JP4333382B2 - Gas barrier plastic container - Google Patents

Gas barrier plastic container Download PDF

Info

Publication number
JP4333382B2
JP4333382B2 JP2004022854A JP2004022854A JP4333382B2 JP 4333382 B2 JP4333382 B2 JP 4333382B2 JP 2004022854 A JP2004022854 A JP 2004022854A JP 2004022854 A JP2004022854 A JP 2004022854A JP 4333382 B2 JP4333382 B2 JP 4333382B2
Authority
JP
Japan
Prior art keywords
thin film
film layer
gas barrier
plastic container
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004022854A
Other languages
Japanese (ja)
Other versions
JP2005212848A (en
Inventor
浩人 鹿島
敏明 掛村
学 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004022854A priority Critical patent/JP4333382B2/en
Publication of JP2005212848A publication Critical patent/JP2005212848A/en
Application granted granted Critical
Publication of JP4333382B2 publication Critical patent/JP4333382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

本発明はガスバリア性容器に関し、さらに詳しくは容器の内面に多層の蒸着薄膜層を形成させることにより、ガスバリア性を向上させたプラスチック容器に関するものである。   The present invention relates to a gas barrier container, and more particularly to a plastic container having an improved gas barrier property by forming a plurality of deposited thin film layers on the inner surface of the container.

従来、プラスチック容器は、その成形の容易性や軽量性、さらに低コストである等の種々の特性から、食品分野や医薬品分野等の様々な分野において、包装容器として広く使用されている。しかしながら、プラスチック容器は、酸素や二酸化炭素、水蒸気のような低分子ガスを透過する性質や、低分子有機化合物が内壁に吸着してしまうという性質、種々の溶出成分があるなど、容器として改良を加えなければならない面が多々あった。これらの諸問題を解決するためにいろいろな方策がとられている。例えば、プラスチック容器のガス透過性を低減する方法の1つとして、ガスバリア性のある塩化ビニリデン系樹脂やエチレン・ビニルアルコール共重合体樹脂を積層したり、ブレンド樹脂を使用したりする方法が用いられている。しかるに、塩化ビニリデン系樹脂を積層した場合は、使用後の焼却処理において塩素ガスを発生することなど、ダイオキシン発生の原因になるなど好ましくない。また、エチレン・ビニルアルコール共重合体樹脂を積層した場合は、乾燥状態では比較的優れた酸素ガスバリア性を有するが、湿度依存性があり、湿度が高いと著しくガスバリア性が低下する等の欠点を有している。さらに、これらの樹脂を使用した場合、ある程度までガス透過性を低減することができるが、より高いガスバリア性が求められる場合など不十分であった。また、使用するガスバリア性樹脂のコストも非常に高いものである。近年、熱可塑性樹脂にガスバリア層として無機化合物を蒸着する技術が知られてきており、成形容器の内面に無機化合物の蒸着薄膜層を積層したガスバリア性プラスチック容器が上市されている。通常、プラスチック容器は使用中に温度変化や吸湿により容器が膨張伸縮したり、運搬時や保存中に変形したりする。前記ガスバリア性プラスチック容器は膨張伸縮時や変形時に容器内面の蒸着薄膜層にも大きなストレスがかかり、薄膜に亀裂が入ったり、剥落したりして、ガスバリア性が低下してしまう等の問題が生じていた。前記問題を改善する為に、基材層に多層の珪素化合物薄膜層を積層したガス遮断性プラスチック材が提案されている(例えば、特許文献1参照。)。
特開平7−32531号公報
Conventionally, plastic containers have been widely used as packaging containers in various fields such as the food field and the pharmaceutical field due to various characteristics such as easy molding, light weight, and low cost. However, plastic containers are improved as containers, such as the ability to permeate low molecular gases such as oxygen, carbon dioxide, and water vapor, the property that low molecular organic compounds are adsorbed on the inner wall, and various elution components. There were many aspects that had to be added. Various measures have been taken to solve these problems. For example, as a method for reducing the gas permeability of a plastic container, a method of laminating a vinylidene chloride resin or ethylene / vinyl alcohol copolymer resin having a gas barrier property or using a blend resin is used. ing. However, laminating vinylidene chloride-based resins is not preferable because it causes generation of dioxins, such as generation of chlorine gas in incineration after use. In addition, when an ethylene / vinyl alcohol copolymer resin is laminated, it has a relatively excellent oxygen gas barrier property in a dry state, but has a humidity dependency and has a drawback that the gas barrier property is remarkably lowered when the humidity is high. Have. Furthermore, when these resins are used, the gas permeability can be reduced to some extent, but it is insufficient when a higher gas barrier property is required. Further, the cost of the gas barrier resin to be used is very high. In recent years, a technique for depositing an inorganic compound as a gas barrier layer on a thermoplastic resin has been known, and a gas barrier plastic container having an inorganic compound deposited thin film layer laminated on the inner surface of a molded container has been put on the market. Usually, a plastic container expands and contracts due to temperature change or moisture absorption during use, or deforms during transportation or storage. The gas barrier plastic container is subjected to great stress on the vapor deposition thin film layer on the inner surface of the container during expansion / contraction / deformation, and the thin film is cracked or peeled off, resulting in deterioration of gas barrier properties. It was. In order to improve the problem, a gas barrier plastic material in which a multilayer silicon compound thin film layer is laminated on a base material layer has been proposed (see, for example, Patent Document 1).
JP 7-32531 A

しかしながら、前記提案されているガス遮断性プラスチック材は、珪素化合物薄膜層が多層に積層されているが、その珪素化合物薄膜層同士の界面あるいは珪素化合物薄膜層と容器最内層との界面で密着強度が低下したり、珪素化合物薄膜層が着色してしまうなどの欠点を有していた。   However, in the proposed gas barrier plastic material, the silicon compound thin film layers are laminated in multiple layers, and the adhesion strength at the interface between the silicon compound thin film layers or at the interface between the silicon compound thin film layer and the innermost layer of the container. Has been disadvantageous, such as a decrease in color and the silicon compound thin film layer being colored.

本発明の課題は、プラスチック容器の最内層面に積層された多層の蒸着薄膜層が透明であると共に運搬、保存中に蒸着薄膜層の薄膜に亀裂が入ったり、薄膜が剥落せず、優れたガスバリア性を維持できるプラスチック容器を提供することにある。   The problem of the present invention is that the multilayer deposited thin film layer laminated on the innermost layer surface of the plastic container is transparent and is excellent in that the deposited thin film layer is cracked or not peeled off during transportation and storage. An object of the present invention is to provide a plastic container capable of maintaining gas barrier properties.

本発明の請求項1に係る発明は、プラスチック容器の最内層面に炭素原子数の比率が10〜20%の有機珪素化合物からなる第1蒸着薄膜層、炭素原子数の比率が5%未満の有機珪素化合物とSiOx(x=2〜2.5)からなる第2蒸着薄膜層、炭素原子数の比率が10〜20%の有機珪素化合物からなる第3蒸着薄膜層が順次積層されていることを特
徴とするガスバリア性プラスチック容器である。
The invention according to claim 1 of the present invention is the first vapor-deposited thin film layer made of an organosilicon compound having a carbon atom ratio of 10 to 20% on the innermost layer surface of the plastic container, wherein the carbon atom ratio is less than 5%. A second vapor-deposited thin film layer composed of an organosilicon compound and SiOx (x = 2 to 2.5) and a third vapor-deposited thin film layer composed of an organosilicon compound having a carbon atom ratio of 10 to 20% are sequentially laminated. It is a gas barrier plastic container characterized by the above.

本発明の請求項2に係る発明は、上記請求項1に係る発明において、前記第1蒸着薄膜層及び第3蒸着薄膜層の膜厚が10〜100nmで、第2蒸着薄膜層の膜厚が5〜50nmであることを特徴とするガスバリア性プラスチック容器である。   The invention according to claim 2 of the present invention is the invention according to claim 1, wherein the film thickness of the first vapor deposition thin film layer and the third vapor deposition thin film layer is 10 to 100 nm, and the film thickness of the second vapor deposition thin film layer is A gas barrier plastic container having a thickness of 5 to 50 nm.

本発明のガスバリア性プラスチック容器は、プラスチック容器の最内層面に炭素原子数の比率が10〜20%の有機珪素化合物からなる第1蒸着薄膜層、炭素原子数の比率が5%未満の有機珪素化合物とSiOx(x=2〜2.5)からなる第2蒸着薄膜層、炭素原子数の比率が10〜20%の有機珪素化合物からなる第3蒸着薄膜層が順次積層されており、前記第1蒸着薄膜層及び第3蒸着薄膜層の膜厚が10〜100nmで、第2蒸着薄膜層の膜厚が5〜50nmであるので、透明性が良く、運搬、保存中にそれぞれの蒸着薄膜層の薄膜に亀裂が入ったり、薄膜が剥落せず、優れたガスバリア性を維持できる。   The gas barrier plastic container of the present invention is a first vapor-deposited thin film layer made of an organic silicon compound having a carbon atom ratio of 10 to 20% on the innermost layer surface of the plastic container, and an organic silicon having a carbon atom ratio of less than 5%. A second vapor-deposited thin film layer composed of a compound and SiOx (x = 2 to 2.5), and a third vapor-deposited thin film layer composed of an organosilicon compound having a carbon atom ratio of 10 to 20%. Since the film thickness of 1 vapor deposition thin film layer and the 3rd vapor deposition thin film layer is 10-100 nm and the film thickness of 2nd vapor deposition thin film layer is 5-50 nm, transparency is good and each vapor deposition thin film layer is carried during transportation and storage. The thin film is not cracked or peeled off, and excellent gas barrier properties can be maintained.

本発明のガスバリア性プラスチック容器を、実施の形態に沿って以下に詳細に説明する。図1は本発明のガスバリア性プラスチック容器の一実施形態を示す断面図であり、ガスバリア性プラスチック容器(10)は、プラスチック容器の最内層(11)面に第1蒸着薄膜層(12)、第2蒸着薄膜層(13)、第3蒸着薄膜層(14)が順次積層された構成になっており、上端に開口部(15)を有している。前記プラスチック容器は単層あるいは多層のいずれでも良い。   The gas barrier plastic container of the present invention will be described in detail below along the embodiments. FIG. 1 is a cross-sectional view showing an embodiment of a gas barrier plastic container according to the present invention. Two vapor-deposited thin film layers (13) and a third vapor-deposited thin film layer (14) are sequentially laminated, and have an opening (15) at the upper end. The plastic container may be either a single layer or a multilayer.

前記プラスチック容器の最内層(11)の樹脂としては、ポリエチレン樹脂やポリプロピレン樹脂などのポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂などが主に使用される。   As the resin of the innermost layer (11) of the plastic container, polyolefin resin such as polyethylene resin and polypropylene resin, polyester resin, polyamide resin and the like are mainly used.

前記第1蒸着薄膜層(12)は、ガスバリア性付与の他に容器の最内層(11)との密着性向上の為に設けるもので、炭素原子数の比率が10〜20%の有機珪素化合物からなっている。炭素原子数の比率が10%未満であると密着性が悪くなり、炭素原子数の比率が20%を超えると薄膜が着色し、透明性を損ねる。有機珪素化合物の組成が前記記載の範囲であるので、最内層(11)との密着性が高く、プラスチック容器の膨張伸縮や変形時に薄膜に亀裂が入ったり、薄膜が剥落することがない。   The first vapor-deposited thin film layer (12) is provided for improving the adhesion to the innermost layer (11) of the container in addition to providing gas barrier properties, and an organic silicon compound having a carbon atom ratio of 10 to 20%. It is made up of. When the ratio of the number of carbon atoms is less than 10%, the adhesion is deteriorated, and when the ratio of the number of carbon atoms exceeds 20%, the thin film is colored and the transparency is impaired. Since the composition of the organosilicon compound is in the range described above, the adhesiveness with the innermost layer (11) is high, and the thin film is not cracked or peeled off when the plastic container is expanded or contracted or deformed.

前記第2蒸着薄膜層(13)は、より優れたガスバリア性を付与する為に設けるもので、炭素原子数の比率が5%未満の有機珪素化合物とSiOx(x=2〜2.5)からなっている。この場合はSiOx(x=2〜2.5)が主成分となっている。炭素原子数の比率が5%以上、SiOxのxの数値がx<2又はx>2.5の場合はガスバリア性が急激に低下する。   The second vapor-deposited thin film layer (13) is provided to give better gas barrier properties, and is composed of an organosilicon compound having a carbon atom ratio of less than 5% and SiOx (x = 2 to 2.5). It has become. In this case, SiOx (x = 2 to 2.5) is the main component. When the ratio of the number of carbon atoms is 5% or more and the value of x in SiOx is x <2 or x> 2.5, the gas barrier property is drastically lowered.

前記第3蒸着薄膜層(14)は、ガスバリア性付与の他に第2蒸着薄膜層(13)を保護する為に設けるもので、炭素原子数の比率が10〜20%の有機珪素化合物からなっている。炭素原子数の比率が10%未満であると密着性が悪くなり、炭素原子数の比率が20%を超えると薄膜が着色し、透明性を損ねる。   The third vapor-deposited thin film layer (14) is provided to protect the second vapor-deposited thin film layer (13) in addition to providing gas barrier properties, and is made of an organic silicon compound having a carbon atom ratio of 10 to 20%. ing. When the ratio of the number of carbon atoms is less than 10%, the adhesion is deteriorated, and when the ratio of the number of carbon atoms exceeds 20%, the thin film is colored and the transparency is impaired.

上記のように、第2蒸着薄膜層(13)を第1蒸着薄膜層(12)と第3蒸着薄膜層(14)との中間に設けることにより、プラスチック容器の膨張伸縮や変形時に薄膜に亀裂が入ったり、薄膜が剥落することがなく、優れたガスバリア性を維持でき、プラスチック容器使用中の性能劣化を抑えることができる。   As described above, the second vapor-deposited thin film layer (13) is provided between the first vapor-deposited thin film layer (12) and the third vapor-deposited thin film layer (14), thereby cracking the thin film when the plastic container expands and contracts or deforms. No thin film is peeled off and excellent gas barrier properties can be maintained, and performance deterioration during use of a plastic container can be suppressed.

前記第1蒸着薄膜層(12)、第2蒸着薄膜層(13)、第3蒸着薄膜層(14)を形成させる方法を以下に説明すると、真空成膜装置内の、SUS304からなる円筒チャンバー内にプラスチック容器を倒立設置し、プラスチック容器内部にアース電極を兼ねた原料ガスノズルを挿入して原料ガスを導入すると共に反応ガスを導入し、それぞれのガス流量を逐次変化させながら導入して、高周波電力若しくはマイクロ波電力を印加して、薄膜を成膜する化学気相成長法で形成させる。それぞれのガス流量を逐次変化させることにより、連続して成膜することが可能で、その場合は第1蒸着薄膜層(12)、第2蒸着薄膜層(13)、第3蒸着薄膜層(14)のそれぞれの境界面で薄膜組成が連続的に変化するので、それぞれの薄膜同士の密着性が大きく向上する。   A method for forming the first vapor-deposited thin film layer (12), the second vapor-deposited thin film layer (13), and the third vapor-deposited thin film layer (14) will be described below. In a vacuum film forming apparatus, a cylindrical chamber made of SUS304 is used. A plastic container is installed upside down, and a raw material gas nozzle that also serves as an earth electrode is inserted into the plastic container to introduce a raw material gas and a reactive gas, and each gas flow rate is sequentially changed to introduce high frequency power. Alternatively, it is formed by a chemical vapor deposition method in which a microwave power is applied to form a thin film. By successively changing each gas flow rate, it is possible to form a film continuously. In this case, the first vapor-deposited thin film layer (12), the second vapor-deposited thin film layer (13), and the third vapor-deposited thin film layer (14 ), The thin film composition continuously changes at each boundary surface, so that the adhesion between the thin films is greatly improved.

また、前記第1蒸着薄膜層(12)及び第3蒸着薄膜層(14)の膜厚は10〜100nmが好ましく、10nm未満であると各種のストレスから保護する効果が期待できず、100nmを超えると、薄膜が着色し、歪みも大きくなり良くない。さらに、前記第2蒸着薄膜層(13)の膜厚は5〜50nmが好ましい。5nm未満の場合はガスバリア性が劣り、50nmを超えると亀裂が入り易い。   Further, the film thickness of the first vapor-deposited thin film layer (12) and the third vapor-deposited thin film layer (14) is preferably 10 to 100 nm, and if it is less than 10 nm, the effect of protecting from various stresses cannot be expected and exceeds 100 nm. The thin film is colored, and the distortion increases, which is not good. Furthermore, the film thickness of the second deposited thin film layer (13) is preferably 5 to 50 nm. If it is less than 5 nm, the gas barrier property is inferior, and if it exceeds 50 nm, cracks tend to occur.

前記原料ガスは、主ガスとしてヘキサ・メチル・ジ・シロキサン(以下、HMDSOとする)やトリ・メチル・シロキサンなどを用いることが可能であり、また、反応ガスとしては、酸素の他、オゾン、二酸化炭素などを用いることが可能である。   As the source gas, hexamethyldisiloxane (hereinafter referred to as HMDSO) or trimethylsiloxane can be used as a main gas, and as a reactive gas, in addition to oxygen, ozone, Carbon dioxide or the like can be used.

本発明のガスバリア性プラスチック容器を、以下に具体的な実施例に沿って説明するが、本発明がこれらの実施例に限定されるものではない。   The gas barrier plastic container of the present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.

ポリエチレンテレフタレート樹脂を使用して、延伸成形した容量500ml、口内径25mm、平均肉厚0.5mmの胴部中央がくびれた円筒状容器を、真空成膜装置内の、SUS304からなる円筒チャンバー内に開口部を下にして倒立設置し、円筒状容器内部にはアース電極を兼ねた原料ガスノズルを挿入した。原料ガスとして、HMDSOを気体の標準状態換算で10ml/min流し、反応ガスとして酸素を50ml/min流し、ここに13.56MHzの高周波電力を200Wで2秒間印加して成膜し、第1蒸着薄膜層(12)を形成させた。次に連続的に流量を変更して、HMDSOを2ml/min流し、酸素を100ml/min流して、高周波電力を200Wで8秒間印加して成膜し、第2蒸着薄膜層(13)を形成し、積層させた。更に原料ガスとして、HMDSOを気体の標準状態換算で10ml/min流し、反応ガスとして酸素を50ml/min流し、ここに13.56MHzの高周波電力を200Wで2秒間印加して成膜し、第3蒸着薄膜層(14)を形成し、積層させて本発明のガスバリア性プラスチック容器を得た。   Using a polyethylene terephthalate resin, a cylindrical container with a 500 ml stretch-molded volume, an inner diameter of 25 mm, an average wall thickness of 0.5 mm and a narrowed neck is placed in a cylindrical chamber made of SUS304 in a vacuum film forming apparatus. The opening was turned upside down, and a raw material gas nozzle also serving as a ground electrode was inserted into the cylindrical container. HMDSO was flowed as a source gas at a rate of 10 ml / min in terms of gas standard state, oxygen was flowed at 50 ml / min as a reaction gas, and a high frequency power of 13.56 MHz was applied at 200 W for 2 seconds to form a film. A thin film layer (12) was formed. Next, the flow rate was continuously changed, HMDSO was flowed at 2 ml / min, oxygen was flowed at 100 ml / min, and high-frequency power was applied at 200 W for 8 seconds to form a second evaporated thin film layer (13). And laminated. Further, HMDSO was flowed as a raw material gas at a rate of 10 ml / min in terms of gas standard state, oxygen was flowed as a reaction gas at 50 ml / min, and a high frequency power of 13.56 MHz was applied at 200 W for 2 seconds to form a film. A vapor-deposited thin film layer (14) was formed and laminated to obtain a gas barrier plastic container of the present invention.

実施例1において、第1蒸着薄膜層(12)の原料ガスとして、HMDSOを5ml/min流し、反応ガスとして酸素を100ml/min流した以外は、同様にして本発明のガスバリア性プラスチック容器を得た。   In Example 1, the gas barrier plastic container of the present invention was obtained in the same manner except that HMDSO was flowed at 5 ml / min as the source gas of the first vapor-deposited thin film layer (12) and oxygen was flowed at 100 ml / min as the reaction gas. It was.

実施例1において、第1蒸着薄膜層(12)及び第3蒸着薄膜層(14)の原料ガスとして、HMDSOを15ml/min流し、前記各層の成膜時に13.56MHzの高周波電力を200Wで5秒間印加して成膜を行った以外は、同様にして本発明のガスバリア性プラスチック容器を得た。   In Example 1, HMDSO was flowed at 15 ml / min as a source gas for the first vapor-deposited thin film layer (12) and the third vapor-deposited thin film layer (14), and high-frequency power of 13.56 MHz was 5 at 200 W during the film formation of each layer. A gas barrier plastic container of the present invention was obtained in the same manner except that the film was formed by applying for 2 seconds.

以下に、本発明の比較用の実施例を説明する。   In the following, comparative examples of the present invention will be described.

第1蒸着薄膜層と第3蒸着薄膜層の原料ガスとして、HMDSOを気体の標準状態換算で5ml/min流し、反応ガスとして酸素を100ml/min流し、前記各層の成膜時に13.56MHzの高周波電力を200Wで1秒間印加し、成膜した以外は、実施例1と同様にして比較用のガスバリア性プラスチック容器を得た。   As a source gas for the first vapor-deposited thin film layer and the third vapor-deposited thin film layer, HMDSO was flowed at a rate of 5 ml / min in terms of gas standard state, and oxygen was flowed as a reactive gas at a rate of 100 ml / min. A comparative gas barrier plastic container was obtained in the same manner as in Example 1 except that power was applied at 200 W for 1 second to form a film.

原料ガスとして、HMDSOを気体の標準状態換算で2ml/min流し、反応ガスとして酸素を100ml/min流し、ここに13.56MHzの高周波電力を200Wで12秒間印加して、第1蒸着薄膜層のみを形成させた以外は、実施例1と同様にして比較用のガスバリア性プラスチック容器を得た。   As source gas, HMDSO was flowed at 2 ml / min in terms of gas standard state, oxygen was flowed as reaction gas at 100 ml / min, and high frequency power of 13.56 MHz was applied at 200 W for 12 seconds, and only the first deposited thin film layer was supplied. A comparative gas barrier plastic container was obtained in the same manner as in Example 1 except that was formed.

〈評価〉
実施例1〜3の本発明のガスバリア性プラスチック容器及び実施例4〜5の比較用のガスバリア性プラスチック容器を用いて、X線光電子分光分析装置でプラスチック容器の積層された、各々の蒸着薄膜層の元素分析を実施すると共に、さらにそれぞれのプラスチック容器に蒸留水を満水に充填し、1mの高さからコンクリート床に10回落下させた後の容器の酸素透過度を測定し、評価した。その結果を表1に示す。
<Evaluation>
Using the gas barrier plastic container according to the present invention of Examples 1 to 3 and the gas barrier plastic container for comparison of Examples 4 to 5, each deposited thin film layer in which the plastic container was laminated with an X-ray photoelectron spectrometer In addition to performing the elemental analysis, each plastic container was filled with distilled water and the oxygen permeability of the container after being dropped 10 times from a height of 1 m onto the concrete floor was measured and evaluated. The results are shown in Table 1.

Figure 0004333382
表1に示すように、実施例1〜3の本発明のガスバリア性プラスチック容器は、落下試験後も酸素透過度が小さく、各蒸着薄膜層の薄膜が損傷していないことを示しており、実施例4〜5の比較用のガスバリア性プラスチック容器は、落下試験後の酸素透過度が大きく、各蒸着薄膜層が損傷していることが判明した。
Figure 0004333382
As shown in Table 1, the gas barrier plastic containers of Examples 1 to 3 of the present invention have low oxygen permeability even after the drop test, indicating that the thin film of each deposited thin film layer is not damaged. It was found that the gas barrier plastic containers for comparison in Examples 4 to 5 had large oxygen permeability after the drop test, and the respective deposited thin film layers were damaged.

本発明のガスバリア性プラスチック容器の一実施形態を示す側断面図である。It is a sectional side view which shows one Embodiment of the gas barrier plastic container of this invention.

符号の説明Explanation of symbols

10…ガスバリア性プラスチック容器
11…容器の最内層
12…第1蒸着薄膜層
13…第2蒸着薄膜層
14…第3蒸着薄膜層
15…開口部
DESCRIPTION OF SYMBOLS 10 ... Gas barrier plastic container 11 ... Innermost layer 12 of container ... 1st vapor deposition thin film layer 13 ... 2nd vapor deposition thin film layer 14 ... 3rd vapor deposition thin film layer 15 ... Opening part

Claims (2)

プラスチック容器の最内層面に炭素原子数の比率が10〜20%の有機珪素化合物からなる第1蒸着薄膜層、炭素原子数の比率が5%未満の有機珪素化合物とSiOx(x=2〜2.5)からなる第2蒸着薄膜層、炭素原子数の比率が10〜20%の有機珪素化合物からなる第3蒸着薄膜層が順次積層されていることを特徴とするガスバリア性プラスチック容器。   A first vapor-deposited thin film layer made of an organosilicon compound having a carbon atom ratio of 10 to 20% on the innermost layer surface of the plastic container, an organosilicon compound having a carbon atom ratio of less than 5% and SiOx (x = 2 to 2) .5) and a third vapor-deposited thin film layer made of an organosilicon compound having a carbon atom ratio of 10 to 20% are sequentially laminated. 前記第1蒸着薄膜層及び第3蒸着薄膜層の膜厚が10〜100nmで、第2蒸着薄膜層の膜厚が5〜50nmであることを特徴とする請求項1記載のガスバリア性プラスチック容器。   2. The gas barrier plastic container according to claim 1, wherein the first vapor deposition thin film layer and the third vapor deposition thin film layer have a thickness of 10 to 100 nm, and the second vapor deposition thin film layer has a thickness of 5 to 50 nm.
JP2004022854A 2004-01-30 2004-01-30 Gas barrier plastic container Expired - Fee Related JP4333382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022854A JP4333382B2 (en) 2004-01-30 2004-01-30 Gas barrier plastic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022854A JP4333382B2 (en) 2004-01-30 2004-01-30 Gas barrier plastic container

Publications (2)

Publication Number Publication Date
JP2005212848A JP2005212848A (en) 2005-08-11
JP4333382B2 true JP4333382B2 (en) 2009-09-16

Family

ID=34906064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022854A Expired - Fee Related JP4333382B2 (en) 2004-01-30 2004-01-30 Gas barrier plastic container

Country Status (1)

Country Link
JP (1) JP4333382B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250958B2 (en) * 2006-10-18 2013-07-31 凸版印刷株式会社 Plastic container and method for manufacturing plastic container
WO2008114627A1 (en) * 2007-03-16 2008-09-25 Konica Minolta Holdings, Inc. Antifouling laminated body and front substrate for display

Also Published As

Publication number Publication date
JP2005212848A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP3678361B2 (en) Gas barrier film
CA2620551C (en) Synthetic resin containers with high barrier property
US5641559A (en) Gas-tight laminated plastic film containing polymer of organosilicic compound
JP2526766B2 (en) Gas barrier laminated plastics material
DK2597175T3 (en) A process for the preparation of coated polymer
JP2005132416A (en) Silicon oxide film coating hollow container
WO1998024625A1 (en) Multilayer, high barrier film
JP2007176087A (en) Laminated film
EP3066230B1 (en) Coated container, use thereof and process for its manufacturing
JP4333382B2 (en) Gas barrier plastic container
JP3465311B2 (en) Gas barrier plastics material provided with a transparent silicon compound thin film and method for producing the same
JP5273760B2 (en) Plastic container
JP2003104352A (en) Plastic container with barrier properties
JP6704239B2 (en) Synthetic resin container
JP2015166170A (en) gas barrier laminate
JP2006264791A (en) Plastic container
JP4224330B2 (en) Barrier film
JP2004168325A (en) Plastic container with barrier property
JP4010246B2 (en) Multi-layer plastic container
JP4593213B2 (en) Gas barrier plastic container and manufacturing method thereof
JP2012096823A (en) Liquid storage container
JP4300977B2 (en) Barrier plastic container
JP2006082814A (en) Plastic container of gas barrier property
JP4140357B2 (en) Multi-layer plastic container
JP2003181974A (en) Transparent high water vapor barrier laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140703

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees