JP4336222B2 - 光ヘッド装置、並びにこれを用いた光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー及び光ディスクサーバー - Google Patents

光ヘッド装置、並びにこれを用いた光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー及び光ディスクサーバー Download PDF

Info

Publication number
JP4336222B2
JP4336222B2 JP2004046757A JP2004046757A JP4336222B2 JP 4336222 B2 JP4336222 B2 JP 4336222B2 JP 2004046757 A JP2004046757 A JP 2004046757A JP 2004046757 A JP2004046757 A JP 2004046757A JP 4336222 B2 JP4336222 B2 JP 4336222B2
Authority
JP
Japan
Prior art keywords
optical
light beam
information
thickness
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004046757A
Other languages
English (en)
Other versions
JP2004281034A (ja
JP2004281034A5 (ja
Inventor
慶明 金馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004046757A priority Critical patent/JP4336222B2/ja
Publication of JP2004281034A publication Critical patent/JP2004281034A/ja
Publication of JP2004281034A5 publication Critical patent/JP2004281034A5/ja
Application granted granted Critical
Publication of JP4336222B2 publication Critical patent/JP4336222B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Description

本発明は、例えば光ディスクなどの光情報媒体上に記憶される情報の記録・再生あるいは消去を行う光ヘッド装置及び光情報装置(光情報装置)および、光情報装置における記録再生方法、そして、これらを応用したシステムに関するもの、そしてまた、前記光ヘッド装置に用いる対物レンズや回折素子、および、対物レンズと回折素子の複合した複合対物レンズに関するものである。
高密度・大容量の記憶媒体として、ピット状パターンを有する光ディスクを用いる光メモリ技術は、ディジタルオーディオディスク、ビデオディスク、文書ファイルディスク、さらにはデータファイルと用途を拡張しつつ、実用化されてきている。微小に絞られた光ビームを介して、光ディスクへの情報記録再生が高い信頼性のもとに首尾よく遂行される機能は、回折限界の微小スポットを形成する集光機能、光学系の焦点制御(フォーカスサーボ)とトラッキング制御、及びピット信号(情報信号)検出に大別される。
近年、光学系設計技術の進歩と光源である半導体レーザーの短波長化とにより、
従来以上の高密度の記憶容量を持つ光ディスクの開発が進んでいる。高密度化のアプローチとしては、光ディスク上へ光ビームを微小に絞る集光光学系の光ディスク側開口数(NA)を大きくすることが検討されている。その際、問題となるのが光軸の傾き(いわゆるチルト)による収差の発生量の増大である。NAを大きくすると、チルトに対して発生する収差量が大きくなる。これを防ぐためには、光ディスクの基板の厚み(基材厚)を薄くすれば良い。
光ディスクの第1世代といえるコンパクトディスク(CD)は赤外光(波長λ3は780nm〜820nm)とNA0.45の対物レンズとを使用し、ディスクの基材厚は1.2mmである。第2世代のDVDは赤色光(波長λ2は630nm〜680nm、標準波長650nm)とNA0.6の対物レンズとを使用し、ディスクの基材厚は0.6mmである。そしてさらに、第3世代の光ディスクは青色光(波長λ1は390nm〜415nm、標準波長405nm)とNA0.85の対物レンズとを使用し、ディスクの基材厚は0.1mmである。
なお、本明細書中では、基板厚みとは光ディスク(または情報媒体)に光ビームの入射する面から情報記録面までの厚みを指す。
このように、高密度光ディスクの基板の厚みは薄くされている。経済性、装置の占有スペースの観点から、上記基材厚と記録密度とが互いに異なる複数種類の光ディスクを記録再生できる光情報装置が望まれる。そのためには互いに異なる基板の厚みの光ディスク上に回折限界まで光ビームを集光することのできる集光光学系を備えた光ヘッド装置が必要である。
また、より厚い基材のディスクを記録再生する場合には、ディスク表面より奥の方にある記録面上に光ビームを集光する必要があるので、焦点距離をより長くしなければならない。
互いに異なる基板の厚みの複数種類の光ディスクに対する記録再生を行う光ヘッド装置を実現することを目的とした構成が特開平7−98431号公報(図1)(特許文献1)に開示されている。これを第1の従来例として図11(a)および図11(b)に基づいて説明する。40は対物レンズ、41はホログラムである。ホログラム41は、入射光ビーム44に対して透明な基板によって形成されていて、その格子パターンが同心円状である。
対物レンズ40は、開口数NAが0.6以上で、図11(a)に示すように、ホログラム41を回折されずに透過した0次回折光42を、例えば、0.6mmの基材の厚み(t2)の光ディスク10上に回折限界の集光スポットに形成できるよう構成されている。また、図11(b)は、基板の厚い(厚さt1=1.2mm)の光ディスク11上に回折限界に集光スポットを集光できることを示す。ホログラム41で回折された+1次回折光43は対物レンズ40によって光ディスク11に集光される。ここで+1次回折光43は厚さt1の基板を通して回折限界まで絞れるように収差補正を施されている。
このように入射光を回折するホログラム41と対物レンズ40とを組み合わせることによって、異なる次数の回折光42および43を利用して、互いに異なる基板厚(t1とt2)の光ディスク10および11上にそれぞれ回折限界にまで集光される集光スポットを形成する事ができる2焦点レンズを実現している。また、上記とは逆に、ホログラム41を凸レンズ作用を持つ構成にし、厚さt1の光ディスク11に対して0次回折光を用い、厚さt2の光ディスク10に対して+1次回折光を用いることによって、厚さt2の光ディスク10の記録再生時の波長変動に対して、焦点位置変動を低減することも開示されている。
他にも、異なる種類の光ディスクを複数種類の波長の光ビームを用いて互換再生することを目的とした構成が開示されている。第2の従来例としては、波長選択位相板を対物レンズと組み合わせる構成が特開平10−334504号公報(第7−9頁、図1〜図4)(特許文献2)、およびISOM2001TECHNICAL DIGEST セッションWe−C−05(予稿集30頁)(非特許文献1)に開示されている。非特許文献1に開示されている構成を、図12と図13を用いて説明する。図12は、従来の光ヘッド装置の概略構成を示している。波長λ1=405nmの青色光源を有する青色光学系51より出射した平行光はビームスプリッター161及び波長選択位相板205を透過して、対物レンズ50によって、基材厚0.1mmの光ディスク9(第3世代光ディスク)の情報記録面に集光される。光ディスク9で反射した光は逆の経路をたどって青色光学系51の検出器で検出される。
また、波長λ2=650nmの赤色光源を有する赤色光学系52より出射した発散光はビームスプリッター161で反射し、波長選択位相板205を透過して、対物レンズ50によって、基材厚0.6mmの光ディスク10(第2世代光ディスク:DVD)の情報記録面に集光される。光ディスク10で反射した光は逆の経路をたどって赤色光学系52の検出器で検出される。
対物レンズ50は平行光入射時に基材厚0.1mmを透過して集光されるように構成されており、DVDを記録・再生する際は基材厚の違いによって球面収差が発生する。この球面収差を補正するため、赤色光学系52より出射する光ビームを発散光にすると共に、波長選択位相板205を用いている。対物レンズ50に発散光を入射させると新たな球面収差が発生するので、基材厚の違いによって発生する球面収差をこの新たな球面収差でうち消すとともに、波長選択位相板205によっても波面を補正している。
図13(a)および図13(b)に波長選択位相板205の平面図と側面図とをそれぞれ示す。波長選択位相板205は、波長λ1での屈折率をn1、h=λ1/(n1−1)とした場合、高さh、および高さ3hの位相段差205aで構成される。波長λ1の光に対しては、高さhにより生じる光路差は使用波長λ1であり、位相差2πに相当するため、位相差0と同じである。このため、位相分布に影響を与えず、光ディスク9の記録再生には影響を与えない。一方、波長λ2の光に対しては、波長λ2での位相板206の屈折率をn2とすると、h/λ2×(n2―1)≒0.6λ、すなわち波長の整数倍ではない光路差を生じる。この光路差による位相差を利用して、先に述べた収差補正を行っている。
また、第3の従来例としては、複数の対物レンズを機械的に切り替えて用いる構成が開示されている(例えば特開平11−296890号公報(第4−6頁、図1)(特許文献3))。
さらに、第4の従来例としては、異なる曲率半径を有する反射面を備えたミラーを光軸を折り曲げる立ち上げミラーと兼ねる構成が、開示されている(例えば特開平11−339307号公報(第4−5頁、図1)(特許文献4))。
第5の従来例としては、第1の従来例と同様に屈折型の対物レンズとホログラムとを組み合わせて、異なる波長の光の同じ次数の回折光に生じる色収差を利用して、基材厚の差を補正する構成が開示されている(例えば特開2000−81566号公報(第4−6頁、図1、2)(特許文献5))。
第5の従来例として第63回応用物理学関係連合講演会 講演予稿集 27p−YD−5(2002.9 新潟大学)(非特許文献2)を説明する。青色光源と赤色光源とをそれぞれ用いるBDとDVDとについては図12を用いて説明した第2の従来例とほぼ同様である。これを図14を用いて説明する。波長λ1=405nmの青色光源を有する青色光学系51より出射した平行光は2個のビームスプリッター161及び波長選択ホログラム207を透過して、対物レンズ50によって、基材厚0.1mmの光ディスク9(第3世代光ディスク)の情報記録面に集光される。光ディスク9で反射した光は逆の経路をたどって青色光学系51の検出器で検出される。
また、波長λ2=650nmの赤色光源を有する赤色光学系52より出射した発散光はビームスプリッター161で反射して、対物レンズ50によって、基材厚0.6mmの光ディスク10(第2世代光ディスク:DVD)の情報記録面に集光される。光ディスク10で反射した光は逆の経路をたどって赤色光学系52の検出器で検出される。
対物レンズ50は、平行光が入射する時に基材厚0.1mmを透過して集光されるように形成されており、DVD記録・再生の際は基材厚の違いによって球面収差が発生する。この球面収差を補正するため、赤色光学系52より出射する光ビームを発散光にする。対物レンズ50に発散光を入射させると新たな球面収差が発生するので、基材厚の違いによって発生する球面収差をこの新たな球面収差でうち消す。
そしてさらに、第5の従来例では、波長λ3=785nmの赤外光学系53から出射する平行光を波長λ3のみに凹レンズ効果をもつ波長選択ホログラム207によって拡散光に変換して、光ディスク11と光ディスク9の基材厚の差に起因する球面収差を補正する。
特開平7−98431号公報(図1) 特開平10−334504号公報(第7−9頁、図1〜図4) 特開平11−296890号公報(第4−6頁、図1) 特開平11−339307号公報(第4−5頁、図1) 特開2000−81566号公報(第4−6頁、図1、2) ISOM2001TECHNICAL DIGEST セッションWe−C−05(予稿集30頁) 第63回応用物理学関係連合講演会 講演予稿集 27p−YD−5(2002.9 新潟大学)
前述した第1の従来例は、少なくとも以下の3点の発明思想を提案している。第1にホログラムの回折を利用して、基材厚の違う光ディスクの互換を実現し、第2に内外周の設計を変えることによって、NAの違う集光スポットを形成し、第3に、ホログラムの回折を利用して、基材厚の違う光ディスクに対して集光スポットの焦点位置を変化させる。これらの発明思想は光源が発する光の波長を限定するものではない。
ここで、第2世代の光ディスクであるDVDは、記録面を2面有する2層ディスクを含む。対物レンズに近い側の記録面(第1記録面)は、対物レンズから遠い面へも光を通す必要があるため、反射率は30%程度に設定される。ところが、この反射率は、赤色光に対してのみ保証されており、他の波長では保証されていない。従って、DVDの再生を確実に行うためには、赤色(波長λ2=630nm〜680nm)の光を用いる必要がある。また、第3世代の光ディスクの記録・再生においては集光スポット径を十分に小さくするため、青色(波長λ1=390nm〜415nm)の光を用いる必要がある。このように特に、赤色光と青色光とを用いて互いに異なる種類の光ディスクを互換する際に光の利用効率をより高くする構成は、第1の従来例には開示されていない。
また、第1の従来例では、ホログラムを凸レンズ型にして+1次回折光を利用し、1種類の光ディスクに対しては、波長変化による焦点位置移動を低減する構成が開示されているが、2種類以上の光ディスクに対して、波長変化による焦点位置移動をそれぞれ低減する構成は、開示されていない。
第2の従来例では、互換素子として、波長選択位相板を用いている。基材厚の厚いディスクを記録再生する際には、記録面が対物レンズに対して、基材厚の分だけ遠くなるので、焦点距離を延ばす必要がある。焦点距離は互換素子がレンズパワーを有することによって伸ばすこともできるが、波長選択位相板にはレンズパワーがない。また、第2の従来例のように赤色光を発散光にして、このレンズパワーをすべて実現しようとすると、トラック追従などのために対物レンズが移動する時に、大きな収差が生じて記録・再生特性が劣化するという課題が生じる。
第3の従来例では、対物レンズを切り替えているので、複数の対物レンズを要し、部品点数が多くなると共に、光ヘッド装置の小型化が困難という課題がある。また、切り替え機構を要する点でも装置の小型化を困難にするという課題がある。
第4の従来例では、対物レンズをミラーに対して独立に駆動している(特許文献4の第4図から第6図参照)。ところが上述のように曲率半径をもったミラーによって光ビームを平行光から変換するので、対物レンズがトラック制御などのために移動すると、入射光波面に対する対物レンズの相対位置が変化し、収差が発生して、集光特性が劣化するという課題がある。
また、ミラーの反射面は曲率半径を持った面、すなわち球面によって構成されているが、基材厚の差と波長の差とを補正するためには球面では不十分であり、5次以上の高次収差を十分に低減することができないという課題もある。
また、第5の従来例では基材厚1.2mmの光ディスク(CD)を再生するために、波長785nmのみに凹レンズ効果をもつ波長選択ホログラムを用いるとされているが、波長選択ホログラムの具体構成は開示されていない。また、赤色光と青色光それぞれについて、ある特定の波長に対して、例えば、赤色光(660nm)と青色光(405nm)とに対して波長の整数倍(3倍以上)の位相となる位相段差を利用してホログラムを構成することも考えられるが、赤外光による光ディスク11の再生のみを考慮して波長選択ホログラム207を設計していると、赤色光が温度変化によって661nmになるなど、波長のわずかな変動でも数十mλrmsに達する収差が発生する。このため、光ディスク9や、光ディスク10の記録あるいは再生ができなくなるという課題がある。
そこで本発明では上記の課題に鑑み、基材厚1.2mmで対応波長λ3(標準的には約790nm)の光ディスク(CD)と、基材厚0.6mmで対応波長λ2(標準的には約650nm)の光ディスク(DVD)と、基材厚0.1mmで対応波長λ1(標準的には約405nm)の光ディスク(青色光ディスク)との間の互換再生および互換記録を、高い光利用効率を持って、かつ、単一の対物レンズを用いて実現することを目的とする。
本発明に係る光ヘッド装置は、青色の光ビームを出射する青色レーザー光源と、赤色の光ビームを出射する赤色レーザー光源と、赤外の光ビームを出射する赤外レーザー光源と、光ビームを受けて光ディスクの記録面上へ微小スポットに集光する対物レンズとを具備し、前記微小スポットの球面収差を制御する球面収差補正素子を前記青色の光ビームと前記赤色の光ビームの共通の光路内に具備し、前記球面収差補正素子は光軸方向に移動可能なコリメートレンズであって、前記青色の光ビームを厚さt1の透明基材を有する第1の光情報媒体の記録面上に前記厚さt1の透明基材を通して集光し、前記赤色の光ビームを厚さt2の透明基材を有する第2の光情報媒体の記録面上に前記厚さt2の透明基材を通して集光し、前記赤外の光ビームを厚さt3の透明基材を有する第3の光情報媒体の記録面上に前記厚さt3の透明基材を通して集光し、t3はt2とt1のいずれよりも厚く、前記青色の光ビームと前記赤色の光ビームを集光した微小スポットの球面収差を前記球面収差補正素子によって制御し、前記赤外レーザー光源と前記対物レンズとの間にはリレーレンズを配置し、前記赤外レーザー光源から出射される前記赤外の光ビームは前記リレーレンズによって略収束された後に再度拡散しながら前記対物レンズに入射し、前記対物レンズによって約1.2mmの透明基材を通して光ディスクの記録面上へ微小スポットに集光し、前記リレーレンズは光軸から離れた外周部に球面収差を付加して構成し、前記球面収差によって、軸外収差を補正することを特徴とする。
前記リレーレンズと前記対物レンズの間に、前記赤外の光ビームと、より短波長の光ビームとを分離するダイクロイック素子をさらに具備することが好ましい。
前記リレーレンズと前記対物レンズの間に、前記赤外の光ビームと、より短波長の光ビームとを分離するダイクロイック素子をさらに具備することが好ましい。
前記リレーレンズと前記対物レンズとの間に配置する前記ダイクロイック素子に設けられた平行平板の表面には、前記赤外の光ビームと、より短波長の光ビームとを分離するダイクロイック膜が形成されていることが好ましい。
前記平行平板の厚みは、1mm以下であることが好ましい。
前記ダイクロイック素子は、前記青色の光ビームが略平行光束となる位置に配置されることが好ましい。
本発明に係る光情報装置は、前記本発明の光ヘッド装置と、光ディスクを回転するモーターとを具備することを特徴とする。
この実施の形態では、前記光ヘッド装置が、本発明に係る光ヘッド装置であり、前記光ディスクの種類を判別して、基材厚が0.6mmの光ディスクに対しては前記コリメートレンズを前記赤色レーザー光源側に移動することが好ましい。
本発明に係るコンピューターは、前記本発明の光情報装置と、情報を入力するための入力装置あるいは入力端子と、前記入力装置から入力された情報前記光情報装置から再生された情報に基づいて演算を行う演算装置と、前記入力装置から入力された情報や、前記演算装置によって演算された結果を表示あるいは出力するための出力装置あるいは出力端子とを備えたことを特徴とする。
本発明に係る光ディスクプレーヤーは、前記本発明の光情報装置と、前記光情報装置から得られる情報信号を画像に変換する情報から画像へのデコーダーとを有することを特徴とする。
本発明に係るカーナビゲーションシステムは、前記本発明の光情報装置と、前記光情報装置から得られる情報信号を画像に変換する情報から画像へのデコーダーとを有することを特徴とする。
本発明に係る光ディスクレコーダーは、前記本発明の光情報装置と、画像情報を前記光情報装置によって記録する情報に変換する画像から情報へのエンコーダーとを有することを特徴とする。
本発明に係る光ディスクサーバーは、前記本発明の光情報装置と、外部との情報のやりとりを行う入出力端子とを備えたことを特徴とする。
本発明によれば、基材厚1.2mmで対応波長λ3(標準的には約790nm)の光ディスク(CD)と、基材厚0.6mmで対応波長λ2(標準的には約650nm)の光ディスク(DVD)と、基材厚0.1mmで対応波長λ1(標準的には約405nm)の光ディスク(青色光ディスク)との間の互換再生および互換記録を、高い光利用効率を持って、かつ、単一の対物レンズを用いて実現することができる。
(実施の形態1)
図1は本発明の実施の形態1における光ヘッド装置を示す線図的説明図である。図1において、1は波長λ1(390nm〜415nm:標準的には405nmぐらいなので、以下、390nm〜415nmの波長を総称して405nmと呼ぶ)のレーザー光を出射するレーザー光源、20は波長λ2(630nm〜680nm:標準的には660nmを使われることが多いので、以下、630nm〜680nmの波長を総称して660nmと呼ぶ)のレーザー光を出射するレーザー光源、23は波長λ3(770nm〜810nm:標準的には790nmを使われることが多いので、以下、770nm〜810nmの波長を総称して790nmと呼ぶ)のレーザー光を出射する半導体レーザー光源と光検出器とホログラムをハイブリッドに一体集積化した赤外レーザーとホログラム及び光検出器(以下赤外光ユニットと呼ぶ)、14は対物レンズ、24は赤外ユニット23から出射された赤外光を略収束させたのちに対物レンズ14へ導き、光ディスク11の情報記録面上に再び収束させるリレーレンズ、8はコリメートレンズ(第1の凸レンズ)である。12は光軸を折り曲げる立ち上げミラー。9は基材厚みt1が約0.1mm(以下、0.06mm〜0.11mmの基材厚を約0.1mmと呼ぶ)あるいはより薄い基材厚みで、波長λ1の光ビームによって記録・再生をされる第3世代の光ディスクである。10は基材厚みt2が約0.6mm(0.54mm〜0.65mmの基材厚を以下、約0.6mmと呼ぶ)で、波長λ2の光ビームによって記録・再生をされるDVD等第2世代の光ディスクである。11は基材厚みt3が約1.2mmで、波長λ3の光ビームによって記録・再生をされるCD等第1世代の光ディスクである。光ディスク9、10および11は、光の入射面から記録面までの基材のみを図示している。実際には、機械的強度を補強し、外形厚みを1.2mmにするため、保護板と張り合わせを行う。例えば、光ディスク10は、厚み0.6mmの保護材と張り合わせる。光ディスク9は厚み1.1mmの保護材と張り合わせる。本発明の図面では、簡単のため、保護材は省略する。
レーザー光源1、20は、好ましくは半導体レーザー光源とすることにより光ヘッド装置、及びこれを用いた光情報装置を小型、軽量、低消費電力にすることができる。
最も記録密度の高い光ディスク9の記録再生を行う際には、レーザー光源1から出射した波長λ1の青色光ビーム61がビームスプリッター4によって反射され、1/4波長板5によって円偏光になる。1/4波長板5は波長λ1、波長λ2の両方に対して、1/4波長板として作用するように設計する。コリメートレンズ8によって略平行光にされ、さらに立ち上げミラー12によって光軸を折り曲げられ、ホログラム(回折型の光学素子)13と対物レンズ14によって光ディスク9の厚さ約0.1mmの基材を通して情報記録面91(図2参照)に集光される。
情報記録面91で反射した青色光ビーム61は、もとの光路を逆にたどって(復路)、1/4波長板5によって初期とは直角方向の直線偏光になり、ビームスプリッター4をほぼ全透過し、ビームスプリッター16で全反射され、検出ホログラム31によって回折され、光検出器33に入射する。光検出器33の出力を演算することによって、焦点制御およびトラッキング制御に用いるサーボ信号及び情報信号を得る。なお、図示しないが、さらに検出レンズを光検出器33の前に配置して、サーボ信号特性を好ましいものにすることも可能である。
上記のようにビームスプリッター4は、波長λ1の光ビームに関しては、1方向の直線偏光を全反射し、それと直角方向の直線偏光を全透過する偏光分離膜である。かつ、後で述べるように、波長λ2の光ビームに関しては赤色レーザー20から出射する赤色光ビーム62を全透過する。このようにビームスプリッター4は偏光特性と共に波長選択性を持った光路分岐素子である。
次に、光ディスク10の記録あるいは再生を行う際には、赤色レーザー20から出射した略直線偏光で波長λ2の光ビーム62がビームスプリッター16とビームスプリッター4とを透過し、コリメートレンズ8によって略平行光にされ、さらに立ち上げミラー12によって光軸を折り曲げられ、ホログラム13と対物レンズ14とによって光ディスク10の厚さ約0.6mmの基材を通して情報記録面101(図2参照)に集光される。
情報記録面101で反射した光ビーム62はもとの光路を逆にたどって(復路)、ビームスプリッター4をほぼ全透過し、ビームスプリッター16で全反射され、検出ホログラム31によって回折され、光検出器33に入射する。光検出器33の出力を演算することによって、焦点制御およびトラッキング制御に用いるサーボ信号及び情報信号を得る。このように共通の光検出器33から、光ディスク9と10とのサーボ信号を得るためには、青色レーザー1と赤色レーザー20との発光点を、対物レンズ14側の共通の位置に対して結像関係にあるように配置する。こうすることにより、検出器の数も配線数も減らすことができる。
ビームスプリッター16は波長λ2に対して、1方向の直線偏光を全透過し、それと直角方向の直線偏光を全反射する偏光分離膜である。かつ、波長λ1の光ビームに関しては青色光ビーム61を全反射する。このようにビームスプリッター16も偏光特性と共に波長選択性を持った光路分岐素子であることが望ましい。
ここで、図2と図3(a)、図3(b)と図4(a)〜図4(c)とを用いてホログラム13と対物レンズ14との変形例であるホログラム134および対物レンズ144の働きと構成を説明する。
図2において134はホログラムである。ホログラム134は、波長λ1の青色光ビーム61を回折して、凸レンズ作用を及ぼし、波長λ2の光に対しては後に説明するように回折して青色光ビームに対する凸レンズ作用よりも弱い凸レンズ作用を及ぼす。ここでは、凸レンズ作用を及ぼす最も低次の回折を+1次回折と定義する。本実施の形態では、青色光ビームに対しては、+2次の回折が最も強く作用するように設計する。すると、赤色光ビームに対しては+1次回折が最も強く作用する。すると、赤色光ビームの方が青色光ビームよりも波長が長いにもかかわらず、ホログラム134上の各点における回折角度は赤色光ビームの方が青色光ビームよりも小さくなる。すなわち、ホログラム134が、波長λ1の青色光ビーム61を回折するときの凸レンズ作用の方が、波長λ2の光に対して及ぼす凸レンズ作用よりも強くなる。言い換えると、赤色光ビームはホログラム134によって凸レンズ作用を受けるものの、青色光ビームの受ける作用を基準にすると、相対的には回折によって、凹レンズ作用を受ける。
波長λ1の青色光ビームがホログラム134によって+2次回折されて凸レンズ作用を受けた後に、さらに収束されて光ディスク9の基材厚t1を通して記録面91上へ集光するように対物レンズ144は設計される。
次に、赤色光ビーム62を用いて光ディスク10の記録・再生を行う際のホログラム134の働きを詳細に説明する。ホログラム134は波長λ2の光(点線:赤色光ビーム62)を+1次回折して、凸レンズ作用を及ぼす。そして、対物レンズ144によって光ディスク10の厚さ約0.6mmの基材を通して赤色光ビーム62を情報記録面101に集光する。ここで、ディスク10はその光入射面から情報記録面101までの基材厚が0.6mmと、厚くなっているので、基材厚0.1mmの光ディスク9を記録再生する場合の焦点位置よりも焦点位置を対物レンズ144から離す必要がある。図2に示すように波面変換によって、青色光ビーム61を収束光にし、赤色光ビーム62の収束度を青色光ビーム61の収束度よりも緩くすることにより、この焦点位置の補正と基材厚差による球面収差の補正とを実現する。
波長λ1の青色光ビーム61と波長λ2の赤色光ビーム62とは、いずれもホログラム134によって波面を変換される。従って、ホログラム134と対物レンズ144との間の相対位置に誤差があると、設計どおりの波面が対物レンズ144に入射しないので、光ディスク9や、光ディスク10へ入射する波面に収差が生じ、集光特性が劣化する。そこで、望ましくは、ホログラム134と対物レンズ144とを一体に固定し、焦点制御およびトラッキング制御に際しては、共通の駆動器15(図1)によって一体に駆動する。
なお、望ましくは、ホログラム134を対物レンズ144の表面に直接形成することにより、部品点数を削減することができる。
図3(a)および図3(b)はホログラム134を示す。図3(a)は平面図、図3(b)は図2と同様の断面図である。ホログラム134は、内外周境界134Aの内側(内周部134C)と外側(内外周境界134Aと有効範囲134Dとの間の外周部134B)とが、互いに異なるものである。内周部134Cは、ホログラム134と光軸との交点、すなわち中心を含む領域である。この内周部134Cの領域は、赤色光ビーム62を用いて光ディスク10の記録・再生を行う際も、青色光ビーム61を用いて光ディスク9の記録・再生を行う際も使用する。従って、内周部134Cの回折格子と、ここから回折される赤色光ビーム62が通過する対物レンズ144の部分とは、青色光ビーム61の+2次回折光が光ディスク9に集光され、赤色光ビーム62の+1次回折光が光ディスク10に集光されるように設計する。外周部134Bについては、光ディスク9を青色光ビーム61によって記録・再生するときの開口数NAbが、光ディスク10を赤色光ビーム62によって記録・再生するときの開口数NArよりも大きい(NAb>NAr)必要がある。このため、赤色光ビーム62と青色光ビーム61とをそれぞれ対応する光ディスク9と10とに対して集光する内周部134Cの周囲に、青色光ビーム61の+2次回折光のみを光ディスク9に対して集光する。そして、赤色光ビーム62の+1次回折光は光ディスク10に対して収差を持つように外周部134Bおよび、これに対応する対物レンズ144の外周部を設ける必要がある。すなわち、図示しないが、対物レンズ144もホログラム134と同様に、内外周によって、異なる設計をすることが望ましい。これによって、最適なNAすなわち、NAb>NArを実現できる。
図4(a)〜図4(c)は、ホログラム134のホログラム格子の一周期(p4)の間の断面を説明する図である。図4(a)は、物理的な形状を示している。このようなのこぎりの歯のような形状を鋸歯状と呼ぶ。また、斜面の方向を表すため、図4(a)の形状を、基材が左側に斜面を持つ形状と表現する。この呼び方に従い、図3(b)のホログラム134の断面形状を、基材が外周側に斜面を持つ鋸歯形状と表現する。図4(b)は、青色光に対する位相変調量を示している。図4(c)は、赤色光に対する位相変調量を示している。
図4(a)において縦方向は鋸歯状格子の深さを示している。nbは、青色光ビーム61に対するホログラム134の材料の屈折率である。ホログラム134の材料を、例えば、ガラス硝材の一種であるBK7とすると、nb=1.5302である。
鋸歯状格子の深さは、青色光ビーム61に対して光路長差が約2波長、すなわち位相差が約4πになる量にする。深さh1は、
h1=λ1/(nb−1)×2=1.53μmとなる。
この形状による青色光ビーム61に対する位相変調量は格子一周期の中で4π(=2π×2)変化するため、+2次回折光強度が最大となり、スカラー計算上は100%の回折効率となる。
一方赤色光ビーム62に対するホログラム134の材料の屈折率をnrとすると、ホログラム134の材料がBK7の場合は、nr=1.5142なので、段差h1によって赤色光ビーム62に発生する光路長差は、h1×(nr−1)/λ1=1.19、すなわち、波長の約1.2倍となり、位相変調量は約2.4πとなる。従って+1次回折光強度が最も強くなり計算上の回折効率は約80%となる。
このように、図4(a)のように、格子一周期の形状を、深さh1の鋸歯状の断面形状にすると、青色光ビーム61は、先に説明したように+2次回折が最も強いので、回折角度を決める格子周期は、実質p4/2であり、位相変化は図4(b)と同等となる。そして、赤色光ビーム62に対しては、+1次回折が最も強いので、回折角度を決める格子周期は、実質p4である。
さらに、基材厚1.2mmで対応波長λ3(標準的には約790nm)の光ディスク(CD)を記録、あるいは再生するための光学構成を図1を用いて説明する。赤外光ユニット23から出射した赤外光ビーム25を凸型のリレーレンズ24によって、一旦、略収束させる。そして、再び広がる赤外光ビーム25をホログラム13と対物レンズ14とによって光ディスク11の情報記録面上に再度収束させる。
光ディスク11の基材厚は約1.2mmあり、光ディスク9の基材厚0.1mmに比べて、1.1mmも厚いので、それだけ収束させるべき焦点を対物レンズ14からより遠くにすることが必要である。上述のように、一旦赤外光ビーム25をリレーレンズ24によって略収束させてから、再び広がる光を対物レンズ14に入射させることによって、光ディスク11の記録面上に収束させるべき焦点をレンズからより遠くにすることができる。
なお、ダイクロイックミラー26は、赤色光ビーム62と青色光ビーム61との光路と、赤外光ビーム25の光路とを合成および分岐するために挿入してある。ダイクロイックミラー26には、赤色光ビーム62と青色光ビーム61とは透過し、赤外光ビーム25は反射するミラーを用いる。誘電体薄膜をガラス上に形成することなどによってダイクロイックミラー26を実現する。ダイクロイックミラー26を挿入する位置は、青色光ビーム61および赤色光ビーム62がほぼ平行光となっている位置が望ましい。さらにダイクロイックミラー26の形状を平行平板にすることによって、青色光ビーム61および赤色光ビーム62に対して、収差が発生しないようにすることができる。ただし、コリメートレンズ8を後述するように光軸方向に沿って動かすと、青色光ビーム61および赤色光ビーム62は非平行になる。このときはダイクロイックミラー26によって、非点収差が発生するが、ダイクロイックミラー26の厚みを1mm以下、望ましくは0.5mm以下に薄くすることによって、上記非点収差を無視できるほど(5mλrms以下)に小さくすることが可能である。
立ち上げミラー12は、光路を紙面の垂直方向に折り曲げるためのものであるが、説明を判りやすくするため、図1では図1の上方に折り曲げるように描いている。実際には90°方向を変えて配置し、光軸を紙面の垂直方向に折り曲げる、対物レンズ14も光軸が紙面の垂直方向になるように配置することは言うまでもない。
レンズの作用をわかりやすくするため、ミラーを省略したものが、図5である。対物レンズ14とリレーレンズ24の光ビームが通る部分は回転対称形である。その対称軸をそれぞれのレンズの光軸と定義する。図5において、リレーレンズ24の光軸と対物レンズ14の光軸とが一致したときを標準状態として、リレーレンズ24を形成する。このとき、赤外光ビームが光ディスク11上に形成する集光スポットのNAが0.45〜0.55になるリレーレンズ24の領域を最小有効径と呼ぶ。また、最小有効径の外側を外周部と呼ぶ。リレーレンズ24の外周部は、収束点26に対して球面収差を発生するように形成する。
基材厚が1.2mmであって対応波長λ3(標準的には約790nm)の光ディスク(CD)を記録あるいは再生するために、赤外光ビーム25を上述の様に一旦収束させ、再び拡散光にして対物レンズ14に入射させている。このため対物レンズ14がトラック追従などのために移動すると、軸外光となり、収差(軸外収差)が発生する。レンズがシフトする時には、リレーレンズ24の外周部分を通過した光が対物レンズ14に入射するので、このリレーレンズ24の外周部分に付加した球面収差によって、軸外収差を相殺することにより、良好な集光特性を保つことができるという効果を得ることができる。
なお、CDを記録・再生する時のトラッキングエラー信号検出方式としては3ビーム法および差動プッシュプル法(DPP)法がよく用いられる。これらのサーボ信号を検出するためには赤外光ユニット23のホログラムに3ビーム発生用の回折格子を形成するなどして、発生した回折光が光ディスク11の記録面上で反射して戻った光を赤外光ユニット23内の光検出器で受光する。ここで、3ビーム発生用の回折格子から回折光が発生する際に、光軸は曲がるので、対物レンズ14において軸外収差が発生する。そこで、リレーレンズ24と赤外光ビームの発光点との間の距離f1よりも、リレーレンズ24と赤外光ビームの発光点とは反対側の収束点26との間の距離f2を短くする。これにより、回折されなかった光の収束点26と、回折光の収束位置との間の差を小さくすることができ、回折光が対物レンズ14に入射する角度を小さくできる。これによって、回折光の軸外収差を低減できるという効果を得ることができる。
本実施の形態で示した、青色光ビーム61に対して波長の2倍の光路長差を生み+2次回折を起こす深さの鋸歯状の断面形状を持つホログラムを利用して、赤色光ビーム62の+1次回折光によって異種ディスクの互換を実現する概念については、先に挙げたいずれの従来例にも開示されていない。また、青色光ビーム61に対して波長の2倍の光路長差を生み+2次回折を起こす深さの鋸歯状の断面形状を持つホログラムは、赤外光ビーム25に対しては波長の1倍の光路長差を生み、+1次回折光が効率良く回折され、光の損失は少ないことも効果の1つである。
なお、リレーレンズ24を用いて赤外光ビーム25によるCDの記録・再生と、青色光ビーム61によって基材厚0.1mmの高密度光ディスクの記録・再生とを行う構成は、それだけでも使用可能である。赤色光ビーム62によるDVD再生・記録を必要としない場合には、ホログラム13を省略するか、色収差補正用として最適設計することも可能である。色収差補正用のホログラム13は、青色光ビーム61に対して2次回折光を回折する設計にすることにより、赤外光ビーム25も+1次回折光に光量を集中し、光の利用効率を高めることもできる。
本実施の形態では、上記の新規な構成により、青色光ビームと赤色光ビームとのいずれに対してもホログラム134が凸レンズ作用をもつ。ホログラム134の回折作用は、色分散の方向が、屈折作用の方向とは逆方向であるので、屈折型の凸レンズである対物レンズ144と組み合わせたときに数nm以内の波長変化に対する色収差とりわけ焦点距離の波長依存性を相殺し低減できるという効果がある。
従って、ホログラム134だけで、異種ディスクの互換と色収差補正と焦点位置補正とという、3つの課題を一挙に解決することができるという顕著な効果を有する。
さらに、赤色光ビーム62および青色光ビーム61による光ディスクの記録・再生に対して収差の劣化などの悪影響を及ぼすことなく、赤外光ビーム25によるCDの記録・再生を実現可能であるという顕著な効果を有する。
さらに、光ヘッド装置の全体構成としては、下記に付加的に有効な構成例を示す。下記は、本願の実施の形態のすべてにおいて有効である。ただし、本実施の形態の重要な点は、光ディスク9と光ディスク11との間の互換再生・記録を実現するためのリレーレンズ24を用いる点と、光ディスク9と光ディスク10との間の互換再生・記録を実現するためのホログラム13(本実施例では134)を用いる点と、これに組み合わせて対物レンズ14(144)を用いる点とにあり、それ以外に説明する構成は下記を含め、すでに説明した構成でも、ビームスプリッターおよび検出ホログラムは必須の物ではなく、好ましい構成としてそれぞれ効果を有するものの、それ以外の構成も適宜使用可能である。
図1において、3ビーム格子(回折素子)3をさらに青色レーザー1からビームスプリッター4までの間に配置することにより光ディスク9のトラッキングエラー信号をよく知られたディファレンシャルプッシュプル(DPP)法によって検出することも可能である。
図5および図5は、実施の形態1に係る光ヘッド装置に設けられる位相板35の構成を説明する平面図および断面図である。図1に示すホログラム13と立ち上げミラー12との間に位相板35を設けてもよい。
板状形状をした位相板35の上には、段差haの位相段差35Aが形成されている。位相段差35Aを構成する基材の波長λ1(例えば405nm)に対する屈折率をnbとすると、段差haは下記の(式1)によって表される。
ha=5×λ1/(nb−1) …(式1)、
(式1)に示すように、1段の段差haが波長λ1の光に対して波長λ1の5倍の光路長の差を生じさせる。言い換えると、10πラジアンの位相差を生じさせるように段差haを設定する。
例えば位相段差35Aを構成する基材がBK7と呼ばれる種類のガラスであれば、波長λ1=405nmのとき、屈折率nb=1.5302であり、(式1)より、
ha=3819nm …(式2)、
となる。
このような段差haの位相段差35Aが形成された位相板35に、例えば波長λ2=655nmの赤色光ビームが入射すると、波長λ2=655nmに対するBK7の屈折率nrは1.5144であるので、生じる光路長の差Lは、
L=ha×(nr−1)≒3×λ2 …(式3)、
である。
即ち、青色光ビームに対して波長の5倍の光路長の差を生じる段差は、赤色光ビームに対しては波長の3倍の光路長の差を生じる。このような波長の整数倍の光路長の差が生じる位相変化量は、2πラジアンの整数倍(λ1=405nmに対して10πラジアン、λ2=655nmに対しては6πラジアン)であるので、実質的には位相差を生じない。従って、λ1およびλ2の基準波長に対しては波面の変化を生じさせない。
しかしながら、赤外波長λ3(770nm<λ3<830nm)の光を位相段差35Aへ入射させると、段差haは赤外光ビームに対して波長の約2.5倍の光路差を生じさせる。従って、この2.5倍の小数点以下の部分、即ち波長の約0.5倍の光路差によって約πの位相差を生じさせることができる。この位相差を利用して、赤外光ビームの波面を変換し、基材厚さによる球面収差を補正することができ、焦点距離を延長する機能を付加することができる。これによって、対物レンズと光ディスクとの間の距離を伸ばすことができる。さらに、発散角度を小さくするようにリレーレンズを設計することができるので、リレーレンズを容易に製作することができる。
また、光軸に対して垂直な2方向をx方向とy方向と定義したときに、例えばx方向のみを拡大するビーム整形素子2を青色レーザー1からビームスプリッター4までの間にさらに配置することにより、青色光ビーム61の遠視野像を光軸を中心に点対称系に近い強度分布に近づけることができる。このため、光の利用効率の向上を図ることができる。ビーム整形素子2は、両面シリンドリカルレンズなどを用いることによって構成可能である。
3ビーム格子(回折素子)22を赤色レーザー20からビームスプリッター16までの間にさらに配置することにより、光ディスク10のトラッキングエラー信号をよく知られたディファレンシャルプッシュプル(DPP)法によって検出することも可能である。
また、コリメートレンズ8を光軸方向(図1の左右方向)に沿って動かすことにより光ビームの平行度を変化させることも有効である。基材の厚さの誤差と、光ディスク9が2層ディスクの場合に層間厚さに起因する基材厚さとのいずれかがあると、球面収差が発生するが、このようにコリメートレンズ8を光軸方向に沿って動かすことによってその球面収差を補正することができる。
このようにコリメートレンズ8を動かすことによる球面収差の補正は、光ディスクに対する集光光のNAが0.85の場合に数100mλ程度可能であり、±30μmの基材厚さを補正することもできる。しかし、基材厚0.1mmに対応した対物レンズ14を用いて、DVDの記録・再生を行う際には基材厚差を0.5mm以上補償する必要があるので、コリメートレンズ8の移動だけでは球面収差補正能力が不足である。このため、ホログラム13(一例として134)による波面変換が必要である。ただし、赤色光ビーム62を用いて光ディスク10の記録・再生を行う場合に、コリメートレンズ8を図1の左側、すなわち赤色レーザー20へ近い側に向かって移動しておくことによって、対物レンズ14へ向かう赤色光ビーム62を発散光にし、光ディスク10に対する集光スポットをより対物レンズ14から離すと共に、基材厚さによる収差の一部を補正し、ホログラム13に求められる収差補正量を低減してホログラムピッチを広くして、ホログラム13の作成を容易にすることもできる。
さらに、ビームスプリッター4を、青色レーザー1から出射する直線偏光の光を一部(例えば10%程度)透過するようにして、透過した光ビームをさらに集光レンズ6によって光検出器7へ導くと、光検出器7から得られる信号を用いて青色レーザー1の発光光量変化をモニターしたり、さらに、その光量変化をフィードバックして、青色レーザー1の発光光量を一定に保つ制御を行うこともできる。
さらに、ビームスプリッター4を、赤色レーザー20から出射する直線偏光の光の一部(例えば10%程度)を反射するようにして、反射した光ビームをさらに集光レンズ6によって光検出器7へ導くと、光検出器7から得られる信号を用いて赤色レーザー20の発光光量変化をモニターしたり、さらに、その光量変化をフィードバックして、赤色レーザー20の発光光量を一定に保つ制御を行うこともできる。
以上に述べたことから明らかなように実施の形態1では、赤外光をリレーレンズによって略収束させてから、再び広がる光を対物レンズに入射させることによって、基材厚1.2mmの光ディスクの記録面上に収束させるべき焦点をレンズからより遠くにすることができる。また、基材厚の差に起因する球面収差を補正することもできる。さらに、赤色光と青色光の光路と、赤外光の光路を合成や分岐するために挿入するダイクロイックミラーを挿入する位置は青色光や赤色光がほぼ平行光となっている位置が望ましい。さらに形状を平行平板にすることによって、青色光、赤色光に対して、収差が発生しないようにすることができる。ただし、コリメートレンズを光軸方向に動かすと、青色光、赤色光は非平行になる。このときはダイクロイックミラーによって、非点収差が発生するが、ダイクロイックミラーの厚みを1mm以下、望ましくは0.5mm以下に薄くすることによって、上記非点収差を無視できるほど小さくすることが可能である。
さらに、ホログラムは、波長λ1の青色光ビームを回折して、凸レンズ作用を及ぼし、波長λ2の光に対しては回折して青色光ビームよりも弱い凸レンズ作用を及ぼす。凸レンズ作用を及ぼす最も低次の回折を+1次回折と定義すると、青色光ビームに対しては、+2次の回折が最も強く起こり、赤色光ビームは+1次回折が最も強く起こる。
赤色光ビームの方が青色光ビームよりも波長が長いにもかかわらず、回折角度は小さくなり、青色光ビームを回折するときの凸レンズ作用の方が、波長λ2の光に対して及ぼす凸レンズ作用よりも強くなる。言い換えると、赤色光ビームはホログラムによって凸レンズ作用を受けるものの、青色光ビームの受ける作用を基準にすると、相対的には回折によって、凹レンズ作用を受ける。このような波面変換によって、青色光ビームを収束光にし、赤色光ビーム62の収束度を青色光ビームの収束度よりも緩くすることにより、焦点位置補正と基材厚差による球面収差の補正を実現できるという効果がある。
ホログラムは鋸歯状格子とし、鋸歯状格子の深さは、青色光ビームに対して光路長差が約2波長、すなわち位相差が約4πになる量にする。この形状による青色光に対する位相変調量は格子一周期の中で4π(=2πx2)変化するため、+2次回折光強度が最大となり、スカラー計算上は100%の回折効率となる。一方赤色光ビームに発生する光路長差は、波長の約1.2倍となり、+1次回折光強度が最も強くなり計算上の回折効率は約80%となる。
青色光ビームの+2次回折光と、赤色光ビームの+1次回折光によって異種ディスクの互換を実現する新規な構成により、青色光ビーム、赤色光ビームいずれに対してもホログラムが凸レンズ作用をもち、回折作用は、色分散が、屈折作用とは逆方向であるので、屈折型の凸レンズである対物レンズと組み合わせたときに数nm以内の波長変化に対する色収差とりわけ焦点距離の波長依存性を相殺し低減できるという効果がある。
従って、ホログラム1枚だけで、異種ディスクの互換と色収差補正、焦点位置補正という、3つの課題を一挙に解決することができるという顕著な効果を有する。
また、高いNAのレンズは製作の難易度が高いが、ホログラムが凸レンズ作用を受け持つことにより組み合わせる屈折型の対物レンズの製作難易度を緩和できるという効果もある。
本願では上記の効果に加えて、下記の付加的な望ましい構成も開示した。
望ましくは、ホログラムと対物レンズを支持体によって一体に固定するか、あるいはホログラムを対物レンズ表面に直接形成することにより、焦点制御やトラッキング制御に際しては、共通の駆動手段によって一体に駆動を行い、ホログラムと対物レンズの相対位置のずれによる収差増大を防ぐことができる。
さらに、3ビーム格子(回折素子)をさらに青色レーザーからビームスプリッターまでの間に配置することにより光ディスクのトラッキングエラー信号をよく知られたディファレンシャルプッシュプル(DPP)法によって検出することも可能である。
また、3ビーム格子(回折素子)を赤色レーザーからビームスプリッターまでの間に配置することによりDVD等の光ディスクのトラッキングエラー信号をよく知られたディファレンシャルプッシュプル(DPP)法によって検出することも可能である。
また、コリメートレンズを光軸方向へ動かすことにより光ビームの平行度を変化させることも有効である。基材の厚さ誤差や、光ディスクが2層ディスクの場合に層間厚さに起因する基材厚さがあると球面収差が発生するが、このようにコリメートレンズを光軸方向に動かすことによってその球面収差を補正することができる。
対物レンズへ向かう赤色光ビームを発散光にし、DVDなどの光ディスクに対する集光スポットをより対物レンズから離すと共に、基材厚さによる収差の一部を補正し、ホログラムに求められる収差補正量を低減してホログラムピッチを広くし、ホログラムの作成を容易にすることもできる。
さらに、青色レーザーから出射する直線偏光の光を一部(例えば10%程度)透過するようにビームスプリッターを構成して、透過した光ビームをさらに集光レンズによって光検出器7へ導くと、光検出器7から得られる信号を用いて青色レーザーの発光光量の変化をモニターしたり、さらに、その光量変化をフィードバックして、青色レーザーの発光光量を一定に保つ制御を行うこともできる。
(実施の形態2)
さらに、本発明の光ヘッド装置を用いた光情報装置67の実施例を図6に示す。図6において光ディスク9(あるいは10または11、以下同じ)は、ターンテーブル82に乗せられ、モーター64によって回転される。前述した実施の形態1に示した光ヘッド装置55は、光ディスク9において所望の情報が存在するトラックの上まで、光ヘッド装置の駆動装置51によって粗動される。
光ヘッド装置55は、また、光ディスク9との位置関係に対応して、フォーカスエラー(焦点誤差)信号およびトラッキングエラー信号を電気回路53へ送る。電気回路53はこの信号に対応して、対物レンズを微動させるための信号を光ヘッド装置55へ送る。この信号によって、光ヘッド装置55は、光ディスク9に対してフォーカス制御とトラッキング制御とを行い、光ヘッド装置55によって、情報の読み出し、または書き込み(記録)や消去を行う。
実施の形態2に係る光情報装置67は、光ヘッド装置55として、実施の形態1で上述した光ヘッド装置を用いるので、単一の光ヘッド装置によって、記録密度が互いに異なる複数種類の光ディスクに対応することができるという効果を有する。
(実施の形態3)
実施の形態2で前述した光情報装置67を具備した実施の形態3に係るコンピューター100を示す。
上述した実施の形態2に係る光情報装置67を具備した、あるいは、上述の記録・再生方法を採用したコンピューター、光ディスクプレーヤー、および光ディスクレコーダーは、互いに異なる種類の光ディスクを安定に記録あるいは再生できるので、広い用途に使用できるという効果を有するものとなる。
図7において、前述した実施の形態2に係る光情報装置67と、情報の入力を行うためのキーボードあるいはマウス、タッチパネルなどの入力装置65と、入力装置65から入力された情報、および光情報装置67から読み出した情報などに基づいて演算を行う中央演算装置(CPU)などの演算装置64と、演算装置64によって演算された結果などの情報を表示するブラウン管や液晶表示装置、プリンターなどの出力装置81を備えたコンピューター100を構成する。
(実施の形態4)
実施の形態2に記した光情報装置67を具備した光ディスクプレーヤー121の実施の形態を図8を用いて示す。
図8において、実施の形態2で前述した光情報装置67と、光情報装置67から得られる情報信号を画像に変換する情報から画像への変換装置(例えばデコーダー66)とを有する光ディスクプレーヤー121を構成する。また、本構成はカーナビゲーションシステムとしても利用できる。また、液晶モニターなどの表示装置120を加えた形態も可能である。
(実施の形態5)
実施の形態2で前述した光情報装置67を具備した、光ディスクレコーダー110の実施の形態を下記に示す。
図9を用いて実施の形態5を説明する。図9において実施の形態2の光情報装置67と、画像情報を、光情報装置67によって光ディスクへ記録する情報に変換する画像から情報への変換装置(例えばエンコーダー68)とを有する光ディスクレコーダー110を構成する。望ましくは、光情報装置67から得られる情報信号を画像に変換する情報から画像への変換装置(デコーダー66)も有することにより、既に記録した部分を再生することも可能となる。情報を表示するブラウン管や液晶表示装置、プリンターなどの出力装置81を備えてもよい。
(実施の形態6)
図10を用いて実施の形態6を説明する。図10において光情報装置67は実施の形態2で前述した光情報装置である。また、入出力端子69は光情報装置67に記録する情報を取り込んだり、光情報装置67によって読み出した情報を外部に出力する有線または無線の入出力端子である。これによって、ネットワーク、すなわち、複数の機器、例えば、コンピューター、電話、テレビチューナー、などと情報をやりとりし、これら複数の機器から共有の情報サーバー(光ディスクサーバー)、として利用することが可能となる。異なる種類の光ディスクを安定に記録あるいは再生できるので、広い用途に使用できる効果を有するものとなる。情報を表示するブラウン管や液晶表示装置、プリンターなどの出力装置81を備えてもよい。
複数種類の光ディスクを光情報装置67に出し入れするチェンジャー131をさらに具備することにより、多くの情報を記録・蓄積できる効果を得ることができる。
なお、上述の実施の形態3〜6において図7〜図10には出力装置81や液晶モニター120を示したが、出力端子を備えて、出力装置81や液晶モニター120は持たず、別売りとする商品形態があり得ることはいうまでもない。また、図8と図9には入力装置は図示していないが、キーボードやタッチパネル、マウス、リモートコントロール装置など入力装置も具備した商品形態も可能である。逆に、上述の実施の形態5〜6において、入力装置は別売りとして、入力端子のみを持った形態も可能である。
前述した実施の形態2では、光ヘッド装置として、実施の形態1で上述した光ヘッド装置を用いるので、単一の光ヘッド装置によって、記録密度の異なる複数の光ディスクに対応することができるという効果を有する。
さらに、実施の形態3〜6では、上述の実施の形態2の光情報装置を具備した、あるいは、上述の記録・再生方法を採用したコンピューターや、光ディスクプレーヤー、光ディスクレコーダー、光ディスクサーバー、カーナビゲーションシステムは、異なる種類の光ディスクを安定に記録あるいは再生できるので、広い用途に使用できるという効果を有するものとなる。
本発明は、本発明は、例えば光ディスクなどの光情報媒体上に記憶される情報の記録・再生あるいは消去を行う光ヘッド装置及び光情報装置(光情報装置)および、光情報装置における記録再生方法、そして、これらを応用したシステムに関するもの、そしてまた、前記光ヘッド装置に用いる対物レンズや回折素子、および、対物レンズと回折素子の複合した複合対物レンズに関するものに適用することができる。
本発明の実施の形態1に係る光ヘッド装置の概略断面図である。 本発明の実施の形態1に係る要部概略断面図である。 (a)は本発明の実施の形態1に係る要部概略平面図であり、(b)はその断面図である。 (a)は本発明の実施の形態1に係る要部概略断面図であり、(b)および(c)は実施の形態1に係る位相変化の説明図である。 本発明の実施の形態1に係る要部を説明する概略断面図である。 実施の形態1に係る位相段差の構成を示す平面図である。 実施の形態1に係る位相段差の構成を示す断面図である。 本発明の実施の形態2に係る光情報装置の構成を示すブロック図である。 本発明の実施の形態3に係るコンピューターの構成を示す概略斜視図である。 本発明の実施の形態4に係る光ディスクプレーヤおよびカーナビゲーションシステムの構成を示す概略斜視図である。 本発明の実施の形態5に係る光ディスクレコーダーの構成を示す概略斜視図である。 本発明の実施の形態6に係る光ディスクサーバーの構成を示す概略斜視図である。 (a)および(b)は従来の光ヘッド装置の要部の構成を示す概略断面図である。 従来の他の光ヘッド装置の概略断面図である。 (a)は従来のさらに他の光ヘッド装置の要部の構成を示す概略平面図であり、(b)はその断面図である。 従来のさらに他の光ヘッド装置の概略断面図である。
符号の説明
1,20 レーザー光源
2 ビーム整形素子
3,22 3ビーム格子
4,16 ビームスプリッター
5 1/4波長板
6 集光レンズ
7 光検出器
8 コリメートレンズ
9,10 光ディスク
13 ホログラム
14 対物レンズ
15 駆動手段
24 リレーレンズ
33 光検出器
51 光ヘッド装置の駆動装置
53 電気回路
55 光ヘッド装置
61 出力装置
64 演算装置
65 入力装置
66 デコーダー
67 光情報装置
68 エンコーダー
69 入出力端子
77 光ディスクプレーヤー(またはカーナビゲーションシステム)
100 コンピューター
110 光ディスクレコーダー
130 光ディスクサーバー

Claims (13)

  1. 青色の光ビームを出射する青色レーザー光源と、
    赤色の光ビームを出射する赤色レーザー光源と、
    赤外の光ビームを出射する赤外レーザー光源と、
    光ビームを受けて光ディスクの記録面上へ微小スポットに集光する対物レンズとを具備し、
    前記微小スポットの球面収差を制御する球面収差補正素子を前記青色の光ビームと前記赤色の光ビームの共通の光路内に具備し、
    前記球面収差補正素子は光軸方向に移動可能なコリメートレンズであって、
    前記青色の光ビームを厚さt1の透明基材を有する第1の光情報媒体の記録面上に前記厚さt1の透明基材を通して集光し、
    前記赤色の光ビームを厚さt2の透明基材を有する第2の光情報媒体の記録面上に前記厚さt2の透明基材を通して集光し、
    前記赤外の光ビームを厚さt3の透明基材を有する第3の光情報媒体の記録面上に前記厚さt3の透明基材を通して集光し、
    t3はt2とt1のいずれよりも厚く、
    前記青色の光ビームと前記赤色の光ビームを集光した微小スポットの球面収差を前記球面収差補正素子によって制御し、
    前記赤外レーザー光源と前記対物レンズとの間にはリレーレンズを配置し、
    前記赤外レーザー光源から出射される前記赤外の光ビームは前記リレーレンズによって略収束された後に再度拡散しながら前記対物レンズに入射し、前記対物レンズによって約1.2mmの透明基材を通して光ディスクの記録面上へ微小スポットに集光し、
    前記リレーレンズは光軸から離れた外周部に球面収差を付加して構成し、前記球面収差によって、軸外収差を補正することを特徴とする光ヘッド装置。
  2. 前記リレーレンズと前記赤外の光ビームの発光点との間の距離よりも、前記リレーレン
    ズと前記赤外の光ビームの発光点とは反対側の収束点との間の距離の方が短い請求項に記載の光ヘッド装置。
  3. 前記リレーレンズと前記対物レンズとの間に、前記赤外の光ビームと、より短波長の光ビームとを分離するダイクロイック素子をさらに具備する請求項に記載の光ヘッド装置
  4. 前記リレーレンズと前記対物レンズとの間に配置する前記ダイクロイック素子に設けられた平行平板の表面には、前記赤外の光ビームと、より短波長の光ビームとを分離するダイクロイック膜が形成されている請求項に記載の光ヘッド装置。
  5. 前記平行平板の厚みは、1mm以下である請求項に記載の光ヘッド装置。
  6. 前記ダイクロイック素子は、前記青色の光ビームが略平行光束となる位置に配置される請求項に記載の光ヘッド装置。
  7. 請求項1〜のいずれかに記載の光ヘッド装置と、
    光ディスクを回転するモーターとを具備する光情報装置。
  8. 前記光ディスクの種類を判別して、基材厚が0.6mmの光ディスクに対しては前記コリメートレンズを前記赤色レーザー光源側に移動することを特徴とする求項に記載の光情報装置。
  9. 請求項又はに記載の光情報装置と、
    情報を入力するための入力装置あるいは入力端子と、
    前記入力装置から入力された情報や前記光情報装置から再生された情報に基づいて演算を行う演算装置と、
    前記入力装置から入力された情報や前記光情報装置から再生された情報や、前記演算装置によって演算された結果を表示あるいは出力するための出力装置あるいは出力端子とを備えたコンピュータ。
  10. 請求項又はに記載の光情報装置と、
    前記光情報装置から得られる情報信号を画像に変換する情報から画像へのデコーダーとを有する光ディスクプレーヤー。
  11. 請求項又はに記載の光情報装置と、
    前記光情報装置から得られる情報信号を画像に変換する情報から画像へのデコーダーとを有するカーナビゲーションシステム。
  12. 請求項又はに記載の光情報装置と、
    画像情報を前記光情報装置によって記録する情報に変換する画像から情報へのエンコーダーとを有する光ディスクレコーダー。
  13. 請求項又はに記載の光情報装置と、
    外部との情報のやりとりを行う入出力端子とを備えた光ディスクサーバー。
JP2004046757A 2003-02-27 2004-02-23 光ヘッド装置、並びにこれを用いた光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー及び光ディスクサーバー Expired - Fee Related JP4336222B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046757A JP4336222B2 (ja) 2003-02-27 2004-02-23 光ヘッド装置、並びにこれを用いた光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー及び光ディスクサーバー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003050845 2003-02-27
JP2004046757A JP4336222B2 (ja) 2003-02-27 2004-02-23 光ヘッド装置、並びにこれを用いた光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー及び光ディスクサーバー

Publications (3)

Publication Number Publication Date
JP2004281034A JP2004281034A (ja) 2004-10-07
JP2004281034A5 JP2004281034A5 (ja) 2008-07-24
JP4336222B2 true JP4336222B2 (ja) 2009-09-30

Family

ID=33301809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046757A Expired - Fee Related JP4336222B2 (ja) 2003-02-27 2004-02-23 光ヘッド装置、並びにこれを用いた光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー及び光ディスクサーバー

Country Status (1)

Country Link
JP (1) JP4336222B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715479A4 (en) 2004-02-09 2008-09-03 Pioneer Design Corp OPTICAL ELEMENT, OPTICAL BUYER AND INFORMATION RECORDING / REPRODUCING DEVICE
WO2005091280A1 (ja) * 2004-03-19 2005-09-29 Pioneer Corporation 光学素子、光ピックアップ及び光情報記録再生装置
JP2006244606A (ja) * 2005-03-03 2006-09-14 Ricoh Co Ltd 対物レンズ、集光光学ユニット及び光ピックアップ並びに光ディスク装置
JP4652972B2 (ja) 2005-12-27 2011-03-16 三星電子株式会社 互換系対物レンズユニット、その設計方法及び互換系光ピックアップ
JP4737536B2 (ja) * 2006-02-16 2011-08-03 ソニー株式会社 光ピックアップ装置及び光ディスク装置
WO2009016847A1 (ja) 2007-08-02 2009-02-05 Panasonic Corporation 複合対物レンズ、回折素子、光ヘッド装置、光情報装置、対物レンズ駆動方法および制御装置
WO2011033791A1 (ja) 2009-09-17 2011-03-24 パナソニック株式会社 対物レンズ素子
JP5340396B2 (ja) 2009-09-17 2013-11-13 パナソニック株式会社 対物レンズ素子

Also Published As

Publication number Publication date
JP2004281034A (ja) 2004-10-07

Similar Documents

Publication Publication Date Title
US8509047B2 (en) Optical head device and optical information device using the same, computer, optical disk player, car navigation system, optical disk recorder, and optical disk server
KR100592927B1 (ko) 복합 대물 렌즈, 광 헤드 장치, 광 정보 장치, 컴퓨터, 광디스크 플레이어, 카 네비게이션 시스템, 광 디스크레코더, 광 디스크 서버
JP4242296B2 (ja) 光ヘッド装置及びそれを用いた光情報装置、並びに、この光情報装置を用いた、コンピュータ、光ディスクプレーヤ、カーナビゲーションシステム、光ディスクレコーダ及び光ディスクサーバ
US7248409B2 (en) Optical element, optical lens, optical head apparatus, optical information apparatus, computer, optical information medium player, car navigation system, optical information medium recorder, and optical information medium server
JP3993837B2 (ja) 複合対物レンズ、光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー、光ディスクサーバー
JP5053090B2 (ja) 光ヘッド及び光ディスク装置
JP4336222B2 (ja) 光ヘッド装置、並びにこれを用いた光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー及び光ディスクサーバー
JP3993870B2 (ja) 複合対物レンズ、光ヘッド装置、光情報装置、コンピュータ、光ディスクプレーヤー、カーナビゲーションシステム、光ディスクレコーダー、光ディスクサーバー
JP4362068B2 (ja) 光学素子及びそれを用いた光ヘッド装置、並びに、この光ヘッド装置を用いた光情報装置、並びに、この光情報装置を用いたコンピュータ、光ディスクプレーヤ、カーナビゲーションシステム、光ディスクレコーダ及び光ディスクサーバ
JP4467957B2 (ja) 光学レンズ、光ヘッド装置、光情報装置、コンピューター、光情報媒体プレーヤー、光情報媒体サーバー
JP2010040136A (ja) 複合対物レンズ及び光ヘッド装置及び光情報装置と光ディスクシステム
JPWO2006090653A1 (ja) 光ピックアップ装置、それに用いる対物光学系
JP2006004570A (ja) 光学レンズ、光ヘッド、光情報装置、コンピュータ、光情報媒体レコーダ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees