JP4333245B2 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP4333245B2
JP4333245B2 JP2003203898A JP2003203898A JP4333245B2 JP 4333245 B2 JP4333245 B2 JP 4333245B2 JP 2003203898 A JP2003203898 A JP 2003203898A JP 2003203898 A JP2003203898 A JP 2003203898A JP 4333245 B2 JP4333245 B2 JP 4333245B2
Authority
JP
Japan
Prior art keywords
duty ratio
voltage
target
command value
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003203898A
Other languages
English (en)
Other versions
JP2005047318A (ja
Inventor
貴充 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003203898A priority Critical patent/JP4333245B2/ja
Publication of JP2005047318A publication Critical patent/JP2005047318A/ja
Application granted granted Critical
Publication of JP4333245B2 publication Critical patent/JP4333245B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は車両の制御装置、特に車両に搭載されバッテリの充電制御に係わる発電機及び車両用空調装置を備えるものに関する。
【0002】
【従来の技術】
車両用空調装置は、コンプレッサ、コンデンサ、減圧器、エバポレータ及びコンデンサに冷却風を送る冷却ファン等からなっている。この場合に、車両の省動力化(省燃費)の要求を受け、上記冷却ファン用モータの駆動装置として電源電圧をデューティ比指令値に応じてパルス幅変調するスイッチングモジュールを備えさせる共に、このスイッチングモジュールに与えるデューティ比指令値によりファン用モータを制御するようにしたものがある(特許文献1参照)。
【0003】
【特許文献1】
特開平2001−354030号公報
【0004】
【発明が解決しようとする課題】
ところで、上記のスイッチングモジュールは許容できる電力に上限があり、コストを抑えるため安価なスイッチングモジュールを選択するほど許容できる電力は小さくなる。そのため、特に高いデューティ比は熱損失が大きく、無駄な電力を消費したり、発熱により耐久性も悪くなる。これについて説明すると、図10は安価なスイッチングモジュールの消費電力特性の一例である。デューティ比が大きくなるほど冷却ファンの回転速度が上昇してコンデンサへの冷却風量が増すのであるが、その分消費電力の傾きが大きくなっている。そして、この安価なスイッチングモジュールでは、デューティ比で80%が許容電力の上限値として定まっているため、上限値である80%以上の値を目標デューティ比として設定できず、従って80%以上の目標デューティ比に相当する要求風量を得たくとも得られないのである。
【0005】
しかしながら、より高性能なスイッチングモジュールを採用し上限値以上の高いデューティ比を目標デューティ比に設定するのでは、要求風量は得られるもののコストを抑制できない。
【0006】
一方、車両の省動力化のため最近は、オルタネータの発電電圧可変制御が行われるようになってきている。これは、従来、オルタネータの最大発電電圧(例えば14V)を電圧指令値として、オルタネータに内蔵のICレギュレータに与えていたところを、バッテリの充電を行う必要がないときに電圧指令値を最大発電電圧より低い電圧へと低下させたり、加速時には発電カットを行うなどする制御である。
【0007】
この両者を勘案して本発明者は、スイッチングモジュールに対してバッテリの電源電圧ではなくオルタネータからの発電電圧を直接に供給し、目標デューティを設定できない領域においては、上記発電電圧可変制御により目標デューティ比に相当する実効電圧を供給できるのではないかとの知見を得た。
【0008】
そこで本発明は、車両用空調装置の冷却ファン用モータとオルタネータとを協調制御することにより、安価なスイッチングモジュールを用いていてもコンデンサへの要求風量を満たすことを目的とする。
【0009】
【課題を解決するための手段】
本発明は、エンジンにより駆動される発電機と車両用空調装置とを備え、前記車両用空調装置は、圧縮機と、コンデンサと、冷却ファンと、この冷却ファン用モータと、前記発電機の発電した電圧を電源電圧としこの電源電圧をデューティ比指令値に応じてパルス幅変調し、このデューティ比指令値及び電源電圧により定まる実効電圧を前記冷却ファン用モータに供給するスイッチングモジュールとを少なくとも有する車両の制御装置において、電圧指令値に応じて前記発電機の発電電圧を可変に制御し得るように構成すると共に、目標デューティ比を少なくとも外気温に応じて算出し、この目標デューティ比が上限値未満のときこの目標デューティ比をそのまま前記デューティ比指令値として設定すると共に、前記発電機の最大発電電圧を前記電圧指令値として設定し、前記目標デューティ比が前記上限値を超えているとき前記スイッチングモジュールがON、OFFのスイッチングを行わない値である100%に前記デューティ比指令値を固定すると共に、前記上限値を超えている目標デューティ比相当の実効電圧が前記モータに供給されるように前記電圧指令値を設定するように構成する。
【0010】
本発明は、さらに所定の許可条件が成立しているか否かを判定し、この判定結果より所定の許可条件の成立時に発電機の最大発電電圧より低い目標発電電圧を算出し、目標デューティ比が上限値未満のときかつ前記所定の許可条件の成立時に前記目標発電電圧によりこの目標デューティ比を増量補正した値を前記デューティ比指令値として設定すると共に、前記目標発電電圧を前記電圧指令値として設定するように構成する。
【0011】
【発明の効果】
本発明によれば、目標デューティ比が上限値を超えているときにはスイッチングモジュールがON、OFFのスイッチングを行わない値である100%にデューティ比指令値を固定するので、スイッチングモジュールに発熱が生じることがなく、従って安価なスイッチングモジュールを用いることができる。かつ上限値を超えている目標デューティ比相当の実効電圧が冷却ファン用モータに供給されるように電圧指令値を設定するようにしているので、上限値を超えている目標デューティ比領域での要求風量をコンデンサ7に送ることができる。
【0012】
本発明によれば、さらに目標デューティ比が上限値未満のときかつ発電機の最大発電電圧より低い目標発電電圧を電圧指令とする発電電圧可変制御中にその制御中の目標発電電圧により目標デューティ比を増量補正した値をデューティ比指令値として設定すると共に、目標発電電圧を電圧指令値として設定するので、発電電圧可変制御によりエンジンに加わる負荷を低減して燃費を向上させつつ、目標デューティ比に応じた要求風量を得ることができる。
【0013】
【発明の実施の形態】
以下本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態の車両の制御装置の概略構成図である。
【0014】
図1において、車両用空調装置5は、コンプレッサ6、コンデンサ7、エバポレータ8、リキッドタンク9、冷却ファン11などから構成されている。
【0015】
コンプレッサ6はエンジン1の出力軸に機械的に接続され、エンジン1の動力によって駆動される。コンプレッサ6には電磁クラッチによりエンジン1からの動力を伝達したり遮断したりできるようになっており、電磁クラッチの接続時にはコンプレッサ6が冷媒を吸入し圧縮し高温高圧にて吐出する。
【0016】
コンプレッサ6から吐出された冷媒はコンデンサ7により冷却され液化される。コンデンサ7によって液化された冷媒はレシーバドライヤにより一次的に蓄えられると共に液化された冷媒がエキスパンションバルブにより霧状に気化されて噴射される。エキスパンションバルブにより気化した冷媒の通過によってエバポレータ8が冷却され、エバポレータ8にブロワファンにより風を通過させると、冷風が生じる。10は冷媒配管である。
【0017】
コンデンサ7の放熱性能を高めて車両用空調装置5の性能を維持するため、冷却ファン11を備える。冷却ファン11はモータ12により駆動され、コンデンサ7に冷却風を送る。
【0018】
車両の省動力化のため、モータ12の駆動装置としてのスイッチングモジュール13を備える。オルタネータ2の発電電圧を電源電圧とするスイッチングモジュール13では、PWMユニット26からの指令パルスを増幅してPWM電圧信号を作り、このPWM電圧信号(デューティ比指令値)及びオルタネータ2の発電電圧により定まる実効電圧をON−OFFのスイッチングによりモータ12に供給する。すなわち、オルタネータ発電電圧が同じでもデューティ比指令値が小さくなれば、またデューティ比指令値が同じでもオルタネータ発電電圧が低下すれば、モータ12に印加される実効電圧が小さくなる。
【0019】
上記のオルタネータ2(発電機)もエンジン1の出力軸に機械的に接続され、エンジン1の動力によって駆動される。
【0020】
オルタネータ2に内蔵されるICレギュレータ3(発電電圧可変制御手段)ではPWMユニット26からの電圧指令値に相当する発電電圧が得られるように、ICレギュレータ3の調整電圧とバッテリ4の電圧(または発電電圧)との比較を行いながら、フィードバック制御を行う。
【0021】
オルタネータ2からの電流を検出する電流センサ25からの信号に加えて、外気温を検出する外気温センサ22、エアコンスイッチ23からの信号がA/Cアンプ24を介して入力されるエンジンコントロールモジュール21では、燃料噴射制御や点火時期制御などのエンジン制御を行うと共に、エアコンスイッチ23からの要求冷却能力が得られるように外気温やエバポレータ8を通過した冷風の温度に応じて前述した電磁クラッチの締結・解放を行ってコンプレッサ6の駆動・停止を実行する。
【0022】
また、エンジンコントロールモジュール21では、オルタネータ2による発電電圧可変制御を行う。ここで、発電電圧可変制御とは、従来はオルタネータ2の最大発電電圧である14Vを電圧指令値としてICレギュレータ13に与えていたところを、所定の許可条件の成立時に限り、例えばバッテリ4の充電を行う必要がないときに電圧指令値を14Vから13Vへと低下させたり、加速時には発電カットを行う(つまり電圧指令値=0V)などして燃費を向上させる制御である。
【0023】
所定の許可条件の成立時に限ったこうしたオルタネータ2の発電電圧可変制御を行い、かつスイッチングモジュール13を有する車両用空調装置を備える車両を前提として、本実施形態では、PWMユニット26を介して冷却ファン用モータ12とオルタネータ2とを協調制御する。すなわち、エンジンコントロールモジュール21では目標デューティ比を外気温に応じて算出し、この目標デューティ比が上限値未満のときにはこの目標デューティ比をそのままデューティ比指令値として設定すると共に、オルタネータの最大発電電圧をICレギュレータ3への電圧指令値として設定し、その一方で目標デューティ比が上限値を超えたときには100%(目標デューティ比の最大値)にデューティ比指令値を固定すると共に、目標デューティ比相当の実効電圧がモータ12に供給されるようにICレギュレータ3への電圧指令値を設定する。
【0024】
これをさらに図2を用いて説明すると、これはスイッチングモジュール13(図10と同じ安価なスイッチングモジュール)による特性を示したもので、横軸は目標デューティ比、縦軸はオルタネータの発電電圧である。上限値の80%までは従来装置と変わらない。すなわち、80%未満の領域においてはオルタネータの発電電圧をオルタネータの最大発電電圧である14Vに維持したままデューティ比によりコンデンサ7への風量を制御する。このため、目標デューティ比に応じて冷却ファン用モータ12への実効電圧が上昇している。
【0025】
これに対して80%以上の目標デューティ比域では前述のようにその80%以上の目標デューティ比をデューティ比指令値として設定できないのであるから、上限値以上の目標デューティ比域になると100%にデューティ比指令値を固定する。
【0026】
ここで、100%であるデューティ比指令値をスイッチングモジュール13に与えると、スイッチングモジュール13で作られるPWM電圧信号は常時ONとなる信号となり、このときオルタネータ発電電圧がそのままモータ12に供給される。すなわち、100%に固定したデューティ比指令値をスイッチングモジュール13に与えるときにはスイッチングモジュール13はON、OFFのスイッチングを行わないので(見かけ上はスイッチングモジュール13をバイパスしてオルタネータ発電電圧がモータ12に流れるのと同じ)、スイッチングモジュール13に発熱は発生しない。
【0027】
その一方で、得たい特性は80%からも上昇する実効電圧の特性(図示の実線特性)である。そこで、上限値以上の目標デューティ比域においてこの得たい実効電圧特性が得られるように、ICレギュレータ3への電圧指令値を可変制御する(オルタネータ2の発電電圧を可変制御する)。すなわち、図に重ねて示した一点鎖線がICレギュレータ3への電圧指令値の特性であり、80%までは14.0Vであったのが、上限値以上の目標デューティ比域になると実線で示した実効電圧と一致する電圧が電圧指令値となる。上限値以上の目標デューティ比域では、オルタネータ発電電圧の可変制御によりコンデンサ7への風量を制御するのである。
【0028】
このようにして設定したデューティ比指令値と電圧指令値とをエンジンコントロールモジュール21がPWMユニット26に出力し、これを受けるPWMユニット26では電圧指令値をICレギュレータ3に、またデューティ比指令値を指令パルスに変換してスイッチングモジュール13に出力する。なお、PWMユニット26では、ワイパーやウィンカー等の電気系統をも統率している。
【0029】
エンジンコンロールモジュール21により実行されるこの冷却ファン用モータ12とオルタネータ2との協調制御を図3のフローチャートに従い詳述する。
【0030】
図3のフローはデューティ比指令値及び電圧指令値を算出するためのもので、一定時間毎(例えば10ms毎)に実行する。
【0031】
ステップ1では温度センサ22により検出される外気温を読み込み、ステップ2でこの外気温から図4を内容とするテーブルを検索することにより目標デューティ比[%]を算出する。図4のように目標デューティ比は外気温が上昇するほど大きくなる値である。図には概略の特性を示しており、具体的な特性はマッチングにより定める。
【0032】
ここで、目標デューティ比の算出方法について説明する。まず、車両用空調装置5の運転時においては、コンプレッサ6の目標吐出圧を設定し、吐出圧がこの目標吐出圧を維持するような、スイッチングモジュール13に与えるデューティ比を設定する。ここで設定される目標吐出圧は、コンプレッサ6の駆動負荷とコンデンサ7を冷却するためのモータ12の駆動負荷とを合計した負荷が最小となる吐出圧であり、具体的には以下のようにして設定される。
【0033】
すなわち、コンプレッサ6はエンジン1の出力によって駆動されるから、コンプレッサ6を駆動する動力はエンジン1に対する負荷そのものである。このコンプレッサ動力は「吐出圧−吸入圧(一定)」として表せるから、コンプレッサ吐出圧(コンプレッサ動力)は、コンプレッサ6の駆動負荷に換算することができる。また、モータ12はオルタネータ2の発生する電力により作動しオルタネータ2はエンジン1によって駆動されて発電するから、モータ12の消費電力(例えば、電流センサ25の検出する電流の積分値)からオルタネータ2を駆動する動力つまりエンジン1に対する負荷を求めることができ、これによりモータ12の消費電力を、モータ12の作動電力を得るためのオルタネータ2の駆動負荷に換算することができる。
【0034】
一方、冷却ファン11によってコンデンサ7が冷却されると、このコンデンサ7における冷媒の凝縮温度、ひいては凝縮圧力が低くなる。その結果、コンプレッサ6の吐出圧が低くなり、コンプレッサ6の駆動負荷も低くなる。
【0035】
以上よりエアコン5への要求冷却能力に対して、スイッチングモジュール13に与えるデューティ比を変化させて冷却ファン風量を増加させていくと、コンプレッサ6の駆動負荷(吐出圧)は減少し、オルタネータ2の駆動負荷(モータ12の消費電力)が増加していく。よって、デューティ比を変化させていくと、コンプレッサ6の駆動負荷とオルタネータ2の駆動負荷(モータ12の作動負荷)との合計が最小となる作動点(最適点)を見つけることができる。そして、この最適点で作動させれば、つまりこのときのコンプレッサ吐出圧(目標吐出圧)となるようにデューティ比を制御すれば、車両用空調装置5の運転に伴うエンジン負荷を最小限に抑制できることになり、ひいては燃費を向上できる。
【0036】
上記の関係及び最適点を示したものが図5であり、図5(a)〜(c)は、それぞれ外気温が低、中、高温の場合のものである。なお、図5において、破線はコンプレッサ6の駆動負荷を示し、一点鎖線はモータ12を作動させるためのオルタネータ2の駆動負荷を示し、実線はこれらの合計負荷を示す。前記最適点のデューティ比を外気温度毎に求めて整理することで、図4に示す最適点の得られるデューティ比(これを「目標デューティ比」という。)の特性が得られる。従って、図4を内容とするテーブルを検索することで目標デューティ比を設定するのである。
【0037】
図3に戻りステップ3では目標デューティ比と上限値を比較する。ここで、上限値はスイッチングモジュール13の許容電力により定まるデューティ比で、例えば80%である。目標デューティが上限値以上であるときにはステップ4に進み、100%をデューティ比指令値に入れる。
【0038】
ステップ5ではそのときの目標デューティ比、つまり上限値以上となっている目標デューティ比から図6を内容とするテーブルを検索してオルタネータ2の目標発電電圧を算出し、ステップ6でこの目標発電電圧を発電電圧指令値に移す。図6に示したように目標発電電圧は目標デューティ比が大きくなるほど高くなる値である。
【0039】
上記の目標発電電圧は目標デューティ比から次の演算式により算出してもかまわない。
【0040】
Figure 0004333245
ここで、(1)式は実効電圧が電源電圧の二乗平均値であることを利用して得たものである。この場合、電源電圧はオルタネータ2の最大発電電圧である14Vである。
【0041】
一方、目標デューティ比が上限値未満のときにはステップ3よりステップ8に進んで発電電圧可変制御について所定の許可条件が成立しているか否かをみる。ここで、発電電圧可変制御は特開平9−308298号公報に公知である。これについて簡単に説明すると、バッテリ4の充電状態が良好で充電する必要がないとき、エンジン1の始動やエンジン暖機運転中でないとき、また発電電圧可変制御に関係する部品やエンジンに故障がないときに所定の許可条件が成立する。所定の許可条件が成立しているときには、ステップ9、10に進んで目標発電電圧を設定し、その目標発電電圧を電圧指令値に移す。
【0042】
目標発電電圧の設定方法も特開平9−308298号公報に公知である。簡単に述べると、各種電気負荷スイッチの入力に応じてどんな電気負荷がONとされているのかを判定し、バッテリ4が十分充電されておりかつ消費電力の小さな電気負荷しかONとされていないときには、目標発電電圧をオルタネータ2の最大発電電圧である14Vよりも低い値に設定する。
【0043】
このように、所定の許可条件が成立する場合に限って目標発電電圧をオルタネータの最大発電電圧より低下させることで、エンジン1への負荷を減らすことができ、燃費が向上する。
【0044】
ステップ11、12は発電電圧可変制御中の目標発電電圧に応じたデューティ比の増量補正を行う部分である。すなわち、ステップ11では発電電圧可変制御中の目標発電電圧から図7を内容とするテーブルを検索することによりデューティ比増量補正量[%]を算出し、ステップ12でこのデューティ比増量補正量を、ステップ2で算出している目標デューティ比に加算した値をデューティ比指令値[%]として設定する。図7に示したようにデューティ比増量補正量は発電電圧可変制御中の目標発電電圧が低下するほど大きくなる値である。図には概略の特性を示しており、具体的な特性はマッチングにより定める。
【0045】
ここで、デューティ比の増量補正について図8を参照してさらに説明すると、横軸はデューティ比指令値、縦軸はモータ12の実効電圧である。発電電圧可変制御中には発電電圧可変制御中でないとき(このときの発電電圧は14V)より低下する。発電電圧可変制御により発電電圧が例えば12Vに低下したとき、モータ12の実効電圧の特性が図示のように変化する。
【0046】
この場合に、発電電圧が14Vあったときには目標デューティ比を20%にすることで6.0Vを少し超える実効電圧が得られていたのが、発電電圧が12Vにまで低下したときには、モータ12の実効電圧が6.0Vを切ってしまうため、目標デューティ比20%相当の要求風量が得られなくなる。従って、発電電圧が12Vにまで低下したときにも目標デューティ比20%相当の要求風量を実現するにはデューティ比指令値を20%から27%へと7%増量補正してやる必要がある。同様にして、発電電圧が14Vあったときには目標デューティ比を30%にすることで8.0Vを少し欠ける実効電圧が得られていたのが、発電電圧が12Vにまで低下するとモータ12の実効電圧が7.0Vを切ってしまうため、目標デューティ比30%相当の要求風量が得られない。従って、発電電圧が12Vに低下したときにも目標デューティ比30%相当の要求風量を実現するにはデューティ比指令値を30%から40%へと10%増量補正してやる必要がある。
【0047】
このように、発電電圧が12Vに低下したときのデューティ比増量補正量はそれぞれ7%、10%であり、これら2つの増量補正量は大雑把にはほぼ等しい値である。すなわち、発電電圧が12Vのときの実効電圧の特性は、発電電圧が14Vのときの実効電圧の特性を右方向に平行移動したもので近似できる。
【0048】
このような近似を行うと、デューティ比増量補正量は発電電圧可変制御中の目標発電電圧に依存するので、発電電圧可変制御中の目標発電電圧をパラメータとしてデューティ比増量補正量のテーブルを図7のように設定することができる。
【0049】
発電電圧可変制御中のデューティ比指令値の設定はこれに限られない。例えば、図8において発電電圧が14Vのときに目標デューティ比がX(=30%)で所定の実効電圧が得られているが、発電電圧が12Vになっても同じ値の実効電圧が得られるときのデューティ比をYとすると、XとYとの間には次の関係が成立する。
【0050】
Y=比例定数×X…(2)
ここで、Xは目標デューティ比、Yは補正後のデューティ比であり、(2)式のXに他の目標デューティ比を入れたときにも、(2)式が成立するYが必ず存在する。このため、Xを目標デューティ比、Yを補正後のデューティ比として、(2)式を一般的に次のように書き表すことができる。
【0051】
補正後のデューティ比=比例定数×目標デューティ比…(3)
この(3)式における比例定数は発電電圧可変制御中のオルタネータ発電電圧(目標発電電圧)に依存した値であるので、その目標発電電圧に応じて比例定数の特性を図9のように予め求めておくことができる。従って、発電電圧可変制御中の目標発電電圧からこの図9を内容とするテーブルを検索することにより比例定数を求め、この比例定数と目標デューティ比とから上記の(3)式により補正後のデューティ比を算出し、その算出値を改めてデューティ比指令値として設定してやればよい。
【0052】
一方、所定の許可条件が成立していないときにはステップ8よりステップ13、14に進んでオルタネータ2の最大発電電圧である14Vを電圧指令値に移し、また目標デューティ比をそのままデューティ比指令値に移す。
【0053】
ステップ7ではこのようにして設定したデューティ比指令値と電圧指令値とをPWMユニット26に向け出力する。PWMユニット26ではデューティ比指令値を指令パルスに変換してスイッチングモジュール13に、また電圧指令値をオルタネータ内蔵のICレギュレータ13にそれぞれ出力する。
【0054】
ここで、本実施形態の作用を説明する。
【0055】
本実施形態(請求項1に記載の発明)によれば、目標デューティ比が上限値を超えているときには100%をデューティ比指令値として固定し、スイッチングモジュール13にON、OFFのスイッチングを行わせないようにしたので、スイッチングモジュール13に発熱が生じることがなく、従って安価なスイッチングモジュール13を用いることができる。かつ上限値を超えている目標デューティ比相当の実効電圧が冷却ファン用モータに供給されるように電圧指令値を設定するようにしているので、上限値を超えている目標デューティ比領域での要求風量をコンデンサ7に送ることができる。
【0056】
また、本実施形態(請求項4に記載の発明)によれば、さらに目標デューティ比が上限値未満のときかつオルタネータ2の最大発電電圧より低い目標発電電圧を電圧指令値とする発電電圧可変制御中にその制御中の目標発電電圧により目標デューティ比を増量補正した値をデューティ比指令値として設定すると共に、オルタネータ2の最大発電電圧を電圧指令値として設定するので、発電電圧可変制御によりエンジン1に加わる負荷を低減して燃費を向上しつつ、目標デューティ比に応じた要求風量を得ることができる。
【0057】
実施形態では、目標デューティ比を算出するためのパラメータが外気温の倍で説明したが、これに限られない。これについて説明すると、冷房要求は、主に外気温と車速で代表される「外気の負荷」と、主にエバポレータの目標温度と実温度の差分で代表される「室内の負荷」とから定まっている。ここで、「外気の負荷」とは冷媒サイクルの放熱器での熱交換量のことであり、これが小さいほど「外気の負荷」が大きいという。「室内の負荷」とは冷媒サイクルの吸熱器での熱交換量のことであり、これが大きいほど「室内の負荷」が大きいという。上記エバポレータの目標温度は車両の機種により異なり、今回実験した車両では車両用空調装置5の通常の運転時に3℃、「ECON」制御時に10℃となっている。
【0058】
従って、実施形態は「外気の負荷」の代表値である外気温のみに応じて目標デューティ比を算出する場合であったが、これに加えて、「室内の負荷」をもパラメータとして目標デューティ比を算出するようにしてもかまわない。
【0059】
図7では横軸を発電電圧可変制御中の目標発電電圧としているが、これに代えてオルタネータ2の最大発電電圧と発電電圧可変制御中のオルタネータ2の実際の発電電圧との差を用いることができる(請求項8に記載の発明)。
【0060】
実施形態では、スイッチングモジュール13への入力が電圧の場合で説明したが、電流の場合にも適用可能である。
【0061】
実施形態では発電機がオルタネータである場合で説明したが、これに限られるものでない。
【0062】
最後に、請求項1に記載の発電電圧可変制御手段の機能はICレギュレータ13とエンジンコントロールモジュール21とPWMユニット26により、目標デューティ比算出手段の機能は図3のステップ1、2により、第1設定手段の機能は図3のステップ3、13、14により、第2設定手段の機能は、図3のステップ3、4、5、6により、また請求項4に記載の発明の目標発電電圧算出手段の機能は図3のステップ8、9、10により、第1設定手段の機能は図3のステップ3、8、11、12により果たされている。
【図面の簡単な説明】
【図1】一実施形態の車両の制御装置の概略構成図。
【図2】上限値以上の目標デューティ比相当の風量制御を説明するための特性図。
【図3】デューティ比指令値及び電圧指令値の算出を説明するためのフローチャート。
【図4】目標デューティ比の特性図。
【図5】デューティ比に対するコンプレッサの駆動負荷、オルタネータの駆動負荷の特性図。
【図6】目標発電電圧の特性図。
【図7】デューティ比増量補正量の特性図。
【図8】発電電圧可変制御時の目標デューティ比の補正を説明するための特性図。
【図9】比例定数の特性図。
【図10】安価なスイッチングモジュールの消費電力の特性図。
【符号の説明】
2 オルタネータ(発電機)
3 ICレギュレータ(発電電圧可変制御手段)
5 車両用空調装置
6 コンプレッサ
7 コンデンサ
11 冷却ファン
12 モータ
13 スイッチングモジュール
21 エンジンコントロールモジュール
26 PWMユニット

Claims (9)

  1. エンジンにより駆動される発電機と車両用空調装置とを備え、
    前記車両用空調装置は、
    エンジンにより駆動される圧縮機と、
    コンデンサと、
    このコンデンサを冷却するための冷却ファンと、
    この冷却ファンを回転駆動するモータと、
    前記発電機の発電した電圧を電源電圧としこの電源電圧をデューティ比指令値に応じてパルス幅変調し、このデューティ比指令値及び電源電圧により定まる実効電圧を前記モータに供給するスイッチングモジュールと
    を少なくとも有する車両の制御装置において、
    電圧指令値に応じて前記発電機の発電電圧を可変に制御し得る発電電圧可変制御手段と、
    目標デューティ比を少なくとも外気温に応じて算出する目標デューティ比算出手段と、
    この目標デューティ比が上限値未満のときこの目標デューティ比をそのまま前記デューティ比指令値として設定すると共に、前記発電機の最大発電電圧を前記電圧指令値として設定する第1設定手段と、
    前記目標デューティ比が前記上限値を超えているとき前記スイッチングモジュールがON、OFFのスイッチングを行わない値である100%に前記デューティ比指令値を固定すると共に、前記上限値を超えている目標デューティ比相当の実効電圧が前記モータに供給されるように前記電圧指令値を設定する第2設定手段と
    を備えることを特徴とする車両の制御装置。
  2. 前記上限値は前記スイッチングモジュールの許容電力により定まるデューティ比であることを特徴とする請求項1に記載の車両の制御装置。
  3. 記第2設定手段は、前記目標デューティ比をパラメータとして、前記上限値を超えている目標デューティ比相当の実効電圧が得られる目標発電電圧のテーブルを備え、このテーブルを検索して得られる目標発電電圧を前記電圧指令値として設定することを特徴とする請求項1に記載の車両の制御装置。
  4. エンジンにより駆動される発電機と車両用空調装置とを備え、
    前記空調装置は、
    エンジンにより駆動される圧縮機と、
    コンデンサと、
    このコンデンサを冷却するための冷却ファンと、
    この冷却ファンを回転駆動するモータと、
    前記発電機の発電した電圧を電源電圧としこの電源電圧をデューティ比指令値に応じてパルス幅変調し、このデューティ比指令値及び電源電圧により定まる実効電圧を前記モータに供給するスイッチングモジュールと
    を少なくとも有する車両の制御装置において、
    電圧指令値に応じて前記発電機の発電電圧を可変に制御し得る発電電圧可変制御手段と、
    バッテリの充電状態が良好で充電する必要がないとき、エンジンの始動時でないとき、エンジンの暖機運転中でないとき、前記発電電圧の可変制御に関係する部品またはエンジンに故障がないときの少なくとも一つを満たすことである所定の許可条件が成立しているか否かを判定する判定手段と、
    この判定結果より所定の許可条件の成立時に前記発電機の最大発電電圧より低い目標発電電圧を算出する目標発電電圧算出手段と、
    目標デューティ比を少なくとも外気温に応じて算出する目標デューティ比算出手段と、
    この目標デューティ比が上限値未満のときかつ前記所定の許可条件の成立時に前記目標発電電圧によりこの目標デューティ比を増量補正した値を前記デューティ比指令値として設定すると共に、前記目標発電電圧を前記電圧指令値として設定する第1設定手段と、
    前記目標デューティ比が前記上限値を超えているとき前記スイッチングモジュールがON、OFFのスイッチングを行わない値である100%に前記デューティ比指令値を固定すると共に、前記上限値を超えている目標デューティ比相当の実効電圧が前記モータに供給されるように前記電圧指令値を設定する第2設定手段と
    を備えることを特徴とする車両の制御装置。
  5. 前記上限値はスイッチングモジュールの許容電力により定まるデューティ比であることを特徴とする請求項4に記載の車両の制御装置。
  6. 前記第2設定手段は、前記目標デューティ比をパラメータとして、前記上限値を超えている目標デューティ比相当の実効電圧が得られる目標発電電圧のテーブルを備え、このテーブルを検索して得られる目標発電電圧を前記電圧指令値として設定することを特徴とする請求項4に記載の車両の制御装置。
  7. 前記第1設定手段は、前記目標発電電圧をパラメータとするデューティ比増量補正量のテーブルを備え、このテーブルを検索して得られるデューティ比増量補正量と前記目標デューティ比との和を前記デューティ比指令値として設定することを特徴とする請求項4に記載の車両の制御装置。
  8. 前記目標デューティ比が上限値未満のときかつ前記所定の許可条件の成立時に前記目標発電電圧に代えて、前記発電機の最大発電電圧と前記発電機の実際の発電電圧との差を用いることを特徴とする請求項4に記載の車両の制御装置。
  9. エンジンにより駆動される発電機と、
    コンデンサを冷却するための冷却ファン及びこの冷却ファンを駆動するモータを含む車両用空調装置と
    を少なくとも有する車両の制御装置において、
    前記発電機の発電した電圧を電源電圧とし、この電源電圧とデューティ比指令値により定まる実効電圧を前記モータに供給するスイッチングモジュールと、
    電圧指令値に応じて前記発電機の発電電圧を可変に制御し得る発電電圧可変制御手段と、
    目標デューティ比を少なくとも外気温に応じて算出する目標デューティ比算出手段と、
    この目標デューティ比が上限値未満のときこの目標デューティ比を前記デューティ比指令値として前記コンデンサへの風量を制御するデューティ比による風量制御手段と、
    前記目標デューティ比が前記上限値を超えているとき前記デューティ比指令値を100%に固定すると共に、前記上限値を超えている目標デューティ比相当の実効電圧が前記モータに供給されるように前記電圧指令値を設定して前記コンデンサへの風量を制御する発電電圧による風量制御手段と
    を備えることを特徴とする車両の制御装置。
JP2003203898A 2003-07-30 2003-07-30 車両の制御装置 Expired - Lifetime JP4333245B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203898A JP4333245B2 (ja) 2003-07-30 2003-07-30 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203898A JP4333245B2 (ja) 2003-07-30 2003-07-30 車両の制御装置

Publications (2)

Publication Number Publication Date
JP2005047318A JP2005047318A (ja) 2005-02-24
JP4333245B2 true JP4333245B2 (ja) 2009-09-16

Family

ID=34263092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203898A Expired - Lifetime JP4333245B2 (ja) 2003-07-30 2003-07-30 車両の制御装置

Country Status (1)

Country Link
JP (1) JP4333245B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382613A1 (en) 2002-07-16 2004-01-21 Sumitomo Chemical Company, Limited Novel G protein, polynucleotide encoding the same and utilization thereof
JP2010096450A (ja) * 2008-10-17 2010-04-30 Toshiba Carrier Corp 空気調和機
CN113879077B (zh) * 2021-09-27 2023-06-30 武汉格罗夫氢能汽车有限公司 一种基于整车热负荷的空调冷凝器风机控制方法

Also Published As

Publication number Publication date
JP2005047318A (ja) 2005-02-24

Similar Documents

Publication Publication Date Title
US6802185B2 (en) Control device for motor fan of vehicle
US20060112702A1 (en) Energy efficient capacity control for an air conditioning system
US8001799B2 (en) Multiple cooling sources for a vehicle air conditioning system
US9562715B2 (en) Power regulation system for a mobile environment-controlled unit and method of controlling the same
AU2006305295B2 (en) Trailer refrigeration system
US6886356B2 (en) Car air-conditioning system
JP3959305B2 (ja) 車両用空調制御装置
EP1598225A2 (en) Energy efficient capacity control for an air conditioning system
JP5447288B2 (ja) 車両用制御装置
JP2011152855A (ja) 車両用空調制御装置
JP4481448B2 (ja) 車両用空調装置
KR20190002123A (ko) 상용차용 냉난방 시스템 및 그의 제어방법
JP4333245B2 (ja) 車両の制御装置
KR101152037B1 (ko) 차량용 공조장치의 전동 압축기 제어방법
KR20080040093A (ko) 하이브리드 자동차용 전동 압축기의 제어방법
JP2006218920A (ja) 車両用空調制御装置
JP4566370B2 (ja) 車両用空調装置
JP4232296B2 (ja) 車両の空調制御装置
JP3912229B2 (ja) 車両用冷却ファンの制御装置
KR101304066B1 (ko) 차량용 공조장치의 전동압축기 제어방법
JP4078896B2 (ja) 車両用モータファンの制御装置
JP3824824B2 (ja) 車両用空調装置
JP2004231097A (ja) 車両用空調制御装置
JP3839627B2 (ja) 車両用空調装置
JP2003341414A (ja) 陸上輸送用冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140703

Year of fee payment: 5

EXPY Cancellation because of completion of term