JP4329444B2 - Method for producing sponge iron - Google Patents

Method for producing sponge iron Download PDF

Info

Publication number
JP4329444B2
JP4329444B2 JP2003286047A JP2003286047A JP4329444B2 JP 4329444 B2 JP4329444 B2 JP 4329444B2 JP 2003286047 A JP2003286047 A JP 2003286047A JP 2003286047 A JP2003286047 A JP 2003286047A JP 4329444 B2 JP4329444 B2 JP 4329444B2
Authority
JP
Japan
Prior art keywords
iron oxide
reducing agent
iron
filling
solid reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003286047A
Other languages
Japanese (ja)
Other versions
JP2005054229A (en
Inventor
泰彦 阪口
宏 板谷
良知 鈴木
秋夫 園部
隆 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003286047A priority Critical patent/JP4329444B2/en
Priority to CN201110383677.4A priority patent/CN104278122B/en
Priority to US10/508,381 priority patent/US20050193862A1/en
Priority to CN201110383974.9A priority patent/CN102492797B/en
Priority to PCT/JP2004/000866 priority patent/WO2004067784A1/en
Priority to SE0402286A priority patent/SE528252C2/en
Publication of JP2005054229A publication Critical patent/JP2005054229A/en
Application granted granted Critical
Publication of JP4329444B2 publication Critical patent/JP4329444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、機械部品や磁性材料などの焼結製品、あるいは粉末のままで使用される還元鉄粉などの製造用原料として用いられる海綿鉄の製造方法に関するものである。   The present invention relates to a method for producing sponge iron used as a raw material for production of sintered products such as machine parts and magnetic materials, or reduced iron powder used in powder form.

海綿鉄は、一般に、図1に示すような、サガーと呼ばれている耐火物製円筒状の反応容器1内に、粉砕されたミルスケールや鉄鉱石の如き酸化鉄の粉2とコークス粉や石炭粉のような固体還元剤3である原料を同心円筒状に層別された状態にバッチ式で充填し、その容器ごとトンネル炉などの中に導入して1050〜1200 ℃の温度で間接方式によって加熱し、該容器内酸化鉄を還元することにより製造されている(非特許文献1、2)。
「鉄鋼便覧第4版」 第1363頁 第1図 「鉄鋼便覧第3版」 第457頁 右欄第10〜13行
Sponge iron is generally used in a refractory cylindrical reaction vessel 1 called a sagar as shown in FIG. 1, and iron oxide powder 2 and coke powder such as crushed mill scale and iron ore. The raw material, which is a solid reducing agent 3 such as coal powder, is packed into a concentric cylinder in a batch mode, and the whole container is introduced into a tunnel furnace and the like, and is indirectly processed at a temperature of 1050 to 1200 ° C. And the iron oxide in the container is reduced (Non-Patent Documents 1 and 2).
"Steel Handbook 4th Edition" Page 1363 Fig. 1 "Steel Handbook 3rd Edition" page 457, right column, lines 10-13

サガーを利用した従来の上記海綿鉄製造技術にあって、原料は、図1に示すように、酸化鉄2を、反応容器1内に円筒状に充填し、その円筒状酸化鉄2のまわりを取り囲むように固体還元剤3が充填されていると共に、その上下ならびに中央部にも充填されている。その結果、原料の充填後に反応容器1が加熱されると、まず固体還元剤堆積層内では、該還元剤3中の炭素が次式(1)のように反応してCOガスを発生する。
C+CO2 → 2CO …(1)
そして、このようにして発生したCOガスは、固体還元剤3層から粉状酸化鉄堆積層2内に達し、次式(2);
FeOn + nCO → Fe + nCO2 …(2)
の反応によって、酸化鉄2を還元するとともに、CO2ガスを発生する。さらに、そのCO2ガスは、酸化鉄堆積層2中を拡散して再び該固体還元剤3の層に達し、その層内で炭素をCOガスに変える。
そして、前記反応容器1内に充填された粉状酸化鉄2は、酸化鉄2と固体還元剤3との接触点で起こる上記の反応を一定時間繰り返すことによって、全て還元され、また、この還元反応と同時に還元鉄どうしの焼結も進行して円筒状の海綿鉄となる。
式(2)によると、(一酸化炭素中炭素原子のモル数/酸化鉄中酸素原子のモル数)は、1.0である。言い換えれば、(固体還元剤中炭素原子のモル数/酸化鉄中酸素原子のモル数)は1.0である。以下、(固体還元剤中炭素原子のモル数/酸化鉄中酸素原子のモル数)を「モル比」と称する。
In the conventional sponge iron manufacturing technology using a sagar, as shown in FIG. 1, the raw material is filled with iron oxide 2 in a reaction vessel 1 in a cylindrical shape, and around the cylindrical iron oxide 2. The solid reducing agent 3 is filled so as to surround it, and is also filled in the upper and lower sides and the central part thereof. As a result, when the reaction vessel 1 is heated after the raw material is charged, first, carbon in the reducing agent 3 reacts as shown in the following formula (1) in the solid reducing agent deposition layer to generate CO gas.
C + CO 2 → 2CO (1)
The CO gas generated in this way reaches the powdered iron oxide deposition layer 2 from the three layers of the solid reducing agent, and the following formula (2);
FeO n + nCO → Fe + nCO 2 (2)
In this reaction, iron oxide 2 is reduced and CO 2 gas is generated. Further, the CO 2 gas diffuses in the iron oxide deposition layer 2 and reaches the layer of the solid reducing agent 3 again, in which carbon is converted into CO gas.
The powdered iron oxide 2 filled in the reaction vessel 1 is all reduced by repeating the above reaction occurring at the contact point between the iron oxide 2 and the solid reducing agent 3 for a certain period of time. Simultaneously with the reaction, sintering of the reduced iron proceeds to form a cylindrical sponge iron.
According to the formula (2), (number of moles of carbon atoms in carbon monoxide / number of moles of oxygen atoms in iron oxide) is 1.0. In other words, (number of moles of carbon atoms in solid reducing agent / number of moles of oxygen atoms in iron oxide) is 1.0. Hereinafter, (number of moles of carbon atoms in solid reducing agent / number of moles of oxygen atoms in iron oxide) is referred to as “molar ratio”.

上記従来技術の特徴は、反応容器1内で生成したCOガスおよびCO2ガスの、海綿鉄や固体還元剤3内への拡散が、還元反応の進行を律速していることにある。ところが、図1に示した充填構造をとる方法にあっては、粉状酸化鉄2と粉状固体還元剤3の層が図1(b)の紙面、すなわち円筒の軸方向に沿った層状に分離されていることから、COガスおよびCO2ガスの拡散距離が大きくなり、その分だけ還元に必要な時間が長くかかるという問題があった。例えば、加熱にトンネル炉を使用する工業生産規模の製造工程では、反応効率(ガス利用効率)の低下を招き、原料の充填から海綿鉄の抜き出しまでに数日を必要として生産性の低下につながるだけでなく、還元に要する加熱エネルギーの消費も著しく大きくなるという問題があった。
即ち、図1に示すような円筒状充填方式では、製造する海綿鉄量を増やすためには、酸化鉄1層の層厚を厚くする必要があり、一方でそうすると、還元時間が長くなって金属性が低下する。
The feature of the above prior art is that the diffusion of CO gas and CO 2 gas generated in the reaction vessel 1 into the sponge iron and the solid reducing agent 3 controls the progress of the reduction reaction. However, in the method of taking the filling structure shown in FIG. 1, the layers of powdered iron oxide 2 and powdered solid reducing agent 3 are layered along the paper surface of FIG. 1B, that is, along the axial direction of the cylinder. Since they are separated, the diffusion distance of CO gas and CO 2 gas increases, and there is a problem that it takes a longer time for reduction. For example, in an industrial production scale manufacturing process that uses a tunnel furnace for heating, reaction efficiency (gas utilization efficiency) is reduced, and it takes several days from filling of raw materials to extraction of sponge iron, leading to a reduction in productivity. In addition, there is a problem that the consumption of heating energy required for the reduction is remarkably increased.
That is, in the cylindrical filling method as shown in FIG. 1, in order to increase the amount of sponge iron to be manufactured, it is necessary to increase the thickness of one layer of iron oxide. Sex is reduced.

また、このような円筒状充填方式では、上記の反応で生成するCOガスは、どうしても密度の低い層である固体還元剤3の層の方を流れて反応容器1外に抜けてしまい、このガスが還元反応に効率よく寄与しないという問題、あるいは焼結が進行する段階で酸化鉄2の層が崩れないように、反応容器1と酸化鉄2との間や円筒状酸化鉄層の内側に固体還元剤3を前記の式(2)における酸化鉄中酸素量と一酸化炭素中炭素量、すなわち、酸化鉄中酸素量と固体還元剤中炭素量よりも、過剰(モル比で2.0超)に充填する傾向があるため、固体還元剤の原単位が悪化するという問題もあった。   Further, in such a cylindrical filling method, the CO gas generated by the above reaction inevitably flows out of the reaction vessel 1 through the layer of the solid reducing agent 3 which is a low density layer, and this gas. Does not contribute efficiently to the reduction reaction, or the solid layer between the reaction vessel 1 and the iron oxide 2 or inside the cylindrical iron oxide layer so that the iron oxide 2 layer does not collapse as the sintering proceeds. Reducing agent 3 in excess (more than 2.0 in molar ratio) than the amount of oxygen in iron oxide and the amount of carbon in carbon monoxide, that is, the amount of oxygen in iron oxide and the amount of carbon in the solid reducing agent in formula (2). There is also a problem that the basic unit of the solid reducing agent deteriorates because of the tendency to fill.

さらには、従来の海綿鉄の製造方法においては、酸化鉄を円筒状に充填しているので、還元時間を短縮するために酸化鉄の厚さを薄くすると、反応容器1内で製造できる海綿鉄量が減少することになり、必ずしも還元時間の短縮と生産量の向上とにはつながらないという問題があったし、充填した酸化鉄が酸化鉄の荷重により、下部で膨らみ、予定した還元時間内では酸化鉄の還元が進行せず、未反応部が残るという問題もあった。   Furthermore, in the conventional method for producing sponge iron, iron oxide is filled in a cylindrical shape. Therefore, if the thickness of the iron oxide is reduced in order to shorten the reduction time, the sponge iron that can be produced in the reaction vessel 1 is used. There was a problem that the amount would decrease, and it did not necessarily lead to reduction of reduction time and improvement of production volume, and the filled iron oxide swelled at the bottom due to the load of iron oxide, and within the planned reduction time There was also a problem that the reduction of iron oxide did not proceed and an unreacted part remained.

そこで、本発明の目的は、上記従来技術の問題を有利に解決できる。すなわち、還元反応効率がよくて、生産性が高い海綿鉄の製造方法を提案することにある。   Therefore, the object of the present invention can advantageously solve the above-mentioned problems of the prior art. That is, it is to propose a method for producing sponge iron having high reduction reaction efficiency and high productivity.

発明者らは、上述した課題を克服するために、COガスおよびCOガスの拡散時間を短くすることに関しての多くの実験を行った。その結果、酸化鉄および固体還元剤の反応容器内への充填形態と、好ましくモル比を工夫すれば、上掲の目的を有利に達成できることを見い出し、本発明に想到した。
即ち、本発明は、反応容器内に酸化鉄および固体還元剤を充填し、加熱して酸化鉄を還元することにより、海綿鉄を製造する方法において、前記酸化鉄および固体還元剤が交互に水平層状に堆積するように充填することを特徴とする海綿鉄の製造方法である。
In order to overcome the above-mentioned problems, the inventors have conducted many experiments regarding shortening the diffusion time of CO gas and CO 2 gas. As a result, the inventors have found that the above object can be achieved advantageously by devising the form of filling of the iron oxide and the solid reducing agent into the reaction vessel, and preferably the molar ratio, and have arrived at the present invention.
That is, the present invention provides a method for producing sponge iron by filling iron oxide and a solid reducing agent in a reaction vessel and heating to reduce the iron oxide, whereby the iron oxide and the solid reducing agent are alternately horizontal. a method for producing sponge iron, wherein the filling to deposit the layer shape.

本発明によれば、酸化鉄および固体還元剤を、水平層状に交互充填することによって、高純度(≧97mass%)の海綿鉄を高い生産性を確保した上で製造することができるようになる。 According to the present invention, the iron oxide and the solid reductant, by alternately filling the horizontal layer form, so it is possible to produce the sponge iron for high purity (≧ 97mass%) while ensuring high productivity Become.

本発明に係る製造方法においては、反応容器内への原料(酸化鉄および固体還元剤)の充填方法を工夫した点に特徴があり、そのような充填形式を採用することによって、高い生産性を確保することができるようになるからである。即ち、本発明は、従来の図1に示すような方法、例えば、竪型円筒状の耐火物製反応容器内に、酸化鉄と固体還元剤とを軸方向(円筒の)に沿って同心円筒又は円柱状に充填する方法に代えて、酸化鉄と固体還元剤とを交互に水平層状に堆積させること、図3に示すように、酸化鉄の堆積層12と固体還元剤の堆積層13が螺旋状に絡み合う状態に充填する方法(以降、これらを「交互充填」方法という)を採用することにある。
なお、螺旋状に絡み合う状態で充填させる場合、酸化鉄および固体還元剤により形成する層の法線が鉛直方向(重力方向)と鉛直方向となす角度が45°以下とするとよい。その理由は、反応容器内に該層を形成する際に、形成途上の層を構成する酸化鉄または固体還元剤が重力等により滑り落ちることを防止して、均一な層を効率的に形成できるからである。一方、生産性を考慮すれば3°以上とするとよい。
また、層状に充填する場合は、図2に示すように容器の軸方向に垂直な(水平)層とする。ここで、「水平」とは、酸化鉄および固体還元剤により形成する層の法線が鉛直方向(重力方向)に対して「実質平行」となることを指す。さらに、ここで「実質水平」とは、前記の法線と鉛直方向となす角度が10°以内であることを指す。水平とする理由は、反応容器内に該層を形成する際に、形成途上の層を構成する酸化鉄または固体潤滑剤が重力等により滑り落ちることを防止して、均一な層を効率的に形成できるからである。
The production method according to the present invention is characterized in that the method of filling the raw materials (iron oxide and solid reducing agent) into the reaction vessel is devised, and by adopting such a filling type, high productivity is achieved. This is because it can be secured. That is, the present invention is a conventional method as shown in FIG. 1, for example, in a vertical cylindrical refractory reaction vessel, iron oxide and a solid reducing agent are placed in a concentric cylinder along the axial direction (cylindrical). Alternatively, instead of the method of filling in a columnar shape, iron oxide and a solid reducing agent are alternately deposited in a horizontal layer form. As shown in FIG. 3, the iron oxide deposition layer 12 and the solid reducing agent deposition layer 13 A method of filling in a spirally entangled state (hereinafter referred to as “alternate filling” method) is employed.
In addition, when filling in the state where it is intertwined in a spiral shape, the angle between the normal direction of the layer formed by the iron oxide and the solid reducing agent and the vertical direction (gravity direction) is preferably 45 ° or less. The reason is that when the layer is formed in the reaction vessel, the iron oxide or solid reducing agent constituting the forming layer can be prevented from sliding down due to gravity or the like, and a uniform layer can be formed efficiently. It is. On the other hand, if productivity is considered, it is good to set it as 3 degrees or more.
In addition, when filling in a layered manner, it is a (horizontal) layer perpendicular to the axial direction of the container as shown in FIG. Here, “horizontal” means that the normal line of a layer formed of iron oxide and a solid reducing agent is “substantially parallel” to the vertical direction (gravity direction). Further, “substantially horizontal” here means that the angle between the normal and the vertical direction is within 10 °. The reason why it is horizontal is that when the layer is formed in the reaction vessel, the iron oxide or solid lubricant constituting the forming layer is prevented from sliding off due to gravity or the like, and a uniform layer is efficiently formed. Because it can.

こうした酸化鉄と固体還元剤の交互充填方法では、酸化鉄と固体還元剤との充填に際して、酸化鉄層厚と固体還元層厚の絶対値、酸化鉄層厚と固体還元層厚の比を任意にしかも随時に、変更することができる。   In such an alternate filling method of iron oxide and solid reducing agent, when filling iron oxide and solid reducing agent, the absolute value of the iron oxide layer thickness and the solid reducing layer thickness and the ratio of the iron oxide layer thickness to the solid reducing layer thickness are arbitrarily set. Moreover, it can be changed at any time.

原料を反応容器内に充填するに当たって、上述した交互充填を行うときの酸化鉄量および固体還元剤量の割合、とくに酸化鉄(酸素量)に対する必要還元剤量(炭素量)の割合は、前記式(2)とともに述べたように、酸化鉄の還元反応は、還元剤中のC原子1個と酸化鉄中のO原子1個とが反応して進むものとして決定される(モル比1.0)。一般には、酸化鉄中の酸素量より多い炭素量が還元剤として必要であり、従来法では、上述したように、過剰に還元剤を充填しており、2.0〜2.5倍の還元剤(モル比2.0〜2.5)を充填している。   In filling the raw material into the reaction vessel, the ratio of the amount of iron oxide and the amount of solid reducing agent when performing the above-described alternate filling, particularly the ratio of the necessary reducing agent amount (carbon amount) to iron oxide (oxygen amount) is as described above. As described with the formula (2), the reduction reaction of iron oxide is determined as a reaction of one C atom in the reducing agent and one O atom in the iron oxide (molar ratio 1.0). . In general, the amount of carbon greater than the amount of oxygen in iron oxide is required as a reducing agent. In the conventional method, as described above, the reducing agent is excessively charged, and the reducing agent (molar ratio) is 2.0 to 2.5 times. 2.0 ~ 2.5).

図4は、交互充填(層状)、および円筒状充填を行った場合の酸化鉄中の酸素量に対する炭素量(モル比)と、酸化鉄量の厚さを変えて還元を行ったときの97 mass%鉄の海綿鉄を得る還元時間の推移を示すグラフである。
図4中において、従来法である円筒状充填(図1)の結果の一例を●印で示した。この従来法は、酸化鉄層の厚さを55 mmとし、炭素量/酸素量(モル比)を2.2としたとき、還元時間が53時間もかかった。
一方、本発明適合例は、層状の交互充填(図2)で、酸化鉄層の厚さを15 mm、20 mm、30 mm、50 mmの場合についてそれぞれ還元実験を行った。その結果、厚さを薄くすることにより還元時間は短くなった。また、20 mm以上の厚さでは、モル比1.2以上になると還元時間はほぼ一定となったが、1.2未満では還元時間が長くなった。また、酸化鉄層の厚さが15 mmでは、モル比1.6以上で還元時間はほぼ一定となることがわかった。
なお、実験を繰り返し行った結果、酸素鉄の厚さが20 mm未満では、下記の関係が成りたつこともわかった。
モル比×酸化鉄層厚(mm)=2.3〜2.5 (3)
酸化鉄層の厚さ20 mm未満では、上記(3)式を満足するように充填することにより、酸化鉄層厚さが決まれば、一義的に還元時間が決まり操業が安定し、また、得られる海綿鉄の品質も安定する。
FIG. 4 shows a state in which reduction is performed by changing the amount of carbon (molar ratio) with respect to the amount of oxygen in iron oxide and the thickness of the amount of iron oxide when alternating filling (layered) and cylindrical filling are performed. It is a graph which shows transition of reduction time to obtain sponge iron of mass% iron.
In FIG. 4, an example of the result of the conventional cylindrical filling (FIG. 1) is indicated by ●. In this conventional method, when the thickness of the iron oxide layer was 55 mm and the amount of carbon / oxygen (molar ratio) was 2.2, the reduction time took 53 hours.
On the other hand, in the example of conformity with the present invention, reduction experiments were carried out in the case where the thickness of the iron oxide layer was 15 mm, 20 mm, 30 mm, and 50 mm by laminar alternating filling (FIG. 2). As a result, the reduction time was shortened by reducing the thickness. At a thickness of 20 mm or more, the reduction time became almost constant when the molar ratio was 1.2 or more, but when it was less than 1.2, the reduction time became longer. It was also found that when the thickness of the iron oxide layer was 15 mm, the reduction time was almost constant at a molar ratio of 1.6 or more.
As a result of repeated experiments, it was also found that the following relationship was established when the thickness of oxygen iron was less than 20 mm.
Molar ratio x iron oxide layer thickness (mm) = 2.3 to 2.5 (3)
If the thickness of the iron oxide layer is less than 20 mm, filling is performed to satisfy the above equation (3). If the thickness of the iron oxide layer is determined, the reduction time is uniquely determined and the operation is stabilized. The quality of the sponge iron that is produced is also stable.

反応容器内への原料の交互充填には、サガーと呼ばれる円筒状耐火物(SiCなど)製の反応容器11内に、酸化鉄12と固体還元剤13とを図2に示すように、交互に層状に充填するか、図3(a)に示すように、原料装入機14を使って、螺旋状に絡み合うように交互充填する。なお、この螺旋状に充填するための前記原料装入機14は、筒状本体の軸方向が中仕切り壁14aによって2分され、仕切られたそれぞれの部屋(収容部)17、18には酸化鉄12もしくは固体還元剤13が装入でき、そして下端部には、図示しないスライドゲートなどを介して隙間調整の可能な切出し用開口15、16が設けられた回転装入筒14bを主体として構成されている。その開口15、16から並行して同時に切り出せば、螺旋状交互充填となり、開口のいずれか片側のみから切り出せば、水平層状の交互充填ができる。   In the alternate filling of the raw material into the reaction vessel, iron oxide 12 and solid reducing agent 13 are alternately placed in a reaction vessel 11 made of a cylindrical refractory (such as SiC) called sagar as shown in FIG. It fills up in layers or, as shown in FIG. 3A, alternately fills up so as to be intertwined spirally using a raw material charging machine 14. In addition, the raw material charging machine 14 for filling in this spiral shape is divided into two in the axial direction of the cylindrical main body by the partition wall 14a, and the partitioned rooms (accommodating portions) 17 and 18 are oxidized. Mainly composed of a rotary charging cylinder 14b in which iron 12 or solid reducing agent 13 can be charged and the lower end portion is provided with cutout openings 15 and 16 capable of adjusting gaps through a slide gate (not shown). Has been. If it cuts out simultaneously from the openings 15 and 16, it becomes spiral alternate filling, and if it cuts out from only one side of the opening, horizontal layer-like alternating filling can be performed.

このような原料装入機14を使って、原料を螺旋状交互に充填するには、前記回転装入筒14bを、まず、前記反応容器11内に上から挿入し、前記開口15、16の開口面積を調整した上で、回転させながら一定の速度で上昇させることにより、酸化鉄層厚と固体還元剤層厚とが一定の比率になるよう、そして互いが螺旋状に絡み合うように交互充填していけば足り、このようにして酸化鉄と固体還元剤とは共に、螺旋状交互に堆積した充填層が、反応容器11内に形成される。   In order to alternately fill the raw material spirally using such a raw material charging machine 14, the rotary charging tube 14b is first inserted into the reaction vessel 11 from above, and the openings 15, 16 By adjusting the opening area and increasing it at a constant speed while rotating, it is alternately packed so that the iron oxide layer thickness and the solid reducing agent layer thickness are in a constant ratio and entangle in a spiral shape. Thus, a packed bed in which the iron oxide and the solid reducing agent are alternately deposited in a spiral manner is formed in the reaction vessel 11 in this manner.

本発明において、このような水平層状もしくは螺旋状交互充填に当たって、酸化鉄の堆積層12と固体還元剤の堆積層13との各堆積層の厚みおよび層厚比を連続的もしくは間欠的に変化させていくことが可能である。それは、層厚比を一定に制御する場合の他に、層厚比を竪型反応容器11の高さ方向、例えば、底部、中部、上部寄りと変えることを意味している。
そして、このような各層厚可変充填は、前記回転装入筒14bの回転速度、その上昇速度(迫り上げ速度)、および前記開口15、16の大きさの、いずれか1つ以上を調節することによって実現することができる。とりわけ、開口15、16の大きさをゲート開閉制御を通じて行うと、ガスの拡散抵抗や還元時間の延長、未反応部の発生を招くことなく、安定した操業を確保した上で、実現できるので好ましい。
In the present invention, in such horizontal layered or spiral alternating filling, the thickness and the layer thickness ratio of each of the deposited layers of the iron oxide deposited layer 12 and the solid reducing agent deposited layer 13 are changed continuously or intermittently. It is possible to continue. This means that the layer thickness ratio is changed in the height direction of the vertical reaction vessel 11, for example, near the bottom, middle, and top, in addition to the case where the layer thickness ratio is controlled to be constant.
In addition, each layer thickness variable filling as described above adjusts at least one of the rotational speed of the rotary charging cylinder 14b, its rising speed (push-up speed), and the size of the openings 15 and 16. Can be realized. In particular, it is preferable that the size of the openings 15 and 16 is controlled through gate opening / closing control because it can be realized while ensuring stable operation without incurring diffusion resistance of gas, extension of reduction time, and generation of unreacted parts. .

本発明に係る海綿鉄の製造方法において、反応容器内に充填する原料としては、少なくとも酸化鉄と固体還元剤とが必要になるが、その酸化鉄12としては、鉄鉱石あるいは熱延工程で発生するミルスケール等の酸化鉄粉(粒径:0.05〜10 mm)を用いることが好ましい。また、固体還元剤13としては、コークス粉、チャー、粘結性の石炭粉などの炭素質粉を使用することが好ましい。なお、この固体還元剤には、必要に応じてさらに石灰石や焼石灰の粉などを固体還元剤層の一部を構成するものとして、混合添加したものを使用しても何ら問題はない。   In the method for producing sponge iron according to the present invention, at least iron oxide and a solid reducing agent are required as raw materials to be filled in the reaction vessel, and the iron oxide 12 is generated in an iron ore or a hot rolling process. It is preferable to use iron oxide powder (particle size: 0.05 to 10 mm) such as mill scale. Moreover, as the solid reducing agent 13, it is preferable to use carbonaceous powders such as coke powder, char, and caking coal powder. It is to be noted that there is no problem even if this solid reducing agent is used by further adding limestone or calcined lime powder as a part of the solid reducing agent layer as necessary.

これら酸化鉄12や固体還元剤13は、前記反応容器11内に、図3に示す原料装入機14にて充填する。例えば、サガーと呼ばれる円筒状SiC製反応容器11内に螺旋状に交互充填する。
そして、酸化鉄12と固体還元剤13と必要に応じて用いられる石灰石等を充填した前記反応容器11は、次いで、トンネル炉などの焼成炉内に台車などに積載した状態で装入され、還元のために所定の時間加熱される。この還元のための加熱温度は、1000〜1300 ℃程度とするのが好ましい。上記加熱温度が1000 ℃未満では、酸化鉄12の還元が十分に進まない。一方。1300 ℃を超えると、還元と同時に進行する海綿鉄の焼結が過度に進み、硬くなり、その後の粉砕での電力消費量の増大を招いたり、粉砕工具の損耗に伴う製造コストの増大を招くおそれがある。このため、加熱温度は1000〜1300 ℃の範囲とするのが好ましい。
この加熱による還元反応により、酸化鉄12は固体還元剤13により還元されて海綿鉄を生成する。
The iron oxide 12 and the solid reducing agent 13 are filled in the reaction vessel 11 by the raw material charging machine 14 shown in FIG. For example, a cylindrical SiC reaction vessel 11 called a sagar is alternately filled in a spiral shape.
Then, the reaction vessel 11 filled with iron oxide 12, solid reducing agent 13 and limestone used as necessary is then charged in a state where it is loaded on a cart in a firing furnace such as a tunnel furnace. For a predetermined time. The heating temperature for this reduction is preferably about 1000 to 1300 ° C. When the heating temperature is less than 1000 ° C., the reduction of the iron oxide 12 does not proceed sufficiently. on the other hand. If the temperature exceeds 1300 ° C, the sponge iron, which progresses simultaneously with the reduction, is excessively hardened and hardened, resulting in an increase in power consumption during subsequent grinding and an increase in manufacturing costs due to wear of the grinding tool. There is a fear. Therefore, the heating temperature is preferably in the range of 1000 to 1300 ° C.
By this reduction reaction by heating, the iron oxide 12 is reduced by the solid reducing agent 13 to produce sponge iron.

還元のための加熱後、生成した海綿鉄は反応容器11から固体還元剤13と分離して取り出す。反応容器11から取り出された海綿鉄は、次に、粒径150μm以下程度までに粉砕され、仕上還元され、さらに粉砕されて還元鉄粉とされる。   After heating for reduction, the produced sponge iron is separated from the reaction vessel 11 and taken out from the solid reducing agent 13. The sponge iron taken out from the reaction vessel 11 is then pulverized to a particle size of about 150 μm or less, subjected to finish reduction, and further pulverized to obtain reduced iron powder.

上記還元処理工程では、炉内を台車上に載置されて移動する前記反応容器11内酸化鉄は、まず200〜900 ℃程度の予備加熱域に24時間程度加熱保持され、そして、1000〜1300 ℃の焼成帯域に36時間以上保持される。その後は、200〜900 ℃程度の冷却域を経て、鉄の比率97 mass%以上、反応容器11内で柱状に生成した塊状物の高さ(全厚)が2000 mm程度以下の大きさの海綿鉄を得ることができる。   In the reduction treatment step, the iron oxide in the reaction vessel 11 moving while being placed on a carriage in the furnace is first heated and held in a preheating zone of about 200 to 900 ° C. for about 24 hours, and then 1000 to 1300. It is held in the baking zone at 36 ° C. for 36 hours or more. Thereafter, after passing through a cooling region of about 200 to 900 ° C., a sponge having a ratio of iron of 97 mass% or more and the height (total thickness) of the agglomerate formed in a columnar shape in the reaction vessel 11 is about 2000 mm or less. You can get iron.

実施例11(図2の方法):この例の充填のスケジュールは、原料送入機14を用い、反応容器11の底部にまず粉状還元剤13を50mmの厚みに充填し、次に、その上に粉状酸化鉄(ミルスケール)12を40mmの厚みに切り出して堆積させ、こうした充填スケジュールにて、反応容器11の上端まで繰り返し充填した。なお、反応容器11の上端には粉状還元剤(コークス粉)13を充填する。この充填では還元剤中の炭素量と酸化鉄中の酸素量のモル比は1.6であった。
参考例12(図3の方法):この例は図3に示す螺旋状充填を行った例である。反応容器11の底部に粉状還元剤(コークス粉)13を堆積させ、その上に、酸化鉄用開口15と還元剤用開口16を有する円筒状装入筒14bを回転させながら、順次に迫り上げていくことにより、粉状酸化鉄(ミルケース)12と粉状還元剤13とが反応容器内を交互に螺旋状に連続的に充填される。
Example 11 (Method of FIG. 2): The filling schedule in this example is that the raw material feeder 14 is used to fill the bottom of the reaction vessel 11 with the powder reducing agent 13 to a thickness of 50 mm, and then Powdered iron oxide (mill scale) 12 was cut and deposited to a thickness of 40 mm on the top, and repeatedly filled up to the upper end of the reaction vessel 11 in such a filling schedule. The upper end of the reaction vessel 11 is filled with a powder reducing agent (coke powder) 13. In this filling, the molar ratio of the amount of carbon in the reducing agent and the amount of oxygen in the iron oxide was 1.6.
Reference Example 12 (Method of FIG. 3): This example is an example in which the spiral filling shown in FIG. 3 is performed. A powdery reducing agent (coke powder) 13 is deposited on the bottom of the reaction vessel 11, and a cylindrical charging cylinder 14 b having an iron oxide opening 15 and a reducing agent opening 16 is rotated on the powder reducing agent (coke powder) 13. By raising, powdered iron oxide (mill case) 12 and powdery reducing agent 13 are continuously and spirally filled in the reaction vessel.

次に、原料を充填した上記耐火物製反応容器11は台車に載置し、トンネル炉を通過させることにより、酸化鉄12の加熱、還元が行われた。使用したトンネル炉の全長100mで、そのうち中央部40mの領域が雰囲気温度1150 ℃に調整された。このような条件下で鉄の比率97 mass%の海綿鉄製造操業を行った結果をまとめて表1に示す。   Next, the refractory reaction vessel 11 filled with the raw material was placed on a carriage and passed through a tunnel furnace, whereby the iron oxide 12 was heated and reduced. The tunnel furnace used had a total length of 100 m, and the area of the center 40 m was adjusted to an atmospheric temperature of 1150 ° C. Table 1 summarizes the results of operations for producing sponge iron with an iron ratio of 97 mass% under such conditions.

Figure 0004329444
Figure 0004329444

表1より明らかなように、本発明の実施例では、台車速度が従来例(図1の方法)の1.1m/hrに対し、1.3m/hrと18%速くなっている。なお、充填したミルスケール量は、従来例220 kg/容器に対して256 kg/容器と16%大きい。この結果、生産性が38%も向上していた。これにともない、加熱に要する海綿鉄単位質量当りの熱量も11470MJ/tonから8820MJ/tonへ約30%も削減できた。   As is apparent from Table 1, in the embodiment of the present invention, the carriage speed is 18% faster than the conventional example (method of FIG. 1) of 1.1 m / hr, 1.3 m / hr. The amount of mill scale filled is 16% larger than the conventional example of 220 kg / container, 256 kg / container. As a result, productivity was improved by 38%. As a result, the amount of heat per unit of sponge iron required for heating was reduced by approximately 30% from 11470 MJ / ton to 8820 MJ / ton.

本発明は、機械部品や磁性材料などの焼結品、あるいは粉末のままで使用される還元鉄粉などの製造用原料となるものである。   The present invention is a raw material for production of sintered products such as machine parts and magnetic materials, or reduced iron powder used as a powder.

従来の酸化鉄および固体還元剤充填方法を説明する断面図である。It is sectional drawing explaining the conventional iron oxide and a solid reducing agent filling method. 本発明に係る酸化鉄および固体還元剤充填方法を説明する断面図である。It is sectional drawing explaining the iron oxide and solid reducing agent filling method which concern on this invention. 本発明の他の例における酸化鉄および固体還元剤充填方法を説明する断面図である。It is sectional drawing explaining the iron oxide and the solid reducing agent filling method in the other example of this invention. 本発明の実施における、モル比と還元時間の関係を説明する図である。It is a figure explaining the relationship between molar ratio and reduction time in implementation of this invention.

符号の説明Explanation of symbols

1、11 反応容器
2、12 酸化鉄
3、13 固体還元剤
14 原料装入機
14a 中仕切り壁
14b 回転装入筒
15、16 開口
17 酸化鉄収容部
18 固体還元剤収容部
1, 11 Reaction vessel 2, 12 Iron oxide 3, 13 Solid reducing agent 14 Raw material charging machine
14a Partition wall
14b Rotating charging cylinders 15 and 16 Opening 17 Iron oxide accommodating portion 18 Solid reducing agent accommodating portion

Claims (1)

反応容器内に酸化鉄および固体還元剤を充填し、加熱して酸化鉄を還元することにより、海綿鉄を製造する方法において、前記酸化鉄および固体還元剤が交互に水平層状に堆積するように充填することを特徴とする海綿鉄の製造方法。 In a method for producing sponge iron by filling iron oxide and a solid reducing agent in a reaction vessel and reducing iron oxide by heating, the iron oxide and the solid reducing agent are alternately deposited in a horizontal layer. A method for producing sponge iron, comprising filling.
JP2003286047A 2003-01-31 2003-08-04 Method for producing sponge iron Expired - Fee Related JP4329444B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003286047A JP4329444B2 (en) 2003-08-04 2003-08-04 Method for producing sponge iron
CN201110383677.4A CN104278122B (en) 2003-01-31 2004-01-29 The charging apparatus of sponge iron production of raw material for use
US10/508,381 US20050193862A1 (en) 2003-01-31 2004-01-29 Process for producing sponge iron and reduced iron powder sponge iron and charging apparatus
CN201110383974.9A CN102492797B (en) 2003-01-31 2004-01-29 Process for producing sponge iron and reduced iron powder sponge iron and charging apparatus
PCT/JP2004/000866 WO2004067784A1 (en) 2003-01-31 2004-01-29 Process for producing sponge iron and reduced iron powder, sponge iron, and charging apparatus
SE0402286A SE528252C2 (en) 2003-01-31 2004-09-23 Iron sponge as well as method and material loading device for making iron sponge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286047A JP4329444B2 (en) 2003-08-04 2003-08-04 Method for producing sponge iron

Publications (2)

Publication Number Publication Date
JP2005054229A JP2005054229A (en) 2005-03-03
JP4329444B2 true JP4329444B2 (en) 2009-09-09

Family

ID=34365484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286047A Expired - Fee Related JP4329444B2 (en) 2003-01-31 2003-08-04 Method for producing sponge iron

Country Status (1)

Country Link
JP (1) JP4329444B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445032B2 (en) * 2009-10-28 2014-03-19 Jfeスチール株式会社 Method for producing reduced iron powder

Also Published As

Publication number Publication date
JP2005054229A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
RU2447164C2 (en) Method of producing pellets from recovered iron and method of producing cast iron
CN105308194B (en) The manufacturing method of the sinter of interior packet Carbon Materials
KR101138074B1 (en) Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron
JP4793501B2 (en) Blast furnace operation method using ferro-coke
EP2098482A1 (en) Silicon alloy and its powder, production apparatus, production process, and sinter
JP4329444B2 (en) Method for producing sponge iron
US20050193862A1 (en) Process for producing sponge iron and reduced iron powder sponge iron and charging apparatus
JP2012172167A (en) Method for operating blast furnace using ferrocoke
JP6954255B2 (en) Calculation method of mixing ratio of ferro-coke and blast furnace operation method
JP4729858B2 (en) Method for producing sponge iron
JP4360247B2 (en) Production method and raw material charging machine for sponge iron and reduced iron powder
JP4341415B2 (en) Manufacturing method of high purity sponge iron
JP4595350B2 (en) Method for producing sponge iron
KR101611121B1 (en) Method for operating blast furnace using carbon iron composite
JP2006028593A (en) Method for operating blast furnace
JP6638764B2 (en) Blast furnace operation method
JP5521387B2 (en) Method for producing reduced iron molded body and method for producing pig iron
JP5445032B2 (en) Method for producing reduced iron powder
EP3228717B1 (en) Direct reduced iron compacting method, direct reduced iron compacting apparatus, and molten iron manufacturing apparatus containing same
JP5581875B2 (en) Method for producing sintered ore containing MgO lump
JP5874295B2 (en) Method for producing reduced iron powder
US718891A (en) Method of reducing metallic oxids.
JP2017024957A (en) Reforming method by carbon dioxide for hydrocarbon, reforming apparatus by carbon dioxide for hydrocarbon, and production method for carbon monoxide and hydrogen
CN105723002A (en) Method and facility for producing reduced iron
WO2021106008A1 (en) A countercurrent reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees