JP4329610B2 - Fuel injection amount control device for internal combustion engine - Google Patents

Fuel injection amount control device for internal combustion engine Download PDF

Info

Publication number
JP4329610B2
JP4329610B2 JP2004133365A JP2004133365A JP4329610B2 JP 4329610 B2 JP4329610 B2 JP 4329610B2 JP 2004133365 A JP2004133365 A JP 2004133365A JP 2004133365 A JP2004133365 A JP 2004133365A JP 4329610 B2 JP4329610 B2 JP 4329610B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
target
secondary air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004133365A
Other languages
Japanese (ja)
Other versions
JP2005315153A (en
Inventor
智章 中野
雄紀 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004133365A priority Critical patent/JP4329610B2/en
Priority to US11/115,372 priority patent/US7367184B2/en
Publication of JP2005315153A publication Critical patent/JP2005315153A/en
Application granted granted Critical
Publication of JP4329610B2 publication Critical patent/JP4329610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、内燃機関の燃料噴射量制御装置に関するものである。   The present invention relates to a fuel injection amount control device for an internal combustion engine.

内燃機関の排気管には、排気を浄化するための触媒装置が設けられており、この触媒装置の浄化効率を向上させるべく、エアポンプの作動により触媒装置の上流側に二次エアを供給する技術が従来より提案されている。   A catalyst device for purifying exhaust gas is provided in an exhaust pipe of an internal combustion engine, and a technique for supplying secondary air to the upstream side of the catalyst device by operating an air pump in order to improve the purification efficiency of the catalyst device. Has been proposed.

また、二次エアの供給時には、内燃機関に供給される混合気の空燃比(燃焼空燃比)をリッチとすべく燃料噴射量が制御される。但しこのとき、触媒装置の入口部付近に設けた空燃比センサにより空燃比を検出し、当該検出値に基づいて空燃比フィードバック制御を実施すると、二次エア供給中は二次エア流量に応じて燃料増量が行われ、その後二次エア供給が停止されると急激に燃料噴射量が変化する。これにより、ドライバビリティの悪化等が生じる。そのため、一般にはこうした不都合を回避すべく、二次エア供給時には空燃比フィードバック制御が禁止されるようになっている。なお、例えば特許文献1では、二次エア供給時において、空燃比センサがリッチ信号を出力する場合には空燃比フィードバック制御を実施し、同空燃比センサがリーン信号を出力する場合には空燃比フィードバック制御を禁止するようにしている。   Further, when the secondary air is supplied, the fuel injection amount is controlled so that the air-fuel ratio (combustion air-fuel ratio) of the air-fuel mixture supplied to the internal combustion engine is rich. However, at this time, if the air-fuel ratio is detected by an air-fuel ratio sensor provided in the vicinity of the inlet of the catalyst device and air-fuel ratio feedback control is performed based on the detected value, the secondary air is supplied according to the secondary air flow rate. When the fuel increase is performed and then the secondary air supply is stopped, the fuel injection amount changes abruptly. As a result, the drivability deteriorates. Therefore, in general, in order to avoid such inconvenience, the air-fuel ratio feedback control is prohibited when the secondary air is supplied. For example, in Patent Document 1, air-fuel ratio feedback control is performed when the air-fuel ratio sensor outputs a rich signal during secondary air supply, and when the air-fuel ratio sensor outputs a lean signal, the air-fuel ratio is output. Feedback control is prohibited.

しかしながら、排気エミッションを好適に保つには、二次エア供給中であっても二次エア流量に応じて空燃比フィードバック等の燃料量補正を実施するのが望ましい。それ故、二次エア供給から停止に至る過程を通じて燃料量補正を好適に実施することができる技術が望まれている。
特許第2910034号公報
However, in order to keep the exhaust emission suitably, it is desirable to perform fuel amount correction such as air-fuel ratio feedback in accordance with the secondary air flow rate even when the secondary air is being supplied. Therefore, there is a demand for a technique that can suitably perform fuel amount correction throughout the process from secondary air supply to stop.
Japanese Patent No. 2910034

本発明は、二次エア供給を停止した時において燃料量を好適に制御し、ひいてはドライバビリティの改善を図ることができる内燃機関の燃料噴射量制御装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide a fuel injection amount control device for an internal combustion engine that can suitably control the fuel amount when the secondary air supply is stopped, and thus improve drivability. is there.

本発明の燃料噴射量制御装置では、二次エア供給時には目標空燃比として第1目標値が設定され、二次エア供給停止時には目標空燃比として第2目標値が設定される。また、二次エア供給時及び二次エア供給停止時に、排気通路の二次エア供給口よりも下流側の空燃比が目標空燃比(第1目標値又は第2目標値)となるよう燃料噴射量が補正される。この場合、二次エア供給時には通常二次エア供給に相応して燃料噴射量の増量補正が実施されるのに対し、二次エアの供給停止後は前記増量補正が停止されるため、内燃機関の燃焼空燃比が急激にリーン側に変化し、結果としてドライバビリティの悪化等を招く。 In the fuel injection amount control device of the present invention, the first target value is set as the target air-fuel ratio when the secondary air is supplied, and the second target value is set as the target air-fuel ratio when the secondary air supply is stopped. Further, when the secondary air is supplied and when the secondary air supply is stopped, fuel injection is performed so that the air-fuel ratio downstream of the secondary air supply port in the exhaust passage becomes the target air-fuel ratio (first target value or second target value). The amount is corrected. In this case, when the secondary air is supplied, the fuel injection amount increase correction is normally performed in accordance with the secondary air supply. On the other hand, after the secondary air supply is stopped, the increase correction is stopped. The combustion air-fuel ratio of the engine suddenly changes to the lean side, resulting in deterioration of drivability.

かかる不都合に対し、請求項1に記載の発明では、二次エアの供給停止時に目標空燃比が第1目標値から第2目標値に切り換えられる際、目標空燃比が第2目標値よりもリッチ側で初期設定され、その後第2目標値に移行されるため、燃焼空燃比の急激な変化が抑制され、ドライバビリティが改善できる。   For this inconvenience, in the first aspect of the invention, when the target air-fuel ratio is switched from the first target value to the second target value when the supply of secondary air is stopped, the target air-fuel ratio is richer than the second target value. Since the initial setting is made on the side, and then the shift to the second target value is made, rapid changes in the combustion air-fuel ratio are suppressed, and drivability can be improved.

また、請求項に記載の発明では、二次エア供給から供給停止への移行時において、その直前の二次エア供給時に推定した内燃機関の燃焼空燃比が目標空燃比として初期設定される。ここで、「燃焼空燃比」は、内燃機関で実際に燃焼に供される燃焼ガスの空燃比であり、二次エア供給時には概ね二次エア供給口よりも下流側の空燃比に対して二次エア流量分だけリッチとなるが、二次エア供給停止後は、二次エア供給口よりも下流側の空燃比に一致する。この場合、二次エア供給停止直後には、供給停止直前の燃焼空燃比が目標空燃比とされるため、排気通路内における二次エア流量が急にゼロになったとしても、それまでの燃料燃焼状態が継続できる。故に、ドライバビリティが良好に保持できる。 According to the first aspect of the present invention, at the time of transition from the secondary air supply to the supply stop, the combustion air-fuel ratio of the internal combustion engine estimated at the immediately preceding secondary air supply is initially set as the target air-fuel ratio. Here, the “combustion air-fuel ratio” is the air-fuel ratio of the combustion gas that is actually used for combustion in the internal combustion engine. When the secondary air is supplied, the “combustion air-fuel ratio” Although it becomes rich by the amount of the secondary air flow, after the secondary air supply is stopped, it matches the air-fuel ratio on the downstream side of the secondary air supply port. In this case, immediately after the secondary air supply is stopped, the combustion air-fuel ratio immediately before the supply stop is made the target air-fuel ratio, so even if the secondary air flow rate in the exhaust passage suddenly becomes zero, the fuel up to that time The combustion state can be continued. Therefore, drivability can be maintained well.

請求項に記載の発明では、二次エア供給停止直前の内燃機関の燃焼空燃比と第2目標値との差が所定の判定値以上となる場合に、目標空燃比が第2目標値よりもリッチ側で初期設定され、二次エア供給停止直前の内燃機関の燃焼空燃比と前記第2目標値との差が所定の判定値未満の場合に、前記目標空燃比を第2目標値に設定される。つまり、二次エアの供給停止時におけるドライバビリティの悪化は、燃焼空燃比の過剰な変化によるものであり、これは二次エア供給停止直前の燃焼空燃比と第2目標値との差が所定の判定値以上となる場合に顕著となる。本構成によれば、顕著なドライバビリティの悪化が確実に排除できるようになる。 According to the second aspect of the present invention, when the difference between the combustion air-fuel ratio of the internal combustion engine immediately before the stop of the secondary air supply and the second target value is equal to or greater than a predetermined determination value, the target air-fuel ratio is greater than the second target value. Is also initially set on the rich side, and the target air-fuel ratio is set to the second target value when the difference between the combustion air-fuel ratio of the internal combustion engine immediately before stopping the secondary air supply and the second target value is less than a predetermined determination value. Is set. That is, the deterioration of drivability when the supply of secondary air is stopped is due to an excessive change in the combustion air-fuel ratio. This is because the difference between the combustion air-fuel ratio immediately before the stop of the supply of secondary air and the second target value is predetermined. It becomes remarkable when it becomes more than the judgment value. According to this configuration, remarkable deterioration in drivability can be surely eliminated.

請求項に記載の発明では、二次エア供給時において排気通路の二次エア供給口よりも下流側の空燃比が目標空燃比となるようその都度の二次エア流量に応じて二次エア供給時用の増量補正量が算出される。そしてかかる構成において、燃焼空燃比が前記増量補正量に基づいて推定される。この場合、二次エア供給時において内燃機関の燃焼空燃比が好適に推定できる。 According to the third aspect of the present invention, the secondary air is supplied according to the secondary air flow rate each time so that the air-fuel ratio downstream of the secondary air supply port of the exhaust passage becomes the target air-fuel ratio when the secondary air is supplied. An increase correction amount for supply is calculated. In such a configuration, the combustion air-fuel ratio is estimated based on the increase correction amount. In this case, the combustion air-fuel ratio of the internal combustion engine can be suitably estimated when the secondary air is supplied.

請求項に記載の発明では、目標空燃比は、第2目標値よりもリッチ側で設定された後、当該第2目標値に向けて除変される。これにより、二次エアの供給停止後、第2目標値を目標空燃比とした燃料噴射量制御への移行がスムーズに実現できる。 In the fourth aspect of the invention, the target air-fuel ratio is set on the rich side with respect to the second target value, and then is changed toward the second target value. Thereby, after the supply of the secondary air is stopped, the shift to the fuel injection amount control in which the second target value is the target air-fuel ratio can be smoothly realized.

請求項に記載の発明では、排気エミッションを許容レベルとするための空燃比ガード値が設定され、目標空燃比が前記第2目標値よりもリッチ側とされる際において、当該目標空燃比が前記空燃比ガード値で制限される。これにより、二次エアの供給停止時におけるドライバビリティ悪化を抑制することに加え、排気エミッションの悪化も抑制できる。 According to the fifth aspect of the present invention, when the air-fuel ratio guard value for setting the exhaust emission to an allowable level is set and the target air-fuel ratio is set to be richer than the second target value, the target air-fuel ratio is Limited by the air-fuel ratio guard value. Thereby, in addition to suppressing deterioration of drivability when the supply of secondary air is stopped, deterioration of exhaust emissions can also be suppressed.

請求項に記載の発明では、空燃比検出手段による検出空燃比と目標空燃比との偏差に応じて空燃比補正量(後述する空燃比補正係数fafに相当)が算出され、該空燃比補正量により燃料噴射量が補正される。
According to the sixth aspect of the present invention, an air-fuel ratio correction amount (corresponding to an air-fuel ratio correction coefficient faf described later) is calculated according to the deviation between the air-fuel ratio detected by the air-fuel ratio detection means and the target air-fuel ratio, and the air-fuel ratio correction is performed. The fuel injection amount is corrected by the amount.

以下、本発明を具体化した一実施の形態を図面に従って説明する。本実施の形態は、内燃機関である車載多気筒ガソリンエンジンを対象にエンジン制御システムを構築するものとしており、当該制御システムにおいては電子制御ユニット(以下、ECUという)を中枢として燃料噴射量の制御や点火時期の制御等を実施することとしている。先ずは、図1を用いてエンジン制御システムの全体概略構成図を説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. In the present embodiment, an engine control system is constructed for an in-vehicle multi-cylinder gasoline engine that is an internal combustion engine. In the control system, an electronic control unit (hereinafter referred to as ECU) is used as a center to control the fuel injection amount. And control of ignition timing. First, an overall schematic configuration diagram of the engine control system will be described with reference to FIG.

図1に示すエンジン10において、吸気管11にはDCモータ等のアクチュエータによって開度調節されるスロットルバルブ14と、スロットル開度を検出するためのスロットル開度センサ15とが設けられている。スロットルバルブ14の下流側にはサージタンク16が設けられ、このサージタンク16には吸気管圧力を検出するための吸気管圧力センサ17が設けられている。また、サージタンク16には、エンジン10の各気筒に空気を導入する吸気マニホールド18が接続されており、吸気マニホールド18において各気筒の吸気ポート近傍には燃料を噴射供給する電磁駆動式の燃料噴射弁19が取り付けられている。   In the engine 10 shown in FIG. 1, the intake pipe 11 is provided with a throttle valve 14 whose opening degree is adjusted by an actuator such as a DC motor, and a throttle opening degree sensor 15 for detecting the throttle opening degree. A surge tank 16 is provided downstream of the throttle valve 14, and an intake pipe pressure sensor 17 for detecting the intake pipe pressure is provided in the surge tank 16. The surge tank 16 is connected to an intake manifold 18 that introduces air into each cylinder of the engine 10. In the intake manifold 18, an electromagnetically driven fuel injection that injects fuel near the intake port of each cylinder. A valve 19 is attached.

エンジン10の吸気ポート及び排気ポートにはそれぞれ吸気バルブ21及び排気バルブ22が設けられており、吸気バルブ21の開動作により空気と燃料との混合気が燃焼室23内に導入され、排気バルブ22の開動作により燃焼後の排ガスが排気管24に排出される。エンジン10のシリンダヘッドには各気筒毎に点火プラグ25が取り付けられており、点火プラグ25には、点火コイル等よりなる図示しない点火装置を通じて、所望とする点火時期において高電圧が印加される。この高電圧の印加により、各点火プラグ25の対向電極間に火花放電が発生し、燃焼室23内に導入した混合気が着火され燃焼に供される。   An intake valve 21 and an exhaust valve 22 are respectively provided in the intake port and the exhaust port of the engine 10, and an air / fuel mixture is introduced into the combustion chamber 23 by the opening operation of the intake valve 21, and the exhaust valve 22. By the opening operation, the exhaust gas after combustion is discharged to the exhaust pipe 24. A spark plug 25 is attached to the cylinder head of the engine 10 for each cylinder, and a high voltage is applied to the spark plug 25 at a desired ignition timing through an ignition device (not shown) including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 25, and the air-fuel mixture introduced into the combustion chamber 23 is ignited and used for combustion.

排気管24には、排出ガス中のCO,HC,NOx等を浄化するための三元触媒等の触媒31が設けられ、この触媒31の上流側には排ガスを検出対象として混合気の空燃比を検出するための空燃比センサ32(リニアA/Fセンサ、O2センサ等)が設けられている。また、エンジン10のシリンダブロックには、冷却水温を検出する冷却水温センサ33や、エンジンの所定クランク角毎に(例えば30°CA周期で)矩形状のクランク角信号を出力するクランク角度センサ34が取り付けられている。   The exhaust pipe 24 is provided with a catalyst 31 such as a three-way catalyst for purifying CO, HC, NOx and the like in the exhaust gas, and the air-fuel ratio of the air-fuel mixture is detected on the upstream side of the catalyst 31 with exhaust gas as a detection target. An air-fuel ratio sensor 32 (linear A / F sensor, O2 sensor, etc.) for detecting the above is provided. Further, the cylinder block of the engine 10 includes a coolant temperature sensor 33 that detects the coolant temperature, and a crank angle sensor 34 that outputs a rectangular crank angle signal for each predetermined crank angle of the engine (for example, at a cycle of 30 ° CA). It is attached.

また、二次エア供給システムとして、排気管24において触媒31よりも上流側には二次エア配管35が接続され、その二次エア配管35の上流部には二次エア供給装置としての二次エアポンプ36が設けられている。二次エアポンプ36は例えばDCモータ等より構成され、図示しない車載バッテリからの給電を受けて作動する。また、二次エアポンプ36よりも下流側には、二次エア配管35を開放又は閉鎖する開閉弁37が設けられている。二次エアポンプ36と開閉弁37との間には、二次エア配管35内の圧力を検出する圧力センサ38が設けられている。   Further, as a secondary air supply system, a secondary air pipe 35 is connected upstream of the catalyst 31 in the exhaust pipe 24, and a secondary air supply device as a secondary air supply device is connected upstream of the secondary air pipe 35. An air pump 36 is provided. The secondary air pump 36 is composed of, for example, a DC motor or the like, and operates by receiving power from a vehicle battery (not shown). An on-off valve 37 that opens or closes the secondary air pipe 35 is provided downstream of the secondary air pump 36. A pressure sensor 38 that detects the pressure in the secondary air pipe 35 is provided between the secondary air pump 36 and the on-off valve 37.

上述した各種センサの出力は、エンジン制御を司るECU40に入力される。ECU40は、CPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成され、ROMに記憶された各種の制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁19の燃料噴射量や点火プラグ25による点火時期を制御する。また、ECU40は、エンジン始動時の触媒31の早期活性化などを図るべく、二次エアポンプ36を作動させることにより二次エア供給を実施する。   The outputs of the various sensors described above are input to the ECU 40 that controls the engine. The ECU 40 is configured mainly by a microcomputer including a CPU, a ROM, a RAM, and the like, and executes various control programs stored in the ROM, so that the fuel injection amount and ignition of the fuel injection valve 19 according to the engine operating state. The ignition timing by the plug 25 is controlled. In addition, the ECU 40 supplies the secondary air by operating the secondary air pump 36 in order to activate the catalyst 31 at the time of starting the engine early.

次に、二次エア供給時に実施される燃料噴射量制御について説明する。ここで、二次エア供給時には、排気管24に対して二次エアが供給され、その二次エア流量に応じて燃料増量が行われる。この場合、基本的に開閉弁37=開、二次エアポンプ36=ON(作動)としたときの圧力センサ38の検出値(二次エア供給圧Ps)に基づいて二次エア流量を算出すればよいが、二次エアポンプ36や圧力センサ38が有する製品公差等に起因する算出精度の低下を防ぐため、本実施の形態では、二次エア供給圧Psと基準圧との差圧に基づいて二次エア流量を算出する。例えば、開閉弁37=閉、二次エアポンプ36=ONの状態で基準圧としての締め切り圧P0を検出しておき、次の(1)式により二次エア流量Qaを算出する。   Next, the fuel injection amount control performed when the secondary air is supplied will be described. Here, when supplying the secondary air, the secondary air is supplied to the exhaust pipe 24, and the fuel is increased in accordance with the flow rate of the secondary air. In this case, basically, if the secondary air flow rate is calculated based on the detected value (secondary air supply pressure Ps) of the pressure sensor 38 when the on-off valve 37 = open and the secondary air pump 36 = ON (operation). In order to prevent a decrease in calculation accuracy due to product tolerances and the like of the secondary air pump 36 and the pressure sensor 38, in the present embodiment, the second air pump 36 and the pressure sensor 38 are controlled based on the differential pressure between the secondary air supply pressure Ps and the reference pressure. Next air flow rate is calculated. For example, the closing pressure P0 as the reference pressure is detected in the state where the on-off valve 37 = closed and the secondary air pump 36 = ON, and the secondary air flow rate Qa is calculated by the following equation (1).

なお、上記(1)式において、ρは流体密度、Cは係数、Aは管路断面積である。流体密度ρは温度特性を持つため、吸気温により流体密度ρを補正する構成とすることも可能である。 In the above equation (1), ρ is a fluid density, C is a coefficient, and A is a pipe cross-sectional area. Since the fluid density ρ has temperature characteristics, a configuration in which the fluid density ρ is corrected by the intake air temperature may be employed.

また、二次エア供給時には、通常時(二次エア非供給時)とは別の二次エア供給時用の目標空燃比を設定することとしており、例えば弱リーン空燃比を目標空燃比として燃料噴射量制御を実施する。この場合、空燃比を空気過剰率λで表し、エンジン燃焼室で燃焼に供される燃焼ガスの空燃比(燃焼空燃比)をλ1、触媒入口の空燃比をλ2とすると共に、エンジンに吸入される吸入空気量をga、二次エア流量をgsaiとすると、λ1,λ2は次の(2)式の関係となる。なお、ga,gsaiは共に質量流量であり、特にgsaiは、上述した二次エア流量Qaを質量換算したものである。   In addition, when supplying secondary air, a target air-fuel ratio for supplying secondary air that is different from the normal time (when secondary air is not supplied) is set. For example, fuel with a weak lean air-fuel ratio as a target air-fuel ratio is set. Implement injection amount control. In this case, the air-fuel ratio is represented by the excess air ratio λ, the air-fuel ratio (combustion air-fuel ratio) of the combustion gas used for combustion in the engine combustion chamber is λ1, the air-fuel ratio at the catalyst inlet is λ2, and the air is taken into the engine. Assuming that the intake air amount is ga and the secondary air flow rate is gsai, λ1 and λ2 have the relationship of the following equation (2). Note that ga and gsai are both mass flow rates. In particular, gsai is the mass-converted secondary air flow rate Qa described above.

空燃比λ1(空気過剰率)の逆数は燃料過剰率であり、この燃料過剰率(1/λ1)が二次エア供給時の燃料増量補正係数(以下、これを二次エア用補正係数fsaiという)となる。つまり、触媒入口の空燃比λ2を目標空燃比λtgとする場合、前記(2)式より次の(3)式が得られる。 The reciprocal of the air-fuel ratio λ1 (excess air ratio) is the excess fuel ratio, and this excess fuel ratio (1 / λ1) is the fuel increase correction coefficient when the secondary air is supplied (hereinafter referred to as the secondary air correction coefficient fsai). ) That is, when the air-fuel ratio λ2 at the catalyst inlet is the target air-fuel ratio λtg, the following equation (3) is obtained from the equation (2).

上記(3)式によれば、二次エア供給時における二次エア流量gsai、吸入空気量ga及び目標空燃比λtgから二次エア用補正係数fsaiが算出できる。 According to the above equation (3), the secondary air correction coefficient fsai can be calculated from the secondary air flow rate gsai, the intake air amount ga, and the target air-fuel ratio λtg when the secondary air is supplied.

図2は、燃料噴射量制御時における目標空燃比の設定処理を示すフローチャートであり、本処理は所定の時間周期でECU40により実行される。   FIG. 2 is a flowchart showing a target air-fuel ratio setting process at the time of fuel injection amount control, and this process is executed by the ECU 40 at a predetermined time period.

先ずステップS101では、今現在、二次エア供給が停止されているか否かを判別する。二次エア供給が実施されていればステップS102に進み、二次エア供給時における目標空燃比ベース値λbase1を算出する。このとき、例えば二次エア供給時用として用意された目標空燃比マップを用い、その都度のエンジン回転数や負荷等に基づいて目標空燃比ベース値λbase1を算出する。目標空燃比ベース値λbase1は、二次エア供給時の排気エミッションが最適な状態となるよう設定されるものであり、例えばλbase1=1.05とされる。この目標空燃比ベース値λbase1が「第1目標値」に相当する。   First, in step S101, it is determined whether or not the secondary air supply is currently stopped. If the secondary air supply has been performed, the process proceeds to step S102, and the target air-fuel ratio base value λbase1 at the time of secondary air supply is calculated. At this time, for example, a target air-fuel ratio map prepared for supplying secondary air is used, and the target air-fuel ratio base value λbase1 is calculated based on the engine speed, load, and the like each time. The target air-fuel ratio base value λbase1 is set so that the exhaust emission at the time of secondary air supply is in an optimal state, for example, λbase1 = 1.05. This target air-fuel ratio base value λbase1 corresponds to the “first target value”.

また、ステップS103では、二次エア供給状態におけるエンジンの燃焼空燃比λxを推定する。燃焼空燃比λxは、エンジンに供給される混合気の空燃比である。   In step S103, the combustion air-fuel ratio λx of the engine in the secondary air supply state is estimated. The combustion air-fuel ratio λx is the air-fuel ratio of the air-fuel mixture supplied to the engine.

ステップS104では、最終目標空燃比λtgを算出する。このとき、前記算出した目標空燃比ベース値λbase1に対して二次エア流量等に応じたガード処理等を施して最終目標空燃比λtgを算出するのが望ましいが、そのガード処理等は本発明の主旨でないため説明を割愛する。単純にはλtg=λbase1とする。   In step S104, the final target air-fuel ratio λtg is calculated. At this time, it is desirable to calculate the final target air-fuel ratio λtg by performing a guard process or the like according to the secondary air flow rate or the like on the calculated target air-fuel ratio base value λbase1, and the guard process or the like is performed according to the present invention. The explanation is omitted because it is not the main purpose. Simply, λtg = λbase1.

また、二次エア供給が停止されていればステップS105に進み、二次エアの供給停止時における目標空燃比ベース値λbase2を算出する。このとき、例えば二次エアの供給停止時用として用意された目標空燃比マップを用い、その都度のエンジン回転数や負荷等に基づいて目標空燃比ベース値λbase2を算出する。目標空燃比ベース値λbase2は、二次エア供給停止時(通常のエンジン運転時)の排気エミッションが最適な状態となるよう設定されるものであり、例えばλbase2=1.0(ストイキ)とされる。この目標空燃比ベース値λbase2が「第2目標値」に相当する。   If the secondary air supply has been stopped, the process proceeds to step S105, and the target air-fuel ratio base value λbase2 at the time when the secondary air supply is stopped is calculated. At this time, for example, a target air-fuel ratio map prepared for stopping the supply of secondary air is used, and the target air-fuel ratio base value λbase2 is calculated based on the engine speed, load, etc. each time. The target air-fuel ratio base value λbase2 is set so that the exhaust emission when the secondary air supply is stopped (normal engine operation) is in an optimal state, and for example, λbase2 = 1.0 (stoichiometric). . This target air-fuel ratio base value λbase2 corresponds to a “second target value”.

その後、ステップS106では、二次エアの供給停止直後であるか否かを判別する。YESの場合、ステップS107に進み、二次エア供給時(詳しくは二次エア供給→停止の切換直前)に推定した燃焼空燃比λxを読み込む。   Thereafter, in step S106, it is determined whether or not it is immediately after the supply of secondary air is stopped. In the case of YES, the process proceeds to step S107, and the combustion air-fuel ratio λx estimated at the time of secondary air supply (specifically, immediately before switching from secondary air supply to stop) is read.

ステップS108では、目標空燃比ベース値λbase2と燃焼空燃比λxとの差が所定の判定値kLMD以上であるか否かを判別する。λbase2−λx≧kLMDの場合、ステップS109に進み、二次エアの供給停止直後において目標空燃比を初期設定するための初期目標値λiniを算出する。初期目標値λiniは、   In step S108, it is determined whether or not the difference between the target air-fuel ratio base value λbase2 and the combustion air-fuel ratio λx is equal to or greater than a predetermined determination value kLMD. When λbase2−λx ≧ kLMD, the process proceeds to step S109 to calculate an initial target value λini for initial setting of the target air-fuel ratio immediately after the supply of secondary air is stopped. The initial target value λini is

として算出されれば良いが、gsai=0のため、初期目標値λini=燃焼空燃比λxとされる。 However, since gsai = 0, the initial target value λini = combustion air-fuel ratio λx.

ステップS110では、初期目標空燃比ベース値λiniと空燃比ガード値λGDとのうち、大きい方を最終目標空燃比λtgとする。空燃比ガード値λGDは、排気エミッションを許容レベルで保持すべく設定されており、所定のリッチ値となっている。ステップS110によれば最終目標空燃比λtgが空燃比ガード値λGDよりもリッチ側となることが抑制される。   In step S110, the larger of the initial target air-fuel ratio base value λini and the air-fuel ratio guard value λGD is set as the final target air-fuel ratio λtg. The air-fuel ratio guard value λGD is set to keep the exhaust emission at an allowable level, and is a predetermined rich value. According to step S110, the final target air-fuel ratio λtg is suppressed from being richer than the air-fuel ratio guard value λGD.

また、λbase2−λx<kLMDの場合、ステップS111に進み、目標空燃比ベース値λbase2を最終目標空燃比λtgとする。つまり、λbase2−λx≧kLMDの場合には、前記の如く最終目標空燃比λtgが初期目標値λini等によりリッチ側で初期設定されるが、λbase2−λx<kLMDの場合には、最終目標空燃比λtgが目標空燃比ベース値λbase2で初期設定される。   If λbase2−λx <kLMD, the process proceeds to step S111, and the target air-fuel ratio base value λbase2 is set as the final target air-fuel ratio λtg. That is, when λbase2-λx ≧ kLMD, the final target air-fuel ratio λtg is initially set on the rich side by the initial target value λini as described above, but when λbase2-λx <kLMD, the final target air-fuel ratio is set. λtg is initialized with the target air-fuel ratio base value λbase2.

また、二次エア供給が停止されているが、停止直後でない場合には、ステップS112に進んで最終目標空燃比λtgを算出する。このステップS112では、最終目標空燃比λtgの前回値に所定値ΔKを加算した「λtg前回値+ΔK」と目標空燃比ベース値λbase2とを比較し、そのうち小さい方を最終目標空燃比λtgとする。このステップS112で最終目標空燃比λtgを「λtg前回値+ΔK」とする処理が目標空燃比の徐変処理に相当するが、最終目標空燃比λtgが一旦目標空燃比ベース値λbase2に到達した後は、毎回λtg=λbase2とすればよい。   If the secondary air supply is stopped but not immediately after the stop, the process proceeds to step S112 to calculate the final target air-fuel ratio λtg. In this step S112, “λtg previous value + ΔK” obtained by adding a predetermined value ΔK to the previous value of the final target air-fuel ratio λtg is compared with the target air-fuel ratio base value λbase2, and the smaller one is set as the final target air-fuel ratio λtg. The process of setting the final target air-fuel ratio λtg to “λtg previous value + ΔK” in step S112 corresponds to the gradual change process of the target air-fuel ratio, but after the final target air-fuel ratio λtg once reaches the target air-fuel ratio base value λbase2. Λtg = λbase2 may be set each time.

次に、図3のタイムチャートを用い、二次エアの供給→停止時における二次エア流量の変化やそれに伴う最終目標空燃比λtgや補正係数等の変化をより具体的に説明する。なお図3において、最終目標空燃比λtg、二次エア用補正係数fsai、燃焼空燃比の挙動を表すチャート部分には、従来制御の挙動を一点鎖線にて図示している。   Next, the change in the secondary air flow rate at the time of secondary air supply → stop and the change in the final target air-fuel ratio λtg, the correction coefficient, etc. will be described more specifically with reference to the time chart of FIG. In FIG. 3, the behavior of the conventional control is shown by a one-dot chain line in the chart portion representing the behavior of the final target air-fuel ratio λtg, the secondary air correction coefficient fsai, and the combustion air-fuel ratio.

さて、タイミングt1以前は二次エア供給の実施により、二次エア流量が所定値とされており、最終目標空燃比λtgは弱リーンの所定値(例えば目標空燃比ベース値λbase1)とされている。このとき、二次エア用補正係数fsai>1.0、燃焼空燃比<1となっている。   Before the timing t1, the secondary air flow rate is set to a predetermined value by performing the secondary air supply, and the final target air-fuel ratio λtg is set to a predetermined value that is slightly lean (for example, the target air-fuel ratio base value λbase1). . At this time, the secondary air correction coefficient fsai> 1.0 and the combustion air-fuel ratio <1.

そして、タイミングt1で二次エア供給が停止されると、二次エア流量が0となり、最終目標空燃比λtgがリッチ側に変更される。このとき、一点鎖線で示す従来制御では、最終目標空燃比λtgが目標空燃比ベース値λbase2に直接変更されるため、二次エア用補正係数fsaiや燃焼空燃比が急激に変化し、それに起因してドライバビリティの悪化が生じる。これに対して本実施の形態の制御では、最終目標空燃比λtgが一旦目標空燃比ベース値λbase2よりもリッチ側の初期目標値λiniに変更され、その後、目標空燃比ベース値λbase2に向けて徐変される。これにより、二次エア用補正係数fsaiや燃焼空燃比の急変が抑制され、ドライバビリティの悪化が回避できる。特に本実施の形態では、初期目標値λini=燃焼空燃比λx(二次エア流量の供給停止直前の燃焼空燃比)とされるため、二次エア供給が停止される際にそれまでの燃料燃焼状態が継続され、滑らかな移行が可能となる。最終目標空燃比λtgはタイミングt2で目標空燃比ベース値λbase2に収束する。   When the secondary air supply is stopped at timing t1, the secondary air flow rate becomes 0, and the final target air-fuel ratio λtg is changed to the rich side. At this time, in the conventional control indicated by the one-dot chain line, since the final target air-fuel ratio λtg is directly changed to the target air-fuel ratio base value λbase2, the secondary air correction coefficient fsai and the combustion air-fuel ratio change abruptly. As a result, drivability deteriorates. In contrast, in the control according to the present embodiment, the final target air-fuel ratio λtg is temporarily changed to the initial target value λini that is richer than the target air-fuel ratio base value λbase2, and then gradually toward the target air-fuel ratio base value λbase2. Will be changed. As a result, sudden changes in the secondary air correction coefficient fsai and the combustion air-fuel ratio are suppressed, and deterioration of drivability can be avoided. In particular, in the present embodiment, the initial target value λini = combustion air / fuel ratio λx (combustion air / fuel ratio immediately before the supply of the secondary air flow is stopped), so when the secondary air supply is stopped, the fuel combustion up to that point The state continues and a smooth transition is possible. The final target air-fuel ratio λtg converges to the target air-fuel ratio base value λbase2 at timing t2.

以上詳述した本実施の形態によれば、以下の優れた効果が得られる。   According to the embodiment described above in detail, the following excellent effects can be obtained.

二次エア供給を停止する際、最終目標空燃比λtgを、二次エアの供給停止後の目標空燃比ベース値λbase2よりもリッチ側で初期設定し、その後目標空燃比ベース値λbase2に向けて徐変するようにしたため、燃焼空燃比の急激な変化が抑制され、ドライバビリティが改善できる。   When the secondary air supply is stopped, the final target air-fuel ratio λtg is initially set on a richer side than the target air-fuel ratio base value λbase2 after the supply of secondary air is stopped, and then gradually decreased toward the target air-fuel ratio base value λbase2. As a result, the rapid change of the combustion air-fuel ratio is suppressed, and drivability can be improved.

排気エミッションを許容レベルで保持するための空燃比ガード値λGDを設定したため、二次エアの供給停止時におけるドライバビリティ悪化を抑制することに加え、排気エミッションの悪化も確実に抑制できる。   Since the air-fuel ratio guard value λGD for maintaining the exhaust emission at an allowable level is set, it is possible to reliably suppress the deterioration of the exhaust emission in addition to suppressing the deterioration of the drivability when the supply of the secondary air is stopped.

なお、本発明は上記実施の形態の記載内容に限定されず、例えば次のように実施しても良い。   In addition, this invention is not limited to the content of description of the said embodiment, For example, you may implement as follows.

上記実施の形態では、二次エア供給を停止する際、最終目標空燃比λtgを一旦目標空燃比ベース値λbase2よりもリッチ側の初期目標値λiniに変更し、その直後に目標空燃比ベース値λbase2に向けて徐変したが、初期目標値λiniでの制御状態を所定時間継続した後、目標空燃比ベース値λbase2に向けて徐変する構成としても良い。   In the above embodiment, when the secondary air supply is stopped, the final target air-fuel ratio λtg is temporarily changed to the initial target value λini that is richer than the target air-fuel ratio base value λbase2, and immediately thereafter, the target air-fuel ratio base value λbase2 is changed. However, the control state may be gradually changed toward the target air-fuel ratio base value λbase2 after the control state at the initial target value λini is continued for a predetermined time.

上記実施の形態では、二次エア供給時において目標空燃比ベース値λbase1をリーン値(例えばλbase1=1.05)として燃料噴射量制御を実施したが、この目標空燃比ベース値λbase1をストイキ(λ=1.0)としても良い。   In the above embodiment, the fuel injection amount control is performed with the target air-fuel ratio base value λbase1 as a lean value (for example, λbase1 = 1.05) at the time of secondary air supply, but this target air-fuel ratio base value λbase1 is stoichiometric (λ = 1.0).

上記実施の形態では、二次エア流量gsai、吸入空気量ga及び目標空燃比λtgに応じて二次エア用補正係数fsaiを算出し、この二次エア用補正係数fsaiに基づいて燃料噴射量の補正を実施したが、これに代えて、空燃比センサ32による検出空燃比と目標空燃比との偏差に応じて空燃比補正係数fafを算出し、この空燃比補正係数fafに基づいて燃料噴射量の補正を実施するようにしても良い。空燃比補正係数fafは、基本的に検出空燃比と目標空燃比との偏差にフィードバックゲインを乗算して算出される。   In the above embodiment, the secondary air correction coefficient fsai is calculated according to the secondary air flow rate gsai, the intake air amount ga, and the target air-fuel ratio λtg, and the fuel injection amount is calculated based on the secondary air correction coefficient fsai. However, instead of this, the air-fuel ratio correction coefficient faf is calculated according to the deviation between the air-fuel ratio detected by the air-fuel ratio sensor 32 and the target air-fuel ratio, and the fuel injection amount is calculated based on the air-fuel ratio correction coefficient faf. This correction may be performed. The air-fuel ratio correction coefficient faf is basically calculated by multiplying the deviation between the detected air-fuel ratio and the target air-fuel ratio by a feedback gain.

二次エア用補正係数fsaiと空燃比補正係数fafとの両方を用いて燃料噴射量の補正を実施することも可能である。この場合、最終噴射量TAUは、TAU=Tp×fsai×fafとして算出される。   It is also possible to correct the fuel injection amount by using both the secondary air correction coefficient fsai and the air-fuel ratio correction coefficient faf. In this case, the final injection amount TAU is calculated as TAU = Tp × fsai × faf.

発明の実施の形態におけるエンジン制御システムの概略を示す構成図である。It is a block diagram which shows the outline of the engine control system in embodiment of invention. 目標空燃比算出処理を示すフローチャートである。It is a flowchart which shows a target air fuel ratio calculation process. 二次エア供給を停止した時の各パラメータの挙動を示すタイムチャートである。It is a time chart which shows the behavior of each parameter when secondary air supply is stopped.

符号の説明Explanation of symbols

10…内燃機関としてのエンジン、24…排気管、32…空燃比検出手段としての空燃比センサ、36…二次エア供給装置としての二次エアポンプ、40…目標空燃比設定手段、燃料量補正手段及び目標値移行手段としてのECU。   DESCRIPTION OF SYMBOLS 10 ... Engine as internal combustion engine, 24 ... Exhaust pipe, 32 ... Air-fuel ratio sensor as air-fuel ratio detection means, 36 ... Secondary air pump as secondary air supply device, 40 ... Target air-fuel ratio setting means, Fuel amount correction means ECU as target value shifting means.

Claims (6)

内燃機関の排気通路に二次エアを供給するための二次エア供給装置と、
二次エア供給時に目標空燃比として第1目標値を設定すると共に、二次エア供給停止時に目標空燃比として第2目標値を設定する目標空燃比設定手段と、
二次エア供給時及び二次エア供給停止時に、前記排気通路の二次エア供給口よりも下流側の空燃比が前記目標空燃比となるよう燃料噴射量を補正する燃料量補正手段と、
二次エアの供給停止時に前記目標空燃比を第1目標値から第2目標値に切り換える際、当該目標空燃比を第2目標値よりもリッチ側で初期設定し、その後第2目標値に移行させる目標値移行手段とを備え
前記目標値移行手段は、二次エア供給から供給停止への移行時において、その直前の二次エア供給時に推定した内燃機関の燃焼空燃比を前記目標空燃比として初期設定することを特徴とする内燃機関の燃料噴射量制御装置。
A secondary air supply device for supplying secondary air to the exhaust passage of the internal combustion engine;
Target air-fuel ratio setting means for setting a first target value as a target air-fuel ratio when secondary air is supplied and setting a second target value as a target air-fuel ratio when secondary air supply is stopped;
Fuel amount correction means for correcting the fuel injection amount so that the air-fuel ratio downstream of the secondary air supply port of the exhaust passage becomes the target air-fuel ratio at the time of secondary air supply and when the secondary air supply is stopped;
When the target air-fuel ratio is switched from the first target value to the second target value when the supply of secondary air is stopped, the target air-fuel ratio is initially set on the richer side than the second target value, and then the second target value is shifted to and a target value transition means for,
The target value transition means initially sets the combustion air-fuel ratio of the internal combustion engine estimated at the time of the secondary air supply immediately before as the target air-fuel ratio at the time of transition from the secondary air supply to the supply stop. A fuel injection amount control device for an internal combustion engine.
前記目標値移行手段は、二次エア供給停止直前の内燃機関の燃焼空燃比と前記第2目標値との差が所定の判定値以上となる場合に、前記目標空燃比を第2目標値よりもリッチ側で初期設定し、二次エア供給停止直前の内燃機関の燃焼空燃比と前記第2目標値との差が所定の判定値未満の場合に、前記目標空燃比を第2目標値に設定する請求項に記載の内燃機関の燃料噴射量制御装置。 The target value transition means sets the target air-fuel ratio from the second target value when the difference between the combustion air-fuel ratio of the internal combustion engine immediately before stopping the secondary air supply and the second target value is equal to or greater than a predetermined determination value. Also, when the difference between the combustion air-fuel ratio of the internal combustion engine immediately before stopping the secondary air supply and the second target value is less than a predetermined determination value, the target air-fuel ratio is set to the second target value. The fuel injection amount control device for an internal combustion engine according to claim 1 , wherein the fuel injection amount control device is set. 二次エア供給時において前記排気通路の二次エア供給口よりも下流側の空燃比が前記目標空燃比となるようその都度の二次エア流量に応じて二次エア供給時用の増量補正量を算出する手段を備え、
前記燃焼空燃比を、前記増量補正量に基づいて推定する請求項又はに記載の内燃機関の燃料噴射量制御装置。
When the secondary air is supplied, an increase correction amount for supplying the secondary air in accordance with the flow rate of the secondary air each time so that the air-fuel ratio downstream of the secondary air supply port of the exhaust passage becomes the target air-fuel ratio. Comprises means for calculating
The fuel injection amount control device for an internal combustion engine according to claim 1 or 2 , wherein the combustion air-fuel ratio is estimated based on the increase correction amount.
前記目標値移行手段は、目標空燃比を前記第2目標値よりもリッチ側で設定した後、当該目標空燃比を、前記第2目標値に向けて除変させる請求項1乃至の何れかに記載の内燃機関の燃料噴射量制御装置。 The target value shifting unit, after the target air-fuel ratio set in the rich side than the second target value, the target air-fuel ratio, any one of claims 1 to 3 divided variable is allowed toward the second target value A fuel injection amount control device for an internal combustion engine according to claim 1. 排気エミッションを許容レベルとするための空燃比ガード値を設定し、目標空燃比を前記第2目標値よりもリッチ側とする際において、当該目標空燃比を前記空燃比ガード値で制限する請求項1乃至の何れかに記載の内燃機関の燃料噴射量制御装置。 The air-fuel ratio guard value for setting the exhaust emission to an allowable level is set, and when the target air-fuel ratio is set to be richer than the second target value, the target air-fuel ratio is limited by the air-fuel ratio guard value. 5. The fuel injection amount control device for an internal combustion engine according to any one of 1 to 4 . 前記排気通路の二次エア供給口よりも下流側で空燃比を検出する空燃比検出手段を備え、該空燃比検出手段により検出した空燃比を前記目標空燃比に一致させるよう空燃比フィードバック制御を実施する構成において、
前記燃料量補正手段は、前記空燃比検出手段による検出空燃比と前記目標空燃比との偏差に応じて空燃比補正量を算出し、該空燃比補正量により燃料噴射量を補正する請求項1乃至の何れかに記載の内燃機関の燃料噴射量制御装置。
Air-fuel ratio detection means for detecting an air-fuel ratio downstream of the secondary air supply port of the exhaust passage is provided, and air-fuel ratio feedback control is performed so that the air-fuel ratio detected by the air-fuel ratio detection means matches the target air-fuel ratio. In the configuration to implement:
The fuel amount correction means calculates an air-fuel ratio correction amount according to a deviation between the air-fuel ratio detected by the air-fuel ratio detection means and the target air-fuel ratio, and corrects the fuel injection amount by the air-fuel ratio correction amount. A fuel injection amount control device for an internal combustion engine according to any one of claims 1 to 5 .
JP2004133365A 2004-04-28 2004-04-28 Fuel injection amount control device for internal combustion engine Expired - Fee Related JP4329610B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004133365A JP4329610B2 (en) 2004-04-28 2004-04-28 Fuel injection amount control device for internal combustion engine
US11/115,372 US7367184B2 (en) 2004-04-28 2005-04-27 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133365A JP4329610B2 (en) 2004-04-28 2004-04-28 Fuel injection amount control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005315153A JP2005315153A (en) 2005-11-10
JP4329610B2 true JP4329610B2 (en) 2009-09-09

Family

ID=35442846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133365A Expired - Fee Related JP4329610B2 (en) 2004-04-28 2004-04-28 Fuel injection amount control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4329610B2 (en)

Also Published As

Publication number Publication date
JP2005315153A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP5348190B2 (en) Control device for internal combustion engine
JP5451687B2 (en) Engine control device
JP2011027059A (en) Engine cotrol apparatus
US8443656B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection device for multi-cylinder internal combustion engine and abnormality detection method therefor
JPH09126015A (en) Air fuel ratio control device of internal combustion engine
US20120209497A1 (en) Inter-cylinder air-fuel ratio imbalance abnormality determination device
US20120166070A1 (en) Control apparatus and control method of multiple cylinder
US8463532B2 (en) Control device for engine
JP2009250086A (en) Abnormality diagnostic system of air-fuel ratio sensor
JP4506366B2 (en) Engine alcohol concentration estimation device
US7367184B2 (en) Fuel injection control device for internal combustion engine
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
JP4329610B2 (en) Fuel injection amount control device for internal combustion engine
WO2019198546A1 (en) Air-fuel ratio control device
JP5398994B2 (en) Operation control method for internal combustion engine
JP4305268B2 (en) Secondary air supply system for internal combustion engine and fuel injection amount control device using the same
JP4483657B2 (en) Fuel injection amount control device for internal combustion engine
JP5260770B2 (en) Engine control device
JP2010048184A (en) Air fuel ratio control device of engine
US11047332B2 (en) Controller and control method for internal combustion engine
JP2009156153A (en) Fuel injection control system for internal combustion engine
JP3612785B2 (en) Control device for internal combustion engine
JP4321406B2 (en) Fuel supply control device for internal combustion engine
JP4258733B2 (en) Air-fuel ratio control device for internal combustion engine
JP4415803B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees