) Column and beam joint structure and building having the same
JP3629638B2 (en) Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability
US20080022610A1 (en) Composite energy absorbing structure
KR100516332B1 (en) Steel structure equipped with connection damper
JP2002338018A (en) Automatic high-rise warehouse
JP4070117B2 (en) Vibration control device
JP4336928B2 (en) Vibration control rack
JP3603765B2 (en) Vibration control rack
JP2008013347A (en) Seismic isolation wall connection device in facility for construction
JPH11131860A (en) Earthquake control device and steel structure
JPH09296625A (en) Building structure having earthquake-resistant construction
JP2003118819A (en) Vibration damping rack and rack vibration damping method
JP7081745B2 (en) Seismic isolation structure
JP2013122297A (en) Vibration-proof frame
JPH11324399A (en) Shearing yield type steel damper
JP4998059B2 (en) Seismic control panel and frame structure using the same
JP2004051271A (en) Storing shelf
JP2008002658A (en) Member holding device and member holding method
JP3974120B2 (en) Vibration control structure
JP3654423B2 (en) Vibration control rack
JP4059634B2 (en) Vibration control structure of space frame structure
JP3321352B2 (en) Seismic isolation connecting structure for wooden building incorporating seismic isolation rubber body for wooden building
JP3991870B2 (en) Seismic control structure of frame
JP2001059363A (en) Vibration control damper, and vibration control frame
JP3957255B2 (en) Vibration control rack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090616

R150 Certificate of patent or registration of utility model

Ref document number: 4336928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees