WO2004067784A1 - Process for producing sponge iron and reduced iron powder, sponge iron, and charging apparatus - Google Patents

Process for producing sponge iron and reduced iron powder, sponge iron, and charging apparatus Download PDF

Info

Publication number
WO2004067784A1
WO2004067784A1 PCT/JP2004/000866 JP2004000866W WO2004067784A1 WO 2004067784 A1 WO2004067784 A1 WO 2004067784A1 JP 2004000866 W JP2004000866 W JP 2004000866W WO 2004067784 A1 WO2004067784 A1 WO 2004067784A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
reducing agent
iron oxide
iron
amount
Prior art date
Application number
PCT/JP2004/000866
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitomo Suzuki
Akio Sonobe
Takashi Kuroki
Yasuhiko Sakaguchi
Hiroshi Itaya
Yotsuo Misumi
Isao Funatsu
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003286047A external-priority patent/JP4329444B2/en
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to US10/508,381 priority Critical patent/US20050193862A1/en
Publication of WO2004067784A1 publication Critical patent/WO2004067784A1/en
Priority to SE0402286A priority patent/SE528252C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/003Charging laterally, e.g. with a charging box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0033Charging; Discharging; Manipulation of charge charging of particulate material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/08Screw feeders; Screw dischargers

Definitions

  • the present invention relates to a method for producing sponge iron used as a raw material for producing iron powder, and a method for producing reduced iron powder using sponge iron produced by the method.
  • the reduced iron powder is used not only as powder but also as a raw material for sintered products such as mechanical parts and magnetic materials.
  • the present invention also relates to an apparatus for charging a raw material for producing sponge iron used in the method for producing sponge iron, and a high-purity sponge iron that can be produced by the method.
  • the charge of the raw material into the reaction vessel is conventionally referred to as charging the raw material (however, translated into charge in the English translation). Words such as “filling” and “filling device” are mainly used. Background art
  • FIGS. 1A and 1B A typical method for producing sponge iron is shown in FIGS. 1A and 1B.
  • FIG. 1A is a cross-sectional view showing the state of filling of the raw material in the container
  • FIG. 1B is a horizontal cross-sectional view thereof.
  • iron oxide powder 2 and reducing agent powder 3 are concentrically placed in a cylindrical refractory reaction vessel 1 (sagar) with a lid attached to the lower surface. Then, the whole container is heated (indirect heating) to a temperature of 1050 to 1200 using a tunnel furnace or the like. By the heating in the above period, the iron oxide powder 2 in the reaction vessel 1 is reduced (coarsely reduced) and sintered together to form sponge-like metallic iron, that is, sponge iron.
  • the iron oxide powder 2 powder obtained by pulverizing a mill scale, iron ore powder, or the like is used.
  • the reducing agent powder 3 coke powder / coal powder or the like is used. Note that lime powder or the like is added to the reducing agent powder 3 as needed.
  • the reaction reduces iron oxide and generates co 2 (carbon dioxide) gas. Further, the co 2 gas diffuses partially through the reduced iron oxide layer, reaches the reducing agent layer again, and converts carbon into CO gas by the reaction of equation (1) in the layer. Then, CO gas this that generated diffuses into the re Pi iron oxide layer, causing a reaction of iron oxide and (2) of unreduced, iron generates the co 2 gas while generate.
  • the iron oxide powder 2 filled therein is reduced to iron powder by repeating the reaction of the equations (1) and (2) at regular intervals. Simultaneously with this reduction reaction, sintering of the reduced iron proceeds to form cylindrical sponge iron (sintered body).
  • Figure 2 shows the appearance of sponge iron obtained by the conventional technology (the lower part is omitted).
  • carbon amount Z oxygen amount (molar ratio) The number of moles of carbon atoms in the reducing agent / the number of moles of oxygen atoms in the iron oxide. Disclosure of the invention
  • the diffusion of the CO gas and co 2 gas generated in the reaction vessel 1 into the layers of the iron oxide powder 2 and the reducing agent powder 3 is a main factor that controls the progress of the reduction reaction. It is considered a factor.
  • the diffusion distance of CO Gas and co 2 gas greatly there has been a problem that it takes a long time required for the reduction.
  • the reaction efficiency gas utilization efficiency
  • the time required from the charging of raw materials to the extraction of the product is reduced. It takes days and leads to reduced productivity.
  • the heating energy consumption required for the reduction is significantly increased.
  • the combination of the thickness of the layer of iron oxide powder 2 and the reduction time that maximizes the production amount is uniquely determined, and not only is the production amount limited, but also the degree of freedom in adjusting the production amount is high. There was a problem of being small.
  • the CO gas generated by the above reaction tends to flow through the lower density layer of the reducing agent powder 3 and flow out of the reaction vessel 1. is there. Therefore, the CO gas does not efficiently contribute to the reduction reaction.
  • the reducing agent powder 3 needs to be excessively filled between the reaction vessel 1 and the iron oxide powder 2 or inside the cylindrical iron oxide layer so that the layer of the iron oxide powder 2 does not collapse in the firing step.
  • the conventional method requires a large amount of the reducing agent powder 3 in a molar ratio of 2.0 or more, and has a problem in that the basic unit of the reducing agent is poor.
  • an object of the present invention is to advantageously solve the above-described various problems of the related art. That is, an object of the present invention is to propose a method for producing sponge iron which has high productivity and whose production amount can be easily adjusted.
  • Another object of the present invention is to propose a device for filling a raw material into a reaction vessel, which is advantageously used in carrying out the above-mentioned production method.
  • a first aspect of the present invention provides a filling step of filling an oxidized iron powder and a reducing agent powder in a reaction vessel, and heating the iron oxide powder in the reaction vessel by heating from outside the reaction vessel.
  • a layer made of the reducing agent powder is formed on the container side surface (referred to as an outer peripheral portion) and a vertical central axis portion in the reaction container, and the remaining portion (referred to as an intermediate portion) excluding the layer is formed. Filling to form said alternating and spiral layers.
  • the outer peripheral portion and the central shaft portion correspond to the peripheral portion and the central portion, respectively, in the plan sectional view of the container.
  • the middle part is preferably cylindrical or cylindrical.
  • the vertical central axis is the axis of the cylinder.
  • iron oxide powder at least one powder selected from iron ore, mill scale, and oxidized iron powder recovered from the pickling waste liquid is used.
  • At least one powder selected from coke, charcoal and coal is used.
  • a carbon dioxide gas generating source is added to the reducing agent powder.
  • Lime as a source of carbon dioxide Stone is particularly suitable.
  • the reducing agent powder to be filled is a mixture of the reducing agent powder and the powder of the carbon dioxide gas generation source.
  • the heating temperature in the reduction step is not less than 1000 ° C and not more than 1300 ° C.
  • the layer thickness of the iron oxide powder layer and the layer of the reducing agent powder are variably controlled.
  • the variable control means that a different layer thickness can be set in at least one of the layers for each reaction vessel, and (1) the thickness of at least one of the layers is changed depending on the position in the reaction vessel. Obtaining, including both meanings.
  • the amount of the iron oxide powder in the reaction vessel or the amount of the reducing agent powder is determined by changing the amount of carbon contained in the reducing agent powder with respect to the amount of oxygen contained in the iron oxide powder. Should be controlled so that the molar ratio is 1.1 or more. Here, a preferable molar ratio is 1.15 or more, and a more preferable molar ratio is 1.2 or more.
  • the amount of the iron oxide powder and the amount of the reducing agent powder in the layer-filled portion are further included in the iron oxide powder.
  • the amount of carbon contained in the reducing agent powder with respect to the amount of oxygen contained is controlled to be 0.5 or more in a molar ratio.
  • the “layer-filled portion” refers to a cylindrical region formed by a layer of spirally deposited iron oxide powder and reducing agent powder. This corresponds to the portion excluding each of the aforementioned “layers made of reducing agent powder”.
  • the second invention is a method for producing reduced iron powder, in which the sponge iron produced according to the first invention is pulverized, reduced (finish reduction), and then further pulverized.
  • a third aspect of the present invention is a sponge iron sintered into a helix-like mass, preferably a high-purity sponge iron having a metal iron content of 97 mass% or more.
  • high-purity sponge iron can be produced even in a lump having a weight of 100 kg or more by, for example, applying a suitable condition (7) or the like and performing a reduction treatment for a sufficient time.
  • a fourth aspect of the present invention is a filling device that fills a container with iron oxide powder and reducing agent powder, the insertion portion being inserted into the container, and capable of rotating and moving up and down in the container;
  • Department An apparatus for filling sponge iron raw materials comprising an iron oxide powder discharge port and a reducing agent powder discharge port rotatably provided with the insertion section at a lower end of the sponge iron.
  • the iron oxide powder and the reducing agent powder are alternately and spirally formed in a reaction vessel. It is suitable for use in filling for deposition.
  • the opening areas of the iron oxide powder outlet and the reducing agent powder outlet are variable. Such a configuration can be suitably used in the first aspect of the present invention, particularly in order to satisfy the preferable condition (6).
  • the insertion part may be a cylindrical main body having a diameter of 85% or less of the inner diameter of the container, and a circle having a diameter of 90 to 95% of the inner diameter of the container.
  • a lower end portion formed of a part of a cylinder having a cross-sectional shape, and the horizontal cross-sectional shape of the lower ⁇ portion is a sector shape including the center of the circle and a part of the circumference, or a shape including the sector shape. It is preferable that there is.
  • Such a configuration is suitable for the purpose of reducing the thickness of the reducing agent powder layer in the outer peripheral portion described in the preferred condition (1) in the first present invention.
  • the insertion section can be inserted into the reaction vessel without interfering with the projection.
  • FIG. 1 is a cross-sectional view for explaining a conventional filling method of iron oxide powder and reducing agent powder.
  • FIG. 1B is a horizontal sectional view showing a section taken along the line IB-IB of FIG. 1A.
  • FIG. 2 is a perspective view showing the appearance of sponge iron obtained by a conventional method.
  • FIG. 3A is a cross-sectional view illustrating an example of a filling method of the iron oxide powder and the reducing agent powder according to the present invention.
  • FIG. 3B is a horizontal cross-sectional view showing a ⁇ —: ⁇ ′ cross section of FIG. 3A.
  • FIG. 4 is a schematic diagram showing an example of the structure of the insertion portion (rotary charging cylinder) of the present invention.
  • FIG. 4B is a cross-sectional view showing a filling state when the rotary charging cylinder of FIG. 4A is used.
  • FIG. 5 is a schematic diagram showing another example of the structure of the insertion portion (rotary charging cylinder) of the present invention.
  • FIG. 6 is a cross-sectional view illustrating another example of the filling method of the iron oxide powder and the reducing agent powder according to the present invention.
  • FIG. 7 is a perspective view showing the external shape of sponge iron obtained by the present invention.
  • FIG. 8 is a cross-sectional view illustrating an experimental example of a filling method in which iron oxide powder and reducing agent powder are horizontally deposited in multiple layers.
  • Figure 9 shows the relationship between the carbon content / oxygen content (molar ratio) (horizontal axis) and the required reduction time (vertical axis) in the alternate filling method for several different iron oxide layer thicknesses.
  • FIG. 10 is a cross-sectional view illustrating another experimental example of a filling method in which iron oxide powder and reducing agent powder are horizontally deposited in multiple layers.
  • Figure 11 shows the relationship between the amount of carbon in the alternating filling section, the amount of oxygen (molar ratio) (horizontal axis), and the required reduction time (vertical axis) in another alternating filling method. It is a figure which shows about thickness.
  • Figure 12 shows the relationship between the amount of carbon / oxygen (mol ratio) (horizontal axis) and the required reduction time (vertical axis) in the whole reaction vessel in different alternate deposition methods. It is a figure showing about iron layer thickness.
  • Figure 1 3 is, in spiral alternately filling (hatching) and a cylindrical packing (open), amount increase iron oxide (wt%, abscissa) metallic iron purity obtained by the reduction (mas S%, ordinate) of It is a figure showing a relation.
  • FIG. 14A is a sectional view showing still another example of the structure of the insertion portion (rotary charging cylinder) of the present invention.
  • FIG. 14B is an arrow view showing a section taken along the line XIVB—XIVB ′ of FIG. 14A (the thickness of the wall is omitted).
  • the meaning of each code is as follows.
  • reaction vessel sagar
  • Cut-out part 15 Iron oxide powder outlet
  • the present invention is characterized by a method for charging a raw material into a reaction vessel.
  • the raw materials are iron oxide powder and reducing agent powder, but if necessary, limestone or the like may be added together with the reducing agent.
  • FIG. 1 a method as shown in FIG. 1 is used.
  • a vertical cylindrical refractory reactor 1 is filled with an iron oxide powder 2 and a reducing agent powder 3 in a concentric cylindrical shape along the axial direction.
  • the method is adopted.
  • the present invention alternately fills the iron oxide powder and the reducing agent powder alternately and spirally with each other, that is, the structure in which both the containers are deposited is a spiral of iron oxide powder.
  • the method is to employ a method in which the layers and the spiral layers of the reducing agent powder are filled alternately in a stacked state (hereinafter referred to as “helical alternating filling”).
  • the filling with the iron oxide powder and the reducing agent powder can be performed simultaneously in parallel and continuously. For this reason, the thickness (filling amount) of each layer can be made constant. Therefore, the thickness ratio between the reducing agent layer and the iron oxide layer can be kept constant. This layer thickness ratio can be set to an arbitrary ratio for each reaction vessel depending on the purpose and situation.
  • the layer thickness ratio can be changed arbitrarily and at any time during charging.
  • the spiral alternating filling method is useful as a method that can greatly contribute to the improvement of production and production and the production volume.
  • 3A and 3B show an example of the present invention.
  • the raw material is charged by using a raw material charging device 14 in a cylindrical reaction vessel 11 (sagar) made of a refractory material such as SiC and the like. It is preferred to charge and fill 3 simultaneously.
  • the preferred configuration of the raw material charging device 14 is as follows.
  • the raw material charging device 14 is mainly composed of a rotary charging cylinder 14 b (charging portion) inserted into the reaction vessel 11.
  • the axial direction of the cylindrical body of the rotary charging cylinder 14 b is divided into two by the partition wall 14 a, and the chambers are partitioned, that is, the iron oxide powder storage section 17 and the reducing agent powder storage section 18 Can be charged with iron oxide powder 12 and reducing agent powder 13 (the powder in each storage section is not shown).
  • an iron oxide powder discharge port 15 and a reducing agent powder discharge port 16 are provided, respectively, to accommodate the storage sections 17 and 1 respectively. 8 are provided as openings.
  • each discharge port can be adjusted in opening degree (for example, opening height a), that is, opening area by a gate such as a slide gate.
  • the position and orientation of the discharge port may be determined as necessary.
  • Any surface of the cutout provided on the bottom, side, or bottom of the rotary charging cylinder 14b should be an opening. Can be.
  • each raw material powder is discharged by its own weight of the raw material powder charged in the storage section.
  • FIG. 4A shows an example of a detailed view of the rotary charging cylinder 14b.
  • a rectangular tubular cutout portion 14c protruding in a direction perpendicular to the partition wall 14a is provided at the extending position of the lower end portion of the tube.
  • FIG. 4B is a cross-sectional view of the filling process using such a rotary charging cylinder.
  • the cut-out portion for the iron oxide powder and the cut-out portion for the reducing agent powder can be arranged diagonally with respect to each other as a substantially quarter-circle sector. Conceivable. In this case, at least a part of the two outlets 15 and 16 should be provided on the side corresponding to the fan-shaped straight portion and on the same plane with the axis of the rotary charging cylinder 14b interposed therebetween. (The state is the cross-sectional view of FIG. 3A).
  • FIG. 5 is a detailed view showing another example of the rotary charging cylinder 14b.
  • the diameter of the rotary charging cylinder 14 b (especially at the lower end) be a value close to the inner diameter of the reaction vessel 11.
  • the reaction vessel is used repeatedly and a plurality of cylindrical units are stacked to form a reaction vessel, reduced iron and ash in the reducing agent adhere to the inside of the reaction vessel and become convex. A part may be formed.
  • the container may be slightly tilted due to the distortion caused by repeated use. Therefore, if the lower end of the rotary charging cylinder 14 b is almost the inner diameter of the reaction vessel 11, it may come into contact with the reaction vessel 11 when charging the rotary charging cylinder 14 b, which may cause damage. There is.
  • the purpose of making the diameter of the lower end of the rotary charging cylinder 14 b closer to the inner diameter of the reaction vessel 11 is to secure an opening from near the center of the reaction vessel to near the circumference for each outlet. It is. Therefore, if the position of the discharge port is devised, the horizontal cross-sectional shape of the lower end of the rotary charging cylinder 14b does not need to be a perfect circle, but a sector that forms a part of this circle (virtual circle), or Is sufficient if it has a shape including at least the sector.
  • FIG. 5 shows an example in which the lower end has a fan shape, and the iron oxide powder outlet 15 and the reducing agent powder outlet 16 are provided asymmetrically.
  • the outlet 15 for the iron oxide powder and the outlet 16 for the reducing agent powder are provided on the side surface (equivalent to the side of the sector) of the cutout portion 14c provided in the same manner as in FIG. I have.
  • the bottom surface of the cutout portion 14c is also open, the powders 12 and 13 are mainly discharged from the side surface because the deposited powder serves as a bottom surface.
  • 19 a and 19 b are holding plates.
  • the center angle of the sector may be arbitrary, but should be about 180 ° (ie, a semicircle) or less. This is preferable for making the lower end sufficiently compact. More preferably, the maximum crossover of the horizontal cross-sectional shape of the cutout portion is smaller than the diameter of the virtual circle.
  • the diameter of the virtual circle at the lower end is preferably closer to the inner diameter of the reaction vessel from the viewpoint of productivity, and is preferably about 90% or more of the inner diameter of the reaction vessel.
  • the diameter of the virtual circle is appropriately reduced, and it is preferable that the diameter is not more than about 95% of the inner diameter of the reaction vessel.
  • the diameter of the main body of the rotary insertion tube 14b is preferably about 85% or less of the inner diameter of the reaction vessel, and it is preferable to secure room for horizontal movement in the container in order to avoid contact.
  • the diameter of the main body is preferably about 30% or more of the inner diameter of the reaction vessel.
  • FIG. 6 shows another example of the filling method according to the present invention.
  • the raw material charging device 14 is shown in a simplified manner.
  • the position of the spiral alternate filling when filling the raw material powder into the reaction vessel, the position of the spiral alternate filling may be limited to a region excluding the outer peripheral portion along the axial direction of the cylindrical reaction vessel 11. . Further, the position where the spiral alternate filling is performed may be a region excluding the axial portion along the axial direction of the reaction vessel 11. Further, the position where the spiral alternate filling is performed may be a region excluding both the axial center portion and the outer peripheral portion along the axial direction of the reaction vessel. In any case, the region where the spiral alternate filling is performed is referred to as a cylindrical intermediate portion. The outer peripheral part and the axial center part correspond to the peripheral part and the central part, respectively, in the plan sectional view of the container.
  • the reducing agent layer in the outer peripheral portion is used to prevent interference between the rotary charging portion 14 b of the raw material charging device 14 and the reaction vessel 11, and to prevent seizure at the contact portion between the reaction container and the iron oxide powder. In some cases, it is unavoidable from the viewpoint of setting.
  • the reducing agent layer at the shaft center may be set for convenience in handling sponge iron from the container. As a result, a layer of only the reducing agent is present at the outer peripheral portion or at the axial center portion, thereby forming a passage for the reaction gas, thereby making the gas diffusion in the reaction vessel smooth and uniform. The effect of increasing the reduction reaction rate can also be expected.
  • the outer peripheral portion is formed of a reducing agent layer, it is possible to prevent the product from being welded to the vessel wall. Therefore, if necessary, it is preferable to provide these reducing agent layers while optimizing the layer thickness (radial direction) in consideration of the yield of the reducing agent and the amount of carbon / oxygen (molar ratio).
  • the outer periphery is about 2.5% or more and about 5% or less of the inner diameter of the vessel (diameter of the inner surface). It is preferable that the thickness be in the range (radial direction). On the other hand, the diameter of the shaft center is preferably about 250 or less.
  • an opening may be provided on the side of the rotary charging cylinder 14a, and the reducing agent powder forming the outer peripheral portion may be discharged from the opening.
  • a central cylindrical portion is further formed at a position where the partition wall 14c is provided in FIG. 4 and the like, and an opening is provided at a lower end of the central cylindrical portion.
  • openings may be connected to the outlet 16 for forming the spiral layer or may be independent.
  • FIG. 14A shows an example of the rotary charging cylinder capable of filling shown in FIG. Fig. 14B is a cross-sectional view at the XIVB-XIVB 'position in Fig. 14A (wall thickness is omitted for simplicity).
  • a reducing agent powder outlet 16 is provided on the bottom surface of the rotary charging cylinder 14b for alternate filling such as spiral alternate filling.
  • an opening is provided on the lower side surface of the rotary charging cylinder 14b to form a reducing agent powder outlet 16a for the outer peripheral part.
  • a reducing agent powder outlet 16b for the shaft center is provided on the bottom surface of the rotating loading cylinder 14b at the shaft center position, and a part of the reducing agent powder is guided by the partition wall 14d. It has become.
  • the bottom layer usually forms only a layer of reducing agent powder (and limestone), ensuring the reduction of the bottom iron oxide layer, and the reaction vessel and iron oxide layer. It is preferable to prevent seizure.
  • It can be formed by means such as stopping.
  • Such changes in the layer thickness include, for example, the rotation speed, the rising speed, It can be realized by adjusting any two or more of the opening degrees of the outlets 15 and 16.
  • the opening degree of the outlets 15 and 16 is controlled through gate opening / closing control, stable operation can be ensured without inducing gas diffusion resistance, prolonging the reduction time, and reducing production volume. It is preferable because it can be realized.
  • the layer thickness continuously or intermittently in the height direction of the vertical reaction vessel 11, for example, at the bottom, middle, or near the top. It does not preclude a variety of applications.
  • an application form in which the thickness of the iron oxide layer is increased in an upper part where the progress of reduction tends to be fast may be considered.
  • the thickness of the oxide layer and the reducing agent layer deposited spirally is preferably about 5 mm or more in each layer, and the sum of the two layers is preferably about 10 mm or more. More preferably, it is 40 or more thighs. If the layer thickness is excessively small, an unsteady portion tends to occur due to the fluctuation of the layer thickness.
  • a more preferred lower limit is about 10 mm or more for each layer, and about 30 mm or more for each layer.
  • the thickness of each layer is about 100 mm or less, and the sum of each layer is about 200 thigh or less.
  • a more preferable upper limit is about 80 mm or less for each layer, and about 150 or less for each layer.
  • the layer thickness ratio between the iron oxide layer and the reducing agent layer is generally not represented by the thickness but by the amount of carbon and the amount of oxygen (molar ratio). Suitable ratios will be described later.
  • the above-described raw material charging apparatus is an example.
  • the raw material charging apparatus has an insertion part that can be vertically moved and rotated. Is provided so as to rotate with the rotation of the inlet portion, and is inserted into the reaction vessel and raised while rotating the inlet portion, so that the iron oxide powder has a double helix from the outlet. Any structure may be used as long as it can deposit and fill the reducing agent powder.
  • the insertion portion is advantageously cylindrical, but is not limited to this.
  • a cylindrical body having a sectional shape such as a fan shape, a star shape, or a chrysanthemum shape depending on the shape of the reaction vessel may be used.
  • the storage section does not need to be formed of a partition plate, and its shape and position are arbitrary. It is not necessary that the iron oxide powder container and the reducing agent powder container have the same volume.
  • a fixed or movable guide plate, a holding plate, or the like is preferably provided around the discharge ports 15 and 16 in order to guide the raw material powder to be filled from the discharge ports in a target direction.
  • the iron oxide powder may be iron ore or steel. It is preferable to use, as a powder, iron oxide such as a mill scale generated in the hot rolling step. Also, in the so-called pickling process of removing oxides and the like on the surface of steel with an acid such as hydrochloric acid, waste acid (pickling waste liquid) is generated, and the pickling waste liquid is obtained by roasting or the like. Iron oxide powder is also preferred as the iron oxide powder. The preferred average particle size of these iron oxide powders is about 0.05 mm to about 10 cm.
  • finer iron oxide powder such as hematite powder having a specific surface area of 2 m 2 / g or more and a grain size of 0.01 ⁇ m or more industrially controlled, may be used in the above mill scale or iron ore. It is preferable to use the powder mixed with such a powder as it improves the quality of sponge iron.
  • a so-called carbonaceous powder containing carbon is used as the reducing agent powder.
  • the carbonaceous powder coatus powder, charcoal (a kind of volatile coal), coal powder (preferably non-coking), anthracite powder, charcoal powder and the like are suitable. From the viewpoint of reduction efficiency, the amount of carbon in the carbonaceous powder is preferably 60% or more.
  • a suitable average particle size with the reducing agent powder is also about 0.05 ⁇ to about 10 bandages.
  • the iron oxide powder 12 and the reducing agent powder 13 are placed in the reaction vessel 11 in the raw material charging apparatus 14 shown in FIGS. Fill alternately with a spiral.
  • the reaction vessel 11 for example, it is preferable to use a cylindrical reaction vessel made of SiC called sagar.
  • the shape of the reaction vessel 11 is not limited, but a cylindrical shape seems to be the most advantageous. Although there is no particular limitation on the dimensions of the reaction vessel, in the case of a cylindrical shape, the inner surface has a cross-sectional diameter of about 200 mm to about 800 mm and a height of about 100 mm to about 2000 strokes. It is suitable.
  • the reaction vessel 11 filled with iron oxide powder 12, reducing agent powder 13, and limestone or the like used as required is then loaded in a baking furnace such as a tunnel furnace while being loaded on a bogie or the like.
  • the raw material filled in the container is heated together with the container for a predetermined time for reduction.
  • This reduction is called crude reduction, and the target purity (the content of metallic iron in the reduced sponge iron) depends on the use of the reduced iron powder, but a high purity of at least about 90% mass S is required. It is about 97 mass% or more for the intended use. There is no upper limit to the purity target, but the purity that can be achieved at an acceptable cost is currently about 99.5 maSS % at maximum.
  • the preferred lower limit of the heating temperature is about 1000.
  • the preferred upper limit of the heating temperature is 1300 ° C. The preferred heating temperature is therefore in the range of 1000-1300 ° C.
  • the reaction vessel 11 When a tunnel furnace is used as a firing furnace, the reaction vessel 11 (and the iron oxide inside), which is placed on a carriage and moves inside the firing furnace, first moves through a pre-tropical region where the temperature gradually increases for 24 hours. (Preferably 20 hours or more, 28 hours or less), and a firing zone at about 1000 ° C to about 1300 for about 60 hours (preferably 36 hours or more, more preferably 56 hours or more) , And preferably 72 hours or less, more preferably 64 hours or less. Thereafter, the reduction treatment is completed through a cooling zone region in which the temperature gradually decreases (preferably, passing through 20 to 28 hours).
  • a pre-tropical region where the temperature gradually increases for 24 hours. (Preferably 20 hours or more, 28 hours or less), and a firing zone at about 1000 ° C to about 1300 for about 60 hours (preferably 36 hours or more, more preferably 56 hours or more) , And preferably 72 hours or less, more preferably 64 hours or less.
  • the reduction treatment is completed through a cooling zone
  • the inlet temperature in the pre-tropical zone and the outlet temperature in the cooling zone are about 200 ° C (about 20 ° C to about 400 ° C) .
  • the outlet temperature in the pre-tropical zone and the inlet temperature in the cooling zone are Approximately 900 ° C (firing zone temperature-450 ° C-firing zone temperature-about 50 ° C) Force It is preferable from the viewpoint of protection of the reaction vessel (refractory).
  • FIG. 7 shows an example of the external shape of sponge iron obtained by the method of the present invention (the upper and lower ends are omitted).
  • the height (axial direction) of the sponge iron ingot obtained is large, but there is no restriction on the size of the reaction vessel or the decrease in thermal efficiency due to the large firing furnace when the height of the reaction vessel is increased.
  • the size is preferably about 2000 mm or less.
  • high-purity sponge iron having a purity of 97 mass% or more can be obtained.
  • the purity is 97 ma SS % or more, it is advantageous in guaranteeing the product characteristics of sintered parts such as mechanical parts and magnetic materials, or reduced iron powder used as powder.
  • the method of the present invention has advantages other than purity, the purity is not limited to a method for producing high-purity sponge iron of 97 mass% or more.
  • the sponge iron produced is separated from the reaction vessel 11 and removed from the reducing agent.
  • the sponge iron taken out of the reaction vessel 11 is then coarsely pulverized, usually to about 150 ni or less, for further reduction, thereby obtaining coarse reduced particles.
  • the coarsely reduced particles are charged into a finishing reduction furnace in a reducing atmosphere and subjected to finish reduction, and are further pulverized into reduced iron powder.
  • the ratio of the amount of iron oxide and the amount of reducing agent (solid reducing agent) when performing the above-mentioned spiral alternating filling, particularly the amount of oxygen in the iron oxide is required.
  • the ratio of the amount of carbon in the reducing agent has already been described together with the formula (2).
  • carbon content / oxygen content (molar ratio) 1. 0.
  • a larger amount of carbon than the amount of oxygen in iron oxide is required as a reducing agent.
  • the reduction ratio target purity of sponge iron
  • the reduction ratio is 90 mass% or more for metallic iron, and preferably 97 mass% or more.
  • the present inventors investigated the relationship between the carbon amount / oxygen amount (molar ratio) and the required reduction time in the spiral alternating filling method of the present invention by the following experiment.
  • the inner diameter of the reaction vessel used for the experiment was 370, and the filling height was 1400 mm.
  • the same iron oxide powder and reducing agent powder as those used in Example 1 described later were used.
  • the reduction treatment was performed at a maximum temperature of 1150 ° C.
  • the reduction time refers to the holding time at this maximum temperature.
  • Figure 9 shows how to obtain carbon content (molar ratio) and oxygen content in iron oxide in a plurality of horizontal alternating filling systems with different iron oxide layer thicknesses and to obtain 97 mass% iron (metallic iron) sponge iron. It is a graph which shows the relationship with the required reduction time.
  • the molar ratio is the ratio between the total iron oxide and the total reducing agent in the container.
  • FIG. 9 an example of the result of performing the same reduction treatment using the conventional cylindrical filling method (FIG. 1) is indicated by a circle (conventional example: Association).
  • this conventional method the thickness of the iron oxide layer was set to 55 and the amount of carbon / oxygen (molar ratio) was set to 2.2, but the reduction time was as long as 53 hours.
  • the thickness of the iron oxide layer was 15 (Experimental example 4: X mark), 20 (Experimental example 3: triangle mark), 30 mm (Experimental example 2: square mark (, Reduction experiments were performed for each case of 50 mm (Experimental example 1: rhombus mark ( ⁇ )).
  • the reduction time was shortened by reducing the thickness of the iron oxide layer. It was found that when the molar ratio was 1.2 or more, the reduction time became almost constant, and it was not necessary to secure a molar ratio of 2.0 or more as in the conventional case.
  • the spiral method can fill more iron oxide, for example, in this example, the spiral alternate filling method with an iron oxide layer thickness of 30 oz. Is filled with almost the same amount of iron oxide as the conventional cylindrical filling method. Have been. Therefore, the effects of the present application are sufficiently obtained in the experimental range of the molar ratio of 1.1 or more. In addition, if the molar ratio is 1.15 or more, the degree of prolongation of the reduction time is relatively small. Then, it is roughly effective.
  • the thickness of the iron oxide layer was 15 mm, the reduction time was almost constant at a molar ratio of 1.6 or more. The experiment was repeated under different conditions. As a result, it was found that the following relationship was satisfied when the thickness of iron oxide was less than 20 corruption.
  • the filling is performed so as to satisfy the above formula (3) . If the thickness of the oxidized iron layer is determined, the reduction time is determined and the operation is stabilized. However, the quality of sponge iron obtained is also stable. However, this relationship may be due to the fact that the thickness of the reducing agent layer becomes thinner, making it difficult to control the layer thickness stably, rather than to the essential relationship based on the reaction rate. It is expected that the above restrictions will be relaxed with the improvement.
  • the reducing agent layer is provided on the outer peripheral portion or the axial center portion of the container, only the amount of carbon and the amount of oxygen (molar ratio) in the entire container are regulated, and the reducing agent layer is added. The present inventors thought that it was necessary to investigate whether or not the thickness ratio with the iron oxide layer was sufficient as a guide for designing.
  • the inventors of the present invention set the required amount of the reducing agent in the portion of the raw material deposition layer (cylindrical intermediate portion) in the reaction vessel as a ratio of the thickness of the iron oxide and the reducing agent to some tendency in the reduction behavior.
  • the molar ratio of the amount of carbon in the reducing agent to the amount of oxygen in the iron oxide charged in the reaction vessel was kept constant at 1.2, and the vicinity of the wall (outer periphery) and the center of the axis of the reaction vessel were An experiment was conducted in which the amount of carbon in the reducing agent was changed with respect to the amount of oxygen in the iron oxide in the portion where the reducing agent was removed, that is, the portion where both were deposited in layers.
  • Fig. 10 shows a schematic cross-sectional view of the filling method used in the experiment.
  • the reduction layer covering the upper and lower surfaces of the cylindrical intermediate portion also It shall be included in the intervening part.
  • the raw materials and experimental conditions were the same as in the previous experiment.
  • FIG. 11 shows the change in the reduction time with respect to the carbon content and the oxygen content (molar ratio) at several different iron oxide layer thicknesses.
  • the circles (hata) in the figure are the values when the laminating method shown in Fig. 8 is used without providing the reducing agent layer on the outer periphery and the axial center.
  • the thickness of the iron oxide layer was 60 mm (Experimental example 11: diamond-shaped mark (decree)), 50 mm (Experimental example 12: Square mark (solid)), 30 mm (Experimental example)
  • the reduction was carried out at four levels of 13: triangle mark and 20 mm (Example 14: X mark).
  • 13 triangle mark and 20 mm (Example 14: X mark).
  • the reduction time is shortened by reducing the thickness of the oxidized iron layer, and the reduction time becomes almost constant when the amount of carbon / oxygen (molar ratio) becomes 0.5 or more. It was found that the reduction time was prolonged when the ratio was less than 0.5.
  • the cylindrical intermediate portion which is the portion of the spirally packed layer (alternately filled portion), is required. It was found that it is preferable to set the amount of carbon and the amount of oxygen (molar ratio) to 0.5 or more.
  • the molar ratio of the amount of carbon in the reducing agent to the amount of oxygen in the iron oxide in the cylindrical intermediate portion was kept constant at 0.8, and the reduction to be filled in the axial center portion and the outer peripheral portion of the reaction vessel was performed.
  • An experiment was performed in which the amount of the agent was changed. The results of the experiment are shown in Fig. 12 as a graph of the change in reduction time with respect to the total amount of carbon Z and the total amount of oxygen (molar ratio) in the entire reaction vessel. The symbols used correspond to the same plate thickness as in FIG.
  • the effect of the present invention can be sufficiently obtained with less than 1.2 and more than 1.1, preferably more than 1.15.
  • these raw materials are put into the reaction vessel 11.
  • the charging ratio of the iron oxide and the reducing agent as a whole in the reaction vessel 11 including the axial center portion, the outer peripheral portion, and the cylindrical intermediate portion is the total amount of the reducing agent with respect to the oxygen amount in the iron oxide.
  • the molar ratio of the amount of carbon is preferably 1.1 or more, more preferably 1.15 or more, and even more preferably 1.2 or more.
  • the thickness ratio between the iron oxide and the reducing agent in the cylindrical intermediate portion in which the raw material was filled into a spiral layer is shown by the molar ratio of the amount of carbon in the reducing agent to the amount of oxygen in the iron oxide. In this case, it is preferable that the value be 0.5 or more.
  • each experimental level as shown in Table 1 was set, and an oxide layer and a reducing agent layer were filled in a reaction vessel 11 made of SiC by a method conforming to each of the above levels, and a crude reduction treatment was performed. Then, sponge iron was manufactured. That is, levels A to C and H in the table are examples of the cylindrical filling method shown in FIG. 1, levels D to F are examples of the spiral alternating filling method shown in FIG. 6, and level G is an example of the horizontal alternating filling method.
  • the 20% increase in the filling amount for levels A and D means that the total thickness of the mill scale in the reaction vessel 11 increases by 20%
  • the 40% increase in the filling amount for levels B and E Means that the total thickness of the mill scale in the reaction vessel 11 is increased by 40% in total
  • the 60% improvement in the filling amount of the levels C and F means that the mill scale in the reaction vessel 11 is This means that the total layer thickness increases by a total of 60%.
  • Table 2 shows the details of each condition. Under these conditions, each level filled was examined and the filling method, suitable layer thickness and purity were determined. In this experiment, the iron oxide, the main raw material, was prepared by drying the mill scale generated in the hot rolling process, pulverizing it, and sieving it.
  • the obtained mill scale powder was used (the average particle size was confirmed to be between 0.05 mm and 10 mm).
  • a mixture of limestone powder and carbonaceous powder was used as a reducing agent as an auxiliary material.
  • the carbonaceous powder used was an anthracite with a ratio of about 7: 3, and the average particle size of coke was 85 m and the average particle size of anthracite was 2.4 mm.
  • the limestone powder added limestone powder having an average particle size of 80 ⁇ to the reducing agent powder by about 14 mass%.
  • the reaction vessel is a cylindrical vessel with an inner diameter of 400.
  • the iron oxide layer has an outer diameter of 320 thighs, the thickness shown in Table 2 and the height (axial direction) of about 1500 mm. Filled so that In the case of spiral filling, a reducing agent layer with a diameter of about 80 mm at the center of the shaft and a thickness of about 15 at the outer periphery is formed. Direction) about 1500 As a packed layer.
  • the carbon content / oxygen content (molar ratio) in the container and in the cylindrical intermediate portion were 1.2 or more and 0.5 or more, respectively. table 1
  • the horizontal alternating filling was performed for the purpose of confirming the filling efficiency. That is, using the same raw material charging apparatus as that used for the helical alternating charging, the rotary charging cylinder is swirled while charging only one of the iron oxide powder and the reducing agent powder, and the rotary charging is performed. After the cylinder was raised, the procedure of filling the other powder in the same manner was repeated. As shown in Table 1, continuous filling is not possible in horizontal alternating filling, and the filling time is longer than in cylindrical filling and spiral alternating filling. In the case of spiral alternating filling, the filling time can be shortened most.
  • Each reaction vessel 11 filled with the raw materials based on each experimental level was loaded on the same bogie and charged into a tunnel furnace.
  • the loaded trolley passed through the pre-tropical zone (200 ° C to 900 ° C) in about 1 day and passed through the firing zone (at 1150) in about 3 days. After that, it passed through the cooling zone (200 ° C to 900 ° C) for about one day, the bogie was discharged from the tunnel furnace, and the sponge iron was taken out of the vessel and its purity was measured.
  • Each sponge iron weighed 200 kg or more.
  • the purity of sponge iron is determined by converting the metallic Fe content from the chemical components determined by oxygen analysis. I did.
  • Figure 13 shows the results. As shown in Fig. 13, in the case of spiral alternating filling (hatching), reduction is good and the purity is 97 mass% or 98 mass% when the iron oxide layer thickness is up to 60 ⁇ , that is, up to 40% in productivity improvement allowance. High-purity sponge iron has been obtained, indicating that productivity can be adjusted by layer thickness up to 40% increase compared to the conventional method.
  • the aim is to improve productivity by 20%, the layer thickness will reach 75 mm, and the purity will be 95.65 mass%, so it is impossible to improve productivity as much as spiral alternating packing.
  • Sponge iron was produced by the methods of Invention Examples 1 to 5 and Conventional Example 1 below.
  • the filling method was substantially that shown in Fig. 3A, and the carbon content / oxygen content (molar ratio) was 1.2 or more.
  • the reaction vessel was spirally and alternately filled at an equal thickness ratio where the layer thickness of iron oxide was 50 mm and the total thickness of the reducing agent was 50 mm.
  • the reaction vessel used was a cylindrical vessel with a height of 1.8 m and an inner diameter of 40 cm.
  • As the reducing agent powder a mixture of limestone of 16 mass% (average particle size of about 95 m) mixed with a coatus powder having a particle size of less than 1 bun was used.
  • the iron oxide powder used was a mill scale pulverized to less than 0.1 thigh (which was pulverized, sieved, and adjusted so that particles passing through 60 111 mesh became about 40 mass%).
  • the average particle size of both mill scale powder and coke powder is 0.05 mn!
  • the raw material charging device shown in Fig. 4A was used.
  • the opening height of the iron oxide powder outlet 15 was set to 50 mm, and the opening height of the reducing agent powder outlet 16 was set to 50 mm.
  • the rotating cylinder 14b was filled at a rotational speed of 4 revolutions per minute for 4 revolutions and a rising speed of 400 bpm.
  • the reaction vessel was spirally and alternately filled with an equal thickness ratio of iron oxide layer thickness of 35 mm and reducing agent layer thickness of 65 mm.
  • the opening height of the iron oxide powder outlet 15 is 35 hidden
  • the opening height of the reducing agent powder outlet 16 is adjusted to 65 thighs
  • the rotation speed of the rotary charging cylinder 14 b is set to 4
  • the rotation and the ascending speed were filled as 400 marauders Z minutes.
  • This example is an example in which the reaction container is spirally and alternately filled at an equal thickness ratio where the thickness of the iron oxide is 60 and the thickness of the reducing agent is 40.
  • the reaction vessel, raw material powder and raw material charging apparatus used were the same as in Invention Example 1, and were charged with iron oxyacid and a reducing agent.
  • the opening height of the iron oxide powder outlet 15 is set to 60 mm
  • the opening height of the reducing agent powder outlet 16 is adjusted to 40 mm
  • the rotation speed of the rotary charging cylinder 14 b is increased by 4 minutes.
  • the rotation and the ascending speed were filled at 400 o'clock.
  • the reaction vessel is spirally filled alternately at an equal thickness ratio with the layer thickness of iron oxide being 25 mm and the layer thickness of the reducing agent being 25 mm.
  • the used reaction vessel, raw material powder and raw material charging device were the same as in Invention Example 1, and were charged with iron oxide and a reducing agent. Adjust the opening height of the iron oxide powder outlet 15 to 25 mm, adjust the opening height of the reducing agent powder outlet 16 to 25 thighs, and adjust the rotation speed of the rotary charging cylinder 14 b to 4 The rotation and ascending speed were filled at 200 strokes Z.
  • This example shows an example in which the thickness of the iron oxide layer is 57.5 mm and the reducing agent is 50 mm in the reaction vessel.
  • the same reaction vessel, raw material powder and raw material charging apparatus as those of Invention Example 1 were used, and were charged with iron oxide and a reducing agent.
  • the opening height of the iron oxide powder outlet 15 is 57.5 mm
  • the rotating charging cylinder 14b with the opening height of the reducing agent powder outlet 16 adjusted to 50 thighs was filled at a rotation speed of 4 rotations per minute and a rising speed of 430 mm / min.
  • a cylindrical vessel was filled based on the conventional method shown in Fig. 1.
  • the same reaction vessel as in Example 1 was used, and iron oxide was formed into a cylindrical shape with a thickness of 57.5 mm and an outer diameter of 310 mm ⁇ .
  • a powder layer was formed, and the reducing agent powder was filled around the iron oxide layer (including the inside of the cylinder).
  • the same reaction vessel and raw material powder as those of Invention Example 1 were used.
  • the amount of carbon in the container and the amount of oxygen (molar ratio) were about 2.2.
  • the reduction treatment was performed using a tunnel furnace, and the time required for the reduction was examined.
  • the time required for reduction refers to a retention time in a calcination zone (1150 ° C) for obtaining sponge iron having a purity of 95% or more.
  • the productivity per hour is the value obtained by dividing the weight of iron oxide charged by the time required for reduction.
  • Invention example 1 Invention example 2 Invention example 3 Invention example 4 Invention example 5 Conventional example 1 Filling method Spiral alternating filling Cylindrical filling Iron oxide layer thickness
  • reducing agent powder 13 (coke powder) was deposited on the bottom of the reaction vessel 11 to a thickness of 30 strokes.
  • the rotating charging cylinder 14 b having the iron oxide powder discharge port 15 and the reducing agent powder discharge port 16 is rotated upwards while rotating, so that the iron oxide powder having a thickness of 40 mm is obtained.
  • 1 2 (mill case) and a reducing agent powder 13 having a thickness of ⁇ were alternately and continuously filled in a spiral manner in the reaction vessel.
  • the upper end of the reaction vessel 11 was filled with reducing agent powder (Cotas powder) 13. In this filling, the molar ratio of the amount of carbon in the reducing agent to the amount of oxygen in the oxidized iron was 1.6.
  • the other conditions were the same as in Example 2.
  • the filling schedule is as follows.
  • the reducing agent powder (coats powder) 3 is first filled into the bottom of the reaction vessel 11 to a thickness of 50 mm.
  • Iron oxide powder (mill scale) 12 was cut out to a thickness of 40 mm and deposited thereon, and was repeatedly filled up to the upper end of the reaction vessel 11 according to such a filling schedule.
  • the upper end of the reaction vessel 11 is filled with a reducing agent powder (copper powder) 13.
  • the molar ratio of the amount of carbon in the reducing agent to the amount of oxygen in the iron oxide was 1.6.
  • the bogie speed is 1.3 mZhr, 18% faster than the conventional example of 1. lm / hr.
  • the amount of mill scale filled was 220 kg 16% larger than the container, 256 kgZ container. As a result, productivity increased by 38%.
  • the amount of heat required for heating per unit mass of sponge iron was reduced by about 30% from 11470 MJ / ton to 8820 MJ / ton.
  • the sponge iron was manufactured using the raw material charging device shown in Fig. 5.
  • the raw materials used are the same as in Example 2.
  • the cutout 14c was semicircular (sector-shaped with a central angle of about 180 °).
  • the reaction vessel was 400 thigh in diameter and 2,000 mm in height, and the rotary charging cylinder was inserted without intentionally removing the convex part (maximum height of about 20 mm) due to the welded reaction product slag.
  • the outer shape of the rotating charging cylinder main body was 310 mm (77.5% of the inner diameter of the container), and the diameter of the imaginary circle in the plane cross section of the cutout was 360 mm (90% of the inner diameter of the container).
  • the tip of the rotary charging cylinder is slightly in contact with the convex part and the reaction vessel, it can be moved to the opposite side, so that it can be inserted without problems to the lowermost end of the reaction vessel, and there is no problem in inserting the raw material powder.
  • the anti-reaction container vessel, the iron oxide powder 260kg could filled without problems (layer of iron oxide thickness: 50 strokes, reducing agent layer thickness: 30 thigh) 0
  • the iron oxide powder used as the main raw material was mill scale or iron ore powder. Was appropriately pulverized. Further, as the reducing agent powder, at least one kind of a single substance or a mixture of a powder of coal, a powder of charcoal, a powder of charcoal and the like was used by appropriately pulverizing and adjusting the particle size. Each has an average particle size of about 70 ⁇ ! 9090 m.
  • the equipment has a rotating charging cylinder as shown in Fig. 14.At the start of operation, first, a reducing agent powder 13 is spread on the bottom of the reaction vessel 11 and iron oxide powder 12 is reduced on top of it. The agent powder 13 is charged alternately in a spiral layer at the same time while rotating the swirl charging cylinder 14 b of the raw material charging device 14, and is alternately charged into the spiral layer. I went up. Then, the top of the reaction vessel 11 was filled with a reducing agent powder 13 and covered. In order to prevent the removal of the product (sponge iron) and the adhesion of the sponge iron to the container, and to enhance the diffusion efficiency of the reaction gas, the outer periphery of the shaft center and the vicinity of the container wall is a reducing agent. Only filled.
  • a refractory reaction vessel 1 (inner diameter 400, length 1800 mm) contains an iron oxide layer with an outer diameter of 310 mm, an inner diameter of 200 mm, and a length of 1600 (the other parts are reducing agents) was charged.
  • the amount of carbon in the container and the amount of oxygen (molar ratio) were set to 2.2, and the reduction time (1150 ° C, the same applies hereinafter) with the target purity of 97.0 ma SS % was 53 hours.
  • the iron oxide has an outer diameter of 390 mm, an inner diameter of 60 mm, thickness 6 0 Yuzuru spiral, the other as a similar spiral in the reducing agent layer thickness 45 mm, Both were filled at the same time.
  • the molar ratio of the carbon content and the oxygen content of the iron oxide and the reducing agent in the cylindrical intermediate portion was 0.8, and the carbon content and the oxygen content (molar ratio) of all the filling materials were 1.2.
  • the filling amount was first increased by 35% compared to Conventional Example 3, but the reduction time was only 60 hours. The sponge iron did not adhere to the inner surface of the container and was easily removed.
  • a spiral spiral filling method is used.
  • the iron oxide is a spiral with an outer diameter of 365 mm, an inner diameter of 100 mm, and a layer thickness of 60 mm.
  • the reducing agent has a layer thickness of 28 mm. Both were filled at the same time.
  • the molar ratio of the carbon content and the oxygen content of the oxidizing iron and the reducing agent at the cylindrical intermediate portion was 0.5, and the molar ratio to the total filling was 1.2.
  • the filling amount increased by 35% compared to Conventional Example 3,
  • the payback time stopped at 59 hours.
  • the sponge iron did not adhere to the inner surface of the container and was easily removed.
  • the spiral alternating filling method is used.
  • the iron oxide is a spiral with an outer diameter of 350 mm, the inner diameter is 100 mm, and the layer thickness is 60 mm. Both were filled at the same time.
  • the sponge iron did not adhere to the inner surface of the container and was easily removed.
  • the reduction time was almost the same as in Conventional Method 3 even if the increase was considered.
  • iron oxide is a spiral with an outer diameter of 375 mm, an inner diameter of 100 mm, and a layer thickness of 60 mm. Both were charged at the same time.
  • the molar ratio of the carbon content of the iron oxide and the reducing agent and the oxygen content of the oxygen in the cylindrical intermediate part was 0.8, and the molar ratio to the total charge was 1.5.
  • the filling amount increased by 20% compared to Conventional Example 3 and stopped at a reduction time of 59 hours.
  • the sponge iron did not adhere to the inner surface of the container and was easily removed.
  • Inventive Example 7 in which the amount of carbon / oxygen (molar ratio) in the container is relatively low, has a higher production efficiency per reduction time, but also in this example, better results are obtained than in the prior art.
  • a spiral spiral filling method is used.
  • the iron oxide is a spiral with an outer diameter of 395 mm, an inner diameter of 40 mm, and a layer thickness of 60 mm. Both were filled simultaneously as a spiral.
  • the molar ratio of carbon / oxygen in the middle part of the cylinder was 0.8, the molar ratio to the total charge was 1.1, and the charge was 40% higher than in Conventional Example 3, but the reduction time was 78 hours.
  • the sponge iron did not adhere to the inner surface of the container and was easily removed. In this example, the reduction time was slightly longer, and the reduction time was almost the same as in Conventional Method 3 even if the increased amount was considered. Table 5 summarizes the above results. Table 5
  • Iron oxide :: Amount (relative ratio) / Reduction time (h)
  • sponge iron can be manufactured while ensuring high productivity and quality (for example, purity of 97% or more) by employing the spiral alternating filling technique.
  • high productivity and quality for example, purity of 97% or more
  • the raw material filling structure in the reaction vessel can be changed arbitrarily, easily and quickly, it is easy to adjust the quality “quantity” reduction time and the like, and it is possible to realize a remarkable improvement in production efficiency. Consequently, high-purity sponge iron can be produced at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

A process for producing sponge iron, which comprises charging an iron oxide powder and a reducing agent powder into a reaction vessel so that these powders are alternately stacked spirally and reducing the iron oxide. In the process, the efficiency of gas reaction is satisfactory, and high quality and high productivity are attained. The process is advantageous also in production adjustment, for example, because the amounts of the feed materials being charged can be regulated without being limited by reduction time. Also provided is a charging apparatus for the production. More preferably, the ratio of the carbon amount in the reducing agent to the oxygen amount in the iron oxide in the reaction vessel is 1.1 or higher by mole.

Description

明 細 書 海綿鉄おょぴ還元鉄粉の製造方法、 海綿鉄、 および装入装置 技術分野  Description Method for manufacturing sponge iron reduced iron powder, sponge iron, and charging equipment
本発明は、 鉄粉の製造原料として用いられる海綿鉄の製造方法、 および前記方法で 製造された海綿鉄を用!/、た還元鉄粉の製造方法に関するものである。  The present invention relates to a method for producing sponge iron used as a raw material for producing iron powder, and a method for producing reduced iron powder using sponge iron produced by the method.
前記還元鉄粉は、 粉末のままで使用される他、 機械部品や磁性材料などの焼結製品 の原料としても用いられる。  The reduced iron powder is used not only as powder but also as a raw material for sintered products such as mechanical parts and magnetic materials.
本発明はまた、 前記海綿鉄の製造方法に用いられる海綿鉄製造用原料の装入装置、 および同製造方法により製造可能な高純度海綿鉄にも関するものである。  The present invention also relates to an apparatus for charging a raw material for producing sponge iron used in the method for producing sponge iron, and a high-purity sponge iron that can be produced by the method.
なお、 反応容器への原料の装入 (charge) は、 慣用的に原料の充填 (ただし英訳に 際しては chargeと訳している) と呼ばれるので、 本明細書でもその例に倣い、 以後、 「充填」、 「充填装置」 等の語を主に用いることとする。 背景技術  The charge of the raw material into the reaction vessel is conventionally referred to as charging the raw material (however, translated into charge in the English translation). Words such as "filling" and "filling device" are mainly used. Background art
一般的な海綿鉄の製造方法を図 1 Aおよぴ図 1 Bに示す。 ここで図 1 Aは容器内の 原料の充填状態を示す断面図であり、 図 1 Bはその水平断面図である。  A typical method for producing sponge iron is shown in FIGS. 1A and 1B. Here, FIG. 1A is a cross-sectional view showing the state of filling of the raw material in the container, and FIG. 1B is a horizontal cross-sectional view thereof.
海綿鉄を製造するにあたつては、 下面に蓋の取り付けが可能な円筒状の耐火物製反 応容器 1 (サガー) の中に、 酸化鉄粉末 2および還元剤粉末 3とを同心円筒状に層別 充填し、 トンネル炉などを用いて 1050〜1200での温度に容器ごと加熱 (間接加熱) す る。 前期加熱により、 前記反応容器 1内の酸化鉄粉末 2は還元 (粗還元) されると共 に焼結され、 海綿状の金属鉄、 すなわち海綿鉄となる。 ここで、 酸化鉄粉末 2としてはミルスケールを粉砕した粉末や鉄鉱石粉末などが用 いられる。 また、 還元剤粉末 3としては、 コークス粉ゃ石炭粉などが用いられる。 な お、 還元剤粉末 3には必要に応じ、 石灰の粉末等が添加される。  In producing sponge iron, iron oxide powder 2 and reducing agent powder 3 are concentrically placed in a cylindrical refractory reaction vessel 1 (sagar) with a lid attached to the lower surface. Then, the whole container is heated (indirect heating) to a temperature of 1050 to 1200 using a tunnel furnace or the like. By the heating in the above period, the iron oxide powder 2 in the reaction vessel 1 is reduced (coarsely reduced) and sintered together to form sponge-like metallic iron, that is, sponge iron. Here, as the iron oxide powder 2, powder obtained by pulverizing a mill scale, iron ore powder, or the like is used. Further, as the reducing agent powder 3, coke powder / coal powder or the like is used. Note that lime powder or the like is added to the reducing agent powder 3 as needed.
以上の技術は、 「鉄鋼便覧」第 3版第 5卷第 457頁〜第 459頁(とくに第 457頁右欄第 10〜13行目) ゃ特開 2002 - 241822号などに開示されて V、る。 図 1 A, Bに示されるような従来の海綿鉄製造技術にあっては、 酸化鉄粉末 2は反 応容器 1内に円筒状に充填され(以下円筒状酸化鉄層と呼ぶ)、還元剤粉末 3がこの円 筒状酸化鉄層のまわりを取り囲むよう充填されている。 さらに、 該円筒状酸化鉄層の 上下ならぴに中央部にも還元剤粉末 3が充填されている。 The above technology is disclosed in “Steel Handbook”, 3rd edition, Vol. 5, pp. 457 to 459 (especially, pp. 457, right column, lines 10 to 13). You. In the conventional sponge iron production technology as shown in FIGS. 1A and 1B, iron oxide powder 2 is filled into a reaction vessel 1 in a cylindrical shape (hereinafter referred to as a cylindrical iron oxide layer), and a reducing agent is used. Powder 3 is filled so as to surround the cylindrical iron oxide layer. Further, the reducing agent powder 3 is filled in the upper and lower portions of the cylindrical iron oxide layer and also in the central portion.
その結果、 原料の充填後に反応容器 1が加熱されると、 まず、 一番初期の段階で、 還元剤の充填層の空隙部に存在する酸素が還元剤中の炭素と反応して生成する C o2 ガスや、還元剤に添加されている石灰石等が分解して生成する co2ガス力 還元剤の 中の炭素と(1)式のように反応し、 還元ガスである C Oガスを還元剤粉末 3の充填層 (還元剤層) 内で生成する。 ' As a result, when the reaction vessel 1 is heated after filling the raw materials, first, in the initial stage, oxygen present in the voids in the packed bed of the reducing agent reacts with carbon in the reducing agent to form C o and 2 gas, reacts as limestone or the like is added to the reducing agent and carbon in the co 2 gas force reducing agents generated by decomposition (1), the CO gas as a reducing gas reducing agent Generated in the packed bed of powder 3 (reducing agent layer). '
C + C 02→ 2 C O (1) 式 C + C 0 2 → 2 CO (1)
そして、 このようにして発生した C Oガスは、 還元剤層から酸化鉄粉末 2の充填層 (酸化鉄層) 内に達し、 次式 (2) ;  Then, the CO gas generated in this way reaches the packed layer (iron oxide layer) of the iron oxide powder 2 from the reducing agent layer, and the following equation (2):
F e On + n C O → F e + n C O (2) 式  F e On + n C O → F e + n C O (2)
の反応によって、 酸化鉄を還元するとともに、 co2(二酸化炭素)ガスを発生する。 さらに、その co2ガスは、一部が還元された酸化鉄層中を拡散して再び還元剤層に 達し、その層内で(1)式の反応により炭素を C Oガスに変える。 そして、 この生成し た C Oガスは再ぴ酸化鉄層に拡散し、未還元の酸化鉄と(2)式の反応を起こし、鉄を生 成するとともに co2ガスを生成する。 The reaction reduces iron oxide and generates co 2 (carbon dioxide) gas. Further, the co 2 gas diffuses partially through the reduced iron oxide layer, reaches the reducing agent layer again, and converts carbon into CO gas by the reaction of equation (1) in the layer. Then, CO gas this that generated diffuses into the re Pi iron oxide layer, causing a reaction of iron oxide and (2) of unreduced, iron generates the co 2 gas while generate.
その結果、 前記反応容器:!内に充填された酸化鉄粉末 2は、 (1)式と(2)式の反応が一 定時間ごとに繰り返されることによって、 全て還元されて鉄粉となる。 また、 この還 元反応と同時に、 還元された鉄同士の焼結も進行して、 円筒状の海綿鉄 (焼結体) と なる。 図 2に、 従来技術により得られる海綿鉄の外観形状 (下部は省略) を示す。 ここで、酸化鉄を全て還元するのに必要な C Oガスの量は、式 (2)から理論的にはモ ル比(= C Oガス中の炭素原子のモル数 /"酸ィヒ鉄中の酸素原子のモル数)で 1である。 したがって、 酸化鉄を全て還元するのに必要な還元剤の量は、 モル比 (=還元剤中の 炭素原子のモル数/酸化鉄中の酸素原子のモル数) で 1. 0である。 以下、還元剤中の炭 素原子のモル数/酸化鉄中の酸素原子のモル数を、 "炭素量 Z酸素量 (モル比)" と称 する 発明の開示 As a result, the reaction vessel:! The iron oxide powder 2 filled therein is reduced to iron powder by repeating the reaction of the equations (1) and (2) at regular intervals. Simultaneously with this reduction reaction, sintering of the reduced iron proceeds to form cylindrical sponge iron (sintered body). Figure 2 shows the appearance of sponge iron obtained by the conventional technology (the lower part is omitted). Here, the amount of CO gas necessary to reduce all the iron oxide is theoretically calculated from the equation (2) as the molar ratio (= mole number of carbon atoms in CO gas / " The number of moles of oxygen atoms) is 1. Therefore, the amount of reducing agent required to reduce all iron oxide is the molar ratio (= moles of carbon atoms in reducing agent / oxygen atoms in iron oxide) The number of moles of carbon atoms in the reducing agent / the number of moles of oxygen atoms in the iron oxide is hereinafter referred to as “carbon amount Z oxygen amount (molar ratio)”. Disclosure of the invention
〔発明が解決しようとする課題〕  [Problems to be solved by the invention]
上記の還元方法においては、 反応容器 1内で生成した C Oガスおょぴ c o2ガスの、 酸化鉄粉末 2や還元剤粉末 3の層内への拡散が、 還元反応の進行を律速する主な要因 と考えられる。 ところが、 図 1に示した充填構造をとる方法にあっては、 C Oガスお よび c o2ガスの拡散距離が大きく、還元に必要な時間が長くかかるという問題があつ た。 In the above reduction method, the diffusion of the CO gas and co 2 gas generated in the reaction vessel 1 into the layers of the iron oxide powder 2 and the reducing agent powder 3 is a main factor that controls the progress of the reduction reaction. It is considered a factor. However, in the method of taking a packed structure shown in FIG. 1, the diffusion distance of CO Gas and co 2 gas greatly there has been a problem that it takes a long time required for the reduction.
還元に長時間を要すると、 例えば、 加熱にトンネル炉を使用する工業生産規模の製 造工程では、 反応効率 (ガス利用効率) の低下を招き、 原料の充填から製品の抜き出 しまでに数日を必要として生産性の低下につながる。 またそれだけでなく、 還元に要 する加熱エネルギー消費も著しく大きくなる。  If the reduction takes a long time, for example, in a manufacturing process on an industrial production scale using a tunnel furnace for heating, the reaction efficiency (gas utilization efficiency) is reduced, and the time required from the charging of raw materials to the extraction of the product is reduced. It takes days and leads to reduced productivity. In addition, the heating energy consumption required for the reduction is significantly increased.
即ち、 図 1 A、 Bに示すような充填方式において、 製造する海綿鉄の量を増やすた めには酸ィ匕鉄粉末 2の層の層厚 (半径方向) を厚くする必要があるが、 そうすると、 還元時間が長くなる。 かといつて、 還元時間を短縮するために酸化鉄粉末 2の層の層 厚を薄くすると、 反応容器 1個当たり製造できる海綿鉄量が減少するため、 必ずしも 単位時間当たりの生産量の向上にはつながらない。  That is, in the filling method as shown in FIGS. 1A and 1B, it is necessary to increase the thickness (radial direction) of the layer of the oxidized iron powder 2 in order to increase the amount of sponge iron to be produced. Then the return time will be longer. However, if the thickness of the iron oxide powder 2 layer is reduced to shorten the reduction time, the amount of sponge iron that can be manufactured per reactor decreases, so it is not always necessary to increase the production per unit time. it dose not connect.
そのため、 生産量が最も大きくなる酸化鉄粉末 2の層の厚さと還元時間との組み合 わせは一義的に決まってしまい、 生産量に限界があるだけでなく、 生産量を調整する 自由度も小さいという間題があった。  Therefore, the combination of the thickness of the layer of iron oxide powder 2 and the reduction time that maximizes the production amount is uniquely determined, and not only is the production amount limited, but also the degree of freedom in adjusting the production amount is high. There was a problem of being small.
また、 図 1 A, Bのような充填方式では、 上記の反応で生成する C Oガスが、 密度 のより低い層である還元剤粉末 3の層の方を流れて反応容器 1外に抜ける傾向にある。 このため、 C Oガスが還元反応に効率よく寄与しない。  In addition, in the filling method as shown in Figs. 1A and 1B, the CO gas generated by the above reaction tends to flow through the lower density layer of the reducing agent powder 3 and flow out of the reaction vessel 1. is there. Therefore, the CO gas does not efficiently contribute to the reduction reaction.
また、 焼成段階で酸化鉄粉末 2の層が崩れないように、 反応容器 1と酸化鉄粉末 2 との間や円筒状酸化鉄層の内側に還元剤粉末 3を過剰に充填する必要がある。  In addition, the reducing agent powder 3 needs to be excessively filled between the reaction vessel 1 and the iron oxide powder 2 or inside the cylindrical iron oxide layer so that the layer of the iron oxide powder 2 does not collapse in the firing step.
これらの事情により、従来の方法では、還元剤粉末 3はモル比で 2. 0以上と多量に必 要であり、 還元剤の原単位が悪レ、という問題があつた。  Under these circumstances, the conventional method requires a large amount of the reducing agent powder 3 in a molar ratio of 2.0 or more, and has a problem in that the basic unit of the reducing agent is poor.
さらに、 円筒状酸ィ匕鉄層の下部が自重で膨らむことがある。 このため、 予定した還 元時間内では膨らんだ部分の酸化鉄の還元が充分に進行せず、 未反応部が残るという 問題もあった。 本発明の目的は、 従来技術が抱えている上述した各種の問題を有利に解決すること である。 すなわち本発明は、 生産性が高く、 生産量の調整が容易な海綿鉄の製造方法 を提案することを目的とする。 Further, the lower portion of the cylindrical oxidized iron layer may swell under its own weight. For this reason, there was also a problem that the reduction of the iron oxide in the swollen portion did not proceed sufficiently within the planned reduction time, and an unreacted portion remained. SUMMARY OF THE INVENTION An object of the present invention is to advantageously solve the above-described various problems of the related art. That is, an object of the present invention is to propose a method for producing sponge iron which has high productivity and whose production amount can be easily adjusted.
本発明の他の目的は、 上記製造方法の実施に当たって有利に用いられる、 原料の反 応容器内への充填装置を提案することにある。  Another object of the present invention is to propose a device for filling a raw material into a reaction vessel, which is advantageously used in carrying out the above-mentioned production method.
〔課題を解決するための手段〕 [Means for solving the problem]
本発明者らは、 鋭意研究を続けた結果、 酸化鉄粉末および還元剤粉末の反応容器内 への充填形態を工夫することにより上掲の課題を有利に解決できることを見い出し、 本発明を完成した。 すなわち、 第 1の本発明は、 反応容器内に酸ィ匕鉄粉末と還元剤粉末とを充填する充 填工程と、 前記反応容器の外側から加熱して前記反応容器内の前記酸化鉄粉末を還元 The present inventors have conducted intensive research, and as a result, found that the above-mentioned problems can be advantageously solved by devising a filling form of the iron oxide powder and the reducing agent powder in the reaction vessel, and completed the present invention. . That is, a first aspect of the present invention provides a filling step of filling an oxidized iron powder and a reducing agent powder in a reaction vessel, and heating the iron oxide powder in the reaction vessel by heating from outside the reaction vessel. reduction
(粗還元) し、 塊状の海綿鉄とする還元工程とを有する海綿鉄の製造方法であって、 前記充填工程において、 前記酸化鉄粉末および前記還元剤粉末が交互にかつ螺旋状の 層を成して堆積するよう充填する、 海綿鉄の製造方法である。 上記第 1の発明においては、 下記(1)〜(8)の各好適条件の 1つまたは 2つ以上を任 意の組み合わせで採用することが好ましい。 (Coarse reduction) and a step of reducing to a massive sponge iron, wherein the iron oxide powder and the reducing agent powder alternately form a spiral layer in the filling step. It is a method of producing sponge iron, which is filled to be deposited. In the first invention, it is preferable to employ one or more of the following preferable conditions (1) to (8) in any combination.
(1) 前記充填工程において、 前記反応容器内の容器側面 (外周部という) および鉛直 中心軸部に還元剤粉末からなる層を形成するとともに、当該層を除外した残部(中 間部という)に、前記交互かつ螺旋状の層を形成するよう充填すること。外周部、 中心軸部は容器の平面断面図上ではそれぞれ周辺部、 中心部に該当する。 中間部 は好ましくは円筒状あるいは円柱状である。 また、 反応容器が円筒状の場合、 鉛 直中心軸部とは、 当該円筒の軸心部である。  (1) In the filling step, a layer made of the reducing agent powder is formed on the container side surface (referred to as an outer peripheral portion) and a vertical central axis portion in the reaction container, and the remaining portion (referred to as an intermediate portion) excluding the layer is formed. Filling to form said alternating and spiral layers. The outer peripheral portion and the central shaft portion correspond to the peripheral portion and the central portion, respectively, in the plan sectional view of the container. The middle part is preferably cylindrical or cylindrical. When the reaction vessel has a cylindrical shape, the vertical central axis is the axis of the cylinder.
(2) 前記酸化鉄粉末として、 鉄鉱石、 ミルスケール、 および、 酸洗廃液から回収され る酸ィ匕鉄粉の中から選ばれる少なくともひとつの粉末を用いること。  (2) As the iron oxide powder, at least one powder selected from iron ore, mill scale, and oxidized iron powder recovered from the pickling waste liquid is used.
(3) 前記還元剤粉末として、 コークス、 チヤ一および石炭の中から選ばれる少なくと もひとつの粉末を用いること。  (3) As the reducing agent powder, at least one powder selected from coke, charcoal and coal is used.
(4) 前記還元剤粉末に炭酸ガス発生源を添加すること。 炭酸ガス発生源としては石灰 石 (焼石灰も含める) がとくに好適である。 なお、 この場合、 充填される還元剤 粉末は、 還元剤粉末に炭酸ガス発生源の粉末を添加し混合したものをいう。(4) A carbon dioxide gas generating source is added to the reducing agent powder. Lime as a source of carbon dioxide Stone (including calcined lime) is particularly suitable. In this case, the reducing agent powder to be filled is a mixture of the reducing agent powder and the powder of the carbon dioxide gas generation source.
(5) 前記還元工程における前記加熱温度を 1000°C以上 1300°C以下とすること。 (5) The heating temperature in the reduction step is not less than 1000 ° C and not more than 1300 ° C.
(6) 前記充填工程において、 螺旋状の層を成すにあたり、 酸化鉄粉末の層おょぴ還元 剤粉末の層の層厚を可変に制御すること。 ここで、 可変に制御するとは、 反応容 器ごとに少なくともいずれかの層において異なる層厚を設定可能とすること、 お よび、 1反応容器内の位置により少なくともいずれかの層の厚みを変化させ得る こと、 の両方の意味を含む。  (6) In forming the spiral layer in the filling step, the layer thickness of the iron oxide powder layer and the layer of the reducing agent powder are variably controlled. Here, the variable control means that a different layer thickness can be set in at least one of the layers for each reaction vessel, and (1) the thickness of at least one of the layers is changed depending on the position in the reaction vessel. Obtaining, including both meanings.
(7) 前記充填工程において、 前記反応容器内の前記酸化鉄粉末の量おょぴ前記還元剤 粉末の量を、 前記酸化鉄粉末に含まれる酸素量に対する前記還元剤粉末に含まれ る炭素量がモル比で 1. 1以上となるよう制御すること。ここで、好ましいモル比は 1. 15以上であり、 さらに好ましいモル比は 1. 2以上である。  (7) In the filling step, the amount of the iron oxide powder in the reaction vessel or the amount of the reducing agent powder is determined by changing the amount of carbon contained in the reducing agent powder with respect to the amount of oxygen contained in the iron oxide powder. Should be controlled so that the molar ratio is 1.1 or more. Here, a preferable molar ratio is 1.15 or more, and a more preferable molar ratio is 1.2 or more.
(8) 前記 (1)および (7)を満足する充填工程において、 さらに、 層状に充填された部分 における前記酸化鉄粉末の量おょぴ前記還元剤粉末の量を、 前記酸化鉄粉末に含 まれる酸素量に対する前記還元剤粉末に含まれる炭素量がモル比で 0. 5以上とな るよう制御すること。 ここで、 「層状に充填された部分」 とは、螺旋状に堆積した 酸化鉄粉末および還元剤粉末の層で形成された円筒状の領域を指し、 通常は全充 填領域から(1)で述べた各 「還元剤粉末からなる層」 を除いた部分に相当する。 第 2の本発明は、 第 1の本発明により製造された海綿鉄を粉砕した後還元 (仕上げ 還元) し、 その後さらに粉碎する、 還元鉄粉の製造方法である。  (8) In the filling step satisfying the above (1) and (7), the amount of the iron oxide powder and the amount of the reducing agent powder in the layer-filled portion are further included in the iron oxide powder. The amount of carbon contained in the reducing agent powder with respect to the amount of oxygen contained is controlled to be 0.5 or more in a molar ratio. Here, the “layer-filled portion” refers to a cylindrical region formed by a layer of spirally deposited iron oxide powder and reducing agent powder. This corresponds to the portion excluding each of the aforementioned “layers made of reducing agent powder”. The second invention is a method for producing reduced iron powder, in which the sponge iron produced according to the first invention is pulverized, reduced (finish reduction), and then further pulverized.
第 1の本発明における好適条件 (1) ~ (8)は、 任意の組み合わせで適用可能である。 第 3の本発明は、 螺旋 (helix) 状の塊に焼結されてなる海綿鉄であって、 好ましく は、 金属鉄含有量が 97mass%以上である高純度海綿鉄である。 高純度海綿鉄は、 第 1 の本発明において、例えば好適条件 (7)等をとくに適用し十分な時間還元処理を施すこ とにより、 重量 100kg以上の塊状であっても製造可能である。 第 4の本発明は、 容器内に酸ィヒ鉄粉末および還元剤粉末を充填する充填装置であつ て、 前記容器内に挿入され、 容器内で回転および上下動可能な挿入部と、 前記挿入部 の下端部に、 前記挿入部と共に回転可能に設けられた酸化鉄粉末排出口およぴ還元剤 粉末排出口とを有する、 海綿鉄製造用原料の充填装置である。 The preferred conditions (1) to (8) in the first present invention can be applied in any combination. A third aspect of the present invention is a sponge iron sintered into a helix-like mass, preferably a high-purity sponge iron having a metal iron content of 97 mass% or more. In the first aspect of the present invention, high-purity sponge iron can be produced even in a lump having a weight of 100 kg or more by, for example, applying a suitable condition (7) or the like and performing a reduction treatment for a sufficient time. A fourth aspect of the present invention is a filling device that fills a container with iron oxide powder and reducing agent powder, the insertion portion being inserted into the container, and capable of rotating and moving up and down in the container; Department An apparatus for filling sponge iron raw materials, comprising an iron oxide powder discharge port and a reducing agent powder discharge port rotatably provided with the insertion section at a lower end of the sponge iron.
第 4の本発明は、 第 1の本発明である海綿鉄の製造方法において、 反応容器内に前 記酸化鉄粉末およぴ前記還元剤粉末を、 これらが交互にかつ螺旋状の層を成して堆積 するよう充填するために使用するのに好適である。 第 4の本発明においては、 前記酸化鉄粉末排出口およぴ前記還元剤粉末排出口の開 口面積が可変であることが好ましい。 このような構成は、 第 1の本発明において、 と くに好適条件 (6)を満足させるために好適に用いることができる。  According to a fourth invention, in the method for producing sponge iron according to the first invention, the iron oxide powder and the reducing agent powder are alternately and spirally formed in a reaction vessel. It is suitable for use in filling for deposition. In the fourth aspect of the present invention, it is preferable that the opening areas of the iron oxide powder outlet and the reducing agent powder outlet are variable. Such a configuration can be suitably used in the first aspect of the present invention, particularly in order to satisfy the preferable condition (6).
また、 第 4の本発明においては、 前記揷入部が、 前記容器の内径の 85%以下の直径 を有する円筒形の本体部と、 前記容器の内径の 90〜95%の直径を有する円を水平断面 形状とする円筒の一部からなる下端部とを有し、 かつ、 前記下耑部の水平断面形状が 前記円の中心および円周の一部を含む扇形、 あるいは該扇形を包含する形状であるこ とが好ましレ、。 このような構成は、第 1の本発明において好適条件 (1)で述べた外周部 の還元剤粉末層を薄くする目的に用いて好適である。 また、 反応容器内に付着物によ る凸部が生じていても、 これと干渉することなく上記挿入部を反応容器内に揷入する ことができる。 図面の簡単な説明  Further, in the fourth aspect of the present invention, the insertion part may be a cylindrical main body having a diameter of 85% or less of the inner diameter of the container, and a circle having a diameter of 90 to 95% of the inner diameter of the container. A lower end portion formed of a part of a cylinder having a cross-sectional shape, and the horizontal cross-sectional shape of the lower 耑 portion is a sector shape including the center of the circle and a part of the circumference, or a shape including the sector shape. It is preferable that there is. Such a configuration is suitable for the purpose of reducing the thickness of the reducing agent powder layer in the outer peripheral portion described in the preferred condition (1) in the first present invention. In addition, even if a projection is formed in the reaction vessel due to the attached matter, the insertion section can be inserted into the reaction vessel without interfering with the projection. BRIEF DESCRIPTION OF THE FIGURES
図 1 Αは、従来の酸化鉄粉末および還元剤粉末の充填方式を説明する断面図である。 図 1 Bは、 図 1 Aの I B— I B, 断面を示す、 水平断面図である。  FIG. 1 is a cross-sectional view for explaining a conventional filling method of iron oxide powder and reducing agent powder. FIG. 1B is a horizontal sectional view showing a section taken along the line IB-IB of FIG. 1A.
図 2は、 従来の方法により得られる海綿鉄の外観形状を表す斜視図である。  FIG. 2 is a perspective view showing the appearance of sponge iron obtained by a conventional method.
図 3 Aは、 本発明にかかる、 酸化鉄粉末おょぴ還元剤粉末の充填方式の一例を説明 する断面図である。  FIG. 3A is a cross-sectional view illustrating an example of a filling method of the iron oxide powder and the reducing agent powder according to the present invention.
図 3 Bは、 図 3 Aの ΙΠΒ—: ΠΙ Β ' 断面を示す、 水平断面図である。  FIG. 3B is a horizontal cross-sectional view showing a ΙΠΒ—: ΠΙ ′ cross section of FIG. 3A.
図 4 Αは、 本発明の揷入部 (回転装入筒) の構造の一例を示す略線図である。  FIG. 4 is a schematic diagram showing an example of the structure of the insertion portion (rotary charging cylinder) of the present invention.
図 4 Bは、 図 4 Aの回転装入筒を用いた場合の充填状態を示す断面図である。  FIG. 4B is a cross-sectional view showing a filling state when the rotary charging cylinder of FIG. 4A is used.
図 5は、 本発明の揷入部 (回転装入筒) の構造の別の一例を示す略線図である。 図 6は、 本発明にかかる、 酸化鉄粉末および還元剤粉末の充填方式の他の一例を説 明する断面図である。 図 7は、 本発明により得られる海綿鉄の外観形状を表す斜視図図である。 FIG. 5 is a schematic diagram showing another example of the structure of the insertion portion (rotary charging cylinder) of the present invention. FIG. 6 is a cross-sectional view illustrating another example of the filling method of the iron oxide powder and the reducing agent powder according to the present invention. FIG. 7 is a perspective view showing the external shape of sponge iron obtained by the present invention.
図 8は、 酸化鉄粉末およぴ還元剤粉末を水平に多層に堆積してなる充填方式の実験 例を説明する断面図である。  FIG. 8 is a cross-sectional view illustrating an experimental example of a filling method in which iron oxide powder and reducing agent powder are horizontally deposited in multiple layers.
図 9は、 交互充填方式における、 反応容器内全体における炭素量/酸素量 (モル比) (横軸) および必要な還元時間 (縦軸) との関連を、 異なるいくつかの酸化鉄層厚に ついて示す図である。  Figure 9 shows the relationship between the carbon content / oxygen content (molar ratio) (horizontal axis) and the required reduction time (vertical axis) in the alternate filling method for several different iron oxide layer thicknesses. FIG.
図 1 0は、 酸化鉄粉末および還元剤粉末を水平に多層に堆積してなる充填方式の別 の実験例を説明する断面図である。  FIG. 10 is a cross-sectional view illustrating another experimental example of a filling method in which iron oxide powder and reducing agent powder are horizontally deposited in multiple layers.
図 1 1は、別の交互充填方式における、交互充填部における炭素量 Z酸素量 (モル比) (横軸) および必要な還元時間 (縦軸) との関連を、 異なるいくつかの酸化鉄層厚に ついて示す図である。  Figure 11 shows the relationship between the amount of carbon in the alternating filling section, the amount of oxygen (molar ratio) (horizontal axis), and the required reduction time (vertical axis) in another alternating filling method. It is a figure which shows about thickness.
図 1 2は、別の交互堆積方式における、反応容器内全体における炭素量/酸素量 (モ ル比) (横軸) および必要な還元時間 (縦軸) との関連を、 異なるいくつかの酸化鉄層 厚について示す図である。  Figure 12 shows the relationship between the amount of carbon / oxygen (mol ratio) (horizontal axis) and the required reduction time (vertical axis) in the whole reaction vessel in different alternate deposition methods. It is a figure showing about iron layer thickness.
図 1 3は、 螺旋状交互充填 (ハッチング) および円筒状充填 (白抜き) における、 酸化鉄増加量 (重量%、 横軸) と還元により得られる金属鉄純度 (masS%、 縦軸) の 関係を示す図である。 Figure 1 3 is, in spiral alternately filling (hatching) and a cylindrical packing (open), amount increase iron oxide (wt%, abscissa) metallic iron purity obtained by the reduction (mas S%, ordinate) of It is a figure showing a relation.
図 1 4 Aは、 本発明の揷入部 (回転装入筒) の構造のさらに別の一例を示す断面図 である。  FIG. 14A is a sectional view showing still another example of the structure of the insertion portion (rotary charging cylinder) of the present invention.
図 1 4 Bは、 図 1 4 Aの XIVB— XIVB ' 断面を示す矢視図である (壁の厚みは省 略した)。 ここで、 各符号の意味は、 以下の通りである。  FIG. 14B is an arrow view showing a section taken along the line XIVB—XIVB ′ of FIG. 14A (the thickness of the wall is omitted). Here, the meaning of each code is as follows.
1、 1 1 :反応容器 (サガー)  1, 1 1: reaction vessel (sagar)
2、 1 2 :酸化鉄粉末  2, 1 2: iron oxide powder
3 , 1 3 :還元剤粉末  3, 1 3: reducing agent powder
1 4 :原料装入装置  14: Raw material charging device
1 4 a、 1 4 d :中仕切り壁  1 4a, 1 4d: partition wall
1 4 b :回転装入筒  1 4 b: Rotary charging cylinder
1 4 c :切り出し部 1 5 :酸化鉄粉末排出口 1 4 c: Cut-out part 15: Iron oxide powder outlet
1 6 :還元剤粉末排出口 (交互充填向け)  16: Reducing agent powder outlet (for alternate filling)
1 6 a :外周部向け還元剤粉末排出口  1 6 a: Reducing agent powder outlet for outer periphery
1 6 b :軸心部向け還元剤粉末排出口  1 6 b: Reducing agent powder outlet for shaft center
1 7 :酸化鉄粉末収容部  17: Iron oxide powder container
1 8 :還元剤粉末収容部  18: Reducing agent powder storage section
1 9 a、 1 9 b :抑え板  1 9 a, 1 9 b: Holding plate
a :開口高さ 発明を実施するための最良の形態  a: Opening height Best mode for carrying out the invention
〔原料の充填方法および充填装置〕  (Raw material filling method and filling device)
本発明は、 反応容器内への原料の充填方法に特徴がある。 ここで、 原料とは酸化鉄 の粉末およぴ還元剤の粉末であるが、 さらに必要に応じて石灰石等を前記還元剤と共 に添カ卩してもよい。  The present invention is characterized by a method for charging a raw material into a reaction vessel. Here, the raw materials are iron oxide powder and reducing agent powder, but if necessary, limestone or the like may be added together with the reducing agent.
すなわち、 従来は図 1に示すような方法、 例えば、 竪型円筒状の耐火物製反応容器 1内に、 酸化鉄粉末 2と還元剤粉末 3とを軸方向に沿って同心円筒状に充填する方法 が採用されている。 し力し、 本発明はこれに代えて、 酸化鉄粉末と還元剤粉末とを交 互にかつそれらを共に螺旋状に充填すること、 すなわち、 両者の容器内堆積構造が、 酸化鉄粉末の螺旋層と還元剤粉末の螺旋層が交互に積層された状態に充填される (以 下、 「螺旋状交互充填」 という) 方法を採用することにある。 螺旋状交互充填法を用いると、 酸化鉄粉末と還元剤粉末との充填を、 並行して同時 にしかも連続的に行なうことが出来る。 このため、 各々の層の厚さ (充填量) を一定 とすることができる。 したがって、 還元剤層と酸ィヒ鉄層の層厚比も一定に維持するこ とが出来る。 この層厚比は、 目的や状況に応じて、 反応容器ごとに任意の比に設定す ることができる。  That is, conventionally, a method as shown in FIG. 1 is used.For example, a vertical cylindrical refractory reactor 1 is filled with an iron oxide powder 2 and a reducing agent powder 3 in a concentric cylindrical shape along the axial direction. The method is adopted. Instead, the present invention alternately fills the iron oxide powder and the reducing agent powder alternately and spirally with each other, that is, the structure in which both the containers are deposited is a spiral of iron oxide powder. The method is to employ a method in which the layers and the spiral layers of the reducing agent powder are filled alternately in a stacked state (hereinafter referred to as “helical alternating filling”). When the spiral alternate filling method is used, the filling with the iron oxide powder and the reducing agent powder can be performed simultaneously in parallel and continuously. For this reason, the thickness (filling amount) of each layer can be made constant. Therefore, the thickness ratio between the reducing agent layer and the iron oxide layer can be kept constant. This layer thickness ratio can be set to an arbitrary ratio for each reaction vessel depending on the purpose and situation.
他方、 層厚比は装入中に任意にしかも随時に変更することもできる。  On the other hand, the layer thickness ratio can be changed arbitrarily and at any time during charging.
このため、 螺旋状交互充填法は、 生産 1·生の改善および生産量の向上に大きく寄与で きる方法として有用である。 図 3 A、 図 3 Bに本発明の一例を示す。 本発明における原料の充填は、 S i C等の 耐火物からなる円筒状の反応容器 1 1 (サガー) 内に、 原料装入装置 1 4を使って酸 化鉄粉末 1 2および還元剤粉末 1 3を同時に装入し充填することが好ましい。 For this reason, the spiral alternating filling method is useful as a method that can greatly contribute to the improvement of production and production and the production volume. 3A and 3B show an example of the present invention. In the present invention, the raw material is charged by using a raw material charging device 14 in a cylindrical reaction vessel 11 (sagar) made of a refractory material such as SiC and the like. It is preferred to charge and fill 3 simultaneously.
好ましい原料装入装置 1 4の構成は下記のとおりである。  The preferred configuration of the raw material charging device 14 is as follows.
原料装入装置 1 4は、 反応容器 1 1内に挿入される回転装入筒 1 4 b (装入部) を 主体として構成される。 回転装入筒 1 4 bの筒状本体は軸方向が中仕切り壁 1 4 aに よって 2分され、 仕切られたそれぞれの部屋、 すなわち酸化鉄粉末収容部 1 7および 還元剤粉末収容部 1 8には、 酸化鉄粉末 1 2および還元剤粉末 1 3が装入できる (各 収容部内の粉末は図示されていない)。 また、 回転装入筒 1 4 bの下端部 (下端もしく はその近傍) には、 酸化鉄粉末排出口 1 5、 および還元剤粉末排出口 1 6が、 それぞ れ収容部 1 7、 1 8に対応した開口部として設けられている。 図示されていないが、 各排出口は、 スライドゲートなどのゲートにより開口度 (例えば開口高さ a )、すなわ ち開口面積の調節が可能とすることが好まし 、。 排出口の位置や向きは必要に応じて 定めればよく、 回転装入筒 1 4 bの底面、 側面、 あるいは底面等に設けられた切り出 し部の、 任意の面を開口部とすることができる。 原則として各原料粉末の排出は、 収 容部に装入された原料粉の自重により行われることが好ましい。 図 4 Aは、 上記回転装入筒 1 4 bの詳細図の一例を示すものである。 この例では、 筒の下端部の延在位置に仕切り壁 1 4 aと直行する向きに突出させた角筒状切り出し 部 1 4 cを設ける。 切り出し部 1 4 cの、 互いに対角線上にある側壁に、 上記収容部 1 7、 1 8につながる排出口(開口) 1 5 , 1 6を設けている。 このような回転装入筒 を用いた場合の充填工程の断面図は、 図 4 Bに示すとおりである。  The raw material charging device 14 is mainly composed of a rotary charging cylinder 14 b (charging portion) inserted into the reaction vessel 11. The axial direction of the cylindrical body of the rotary charging cylinder 14 b is divided into two by the partition wall 14 a, and the chambers are partitioned, that is, the iron oxide powder storage section 17 and the reducing agent powder storage section 18 Can be charged with iron oxide powder 12 and reducing agent powder 13 (the powder in each storage section is not shown). At the lower end (or near the lower end) of the rotary charging cylinder 14b, an iron oxide powder discharge port 15 and a reducing agent powder discharge port 16 are provided, respectively, to accommodate the storage sections 17 and 1 respectively. 8 are provided as openings. Although not shown, it is preferable that each discharge port can be adjusted in opening degree (for example, opening height a), that is, opening area by a gate such as a slide gate. The position and orientation of the discharge port may be determined as necessary.Any surface of the cutout provided on the bottom, side, or bottom of the rotary charging cylinder 14b should be an opening. Can be. In principle, it is preferable that each raw material powder is discharged by its own weight of the raw material powder charged in the storage section. FIG. 4A shows an example of a detailed view of the rotary charging cylinder 14b. In this example, a rectangular tubular cutout portion 14c protruding in a direction perpendicular to the partition wall 14a is provided at the extending position of the lower end portion of the tube. Discharge ports (openings) 15 and 16 that are connected to the storage sections 17 and 18 are provided on side walls of the cutout section 14c that are diagonal to each other. FIG. 4B is a cross-sectional view of the filling process using such a rotary charging cylinder.
なお、 この変化形として、 酸化鉄粉末用の切り出し部およぴ還元剤粉末用の切り出 し部の水平断面形状をそれぞれ概ね 4分の 1円の扇形として互いに対角に配置するこ とが考えられる。 この場合、 2つの排出口 1 5、 1 6の少なくとも一部は、 扇形の直 線部に該当する側面に、 回転装入筒 1 4 bの軸線を挟んで同一平面上に設けるのがよ い (図 3 Aの断面図の状態となる)。 図 5は、 上記回転装入筒 1 4 bの別の一例を示す詳細図である。  As a variation, the cut-out portion for the iron oxide powder and the cut-out portion for the reducing agent powder can be arranged diagonally with respect to each other as a substantially quarter-circle sector. Conceivable. In this case, at least a part of the two outlets 15 and 16 should be provided on the side corresponding to the fan-shaped straight portion and on the same plane with the axis of the rotary charging cylinder 14b interposed therebetween. (The state is the cross-sectional view of FIG. 3A). FIG. 5 is a detailed view showing another example of the rotary charging cylinder 14b.
装入する原料粉を反応容器 1 1の円周部まで確実に制御して行き渡らせるためには、 回転装入筒 1 4 b (とくにその下端部) の直径は反応容器 1 1の内径に近い値とする ことが好ましい。 しかし,反応容器は繰り返し使用され、また複数の円筒のユニットを 積層して反応容器とすることがあるので、 還元された鉄や還元剤中の灰分等が反応容 器内に付着して、 凸部を形成することがある。 また、 繰り返し使用による歪で、 容器 が若干傾くこともある。 したがって、 回転装入筒 1 4 bの下端部が反応容器 1 1の内 径ぎりぎりであると、 回転装入筒 1 4 bの装入に際して反応容器 1 1と接触を起こし て破損などを招く可能性がある。 In order to ensure that the raw material powder to be charged is controlled and spread to the circumference of the reaction vessel 11, It is preferable that the diameter of the rotary charging cylinder 14 b (especially at the lower end) be a value close to the inner diameter of the reaction vessel 11. However, since the reaction vessel is used repeatedly and a plurality of cylindrical units are stacked to form a reaction vessel, reduced iron and ash in the reducing agent adhere to the inside of the reaction vessel and become convex. A part may be formed. Also, the container may be slightly tilted due to the distortion caused by repeated use. Therefore, if the lower end of the rotary charging cylinder 14 b is almost the inner diameter of the reaction vessel 11, it may come into contact with the reaction vessel 11 when charging the rotary charging cylinder 14 b, which may cause damage. There is.
ところで、 回転装入筒 1 4 bの下端部の直径を反応容器 1 1の内径に近づける目的 は、 反応容器の中心部付近から円周部付近に渡る開口部を各排出口用に確保すること である。 したがって、 排出口の位置を工夫すれば、 回転装入筒 1 4 bの下端部の水平 断面形状を完全な円形とする必要はなく、 この円 (仮想円) の一部をなす扇形、 ある いは少なくとも該扇形を内包する形状であれば、 事足りる。  By the way, the purpose of making the diameter of the lower end of the rotary charging cylinder 14 b closer to the inner diameter of the reaction vessel 11 is to secure an opening from near the center of the reaction vessel to near the circumference for each outlet. It is. Therefore, if the position of the discharge port is devised, the horizontal cross-sectional shape of the lower end of the rotary charging cylinder 14b does not need to be a perfect circle, but a sector that forms a part of this circle (virtual circle), or Is sufficient if it has a shape including at least the sector.
図 5は下端部を扇形とした例で、 酸化鉄粉末排出口 1 5および還元剤粉末排出口 1 6は非対称に設けられている。 ここで、 酸化鉄粉末用排出口 1 5および還元剤粉末用 排出口 1 6は、 図 4と同様に設けられた切り出し部 1 4 cの、 側面 (扇形の辺相当位 置) に設けられている。 なお、 切り出し部 1 4 cの底面も開口しているが、 堆積した 粉末が底面代わりとなるので、各粉末 1 2、 1 3は主に側面より排出される。 1 9 a、 1 9 bは抑え板である。  FIG. 5 shows an example in which the lower end has a fan shape, and the iron oxide powder outlet 15 and the reducing agent powder outlet 16 are provided asymmetrically. Here, the outlet 15 for the iron oxide powder and the outlet 16 for the reducing agent powder are provided on the side surface (equivalent to the side of the sector) of the cutout portion 14c provided in the same manner as in FIG. I have. Although the bottom surface of the cutout portion 14c is also open, the powders 12 and 13 are mainly discharged from the side surface because the deposited powder serves as a bottom surface. 19 a and 19 b are holding plates.
扇形の中心角は任意でよいが、 約 180° (すなわち半円)、 あるいはそれ以下とする こと力 下端部を充分コンパクトにする上で好ましい。 さらに好ましくは、 切り出し 部の水平断面形状の最大差渡しが仮想円の直径より小さくする。  The center angle of the sector may be arbitrary, but should be about 180 ° (ie, a semicircle) or less. This is preferable for making the lower end sufficiently compact. More preferably, the maximum crossover of the horizontal cross-sectional shape of the cutout portion is smaller than the diameter of the virtual circle.
また、 下端部の仮想円の直径は、 生産性の観点からは反応容器の内径に近いほどよ く、 反応容器の内径の約 90%以上とすることが好ましい。 他方、 操業性の観点からは 仮想円の直径を適度に小さくすることが好ましく、 反応容器の内径の約 95%以下とす ることが好ましい。  In addition, the diameter of the virtual circle at the lower end is preferably closer to the inner diameter of the reaction vessel from the viewpoint of productivity, and is preferably about 90% or more of the inner diameter of the reaction vessel. On the other hand, from the viewpoint of operability, it is preferable that the diameter of the virtual circle is appropriately reduced, and it is preferable that the diameter is not more than about 95% of the inner diameter of the reaction vessel.
また、 回転挿入筒 1 4 bの本体部の直径は、 反応容器の内径の約 85%以下とし、 容 器内での水平移動の余地を確保することが接触を回避する上で好ましい。 また、 装入 する原料粉末の送路を確保する観点からは、 本体部直径は反応容器の内径の約 30%以 上とすることが好ましい。 このような原料装入装置 1 4を使って、 原料を螺旋状交互に充填するには、 前記排 出口 1 5、 1 6の開口面積 (開口度) を調整し、 前記回転装入筒 1 4 bを前記反応容 器 1 1内に上から挿入する。 そして、 前記回転装入筒 1 4 bを (したがって排出口 1 5、 1 6を)、 回転させながら一定の速度で上昇させることにより、酸化鉄層厚と還元 剤層厚とが一定の比率になるよう、 そして互いが螺旋状に絡み合うように該排出口を 介して充填していけば (交互充填) よい。 このようにして酸ィ匕鉄粉末 1 2と還元剤粉 末 1 3とが共に、 螺旋状に交互に堆積した充填層が、 反応容器 1 1内に形成される。 各収容部 1 7、 1 8への原料の投入は、 必要に応じて反応容器への充填前あるいは 充填中に行なわれる。 図 6に、 本発明による充填方法の他の一例を示す。 ここで、 原料装入装置 1 4は簡 略化して示す。 The diameter of the main body of the rotary insertion tube 14b is preferably about 85% or less of the inner diameter of the reaction vessel, and it is preferable to secure room for horizontal movement in the container in order to avoid contact. In addition, from the viewpoint of securing a feed path for the raw material powder to be charged, the diameter of the main body is preferably about 30% or more of the inner diameter of the reaction vessel. In order to spirally fill the raw material using such a raw material charging device 14, the opening area (opening degree) of the discharge outlets 15 and 16 is adjusted, and the rotary charging cylinder 14 is used. b is inserted into the reaction vessel 11 from above. Then, by rotating the rotary charging cylinder 14b (therefore, the outlets 15 and 16) at a constant speed while rotating, the iron oxide layer thickness and the reducing agent layer thickness are maintained at a constant ratio. In this case, it is preferable that the filling is performed through the outlet so that the two are spirally entangled with each other (alternate filling). In this way, a packed bed in which the oxidized iron powder 12 and the reducing agent powder 13 are alternately deposited in a spiral form together is formed in the reaction vessel 11. Feeding of the raw materials into each of the storage sections 17 and 18 is performed before or during filling in the reaction vessel as necessary. FIG. 6 shows another example of the filling method according to the present invention. Here, the raw material charging device 14 is shown in a simplified manner.
図 6に示すように、 反応容器内に原料粉末を充填するに際して、 螺旋状交互充填す る位置を、円筒状の反応容器 1 1の軸方向に沿う外周部を除く領域に限定してもよい。 また、 螺旋状交互充填する位置を、 反応容器 1 1の軸方向に沿う軸心部を除く領域と してもよい。 さらに、 螺旋状交互充填する位置を、 反応容器 1軸方向に沿うの軸心部 および外周部の両方を除く領域としてもよい。 いずれの場合も、 螺旋状交互充填する 領域を、 円筒状中間部分と呼ぶこととする。 なお、 外周部、 軸心部は容器の平面断面 図上ではそれぞれ周辺部、 中心部に該当する。  As shown in FIG. 6, when filling the raw material powder into the reaction vessel, the position of the spiral alternate filling may be limited to a region excluding the outer peripheral portion along the axial direction of the cylindrical reaction vessel 11. . Further, the position where the spiral alternate filling is performed may be a region excluding the axial portion along the axial direction of the reaction vessel 11. Further, the position where the spiral alternate filling is performed may be a region excluding both the axial center portion and the outer peripheral portion along the axial direction of the reaction vessel. In any case, the region where the spiral alternate filling is performed is referred to as a cylindrical intermediate portion. The outer peripheral part and the axial center part correspond to the peripheral part and the central part, respectively, in the plan sectional view of the container.
前記外周部の還元剤層は、 原料装入装置 1 4の回転装入部 1 4 bと反応容器 1 1と の干渉防止の観点、および、反応容器と酸化鉄粉末の接触部の焼付き防止の観点から、 やむを得ず設定する場合がある。 また、 前記軸心部の還元剤層は、 容器から海綿鉄を 取り出す際のハンドリング上の都合で設定される場合がある。 し力 し、 外周部あるい は軸心部に還元剤のみの層が存在することになって反応ガスの通路が形成され、 この ことによって反応容器内におけるガスの拡散が円滑かつ均一になり、 還元の反応速度 が向上する効果も期待できる。 また、 外周部を還元剤層にて構成した場合、 製品の器 壁への溶着を防止することもできる。 したがって、 必要に応じて、 還元剤の歩留まり や炭素量/酸素量 (モル比)等を考慮して層厚 (半径方向) を適正化しつつ、 これらの 還元剤層を設けることが好ましい。  The reducing agent layer in the outer peripheral portion is used to prevent interference between the rotary charging portion 14 b of the raw material charging device 14 and the reaction vessel 11, and to prevent seizure at the contact portion between the reaction container and the iron oxide powder. In some cases, it is unavoidable from the viewpoint of setting. The reducing agent layer at the shaft center may be set for convenience in handling sponge iron from the container. As a result, a layer of only the reducing agent is present at the outer peripheral portion or at the axial center portion, thereby forming a passage for the reaction gas, thereby making the gas diffusion in the reaction vessel smooth and uniform. The effect of increasing the reduction reaction rate can also be expected. Further, when the outer peripheral portion is formed of a reducing agent layer, it is possible to prevent the product from being welded to the vessel wall. Therefore, if necessary, it is preferable to provide these reducing agent layers while optimizing the layer thickness (radial direction) in consideration of the yield of the reducing agent and the amount of carbon / oxygen (molar ratio).
円筒形容器の場合、外周部は容器内径 (内面の直径) の約 2. 5%以上、約 5 %以下程 度の層厚 (半径方向) とすることが好適である。他方、軸心部の直径は約 250 以下程 度とすることが好ましい。 なお、 例えば、 外周部に還元剤層を形成するには、 回転装入筒 1 4 aの側部に開口 を設け、 該開口より外周部を形成する還元剤粉末を排出すればよい。 また、 軸心部に 還元剤層を形成するには、 図 4などにおいて中仕切り壁 1 4 cを設けた位置にさらに 中央筒部を形成し、 さらに該中央筒部の下端に開口を設け、 該開口より軸心部を形成 する還元剤粉末を排出すればよレ、。 In the case of a cylindrical container, the outer periphery is about 2.5% or more and about 5% or less of the inner diameter of the vessel (diameter of the inner surface). It is preferable that the thickness be in the range (radial direction). On the other hand, the diameter of the shaft center is preferably about 250 or less. For example, in order to form a reducing agent layer on the outer peripheral portion, an opening may be provided on the side of the rotary charging cylinder 14a, and the reducing agent powder forming the outer peripheral portion may be discharged from the opening. In addition, in order to form a reducing agent layer at the shaft center, a central cylindrical portion is further formed at a position where the partition wall 14c is provided in FIG. 4 and the like, and an opening is provided at a lower end of the central cylindrical portion. By discharging the reducing agent powder that forms the axis from the opening.
これらの開口部は、 螺旋層形成のための排出口 1 6と連結していても独立していて も良い。  These openings may be connected to the outlet 16 for forming the spiral layer or may be independent.
図 1 4 Aに、 図 6の充填を可能とする回転装入筒の一例を示す。 図 1 4 Bは図 1 4 Aの XIVB— XIVB ' 位置における断面図である (簡略化のため、 壁の厚みは省略し た)。 この例では、 回転装入筒 1 4 bの底面に、螺旋交互充填等の交互充填用に還元剤 粉末排出口 1 6が設けられている。 その他に、 回転装入筒 1 4 bの下部側面に開口部 が設けられており、 外周部向け還元剤粉末排出口 1 6 aを構成している。 さらに、 回 転装入筒 1 4 bの軸心位置底面に、 軸心部向け還元剤粉末排出口 1 6 bが設けられ、 中仕切り壁 1 4 dにより還元剤粉末の一部が誘導されるようになっている。 さらに、 図 3 Aに示すように、 通常、 最下層は還元剤粉末 (および石灰石など) の みの層を形成し、 最下の酸化鉄層の還元の確保、 および、 反応容器と酸化鉄層の焼付 き防止を図ることが好ましい。 最上層についても、 同様に還元剤粉末のみの層を形成 することが好ましい。 これらの還元剤層は、 上記の原料装入装置 1 4において、 酸化 鉄粉末排出口 1 5を閉じる (開度ゼロとする)、 あるいは回転装入筒 1 4 bへの酸化鉄 粉末の供給を止める、 などの手段により形成することができる。 本発明において、 上記装置などを用いて螺旋状交互充填を行うに当たっては、 酸ィ匕 鉄層および還元剤層の厚みを可変制御することが好ましい。 すなわち、 一反応容器内 では各層の層厚を一定に制御することが好ましいが、 例えば原料に応じて層厚を適正 化するなどの調整が可能であることが好ましい。  FIG. 14A shows an example of the rotary charging cylinder capable of filling shown in FIG. Fig. 14B is a cross-sectional view at the XIVB-XIVB 'position in Fig. 14A (wall thickness is omitted for simplicity). In this example, a reducing agent powder outlet 16 is provided on the bottom surface of the rotary charging cylinder 14b for alternate filling such as spiral alternate filling. In addition, an opening is provided on the lower side surface of the rotary charging cylinder 14b to form a reducing agent powder outlet 16a for the outer peripheral part. In addition, a reducing agent powder outlet 16b for the shaft center is provided on the bottom surface of the rotating loading cylinder 14b at the shaft center position, and a part of the reducing agent powder is guided by the partition wall 14d. It has become. Furthermore, as shown in Fig. 3A, the bottom layer usually forms only a layer of reducing agent powder (and limestone), ensuring the reduction of the bottom iron oxide layer, and the reaction vessel and iron oxide layer. It is preferable to prevent seizure. Similarly, it is preferable to form a layer of only the reducing agent powder for the uppermost layer. These reducing agent layers close the iron oxide powder outlet 15 (set the opening to zero) in the raw material charging device 14 or supply the iron oxide powder to the rotary charging cylinder 14b. It can be formed by means such as stopping. In the present invention, in performing the spiral alternate filling using the above-described apparatus or the like, it is preferable to variably control the thicknesses of the silicon oxide layer and the reducing agent layer. That is, it is preferable that the thickness of each layer is controlled to be constant within one reaction vessel, but it is preferable that the thickness can be adjusted, for example, by optimizing the thickness according to the raw material.
このような層厚の変更は、 例えば、 前記回転装入筒 1 4 bの回転速度、 上昇速度、 および前記排出口 1 5、 1 6の開口度の、 いずれか 2つ以上を調節することによって 実現することができる。 とりわけ、 排出口 1 5、 1 6の開口度をゲート開閉制御等を 通じて行うと、 ガスの拡散抵抗や還元時間の延長、 生産量の減少を招くことなく、 安 定した操業を確保した上で、 実現できるので好ましい。 Such changes in the layer thickness include, for example, the rotation speed, the rising speed, It can be realized by adjusting any two or more of the opening degrees of the outlets 15 and 16. In particular, if the opening degree of the outlets 15 and 16 is controlled through gate opening / closing control, stable operation can be ensured without inducing gas diffusion resistance, prolonging the reduction time, and reducing production volume. It is preferable because it can be realized.
なお、 理論上は、 層厚を竪型反応容器 1 1の高さ方向、 例えば、 底部、 中部、 上部 寄りと連続的もしくは間欠的に変化させていくことが可能であり、 本発明はこのよう な適用形態を排除するものではない。 例えば、 還元の進行が早い傾向にある上部では 酸化鉄層の厚みを増加させる、 などの適用形態が考えられる。 なお、 螺旋状に堆積される酸化物層おょぴ還元剤層の厚みは、 各層で約 5 mm以上、 両者 1層づつの和では約 10讓以上とすることが好ましい。 さらに好ましくは 40腿以上 である。 層厚が過度に小さいと、 層厚の揺らぎにより非定常部が発生しやすくなる。 さらに好ましい下限は、 各層で約 10mm以上、 1層づつの和で約 30mm以上である。  Theoretically, it is possible to change the layer thickness continuously or intermittently in the height direction of the vertical reaction vessel 11, for example, at the bottom, middle, or near the top. It does not preclude a variety of applications. For example, an application form in which the thickness of the iron oxide layer is increased in an upper part where the progress of reduction tends to be fast may be considered. The thickness of the oxide layer and the reducing agent layer deposited spirally is preferably about 5 mm or more in each layer, and the sum of the two layers is preferably about 10 mm or more. More preferably, it is 40 or more thighs. If the layer thickness is excessively small, an unsteady portion tends to occur due to the fluctuation of the layer thickness. A more preferred lower limit is about 10 mm or more for each layer, and about 30 mm or more for each layer.
他方、 層厚が過度に大きいと還元処理時間の增大ゃ原料効率の低下を招くので、 各 層で約 100mm以下、 1層づつの和で約 200腿以下とすることが好ましい。 さらに好まし い上限は、 各層で約 80mm以下、 1層づつの和で約 150議以下である。  On the other hand, if the layer thickness is excessively large, the reduction treatment time is prolonged and the raw material efficiency is reduced. Therefore, it is preferable that the thickness of each layer is about 100 mm or less, and the sum of each layer is about 200 thigh or less. A more preferable upper limit is about 80 mm or less for each layer, and about 150 or less for each layer.
酸化鉄層と還元剤層との層厚比は一般には厚みではなく、 炭素量 Z酸素量 (モル比) で表される。 好適な比率については後述する。 以上に説明した原料装入装置は一例であって、 要は、 上下動おょぴ回転の可能な揷 入部を有し、 力つ、 該揷入部に酸ィ匕鉄粉末おょぴ還元剤粉末の排出口を、 該揷入部の 回転と共に回転移動するように設けてあり、 反応容器内に挿入し該揷入部を回転させ つつ上昇させることにより、 前記排出口より二重螺旋状に酸化鉄粉末および還元剤粉 末を堆積 ·充填させる構造のものであればよい。  The layer thickness ratio between the iron oxide layer and the reducing agent layer is generally not represented by the thickness but by the amount of carbon and the amount of oxygen (molar ratio). Suitable ratios will be described later. The above-described raw material charging apparatus is an example. In short, the raw material charging apparatus has an insertion part that can be vertically moved and rotated. Is provided so as to rotate with the rotation of the inlet portion, and is inserted into the reaction vessel and raised while rotating the inlet portion, so that the iron oxide powder has a double helix from the outlet. Any structure may be used as long as it can deposit and fill the reducing agent powder.
例えば挿入部は円筒形が有利であるが、 これに限定はされなレ、。 例えば、 反応容器 の形状に応じて断面形状が扇形、 星形、 菊形など形状を成す筒状体であってもよい。 また、 収容部は仕切り板で形成する必要はなく、 形状、 位置も任意である。 酸化鉄粉 末収容部と、 還元剤粉末収容部とが同一容積である必要はない。  For example, the insertion portion is advantageously cylindrical, but is not limited to this. For example, a cylindrical body having a sectional shape such as a fan shape, a star shape, or a chrysanthemum shape depending on the shape of the reaction vessel may be used. Further, the storage section does not need to be formed of a partition plate, and its shape and position are arbitrary. It is not necessary that the iron oxide powder container and the reducing agent powder container have the same volume.
排出口 1 5や 1 6の周辺には、 排出口から充填される原料粉末を目的の方向に誘導 するために、 固定されたあるいは可動なガイド板、 抑え板等を設けることが好適であ る。 〔原料粉末〕 A fixed or movable guide plate, a holding plate, or the like is preferably provided around the discharge ports 15 and 16 in order to guide the raw material powder to be filled from the discharge ports in a target direction. You. (Raw material powder)
本発明に係る海綿鉄の製造方法において、 反応容器内に充填する原料としては、 少 なくとも酸化鉄粉末と還元剤粉末とが必要であるが、 酸化鉄粉末としては、 鉄鉱石あ るいは鉄鋼の熱間圧延工程で発生するミルスケール等の酸化鉄を粉末として用いるこ とが好ましい。 また、 鋼材の表面の酸化物等を塩酸等の酸で除去する、 いわゆる酸洗 工程においては廃酸 (酸洗廃液) が生じるが、 この酸洗廃液を焙焼するなどして得ら れた酸化鉄の粉末も、 酸化鉄粉末として好ましい。 これらの酸ィヒ鉄粉末の好適な平均 粒径は約 0. 05mm〜約 10 議程度である。  In the method for producing sponge iron according to the present invention, at least an iron oxide powder and a reducing agent powder are required as raw materials to be charged into the reaction vessel, and the iron oxide powder may be iron ore or steel. It is preferable to use, as a powder, iron oxide such as a mill scale generated in the hot rolling step. Also, in the so-called pickling process of removing oxides and the like on the surface of steel with an acid such as hydrochloric acid, waste acid (pickling waste liquid) is generated, and the pickling waste liquid is obtained by roasting or the like. Iron oxide powder is also preferred as the iron oxide powder. The preferred average particle size of these iron oxide powders is about 0.05 mm to about 10 cm.
なお、 さらに上記より微細な酸化鉄粉、 例えば比表面積が 2 m2/ g以上かつ粒度 0. 01 μ m以上に工業的に粒径制御されたへマタイト粉末などを上記のミルスケールや 鉄鉱石等の粉末に混合して用いることは、 海綿鉄の品質を向上させるので好ましい。 還元剤粉末としては、 炭素を含有するいわゆる炭素質粉を使用する。 炭素質粉とし てはコータス粉、 チヤ一 (髙揮発性炭の一種)、 石炭粉 (非粘結性のものが好ましい)、 無煙炭粉末、 木炭粉などが好適である。 なお、 還元効率の観点から、 炭素質粉中の炭 素量は 60%以上であることが好ましい。 還元剤粉末との好適な平均粒径も約 0. 05瞧〜 約 10 匪程度である。 Further, finer iron oxide powder, such as hematite powder having a specific surface area of 2 m 2 / g or more and a grain size of 0.01 μm or more industrially controlled, may be used in the above mill scale or iron ore. It is preferable to use the powder mixed with such a powder as it improves the quality of sponge iron. A so-called carbonaceous powder containing carbon is used as the reducing agent powder. As the carbonaceous powder, coatus powder, charcoal (a kind of volatile coal), coal powder (preferably non-coking), anthracite powder, charcoal powder and the like are suitable. From the viewpoint of reduction efficiency, the amount of carbon in the carbonaceous powder is preferably 60% or more. A suitable average particle size with the reducing agent powder is also about 0.05 瞧 to about 10 bandages.
なお、 還元剤粉末としては、 必要に応じてさらに炭酸ガス発生源となる粉末を、 還 元剤層の一部を構成するものとして、混合添カ卩したものを使用しても何ら問題はない。 炭酸ガス発生源としては、 石灰石 (焼石灰も含む) の粉末がとくに好ましい。 〔還元工程〕  As the reducing agent powder, if necessary, there is no problem even if a powder serving as a carbon dioxide gas generating source is used as a part of the reducing agent layer and mixed and added. . Limestone (including calcined lime) powder is particularly preferable as a carbon dioxide gas generating source. (Reduction step)
これら酸化鉄粉末 1 2や還元剤粉末 1 3 (添加 ·混合される炭酸ガス発生源粉末を 含む) は、 前記反応容器 1 1内に、 図 3 A, Bなどに示す原料装入装置 1 4にて螺旋 状交互に充填する。 反応容器 1 1としては、 例えば、 サガーと呼ばれる円筒状の Si C 製の反応容器を用いるのが好ましい。 反応容器 1 1の形状に制限はないが、 円筒形が 最も有利と思われる。また、反応容器の寸法にもとくに制限はないが、円筒形の場合、 その内面は、断面の直径約 200議〜約 800mm程度、高さ約 100mm〜約 2000画程度の範囲が 好適である。 なお、 一容器あたりで製造する海綿鉄塊の量は約 10kg以上が好ましく、 生産性の観点からは約 50kg以上さらに約 100kg以上とすることがさらに好まし 、。 酸化鉄粉末 1 2と還元剤粉末 1 3と、 必要に応じて用いられる石灰石等を充填した 前記反応容器 1 1は、 次いで、 トンネル炉などの焼成炉内に台車などに積載した状態 で装入され、容器内に充填された原料は還元のために所定の時間容器ごと加熱される。 この還元は粗還元と呼ばれ、 目標とする純度 (還元後の海綿鉄に占める金属鉄の含有 量) は還元鉄粉の用途にもよるが、 少なくとも約 90%masS以上、 高純度が求められる 用途では約 97 mass%以上である。 純度目標に上限はないが、 許容範囲内のコストで達 成できる純度は、 現状では最大約 99. 5maSS%程度である。 The iron oxide powder 12 and the reducing agent powder 13 (including the carbon dioxide gas source powder to be added and mixed) are placed in the reaction vessel 11 in the raw material charging apparatus 14 shown in FIGS. Fill alternately with a spiral. As the reaction vessel 11, for example, it is preferable to use a cylindrical reaction vessel made of SiC called sagar. The shape of the reaction vessel 11 is not limited, but a cylindrical shape seems to be the most advantageous. Although there is no particular limitation on the dimensions of the reaction vessel, in the case of a cylindrical shape, the inner surface has a cross-sectional diameter of about 200 mm to about 800 mm and a height of about 100 mm to about 2000 strokes. It is suitable. Incidentally, one preferably at least about 10k g amount of sponge iron ingot to produce per container, from the viewpoint of productivity, it is further preferable to further about 100kg more than about 50 kg,. The reaction vessel 11 filled with iron oxide powder 12, reducing agent powder 13, and limestone or the like used as required is then loaded in a baking furnace such as a tunnel furnace while being loaded on a bogie or the like. Then, the raw material filled in the container is heated together with the container for a predetermined time for reduction. This reduction is called crude reduction, and the target purity (the content of metallic iron in the reduced sponge iron) depends on the use of the reduced iron powder, but a high purity of at least about 90% mass S is required. It is about 97 mass% or more for the intended use. There is no upper limit to the purity target, but the purity that can be achieved at an acceptable cost is currently about 99.5 maSS % at maximum.
上記還元のための加熱温度が不十分であると、 酸化鉄の還元が十分に進まず、 海綿 鉄の純度が低下する。 好ましい加熱温度の下限は約 1000でである。 他方、 加熱温度が 過剰となると、還元と同時に進行する海綿鉄の焼結が過度に進んで海綿鉄が硬くなり、 その後の粗粉碎での電力消費量の増大を招いたり、 粉砕工具の損耗に伴う製造コスト の増大を招くおそれがある。 好ましい加熱温度の上限は 1300°Cである。 好ましい加熱 温度は従って、 1000~1300 °Cの範囲である。  If the heating temperature for the above reduction is insufficient, the reduction of iron oxide does not proceed sufficiently, and the purity of sponge iron decreases. The preferred lower limit of the heating temperature is about 1000. On the other hand, if the heating temperature is excessive, the sintering of sponge iron, which proceeds simultaneously with the reduction, proceeds excessively, causing the sponge iron to harden, resulting in an increase in power consumption in the subsequent coarse pulverization and wear of the crushing tool. This may lead to an increase in manufacturing costs. The preferred upper limit of the heating temperature is 1300 ° C. The preferred heating temperature is therefore in the range of 1000-1300 ° C.
トンネル炉を焼成炉として用いた場合、 該焼成炉内を台車上に載置されて移動する 前記反応容器 1 1 (およびその内部の酸化鉄) は、 まず温度が漸増する予熱帯領域を 24時間程度 (好適には 20時間以上、 28時間以下)かけて通過し、 そして、 約 1000 °C〜約 1300での焼成帯域に 60時間程度 (好適には 36時間以上、 さらに好適には 56時間以上、 また好適には 72時間以下、 さらに好適には 64時間以下)保持される。 その後は、温度が 漸減する冷却帯領域を経て (好適には 20時間〜 28時間かけて通過)、 還元処理が完了す る。 なお、予熱帯領域の入側温度および冷却帯領域の出側温度は約 200°C (約 20°C〜約 400°C)、 予熱帯領域の出側温度および冷却帯領域の入側温度は約 900 °C (焼成帯温度 — 450°C〜焼成帯温度一 50°C程度) とすること力 反応容器 (耐火物)の保護等の観点か ら好ましい。  When a tunnel furnace is used as a firing furnace, the reaction vessel 11 (and the iron oxide inside), which is placed on a carriage and moves inside the firing furnace, first moves through a pre-tropical region where the temperature gradually increases for 24 hours. (Preferably 20 hours or more, 28 hours or less), and a firing zone at about 1000 ° C to about 1300 for about 60 hours (preferably 36 hours or more, more preferably 56 hours or more) , And preferably 72 hours or less, more preferably 64 hours or less. Thereafter, the reduction treatment is completed through a cooling zone region in which the temperature gradually decreases (preferably, passing through 20 to 28 hours). The inlet temperature in the pre-tropical zone and the outlet temperature in the cooling zone are about 200 ° C (about 20 ° C to about 400 ° C) .The outlet temperature in the pre-tropical zone and the inlet temperature in the cooling zone are Approximately 900 ° C (firing zone temperature-450 ° C-firing zone temperature-about 50 ° C) Force It is preferable from the viewpoint of protection of the reaction vessel (refractory).
この加熱による還元反応により、 酸化鉄は還元剤により還元されて塊状の海綿鉄を 生成する。 得られる海綿鉄は当然螺旋状の塊となる。 図 7に本発明の方法により得ら れる海綿鉄の外観形状の一例 (上端おょぴ下端は省略) を示す。  By this reduction reaction by heating, the iron oxide is reduced by the reducing agent to form massive sponge iron. The sponge iron obtained naturally forms a spiral mass. Fig. 7 shows an example of the external shape of sponge iron obtained by the method of the present invention (the upper and lower ends are omitted).
得られる海綿鉄塊の高さ (軸方向) は大きいほうが好ましいが、 反応容器の大きさ の制約や、 反応容器の高さを大きくした場合の焼成炉の巨大化による熱効率の低下な どを考慮すると、 2000 mm程度以下の大きさとすることが好ましい。 本発明の方法により、 純度 97mass%以上の高純度海綿鉄を得ることができる。 純度 が 97 maSS%以上の場合、 機械部品や磁性材料などの焼結部品、 あるいは粉末のままで 使用される還元鉄粉の製品特性を保障する上で有利である。 ただし、 本発明の方法に は純度以外の利点もあるので、 純度を 97mass%以上の、 あるいは高純度の海綿鉄の製 造方法に限定するものではない。 すなわち、 純度約 90raass%以上の通常の粗還元全般 に適用可能である。 なお、 金属鉄以外の成分としては、 鉄酸化物おょぴ合計 l mass% 以下の不純物 ( S i、 Mn、 P、 S等) が一般に含有される。 粗還元のための加熱後、 生成した海綿鉄は反応容器 1 1から還元剤と分離して取り 出す。 反応容器 1 1から取り出された海綿鉄は、 次に、 さらに仕上げ還元のため、 通 常約 150 ni以下までに粗粉砕され、粗還元粒子とされる。その後、この粗還元粒子は、 還元性雰囲気の仕上げ還元炉中に装入されて仕上げ還元され、 さらに粉砕されて還元 鉄粉とされる。 It is preferable that the height (axial direction) of the sponge iron ingot obtained is large, but there is no restriction on the size of the reaction vessel or the decrease in thermal efficiency due to the large firing furnace when the height of the reaction vessel is increased. In consideration of such factors, the size is preferably about 2000 mm or less. According to the method of the present invention, high-purity sponge iron having a purity of 97 mass% or more can be obtained. When the purity is 97 ma SS % or more, it is advantageous in guaranteeing the product characteristics of sintered parts such as mechanical parts and magnetic materials, or reduced iron powder used as powder. However, since the method of the present invention has advantages other than purity, the purity is not limited to a method for producing high-purity sponge iron of 97 mass% or more. That is, it is applicable to general crude reduction with a purity of about 90 raass% or more. In addition, as components other than metallic iron, impurities (Si, Mn, P, S, etc.) of less than l mass% in total are generally contained. After heating for the crude reduction, the sponge iron produced is separated from the reaction vessel 11 and removed from the reducing agent. The sponge iron taken out of the reaction vessel 11 is then coarsely pulverized, usually to about 150 ni or less, for further reduction, thereby obtaining coarse reduced particles. Thereafter, the coarsely reduced particles are charged into a finishing reduction furnace in a reducing atmosphere and subjected to finish reduction, and are further pulverized into reduced iron powder.
〔酸化鉄と還元剤の比率〕 (Ratio of iron oxide and reducing agent)
原料を反応容器内に充填するに当たって、 上述した螺旋状交互充填を行うときの酸 化鉄量および還元剤 (固体還元剤)量の割合、 とくに酸ィヒ鉄中の酸素量に対して必要な 還元剤中の炭素量の割合は、前記式 (2)とともに既に述べた。すなわち、酸化鉄の還元 反応は、 還元剤中の C原子 1個と酸化鉄中の O原子 1個とが反応して進むものとして 決定される (炭素量/酸素量 (モル比) = 1. 0)。 しかし、 一般には、 酸化鉄中の酸素量 より多い炭素量が還元剤として必要である。 従来法では、 既に述べた理由により、 過 剰に還元剤を充填しており、 2. 0〜2. 5倍の還元剤 (炭素量/酸素量 (モル比) =2. 0〜 2. 5) を充填している。 なおこの場合の還元率 (目標となる海綿鉄の純度) は、 金属鉄 で 90mass%以上、 好ましくは 97mass%以上である。 本発明者らは、 本願発明の螺旋状交互充填方式における炭素量/酸素量 (モル比)と 必要還元時間との関係を以下の実験により調査した。  In filling the raw materials into the reaction vessel, the ratio of the amount of iron oxide and the amount of reducing agent (solid reducing agent) when performing the above-mentioned spiral alternating filling, particularly the amount of oxygen in the iron oxide, is required. The ratio of the amount of carbon in the reducing agent has already been described together with the formula (2). In other words, the reduction reaction of iron oxide is determined as a reaction of one C atom in the reducing agent and one O atom in the iron oxide (carbon content / oxygen content (molar ratio) = 1. 0). However, in general, a larger amount of carbon than the amount of oxygen in iron oxide is required as a reducing agent. In the conventional method, the reducing agent is excessively charged for the reason already described, and the reducing agent is 2.0 to 2.5 times (carbon content / oxygen content (molar ratio) = 2.0 to 2.5). ) Is filled. In this case, the reduction ratio (target purity of sponge iron) is 90 mass% or more for metallic iron, and preferably 97 mass% or more. The present inventors investigated the relationship between the carbon amount / oxygen amount (molar ratio) and the required reduction time in the spiral alternating filling method of the present invention by the following experiment.
実験には、 図 8に示したように、 簡略化のため、 螺旋状ではなく、 ほぼ水平に充填 された酸化鉄粉末 1 2の層 (酸化鉄層) および還元剤粉末 1 3の層 (還元剤層) を交 互に充填する、 水平交互充填方式を採用した。 水平交互充填は還元により得られる海 綿鉄が複数の円板状であるため作業が煩雑となり、 実機への適性では螺旋状交互充填 の方が勝るが、 炭素量 Z酸素量 (モル比)と還元反応の進行との関係においては螺旋状 交互充填と同等である。 以後、 螺旋状交互充填と水平交互充填とを総称して交互充填 と呼ぶこととする。 In the experiment, as shown in Fig. 8, for simplicity, it was filled almost horizontally instead of spiral. A horizontal alternating filling method was adopted, in which the layers of iron oxide powder 12 (iron oxide layer) and the layer of reducing agent powder 13 (reducing agent layer) were alternately filled. The horizontal alternating filling is complicated because the sponge iron obtained by reduction has multiple disc shapes, and the spiral alternating filling is superior to the suitability for actual equipment, but the carbon content and the oxygen content (molar ratio) In relation to the progress of the reduction reaction, it is equivalent to spiral alternating packing. Hereinafter, the spiral alternating filling and the horizontal alternating filling are collectively referred to as alternate filling.
実験に用いた反応容器の内径は 370 充填する高さは 1400mmとした。 また、酸化鉄 粉末、 還元剤粉末としては後述の実施例 1と同じ物を用いた。 還元処理は、 最高温度 1150°Cで行つた。 還元時間はこの最高温度における保持時間を指す。 図 9は、 酸化鉄層厚の異なる複数の水平交互充填方式における、 酸ィヒ鉄中の酸素量 に対する炭素量 (モル比) と、 97 mass%鉄 (金属鉄)の海綿鉄を得るために掛かる還元 時間との関係を示すグラフである。 なお、 前記モル比は、 容器内の全酸化鉄と全還元 剤との比率である。  The inner diameter of the reaction vessel used for the experiment was 370, and the filling height was 1400 mm. The same iron oxide powder and reducing agent powder as those used in Example 1 described later were used. The reduction treatment was performed at a maximum temperature of 1150 ° C. The reduction time refers to the holding time at this maximum temperature. Figure 9 shows how to obtain carbon content (molar ratio) and oxygen content in iron oxide in a plurality of horizontal alternating filling systems with different iron oxide layer thicknesses and to obtain 97 mass% iron (metallic iron) sponge iron. It is a graph which shows the relationship with the required reduction time. The molar ratio is the ratio between the total iron oxide and the total reducing agent in the container.
なお、 図 9中に、 従来法である円筒状充填方式 (図 1 ) を用いて同様の還元処理を 行った結果の一例を丸印 (従来例:會) で示した。 この従来法は、 酸化鉄層の厚さを 55 讓とし、 炭素量/酸素量 (モル比) を 2. 2としたが、 還元時間が 5 3時間もかかつ た。  In FIG. 9, an example of the result of performing the same reduction treatment using the conventional cylindrical filling method (FIG. 1) is indicated by a circle (conventional example: Association). In this conventional method, the thickness of the iron oxide layer was set to 55 and the amount of carbon / oxygen (molar ratio) was set to 2.2, but the reduction time was as long as 53 hours.
一方、層状の交互充填 (図 8 ) で、酸化鉄層の厚さを 15 (実験例 4: X印)、 20 (実験例 3 :三角印)、 30 mm (実験例 2:四角印( 、 50 mm (実験例 1 :菱形印(♦) ) とした場合についてそれぞれ還元実験を行った結果、 酸化鉄層厚を薄くすることによ り還元時間は短くなつた。 また、 20 以上の厚さでは、 前記モル比が 1. 2以上になる と還元時間はほぼ一定となり、従来のように 2. 0以上のモル比を確保することが必要な いことが明らかとなった。  On the other hand, in the layered alternating packing (Fig. 8), the thickness of the iron oxide layer was 15 (Experimental example 4: X mark), 20 (Experimental example 3: triangle mark), 30 mm (Experimental example 2: square mark (, Reduction experiments were performed for each case of 50 mm (Experimental example 1: rhombus mark (♦)). As a result, the reduction time was shortened by reducing the thickness of the iron oxide layer. It was found that when the molar ratio was 1.2 or more, the reduction time became almost constant, and it was not necessary to secure a molar ratio of 2.0 or more as in the conventional case.
前記モル比が 1. 2未満では還元時間が長くなる傾向になるが、円筒状充填方式から交 互充填方式への変更や層厚低減による効果が前記傾向を凌駕する。 すなわち、 螺旋方 式の方が酸化鉄を多く充填できるので、 例えば本例では酸化鉄層厚 30讓の螺旋交互充 填方式で、 ほぼ従来例の円筒状充填方式と同量の酸化鉄が充填されている。 したがつ て、実験範囲であるモル比 1. 1以上の領域では充分に本願の効果が得られている。また、 モル比が 1. 15以上であれば還元時間の長時間化の程度は比較的小さいので、 1. 15以上 とすると、 ざらに効果的である。無論、モル比 1. 2以上ではさらに還元時間短縮効果が 得られる。 なお、酸化鉄層の厚さが 15 mmでは、モル比 1. 6以上で還元時間はほぼ一定となった。 さらに条件を変えて実験を繰り返し行った結果、 酸素鉄の厚さが 20墮未満では、 下記 の関係が成りたつこともわかった。 If the molar ratio is less than 1.2, the reduction time tends to be long, but the effect of changing from the cylindrical filling method to the alternating filling method and reducing the layer thickness surpasses the above tendency. In other words, since the spiral method can fill more iron oxide, for example, in this example, the spiral alternate filling method with an iron oxide layer thickness of 30 oz. Is filled with almost the same amount of iron oxide as the conventional cylindrical filling method. Have been. Therefore, the effects of the present application are sufficiently obtained in the experimental range of the molar ratio of 1.1 or more. In addition, if the molar ratio is 1.15 or more, the degree of prolongation of the reduction time is relatively small. Then, it is roughly effective. Of course, when the molar ratio is 1.2 or more, the effect of reducing the reduction time can be further obtained. When the thickness of the iron oxide layer was 15 mm, the reduction time was almost constant at a molar ratio of 1.6 or more. The experiment was repeated under different conditions. As a result, it was found that the following relationship was satisfied when the thickness of iron oxide was less than 20 corruption.
モル比 X酸化鉄層厚 (圆) =2. 3〜2. 5 (3) 式  Molar ratio X iron oxide layer thickness (圆) = 2.3-2.5 (3)
酸化鉄層の厚さ 20 mm未満では、 上記 (3)式を満足するように充填することにより、 酸ィ匕鉄層厚さが決まれば、 一義的に還元時間が決まり操業が安定し、 また、 得られる 海綿鉄の品質も安定する。 ただし、 この関係は、 反応速度に基づく本質的な関係とい うより、 還元剤層が薄くなって安定的に層厚管理が困難となることが原因である可能 性があり、 層厚制御技術の向上と共に上記制限が緩和されると期待される。  If the thickness of the iron oxide layer is less than 20 mm, the filling is performed so as to satisfy the above formula (3) .If the thickness of the oxidized iron layer is determined, the reduction time is determined and the operation is stabilized. However, the quality of sponge iron obtained is also stable. However, this relationship may be due to the fact that the thickness of the reducing agent layer becomes thinner, making it difficult to control the layer thickness stably, rather than to the essential relationship based on the reaction rate. It is expected that the above restrictions will be relaxed with the improvement.
なお、 還元剤の歩留まりの観点からは炭素量 Z酸素量 (モル比)を増大させないこと が好ましい。モル比 2. 0未満とすれば従来の円筒状充填方式に比べてメリットが生じる 、 好ましくは 1. 8以下である。 さて、図 6に示すように、容器内の外周部あるいは軸心部に還元剤層を設ける場合、 容器内全体の炭素量 Z酸素量 (モル比)のみの規定で、 還元剤層おょぴ酸化鉄層との層 厚比を設計する目安として充分かどうか、 調査の必要があると本発明者らは考えた。 そこで、本発明者らは、反応容器内における、原料堆積層の部分(円筒状中間部分) における還元剤の必要量を、 酸化鉄と還元剤との層厚比として還元挙動に何らかの傾 向が見られるかどう力、 実験検討した。 以下、 その実験および結果について述べる。  From the viewpoint of the yield of the reducing agent, it is preferable not to increase the amount of carbon and the amount of oxygen (molar ratio). If the molar ratio is less than 2.0, there is an advantage over the conventional cylindrical filling method, and it is preferably 1.8 or less. As shown in Fig. 6, when the reducing agent layer is provided on the outer peripheral portion or the axial center portion of the container, only the amount of carbon and the amount of oxygen (molar ratio) in the entire container are regulated, and the reducing agent layer is added. The present inventors thought that it was necessary to investigate whether or not the thickness ratio with the iron oxide layer was sufficient as a guide for designing. Therefore, the inventors of the present invention set the required amount of the reducing agent in the portion of the raw material deposition layer (cylindrical intermediate portion) in the reaction vessel as a ratio of the thickness of the iron oxide and the reducing agent to some tendency in the reduction behavior. We examined the power and experiment to see if it could be seen. The experiments and results are described below.
即ち、 反応容器に充填した酸ィヒ鉄中の酸素量に対する還元剤中の炭素量のモル比を 1. 2と一定にして、反応容器の壁近傍(外周部) およぴ軸中心部の還元剤の部分を取り 除いた、 いわゆる両者が層状に堆積している部分の、 酸化鉄中の酸素量に対する還元 剤中の炭素量を変える実験を行った。  That is, the molar ratio of the amount of carbon in the reducing agent to the amount of oxygen in the iron oxide charged in the reaction vessel was kept constant at 1.2, and the vicinity of the wall (outer periphery) and the center of the axis of the reaction vessel were An experiment was conducted in which the amount of carbon in the reducing agent was changed with respect to the amount of oxygen in the iron oxide in the portion where the reducing agent was removed, that is, the portion where both were deposited in layers.
実験は前記実験と同様、 水平充填方式で代用した。 実験に用いた充填方式の断面模 式図を図 1 0に示す。 なお、 円筒状中間部分の上面および下面を覆う還元層も、 該中 間部分に含めるものとする。 原料および実験条件は先の実験と同様とした。 In the experiment, the horizontal filling method was used as in the previous experiment. Fig. 10 shows a schematic cross-sectional view of the filling method used in the experiment. The reduction layer covering the upper and lower surfaces of the cylindrical intermediate portion also It shall be included in the intervening part. The raw materials and experimental conditions were the same as in the previous experiment.
図 1 1は、 異なるいくつかの酸化鉄層厚における、 炭素量 Z酸素量 (モル比) に对 する還元時間の変化を示したものである。 なお、 図中の丸印(秦)は外周部および軸心 部の還元剤層を設けない、 図 8の積層方式を用いた場合の値である。  FIG. 11 shows the change in the reduction time with respect to the carbon content and the oxygen content (molar ratio) at several different iron oxide layer thicknesses. The circles (hata) in the figure are the values when the laminating method shown in Fig. 8 is used without providing the reducing agent layer on the outer periphery and the axial center.
図 1 1に示すように、 酸化鉄層の厚さは 60 mm (実験例 1 1 :菱形印(令)), 50 瞧 (実験例 1 2 :四角印(固)), 30 mm (実験例 1 3 :三角印), 20 mm (実験例 1 4 : X 印) の 4水準として還元を行った。 その結果、 酸ィ匕鉄層の厚さを薄くすることにより 還元時間が短くなること、および、炭素量/酸素量 (モル比)が 0. 5以上になると還元時 間はほぼ一定となるが、 0. 5未満では還元時間は長くなることがわかった。  As shown in Fig. 11, the thickness of the iron oxide layer was 60 mm (Experimental example 11: diamond-shaped mark (decree)), 50 mm (Experimental example 12: Square mark (solid)), 30 mm (Experimental example) The reduction was carried out at four levels of 13: triangle mark and 20 mm (Example 14: X mark). As a result, the reduction time is shortened by reducing the thickness of the oxidized iron layer, and the reduction time becomes almost constant when the amount of carbon / oxygen (molar ratio) becomes 0.5 or more. It was found that the reduction time was prolonged when the ratio was less than 0.5.
したがって、容器全体での炭素量 Z酸素量 (モル比)を 1. 2以上とした効果を最大限に 確保するためには、 螺旋充填層の部分 (交互充填部) である前記円筒状中間部分にお ける炭素量 Z酸素量 (モル比)を 0. 5以上とすることが好ましいことがわかった。 なお、 確認のため、 前記円筒状中間部分における酸化鉄中の酸素量に対する還元剤 中の炭素量のモル比を 0. 8と一定にして、反応容器の軸心部や外周部に充填する還元剤 の量を変える実験を行った。 実験の結果について、 図 1 2に、 反応容器全体での充填 した全炭素量 Z全酸素量 (モル比) に対する還元時間の変化のグラフとして示した。 用いた記号は図 1 1と同じ板厚に対応している。  Therefore, in order to maximize the effect of setting the amount of carbon and the amount of oxygen (molar ratio) in the entire vessel to 1.2 or more, the cylindrical intermediate portion, which is the portion of the spirally packed layer (alternately filled portion), is required. It was found that it is preferable to set the amount of carbon and the amount of oxygen (molar ratio) to 0.5 or more. For confirmation, the molar ratio of the amount of carbon in the reducing agent to the amount of oxygen in the iron oxide in the cylindrical intermediate portion was kept constant at 0.8, and the reduction to be filled in the axial center portion and the outer peripheral portion of the reaction vessel was performed. An experiment was performed in which the amount of the agent was changed. The results of the experiment are shown in Fig. 12 as a graph of the change in reduction time with respect to the total amount of carbon Z and the total amount of oxygen (molar ratio) in the entire reaction vessel. The symbols used correspond to the same plate thickness as in FIG.
図 1 2からわかるように、 反応容器内全体としての炭素量ノ酸素量のモル比は 1. 2 以上になると、還元時間がほぼ一定となって安定するが、 1. 2未満では還元時間は長く なることがわかった。  As can be seen from Fig. 12, when the molar ratio of the total amount of carbon and oxygen in the reaction vessel becomes 1.2 or more, the reduction time becomes almost constant and becomes stable. It turned out to be long.
ただし、 1. 2未満でも、 1. 1以上、 好ましくは 1. 15以上で充分本願発明の効果を得る ことが出来ることは、 既に述べたとおりである。 以上をまとめると、 本発明においては、 反応容器 1 1内への酸ィヒ鉄と還元剤の交互 の層状充填 (螺旋状交互充填など) にあたっては、 これらの原料を、 該反応容器 1 1 内の軸心部、 外周部おょぴ円筒状中間部分を含む反応容器 1 1内全体としての酸化鉄 と還元剤との装入割合は、 酸ィヒ鉄中の酸素量に対する還元剤中の全炭素量の割合をモ ル比として、 1. 1以上とすることが好ましく、 さらに好ましくは 1. 15以上、 よ さらに 好ましくは 1. 2以上である。 また、 原料を螺旋層状に充填した上記円筒状中間部分における酸ィ匕鉄と還元剤の層 厚比については、 酸化鉄中の酸素量に対する還元剤中の炭素量の割合をモル比にて示 したとき、 0. 5以上となるようにすると好ましい。 However, as described above, the effect of the present invention can be sufficiently obtained with less than 1.2 and more than 1.1, preferably more than 1.15. Summarizing the above, in the present invention, in the case of alternate layered filling (such as spiral alternating filling) of iron oxyferrate and the reducing agent into the reaction vessel 11, these raw materials are put into the reaction vessel 11. The charging ratio of the iron oxide and the reducing agent as a whole in the reaction vessel 11 including the axial center portion, the outer peripheral portion, and the cylindrical intermediate portion is the total amount of the reducing agent with respect to the oxygen amount in the iron oxide. The molar ratio of the amount of carbon is preferably 1.1 or more, more preferably 1.15 or more, and even more preferably 1.2 or more. The thickness ratio between the iron oxide and the reducing agent in the cylindrical intermediate portion in which the raw material was filled into a spiral layer is shown by the molar ratio of the amount of carbon in the reducing agent to the amount of oxygen in the iron oxide. In this case, it is preferable that the value be 0.5 or more.
〔実施例〕 〔Example〕
(実施例 1 )  (Example 1)
この実施例においては、 表 1に示すような各実験水準を設定し、 Si C製反応容器 1 1内に酸化物層と還元剤層とを前記各水準に適合する方法で充填、 粗還元処理して、 海綿鉄を製造した。 すなわち、 表中の水準 A~ Cおよび Hは、 図 1に示す円筒状充填 方法、 水準 D〜Fは、 図 6に示す螺旋状交互充填方法、 水準 Gは水平交互充填方法の 例である。  In this example, each experimental level as shown in Table 1 was set, and an oxide layer and a reducing agent layer were filled in a reaction vessel 11 made of SiC by a method conforming to each of the above levels, and a crude reduction treatment was performed. Then, sponge iron was manufactured. That is, levels A to C and H in the table are examples of the cylindrical filling method shown in FIG. 1, levels D to F are examples of the spiral alternating filling method shown in FIG. 6, and level G is an example of the horizontal alternating filling method.
ここで、 水準 A、 Dの充填量向上代 20 %とは、 反応容器 1 1の中のミルスケールの 層厚合計が 20%増加することであり、 水準 B、 Eの充填量向上代 40 %とは、 反応容器 1 1の中のミルスケールの層厚が合計 40%増加することであり、 そして、 水準 C、 F の充填量向上代 60 %とは、反応容器 1 1の中のミルスケールの層厚が合計 60%増加す ることを意味している。 各条件の詳細は、 表 2に記す。 これらの条件の下で、 充填し た各水準について検討し、 充填方法、 好適層厚および純度を求めた。 この実験において、 主原料の酸化鉄は、 熱間圧延工程で発生するミルスケールを乾 燥し、 粉碎した後篩い分けし、 60 πιメッシュを通過する粒子が約 40mass%となるよ う調整して得たミルスケール粉を使用した (平均粒径は 0. 05mm〜10mmの間にあること を確認した)。 また、 副原料である還元剤は、 石灰石粉と炭素質粉の混合物を用いた。 炭素質粉はコータスおょぴ無煙炭を約 7 : 3の比率で混合して用い、 コークスについ ては平均粒径 85 mのもの、 無煙炭については平均粒径 2. 4 圆のものを使用した。 ま た、 石灰石粉は平均粒径 80 μ πιの石灰石粉を、 還元剤粉末全体に対して約 14mass%添 カロした。  Here, the 20% increase in the filling amount for levels A and D means that the total thickness of the mill scale in the reaction vessel 11 increases by 20%, and the 40% increase in the filling amount for levels B and E. Means that the total thickness of the mill scale in the reaction vessel 11 is increased by 40% in total, and the 60% improvement in the filling amount of the levels C and F means that the mill scale in the reaction vessel 11 is This means that the total layer thickness increases by a total of 60%. Table 2 shows the details of each condition. Under these conditions, each level filled was examined and the filling method, suitable layer thickness and purity were determined. In this experiment, the iron oxide, the main raw material, was prepared by drying the mill scale generated in the hot rolling process, pulverizing it, and sieving it. The obtained mill scale powder was used (the average particle size was confirmed to be between 0.05 mm and 10 mm). In addition, a mixture of limestone powder and carbonaceous powder was used as a reducing agent as an auxiliary material. The carbonaceous powder used was an anthracite with a ratio of about 7: 3, and the average particle size of coke was 85 m and the average particle size of anthracite was 2.4 mm. The limestone powder added limestone powder having an average particle size of 80 μπι to the reducing agent powder by about 14 mass%.
また、反応容器は内径 400画の円筒状容器とし、 円筒状充填の場合、酸化鉄層は外径 320腿、 厚みが表 2の各数値、 高さ(軸方向)が約 1500mmの円筒状となるよう充填した。 螺旋充填の場合、 軸心部に直径約 80mm、 外周部に厚み約 15誦の還元剤層を形成し、 残 りの円筒状中間部分に表 2に従って螺旋状交互充填を行い、 高さ(軸方向) 約 1500隱 の充填層とした。 なお容器内および円筒状中間部分の炭素量/酸素量 (モル比)はそれ ぞれ 1. 2以上、 0. 5以上とした。 表 1 In addition, the reaction vessel is a cylindrical vessel with an inner diameter of 400. In the case of cylindrical filling, the iron oxide layer has an outer diameter of 320 thighs, the thickness shown in Table 2 and the height (axial direction) of about 1500 mm. Filled so that In the case of spiral filling, a reducing agent layer with a diameter of about 80 mm at the center of the shaft and a thickness of about 15 at the outer periphery is formed. Direction) about 1500 As a packed layer. The carbon content / oxygen content (molar ratio) in the container and in the cylindrical intermediate portion were 1.2 or more and 0.5 or more, respectively. table 1
Figure imgf000023_0001
表 2
Figure imgf000023_0001
Table 2
Figure imgf000023_0002
なお、 水平交互充填は、 充填効率を確認する目的で実施した。 すなわち、 螺旋状交 互充填に用いたものと同じ原料装入装置を用い、 酸化鉄粉末および還元剤粉末のいず れか一方のみを充填しつつ回転装入筒を旋回し、 該回転装入筒を上昇した後、 他方の 粉末を同様の方法で充填する、 という手順を繰り返すことにより実施した。 表 1に示 すように、 水平交互充填は、 連続充填が不可能であり円筒状充填、 螺旋交互充填に比 較して充填時間が長い。 螺旋交互充填の場合、 充填時間を最も短縮できる。
Figure imgf000023_0002
The horizontal alternating filling was performed for the purpose of confirming the filling efficiency. That is, using the same raw material charging apparatus as that used for the helical alternating charging, the rotary charging cylinder is swirled while charging only one of the iron oxide powder and the reducing agent powder, and the rotary charging is performed. After the cylinder was raised, the procedure of filling the other powder in the same manner was repeated. As shown in Table 1, continuous filling is not possible in horizontal alternating filling, and the filling time is longer than in cylindrical filling and spiral alternating filling. In the case of spiral alternating filling, the filling time can be shortened most.
原料を各実験水準に基づいて充填したそれぞれの反応容器 1 1を、 同一の台車上に 積載してトンネル炉に装入した。 装入された台車は、 約 1日で予熱帯領域 (200 °C〜 900 °C) を通過し、 焼成帯領域 (1150で) を約 3日かけて通過させた。 その後、 約 1 日かけて冷却帯領域 (200 °C~900 °C) を通過させ、 トンネル炉から台車を出炉し、 さらに容器から海綿鉄を取り出してその純度を測定した。 なお、 いずれの海綿鉄も重 量は 200kg以上であった。  Each reaction vessel 11 filled with the raw materials based on each experimental level was loaded on the same bogie and charged into a tunnel furnace. The loaded trolley passed through the pre-tropical zone (200 ° C to 900 ° C) in about 1 day and passed through the firing zone (at 1150) in about 3 days. After that, it passed through the cooling zone (200 ° C to 900 ° C) for about one day, the bogie was discharged from the tunnel furnace, and the sponge iron was taken out of the vessel and its purity was measured. Each sponge iron weighed 200 kg or more.
海綿鉄の純度は、 酸素分析法により求めた化学成分より金属 Fe含有量を換算して求 めた。 その結果を図 1 3に示す。 図 1 3に示すように、 螺旋交互充填 (ハッチング) の場合、 酸化鉄層の層厚が 60鹏 まで、 即ち生産性向上代 40 %までは還元は良好で、 純度 97mass%あるいは 98 mass% を超える高純度の海綿鉄が得られており、 生産性としては、 従来の 40 %増加までは層 厚での調整が可能であることがわかった。 一方、 円筒状充填では、 20 %の生産性向上 を目指すと層厚は 75 mmにも達し、 純度も 95. 65 mass%となり、 螺旋交互充填ほどの生 産性向上は不可能である。 The purity of sponge iron is determined by converting the metallic Fe content from the chemical components determined by oxygen analysis. I did. Figure 13 shows the results. As shown in Fig. 13, in the case of spiral alternating filling (hatching), reduction is good and the purity is 97 mass% or 98 mass% when the iron oxide layer thickness is up to 60 鹏, that is, up to 40% in productivity improvement allowance. High-purity sponge iron has been obtained, indicating that productivity can be adjusted by layer thickness up to 40% increase compared to the conventional method. On the other hand, with cylindrical packing, if the aim is to improve productivity by 20%, the layer thickness will reach 75 mm, and the purity will be 95.65 mass%, so it is impossible to improve productivity as much as spiral alternating packing.
(実施例 2 ) (Example 2)
下記の発明例 1 〜 5およぴ従来例 1の方法により海綿鉄を製造した。 なお、 充填方 式は実質上図 3 Aとし、 炭素量/酸素量 (モル比)は 1. 2以上であった。  Sponge iron was produced by the methods of Invention Examples 1 to 5 and Conventional Example 1 below. The filling method was substantially that shown in Fig. 3A, and the carbon content / oxygen content (molar ratio) was 1.2 or more.
[発明例 1 ]  [Invention Example 1]
この実施例では、 反応容器内に、 酸化鉄の層厚を 50 mmとし、 還元剤の畢厚を 50 mm とした等厚比で螺旋状交互充填した。 使用した反応容器は、 高さ 1. 8m、 内径 40 cmの 円筒状容器である。還元剤粉末としては粒径 1膽以下のコータス粉に 16 mass%の石灰 石 (平均粒径約 95 m) を混合したものを使用した。 また、 酸化鉄粉末としては、 0. 1 腿以下に粉砕したミルスケール (粉砕後篩い分けし、 60 111メッシュを通過する粒子 が約 40mass%となるよう調整した) を使用した。 ミルスケール粉末、 コークス粉末と も、 平均粒径は 0. 05mn!〜 10膽の範囲内であった。 原料装入装置としては図 4 Aに記载されたものを用い、 酸化鉄粉末排出口 1 5の開 口高さを 50鹏とし、 還元剤粉末排出口 1 6の開口高さを 50 mmに調整して、 回転装入 筒 1 4 bの回転速度を 1分間で 4回転、 上昇速度を 400 謹/分として充填した。  In this example, the reaction vessel was spirally and alternately filled at an equal thickness ratio where the layer thickness of iron oxide was 50 mm and the total thickness of the reducing agent was 50 mm. The reaction vessel used was a cylindrical vessel with a height of 1.8 m and an inner diameter of 40 cm. As the reducing agent powder, a mixture of limestone of 16 mass% (average particle size of about 95 m) mixed with a coatus powder having a particle size of less than 1 bun was used. The iron oxide powder used was a mill scale pulverized to less than 0.1 thigh (which was pulverized, sieved, and adjusted so that particles passing through 60 111 mesh became about 40 mass%). The average particle size of both mill scale powder and coke powder is 0.05 mn! It was in the range of ~ 10 tons. The raw material charging device shown in Fig. 4A was used.The opening height of the iron oxide powder outlet 15 was set to 50 mm, and the opening height of the reducing agent powder outlet 16 was set to 50 mm. After adjustment, the rotating cylinder 14b was filled at a rotational speed of 4 revolutions per minute for 4 revolutions and a rising speed of 400 bpm.
充填結果として、 酸化鉄層厚み 50 删、 固体還元剤層 50 mmの 1 7ターン螺旋交互充 填層が得られた。 このときの酸化鉄の充填量は 339 kgであった。  As the packing result, a 17-turn spiral alternating packed bed with an iron oxide layer thickness of 50 mm and a solid reducing agent layer of 50 mm was obtained. At this time, the charged amount of iron oxide was 339 kg.
[発明例 2 ] [Invention Example 2]
この実施例では、 反応容器内に、 酸化鉄の層厚を 35鹏とし、 還元剤の層厚を 65 mm とした等厚比で螺旋状交互充填した。 発明例 1と同じ反応容器、 原料粉末および原料 装入装置を用い、 酸ィ匕鉄と固体還元剤とを充填した。 酸化鉄粉末排出口 1 5の開口高 さを 35 隱とし、 還元剤粉末排出口 1 6の開口高さを 65 腿に調整して、 回転装入筒 1 4 bの回転速度を 1分間で 4回転、 上昇速度を 400 匪 Z分として充填した。 In this example, the reaction vessel was spirally and alternately filled with an equal thickness ratio of iron oxide layer thickness of 35 mm and reducing agent layer thickness of 65 mm. Same reaction vessel, raw material powder and raw material as in Invention Example 1 Using a charging device, the oxidized iron and the solid reducing agent were charged. The opening height of the iron oxide powder outlet 15 is 35 hidden, the opening height of the reducing agent powder outlet 16 is adjusted to 65 thighs, and the rotation speed of the rotary charging cylinder 14 b is set to 4 The rotation and the ascending speed were filled as 400 marauders Z minutes.
充填結果として、 酸化鉄層厚み 35 mm、 還元剤層厚み 65 腿の 1 7ターン螺旋交互充 填層が得られた。 このときの酸化鉄の充填量は 237 kgであった。  As a result, a 17-turn spiral alternating packed bed with an iron oxide layer thickness of 35 mm and a reducing agent layer thickness of 65 thighs was obtained. At this time, the filling amount of iron oxide was 237 kg.
[発明例 3 ] [Invention Example 3]
この実施例では、 反応容器内に、 酸化鉄の層厚を 60 腿とし、 還元剤の層厚を 40 讓 とした等厚比で螺旋状交互充填した例である。 使用した反応容器、 原料粉末および原 料装入装置は発明例 1と同じとして、 酸ィヒ鉄と還元剤とを充填した。 酸化鉄粉末排出 口 1 5の開口高さを 60 mmとし、還元剤粉末排出口 1 6の開口高さを 40膽に調整して、 回転装入筒 1 4 bの回転速度を 1分間で 4回転、 上昇速度を 400 隱 Z分として充填し た。  This example is an example in which the reaction container is spirally and alternately filled at an equal thickness ratio where the thickness of the iron oxide is 60 and the thickness of the reducing agent is 40. The reaction vessel, raw material powder and raw material charging apparatus used were the same as in Invention Example 1, and were charged with iron oxyacid and a reducing agent. The opening height of the iron oxide powder outlet 15 is set to 60 mm, the opening height of the reducing agent powder outlet 16 is adjusted to 40 mm, and the rotation speed of the rotary charging cylinder 14 b is increased by 4 minutes. The rotation and the ascending speed were filled at 400 o'clock.
充填結果として、 酸化鉄層厚み 60 mm、 固体還元剤層 50 mmの 1 7ターン螺旋交互充 填層が得られた。 このときの酸化鉄の充填量は 406 kgであった。  As a result of packing, a 17-turn spiral alternating packed bed with an iron oxide layer thickness of 60 mm and a solid reducing agent layer of 50 mm was obtained. At this time, the filling amount of the iron oxide was 406 kg.
[発明例 4 ] [Invention Example 4]
この実施例では、 反応容器内に、 酸化鉄の層厚を 25 mmとし、 還元剤の層厚を 25 mm とした等厚比で螺旋状交互充填した例である。 使用した反応容器、 原料粉末および原 料装入装置は発明例 1と同じとして、 酸化鉄と還元剤とを充填した。 酸化鉄粉末排出 口 1 5の開口高さを 25 mmとし、還元剤粉末排出口 1 6の開口高さを 25腿に調整して、 回転装入筒 1 4 bの回転速度を 1分間で 4回転、 上昇速度を 200 画 Z分として充填し た。  In this embodiment, the reaction vessel is spirally filled alternately at an equal thickness ratio with the layer thickness of iron oxide being 25 mm and the layer thickness of the reducing agent being 25 mm. The used reaction vessel, raw material powder and raw material charging device were the same as in Invention Example 1, and were charged with iron oxide and a reducing agent. Adjust the opening height of the iron oxide powder outlet 15 to 25 mm, adjust the opening height of the reducing agent powder outlet 16 to 25 thighs, and adjust the rotation speed of the rotary charging cylinder 14 b to 4 The rotation and ascending speed were filled at 200 strokes Z.
充填結果として、 酸化鉄層厚み 25 腕、 還元剤層厚み 25 mmの 3 4ターン螺旋交互充 填層が得られた。 このときの酸化鉄の充填量は 339 kgであった。  As a result of filling, a 34-turn spiral alternating packed bed with a thickness of 25 layers of iron oxide layer and 25 mm of reducing agent layer was obtained. At this time, the charged amount of iron oxide was 339 kg.
[発明例 5 ] [Invention Example 5]
この実施例では、 反応容器内に、 酸化鉄層の厚みを 57. 5 mmとし、 還元剤を 50 瞧と した例を示す。 反応容器、 原料粉末および原料装入装置は、 発明例 1と同じものを用 い、 酸化鉄と還元剤とを充填した。 酸化鉄粉末排出口 1 5の開口高さを 57. 5 mmとし、 還元剤粉末排出口 1 6の開口高さを 50 腿に調整した回転装入筒 1 4 bの回転速度を 1分間で 4回転、 上昇速度を 430 mm/分として充填した。 This example shows an example in which the thickness of the iron oxide layer is 57.5 mm and the reducing agent is 50 mm in the reaction vessel. The same reaction vessel, raw material powder and raw material charging apparatus as those of Invention Example 1 were used, and were charged with iron oxide and a reducing agent. The opening height of the iron oxide powder outlet 15 is 57.5 mm, The rotating charging cylinder 14b with the opening height of the reducing agent powder outlet 16 adjusted to 50 thighs was filled at a rotation speed of 4 rotations per minute and a rising speed of 430 mm / min.
充填結果として、 酸化鉄層厚み 57. 5 mm、 還元剤層厚み 50 圆の 1 6ターン螺旋交互 充填層が得られた。 このときの酸化鉄の充填量は 366 kgであった。  As a result of packing, a 16-turn spiral alternating packed bed with an iron oxide layer thickness of 57.5 mm and a reducing agent layer thickness of 50 mm was obtained. At this time, the filling amount of iron oxide was 366 kg.
[従来例 1 ] 0) [Conventional example 1] 0)
この例は、 図 1に示す従来法に基づいて円筒状充填した例であり、 反応容器は実施 例 1と同じものを使い、 厚み 57. 5醒、 外径 310 mm φの円筒状に酸化鉄粉末の層を形成 すると共に、該酸化鉄層のまわりに (円筒内部も含む)、 還元剤粉末を充填した。 反応 容器および原料粉末は発明例 1と同じものを用いた。 容器内の炭素量 Z酸素量 (モル 比)は約 2. 2であった なお、 還元処理は、 トンネル炉を用いて行い、 その還元所要時間を調べた。  In this example, a cylindrical vessel was filled based on the conventional method shown in Fig. 1.The same reaction vessel as in Example 1 was used, and iron oxide was formed into a cylindrical shape with a thickness of 57.5 mm and an outer diameter of 310 mm φ. A powder layer was formed, and the reducing agent powder was filled around the iron oxide layer (including the inside of the cylinder). The same reaction vessel and raw material powder as those of Invention Example 1 were used. The amount of carbon in the container and the amount of oxygen (molar ratio) were about 2.2. The reduction treatment was performed using a tunnel furnace, and the time required for the reduction was examined.
上記の結果を表 3にまとめて示した。  The above results are summarized in Table 3.
ここで、還元所要時間とは、純度 95%以上の海綿鉄を得るための焼成帯域(1150°C) における保持時間をいう。 また、 時間当たり生産性とは、 装入した酸化鉄重量を還元 所要時間で割つた値である。 o t  Here, the time required for reduction refers to a retention time in a calcination zone (1150 ° C) for obtaining sponge iron having a purity of 95% or more. The productivity per hour is the value obtained by dividing the weight of iron oxide charged by the time required for reduction. o t
CO  CO
表 3の結果からわかるように、 本発明方法の場合、 従来法に比べると大幅な o0生 1産性 の向上が得られている。 表 3  As can be seen from the results in Table 3, in the case of the method of the present invention, a significant improvement in o0 productivity is obtained as compared with the conventional method. Table 3
発明例 1 発明例 2 発明例 3 発明例 4 発明例 5 従来例 1 充填方式 螺旋状交互充填 円筒状充填 酸化鉄層厚  Invention example 1 Invention example 2 Invention example 3 Invention example 4 Invention example 5 Conventional example 1 Filling method Spiral alternating filling Cylindrical filling Iron oxide layer thickness
50 35 60 25 57. 5  50 35 60 25 57.5
(mm)  (mm)
還元剤層厚  Reducing agent layer thickness
50 65 40 25 50 50以上 (mm)  50 65 40 25 50 50 or more (mm)
酸化鉄重量  Iron oxide weight
339 237 406 339 366 227 (kg)  339 237 406 339 366 227 (kg)
兀時 isj  When it falls
62 52 78 40 74 75 (h)  62 52 78 40 74 75 (h)
時間当たり  Per hour
4. 55 8. 47 4. 94  4.55 8.47 4.94
生産性 (kg/h) (実施例 3 ) Productivity (kg / h) (Example 3)
[発明例 6 ]  [Invention Example 6]
図 4 Aに開示の原料装入装置を用い、 反応容器 1 1の底部に還元剤粉末 1 3 (コー クス粉) を 30画の厚みに堆積させた。 その上に、 酸化鉄粉末排出口 1 5と還元剤粉末 排出口 1 6とを有する回転装入筒 1 4 bを回転させながら、 順次に迫り上げていくこ とにより、 厚み 40 mmの酸化鉄粉末 1 2 (ミルケース) と厚み 瞧の還元剤粉末 1 3 とが反応容器内を交互に螺旋状に連続的に充填した。 最後に、 反応容器 1 1の上端に 還元剤粉末 (コータス粉) 1 3を充填した。 この充填では還元剤中の炭素量と酸ィ匕鉄 中の酸素量のモル比は 1. 6であった。 上記以外の条件は、 実施例 2と同じとした。  Using the raw material charging device disclosed in FIG. 4A, reducing agent powder 13 (coke powder) was deposited on the bottom of the reaction vessel 11 to a thickness of 30 strokes. On top of this, the rotating charging cylinder 14 b having the iron oxide powder discharge port 15 and the reducing agent powder discharge port 16 is rotated upwards while rotating, so that the iron oxide powder having a thickness of 40 mm is obtained. 1 2 (mill case) and a reducing agent powder 13 having a thickness of 充填 were alternately and continuously filled in a spiral manner in the reaction vessel. Finally, the upper end of the reaction vessel 11 was filled with reducing agent powder (Cotas powder) 13. In this filling, the molar ratio of the amount of carbon in the reducing agent to the amount of oxygen in the oxidized iron was 1.6. The other conditions were the same as in Example 2.
[比較例 1 ] [Comparative Example 1]
図 8に記載の水平充填方式を用い、 同様に充填を行なった。 この例の充填のスケジ ユールは、 図 4 Αの原料送入装置 1 4において、 反応容器 1 1の底部にまず還元剤粉 末 (コータス粉) 3を 50 mmの厚みに充填し、 次に、 その上に酸化鉄粉末 (ミルスケー ル) 1 2を 40 mmの厚みに切り出して堆積させ、 こうした充填スケジュールにて、 反応 容器 1 1の上端まで繰り返し充填した。なお、反応容器 1 1の上端には還元剤粉末(コ 一タス粉) 1 3を充填する。 この充填では還元剤中の炭素量と酸化鉄中の酸素量のモ ル比は 1. 6であった。  Filling was performed in the same manner using the horizontal filling method shown in FIG. In this example, the filling schedule is as follows. In the raw material feeding device 14 shown in Fig. 4, the reducing agent powder (coats powder) 3 is first filled into the bottom of the reaction vessel 11 to a thickness of 50 mm. Iron oxide powder (mill scale) 12 was cut out to a thickness of 40 mm and deposited thereon, and was repeatedly filled up to the upper end of the reaction vessel 11 according to such a filling schedule. Note that the upper end of the reaction vessel 11 is filled with a reducing agent powder (copper powder) 13. In this filling, the molar ratio of the amount of carbon in the reducing agent to the amount of oxygen in the iron oxide was 1.6.
[従来例 2 ] [Conventional example 2]
図 1 A, Bに記載の円筒状充填方式を用い、 同様に充填を行った。 条件は、 炭素量 Z酸素量 (モル比) を 2. 5とした以外は、 実施例 2の従来例 1と同様とした。 次に、 原料を充填した上記耐火物製反応容器 1 1は台車に載置し、 トンネル炉を通 過させることにより、酸化鉄の加熱、還元が行った。使用したトンネル炉の全長は 100 mで、 そのうち中央部 40mの領域が雰囲気温度 1150 °Cに調整された。 このような条件 下で鉄の比率 97 masS%の海綿鉄製造操業を行った結果をまとめて表 4に示す。 表 4より明らかなように、本発明の実施例では、台車速度が従来例の 1. lm/hrに対 し、 1. 3mZhrと 18%速くなっている。なお、充填したミルスケール量は、従来例 220 kg 容器に対して 256 kgZ容器と 16%大きい。この結果、生産性が 38%も向上していた。 これにともない、 加熱に要する海綿鉄単位質量当りの熱量も 11470M J /tonから 8820 M J /tonへ約 30%も削減できた。 表 4 Filling was performed in the same manner using the cylindrical filling method shown in Figs. 1A and 1B. The conditions were the same as in Conventional Example 1 of Example 2 except that the carbon content and the oxygen content (molar ratio) were set to 2.5. Next, the refractory reaction vessel 11 filled with the raw materials was placed on a cart and passed through a tunnel furnace to heat and reduce the iron oxide. The total length of the tunnel furnace used was 100 m, of which the central 40 m area was adjusted to an ambient temperature of 1150 ° C. Table 4 summarizes the results of a sponge iron production operation with an iron ratio of 97 mas S % under these conditions. As is clear from Table 4, in the example of the present invention, the bogie speed is 1.3 mZhr, 18% faster than the conventional example of 1. lm / hr. The amount of mill scale filled was 220 kg 16% larger than the container, 256 kgZ container. As a result, productivity increased by 38%. Along with this, the amount of heat required for heating per unit mass of sponge iron was reduced by about 30% from 11470 MJ / ton to 8820 MJ / ton. Table 4
Figure imgf000028_0001
Figure imgf000028_0001
(実施例 4 ) (Example 4)
図 5に示す原料装入装置を用い、 海綿鉄の製造を行なった。 使用した原料は、 実施 例 2と同じである。切り出し部 1 4 cは半円状(中心角約 180° の扇形)とした。なお、 反応容器は内径 400腿、高さ 2000mmのものを用い、溶着した反応生成スラグによる凸部 (最高高さ約 20mm) を意図的に除去せずに回転装入筒の挿入を行なった。 回転装入筒 本体部の外形は 310mm (容器内径の 77· 5%)、 切り出し部の平面断面における仮想円の 直径は 360mm (容器内径の 90%) であった。  The sponge iron was manufactured using the raw material charging device shown in Fig. 5. The raw materials used are the same as in Example 2. The cutout 14c was semicircular (sector-shaped with a central angle of about 180 °). The reaction vessel was 400 thigh in diameter and 2,000 mm in height, and the rotary charging cylinder was inserted without intentionally removing the convex part (maximum height of about 20 mm) due to the welded reaction product slag. The outer shape of the rotating charging cylinder main body was 310 mm (77.5% of the inner diameter of the container), and the diameter of the imaginary circle in the plane cross section of the cutout was 360 mm (90% of the inner diameter of the container).
回転装入筒は、 先端部が前記凸部ゃ反応容器に軽く接触しても、 反対側に移動でき るため、 反応容器最下端まで問題なく挿入でき、 原料粉の挿入には問題なかった。 反 応容器には、 260kgの酸化鉄粉末が問題なく充填できた (酸化鉄層厚: 50画、還元剤層 厚: 30腿)0 Even if the tip of the rotary charging cylinder is slightly in contact with the convex part and the reaction vessel, it can be moved to the opposite side, so that it can be inserted without problems to the lowermost end of the reaction vessel, and there is no problem in inserting the raw material powder. The anti-reaction container vessel, the iron oxide powder 260kg could filled without problems (layer of iron oxide thickness: 50 strokes, reducing agent layer thickness: 30 thigh) 0
充填後、 実施例 2と同様にトンネル炉で還元を行なったが、 とくに問題はなく、 純 度 95mass%以上の螺旋状の海綿鉄塊が得られた。  After the filling, reduction was performed in a tunnel furnace in the same manner as in Example 2, but there was no particular problem, and a spiral sponge iron mass having a purity of 95 mass% or more was obtained.
(実施例 5 ) (Example 5)
以下の発明例 7〜 1 1、 比較例 2およぴ従来例 3の方法により海綿鉄を製造した。 なお、 充填方式は図 6とした。  Inventive Examples 7 to 11, Comparative Example 2 and Conventional Example 3 were used to produce sponge iron. Figure 6 shows the filling method.
この実施例において、 主原料となる酸化鉄粉末としては、 ミルスケールや鉄鉱石粉 を適宜粉砕 ·粒度調整して用いた。また、還元剤粉末としては、 コータス粉、チヤ一、 石炭粉、 木炭粉などの単体あるいは混合物からなるものいずれか 1種以上を適宜粉 砕 ·粒度調整して用いた。 いずれも平均粒径は約 70 μ π!〜 90 mの範囲とした。 In this example, the iron oxide powder used as the main raw material was mill scale or iron ore powder. Was appropriately pulverized. Further, as the reducing agent powder, at least one kind of a single substance or a mixture of a powder of coal, a powder of charcoal, a powder of charcoal and the like was used by appropriately pulverizing and adjusting the particle size. Each has an average particle size of about 70 μπ! 9090 m.
装置は図 1 4に示す回転装入筒を有するものを用い、 操業の開始にあたっては、 ま ず反応容器 1 1の底部に還元剤粉末 1 3を敷き、 その上に酸化鉄粉末 1 2と還元剤粉 末 1 3とを、 原料装入装置 1 4の旋回装入筒 1 4 bを回転させながら、 同時に一定の 速度で上昇させて交互に螺旋層状に装入し、これを容器 1の上端まで行った。そして、 反応容器 1 1内の頂部には、還元剤粉末 1 3を充填して覆った。 なお、製品 (海綿鉄) の取出しおよぴ容器への海綿鉄の付着を防止し、 かつ反応ガスの拡散効率を上げるた めに、 軸心部おょぴ容器壁近傍の外周部は還元剤のみを充填した。  The equipment has a rotating charging cylinder as shown in Fig. 14.At the start of operation, first, a reducing agent powder 13 is spread on the bottom of the reaction vessel 11 and iron oxide powder 12 is reduced on top of it. The agent powder 13 is charged alternately in a spiral layer at the same time while rotating the swirl charging cylinder 14 b of the raw material charging device 14, and is alternately charged into the spiral layer. I went up. Then, the top of the reaction vessel 11 was filled with a reducing agent powder 13 and covered. In order to prevent the removal of the product (sponge iron) and the adhesion of the sponge iron to the container, and to enhance the diffusion efficiency of the reaction gas, the outer periphery of the shaft center and the vicinity of the container wall is a reducing agent. Only filled.
[従来例 3 ] [Conventional example 3]
この例は、図 1に示す従来充填方法である。即ち、耐火物製反応容器 1 (内径 400謹、 長さ 1800 mm) 内に、 外径 310 mm、 内径 200 mm、 長さ 1600 醒の酸化鉄層 (ただし、 そ の他の部分は還元剤) を充填した。容器内の炭素量 Z酸素量 (モル比)は 2. 2としたとこ ろ、 目標純度を 97. 0maSS%とした還元時間 (1150°C、 以下同様) は 53時間であった。 This example is the conventional filling method shown in FIG. In other words, a refractory reaction vessel 1 (inner diameter 400, length 1800 mm) contains an iron oxide layer with an outer diameter of 310 mm, an inner diameter of 200 mm, and a length of 1600 (the other parts are reducing agents) Was charged. The amount of carbon in the container and the amount of oxygen (molar ratio) were set to 2.2, and the reduction time (1150 ° C, the same applies hereinafter) with the target purity of 97.0 ma SS % was 53 hours.
[発明例 7 ] [Invention Example 7]
この例では、 螺旋状交互充填方式を用い、 酸化鉄は、 外径 390 mm、 内径 60 mm、 層厚 60讓の螺旋状、還元剤は層厚 45 mmで他は同様の螺旋状として、両者同時に充填した。 円筒状中間部での酸化鉄と還元剤の炭素量 Z酸素量のモル比は 0. 8、全充填原料におけ る炭素量 Z酸素量 (モル比)は 1. 2とした。この例では、まず、充填量が従来例 3より 35% 増加したが、 還元時間は 60時間に止まった。 海綿鉄の容器内面への付着はなく、 取出 しも容易にできた。 In this example, using the helical alternate filling method, the iron oxide has an outer diameter of 390 mm, an inner diameter of 60 mm, thickness 6 0 Yuzuru spiral, the other as a similar spiral in the reducing agent layer thickness 45 mm, Both were filled at the same time. The molar ratio of the carbon content and the oxygen content of the iron oxide and the reducing agent in the cylindrical intermediate portion was 0.8, and the carbon content and the oxygen content (molar ratio) of all the filling materials were 1.2. In this example, the filling amount was first increased by 35% compared to Conventional Example 3, but the reduction time was only 60 hours. The sponge iron did not adhere to the inner surface of the container and was easily removed.
[発明例 8 ] [Invention Example 8]
この例では、 螺旋状交互充填方式を用い、 酸化鉄は、 外径 365 mm、 内径 100 讓、 層 厚 60 mmの螺旋状で、 還元剤は層厚 28議で他は同様の螺旋状として、 両者同時に充填 した。 円筒状中間部での酸ィ匕鉄と還元剤の炭素量 Z酸素量のモル比は 0. 5、全充填に対 するモル比は 1. 2とした。 この例では、 まず、 充填量が従来例 3より 35%増加したが、 還元時間は 59時間に止まった。 海綿鉄の容器内面への付着はなく、 取出しも容易にで きた。 In this example, a spiral spiral filling method is used.The iron oxide is a spiral with an outer diameter of 365 mm, an inner diameter of 100 mm, and a layer thickness of 60 mm.The reducing agent has a layer thickness of 28 mm. Both were filled at the same time. The molar ratio of the carbon content and the oxygen content of the oxidizing iron and the reducing agent at the cylindrical intermediate portion was 0.5, and the molar ratio to the total filling was 1.2. In this example, first, the filling amount increased by 35% compared to Conventional Example 3, The payback time stopped at 59 hours. The sponge iron did not adhere to the inner surface of the container and was easily removed.
[発明例 9 ] [Invention Example 9]
この例では、 螺旋状交互充填方式を用い、 酸化鉄は、 外径 350 mm、 内径 100 mm、 層 厚 60 mmの螺旋状で、 還元鉄は層厚 17 mmで他は同様の螺旋状として、 両者同時に充填 した。 円筒状中間部での酸化鉄と還元剤の炭素量 Z酸素量のモルは 0. 3、全充填に対す るモル比は 1. 2とした。 この例では、 まず、充填量が従来例 1より 35%増加した力 還 元時間 70時間掛かった。 海綿鉄の容器内面への付着はなく取出しも容易にできた。 た だし、 増量分を考慮しても還元時間は従来法 3と同程度であった。  In this example, the spiral alternating filling method is used.The iron oxide is a spiral with an outer diameter of 350 mm, the inner diameter is 100 mm, and the layer thickness is 60 mm. Both were filled at the same time. The carbon content of the iron oxide and the reducing agent in the intermediate portion of the cylinder, the molar amount of the Z oxygen amount was 0.3, and the molar ratio to the total charge was 1.2. In this example, first, it took 70 hours for the power reduction time, in which the filling amount was increased by 35% compared to the conventional example 1. The sponge iron did not adhere to the inner surface of the container and was easily removed. However, the reduction time was almost the same as in Conventional Method 3 even if the increase was considered.
[発明例 1 0 ] [Invention Example 10]
この例では、 螺旋状交互充填方式を用い、 酸化鉄は、 外径 375 mm、 内径 100 mm、 層厚 60 mmの螺旋状で、 還元剤は層厚 45 mmで他は同様の螺旋状として、 両者同時に充 填した。 円筒状中間部での酸化鉄と還元剤の炭素量 Z酸素量のモル比は 0. 8、全充填に 対するモル比は 1. 5とした。 この例では、 まず、 充填量は従来例 3より 20%増加し、還 元時間 59時間に止まつた。 海綿鉄の容器内面への付着はなく取出しも容易にできた。 容器内の炭素量/酸素量 (モル比)が低めである発明例 7の方が還元時間当たり生産効 率は高いものの、 本例でも従来より良好な結果が得られる。  In this example, a spiral spiral filling method is used, iron oxide is a spiral with an outer diameter of 375 mm, an inner diameter of 100 mm, and a layer thickness of 60 mm. Both were charged at the same time. The molar ratio of the carbon content of the iron oxide and the reducing agent and the oxygen content of the oxygen in the cylindrical intermediate part was 0.8, and the molar ratio to the total charge was 1.5. In this example, first, the filling amount increased by 20% compared to Conventional Example 3 and stopped at a reduction time of 59 hours. The sponge iron did not adhere to the inner surface of the container and was easily removed. Inventive Example 7, in which the amount of carbon / oxygen (molar ratio) in the container is relatively low, has a higher production efficiency per reduction time, but also in this example, better results are obtained than in the prior art.
[発明例 1 1 ] [Invention Example 11]
この例では、 螺旋状交互充填方式を用い、 酸化鉄は、 外径 395 mm、 内径 40議、 層厚 60 mmの螺旋状で、 還元剤は同形のものを層厚 45 腿で他は同様の螺旋状として、 両者 同時に充填した。 円筒状中間部での炭素量/酸素量のモル比は 0. 8、全充填に対するモ ル比は 1. 1で充填量は従来例 3より 40%増加したものの、還元時間 78時間かかった。海 綿鉄の容器内面への付着はなく取出しも容易にできた。 この例では還元時間がやや長 時間化し、 増量分を考慮しても還元時間は従来法 3と同程度であった。 以上の結果を、 表 5にまとめて示す。 表 5 In this example, a spiral spiral filling method is used.The iron oxide is a spiral with an outer diameter of 395 mm, an inner diameter of 40 mm, and a layer thickness of 60 mm. Both were filled simultaneously as a spiral. The molar ratio of carbon / oxygen in the middle part of the cylinder was 0.8, the molar ratio to the total charge was 1.1, and the charge was 40% higher than in Conventional Example 3, but the reduction time was 78 hours. The sponge iron did not adhere to the inner surface of the container and was easily removed. In this example, the reduction time was slightly longer, and the reduction time was almost the same as in Conventional Method 3 even if the increased amount was considered. Table 5 summarizes the above results. Table 5
Figure imgf000031_0001
Figure imgf000031_0001
*) 酸化鉄: :量 (相対比) /還元時間 (h)  *) Iron oxide:: Amount (relative ratio) / Reduction time (h)
産業上の利用の可能性 Industrial potential
以上説明したように、 本発明によれば、 螺旋状交互充填技術の採用によって、 海綿 鉄を高い生産性および品質 (たとえば純度 97%以上) を確保した上で製造することが できる。 しかも、 反応容器内への原料充填構造を任意、 容易かつ迅速に変えることが できるので品質 '量'還元時間等の調整が容易であり、生産効率の著しい向上を実現す ることができる。 ひいては高純度の海綿鉄を安価に製造することができる。  As described above, according to the present invention, sponge iron can be manufactured while ensuring high productivity and quality (for example, purity of 97% or more) by employing the spiral alternating filling technique. In addition, since the raw material filling structure in the reaction vessel can be changed arbitrarily, easily and quickly, it is easy to adjust the quality “quantity” reduction time and the like, and it is possible to realize a remarkable improvement in production efficiency. Consequently, high-purity sponge iron can be produced at low cost.

Claims

請求の範囲 The scope of the claims
1 . 反応容器内に酸化鉄粉末と還元剤粉末とを装入する装入工程と、 1. a charging step of charging the iron oxide powder and the reducing agent powder into the reaction vessel;
前記反応容器の外側から加熱して前記反応容器内の前記酸化鉄粉末を還元し、 塊状 の海綿鉄とする還元工程と  A heating step of heating from the outside of the reaction vessel to reduce the iron oxide powder in the reaction vessel to form a massive sponge iron; and
を有する海綿鉄の製造方法であって、  A method for producing sponge iron having
前記装入工程において、 前記酸化鉄粉末およぴ前記還元剤粉末が交互にかつ螺旋状 の層を成して堆積するよう装入する海綿鉄の製造方法。  In the charging step, a method for producing sponge iron in which the iron oxide powder and the reducing agent powder are charged so as to be deposited alternately and in a spiral layer.
2 . 前記装入工程において、 前記反応容器内の容器側面 (外周部という) およぴ鉛 直中心軸部に還元剤粉末からなる層を形成するとともに、 当該層を除外した残部 (中 間部という) に、 前記交互かつ螺旋状の層を形成するよう装入する、 請求項 1に記載 の海綿鉄の製造方法。 2. In the charging step, a layer made of the reducing agent powder is formed on the side surface (referred to as an outer peripheral portion) and the vertical center axis portion of the reaction container, and the remaining portion (the middle portion) excluding the layer is formed. The method for producing sponge iron according to claim 1, wherein charging is performed so as to form the alternating and spiral layers.
3 . 前記酸化鉄粉末として、 鉄鉱石、 ミルスケール、 および、 酸洗廃液から回収さ れる酸化鉄粉の中から選ばれる少なくともひとつの粉末を用いる請求項 1に記載の海 綿鉄の製造方法。 3. The method for producing sponge iron according to claim 1, wherein as the iron oxide powder, at least one powder selected from iron ore, mill scale, and iron oxide powder recovered from pickling waste liquid is used.
4 . 前記還元剤粉末として、 コータス、 チヤ一および石炭の中から選ばれる少なく ともひとつの粉末を用いる請求項 1に記載の海綿鉄の製造方法。 4. The method for producing sponge iron according to claim 1, wherein at least one powder selected from the group consisting of coatas, charcoal and coal is used as the reducing agent powder.
5 . 前記還元剤粉末に炭酸ガス発生源を添加する請求項 1に記載の海綿鉄の製造方 法。 5. The method for producing sponge iron according to claim 1, wherein a carbon dioxide gas generation source is added to the reducing agent powder.
6 . 前記還元工程における前記加熱温度を 1000°C以上 1300°C以下とする請求項 1に 記載の海綿鉄の製造方法。 6. The method for producing sponge iron according to claim 1, wherein the heating temperature in the reduction step is from 1000 ° C to 1300 ° C.
7 . 前記装入工程において、 螺旋状の層を成すにあたり、 酸化鉄粉末の層および還 元剤粉末の層の層厚を可変に制御する請求項 1に記載の海綿鉄の製造方法。 7. The method for producing sponge iron according to claim 1, wherein, in forming the spiral layer in the charging step, the layer thicknesses of the iron oxide powder layer and the reducing agent powder layer are variably controlled.
8 . 前記装入工程において、 前記反応容器内の前記酸化鉄粉末の量おょぴ前記還元 剤粉末の量を、 前記酸化鉄粉末に含まれる酸素量に対する前記還元剤粉末に含まれる 炭素量がモル比で 1. 1以上となるよう制御する請求項 1に記載の海綿鉄の製造方法。 8. In the charging step, the amount of the iron oxide powder in the reaction vessel and / or the amount of the reducing agent powder are determined by calculating the amount of carbon contained in the reducing agent powder with respect to the amount of oxygen contained in the iron oxide powder. 2. The method for producing sponge iron according to claim 1, wherein the molar ratio is controlled to be 1.1 or more.
9 . 前記装入工程において、 前記反応容器内における前記酸化鉄粉末の量おょぴ前 記還元剤粉末の量を、 前記酸化鉄粉末に含まれる酸素量に対する前記還元剤粉末に含 まれる炭素量がモル比で 1. 1以上となるよう制御する請求項 2に記載の海綿鉄の製造 方法。 9. In the charging step, the amount of the iron oxide powder in the reaction vessel may be determined by changing the amount of the reducing agent powder to the amount of carbon contained in the reducing agent powder with respect to the amount of oxygen contained in the iron oxide powder. 3. The method for producing sponge iron according to claim 2, wherein the amount is controlled to be 1.1 or more in a molar ratio.
1 0 . 前記装入工程において、 前記中間部における前記酸化鉄粉末の量おょぴ前記 還元剤粉末の量を、 前記酸化鉄粉末に含まれる酸素量に対する前記還元剤粉末に含ま れる炭素量がモル比で 0. 5以上となるよう制御する請求項 9に記載の海綿鉄の製造方 法。 10. In the charging step, the amount of the iron oxide powder in the intermediate portion or the amount of the reducing agent powder is determined by the amount of carbon contained in the reducing agent powder with respect to the amount of oxygen contained in the iron oxide powder. 10. The method for producing sponge iron according to claim 9, wherein the molar ratio is controlled to be 0.5 or more.
1 1 . 請求項 1の方法により製造された海綿鉄を粉砕した後還元し、 その後さらに 粉砕する還元鉄粉の製造方法。 11. A method for producing reduced iron powder in which sponge iron produced by the method of claim 1 is pulverized, reduced, and then further pulverized.
1 2 . 螺旋 (helix) 状の塊である海綿鉄。 1 2. Sponge iron, a helix-like mass.
1 3 . 金属鉄含有量が 97mass%以上である請求項 1 2に記載の海綿鉄。 13. The sponge iron according to claim 12, having a metallic iron content of 97 mass% or more.
1 4 . 容器内に酸化鉄粉末および還元剤粉末を装入する装入装置であって、 前記容器内に揷入され、 容器内で回転およぴ上下動可能な挿入部と、 14. A charging device for charging iron oxide powder and reducing agent powder into a container, wherein the insertion portion is inserted into the container, and is rotatable and vertically movable in the container;
前記挿入部の下端部に、 前記揷入部と共に回転可能に設けられた酸化鉄粉末排出口 および還元剤粉末排出口と  An iron oxide powder discharge port and a reducing agent powder discharge port rotatably provided with the insertion section at a lower end of the insertion section;
を有する、 海綿鉄製造用原料の装入装置。  An apparatus for charging raw materials for producing sponge iron.
1 5 . 前記酸化鉄粉末排出口および前記還元剤粉末排出口の開口面積が可変である、 請求項 1 4に記載の海綿鉄製造用原料の装入装置。 15. The charging device for raw materials for producing sponge iron according to claim 14, wherein the opening areas of the iron oxide powder outlet and the reducing agent powder outlet are variable.
1 6 . 前記挿入部が、 1 6. The insertion portion is
前記容器の内径の 85%以下の直径を有する円筒形の本体部と、  A cylindrical body having a diameter of not more than 85% of the inner diameter of the container;
前記容器の内径の 90〜95%の直径を有する円を水平断面形状とする円筒の一部から なる下端部とを有し、 かつ、  A lower end portion formed of a part of a cylinder having a horizontal cross-sectional shape of a circle having a diameter of 90 to 95% of the inner diameter of the container, and
前記下端部の水平断面形状が前記円の中心おょぴ円周の一部を含む扇形、 あるいは 該扇形を包含する形状である、 請求項 1 4に記載の海綿鉄製造用原料の装入装置。  15. The charging device for raw materials for producing sponge iron according to claim 14, wherein the horizontal cross-sectional shape of the lower end portion is a sector shape including a part of the center of the circle or a shape including the sector shape. .
PCT/JP2004/000866 2003-01-31 2004-01-29 Process for producing sponge iron and reduced iron powder, sponge iron, and charging apparatus WO2004067784A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/508,381 US20050193862A1 (en) 2003-01-31 2004-01-29 Process for producing sponge iron and reduced iron powder sponge iron and charging apparatus
SE0402286A SE528252C2 (en) 2003-01-31 2004-09-23 Iron sponge as well as method and material loading device for making iron sponge

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003024638 2003-01-31
JP2003-024638 2003-01-31
JP2003-182533 2003-06-26
JP2003182533 2003-06-26
JP2003286047A JP4329444B2 (en) 2003-08-04 2003-08-04 Method for producing sponge iron
JP2003-286047 2003-08-04

Publications (1)

Publication Number Publication Date
WO2004067784A1 true WO2004067784A1 (en) 2004-08-12

Family

ID=32830632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000866 WO2004067784A1 (en) 2003-01-31 2004-01-29 Process for producing sponge iron and reduced iron powder, sponge iron, and charging apparatus

Country Status (4)

Country Link
US (1) US20050193862A1 (en)
CN (2) CN102492797B (en)
SE (1) SE528252C2 (en)
WO (1) WO2004067784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794455A (en) * 2012-09-05 2012-11-28 昆明理工大学 Method for preparing primary reduction iron powder by combining inner and outer carbon matching and microwave heating

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY146001A (en) * 2009-03-31 2012-06-15 Iop Specialists Sdn Bhd A process for producing sponge iron
WO2011001288A2 (en) 2009-06-29 2011-01-06 Bairong Li Metal reduction processes, metallurgical processes and products and apparatus
CN103146865B (en) * 2013-03-29 2014-10-01 青岛理工大学 Device and method for direct reduction and iron making of pyrolyzing tar based on biomass
CN103438703B (en) * 2013-06-25 2017-01-18 吉林省华兴粉末冶金科技有限公司 Raw material iron powder charging device
WO2017004239A1 (en) * 2015-06-29 2017-01-05 Loewen Joanne Mobile device charger
CN106623910B (en) * 2016-11-25 2018-09-14 太原理工大学 A kind of micro- lamination powder laying device
CN109663924A (en) * 2017-10-14 2019-04-23 朝阳市金麟铁精粉有限公司 Reduced iron powder barrel-clamping device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029408A (en) * 1983-07-28 1985-02-14 Kawasaki Steel Corp Manufacture of sponge iron
JPS60211006A (en) * 1984-04-06 1985-10-23 Kawasaki Steel Corp Manufacture of reduced iron
JPH07126724A (en) * 1993-11-02 1995-05-16 Kawasaki Steel Corp Production of sponge iron

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3008224A (en) * 1956-03-26 1961-11-14 Sk Wellman Co Friction article
JPS58481B2 (en) * 1976-03-12 1983-01-06 川崎製鉄株式会社 Method and apparatus for producing low-oxygen iron-based metal powder
US4756748A (en) * 1984-12-24 1988-07-12 Canadian Patents and Development Limited--Societe Canadienne des Brevets et d'Exploitation Limitee Processes for the smelting reduction of smeltable materials
CN1012580B (en) * 1987-04-25 1991-05-08 胡宝锁 Sponge iron smelting technique and furnace type
JPH0726314A (en) * 1993-07-08 1995-01-27 Kawasaki Steel Corp Method for filling raw material in vessel in sponge iron production
UA43905C2 (en) * 1996-11-08 2002-01-15 Фоест-Альпіне Індустріанлагенбау Гмбх METHOD OF OBTAINING MELTED CAST IRON OR SEMI-FINISHED STEEL
US6592648B2 (en) * 1997-11-17 2003-07-15 Mcmaster University Reduction of iron ore in ore/coal mixtures
JP2001234210A (en) * 1999-12-15 2001-08-28 Kawasaki Steel Corp Producing method for sponge iron
JP2002241822A (en) * 2001-02-14 2002-08-28 Kawasaki Steel Corp Method for manufacturing sponge iron

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029408A (en) * 1983-07-28 1985-02-14 Kawasaki Steel Corp Manufacture of sponge iron
JPS60211006A (en) * 1984-04-06 1985-10-23 Kawasaki Steel Corp Manufacture of reduced iron
JPH07126724A (en) * 1993-11-02 1995-05-16 Kawasaki Steel Corp Production of sponge iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794455A (en) * 2012-09-05 2012-11-28 昆明理工大学 Method for preparing primary reduction iron powder by combining inner and outer carbon matching and microwave heating
CN102794455B (en) * 2012-09-05 2014-10-01 昆明理工大学 Method for preparing primary reduction iron powder by combining inner and outer carbon matching and microwave heating

Also Published As

Publication number Publication date
US20050193862A1 (en) 2005-09-08
SE0402286L (en) 2004-11-30
CN102492797A (en) 2012-06-13
CN102492797B (en) 2014-12-03
SE528252C2 (en) 2006-10-03
CN104278122A (en) 2015-01-14
CN104278122B (en) 2016-09-14
SE0402286D0 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
JP4317579B2 (en) Method for producing reduced iron molded body and method for producing pig iron
WO2004067784A1 (en) Process for producing sponge iron and reduced iron powder, sponge iron, and charging apparatus
JP2003089813A (en) Method for reduction of iron oxide
JP6954255B2 (en) Calculation method of mixing ratio of ferro-coke and blast furnace operation method
CN109402317A (en) Method for producing metal by high-efficiency metal oxide carbothermic reduction and porous material cake used by same
JP2008240028A (en) Method for operating blast furnace
JP4360247B2 (en) Production method and raw material charging machine for sponge iron and reduced iron powder
TWI336352B (en) Granulated metallic iron superior in rust resistance and method for producing the same
JP4329444B2 (en) Method for producing sponge iron
JP4341415B2 (en) Manufacturing method of high purity sponge iron
JPS5945912A (en) Continuous preparation of sialon substance
JP5521387B2 (en) Method for producing reduced iron molded body and method for producing pig iron
JPH10317033A (en) Production of reduced iron
JP4729858B2 (en) Method for producing sponge iron
JP5494071B2 (en) Method for producing reduced iron
JP6638764B2 (en) Blast furnace operation method
JP2002194410A (en) Method for operating rotary furnace hearth type reducing furnace, method for producing pig iron and granular iron oxide-reduced material
JPWO2013172043A1 (en) Raw material charging method to blast furnace
JP4599737B2 (en) Granulation method of sintering raw material
JP5445032B2 (en) Method for producing reduced iron powder
JP3157479B2 (en) Fluidized bed connecting pipe
JP6844335B2 (en) Nickel oxide ore smelting method
KR101626602B1 (en) Method for compacting fine reduced irons, apparatus for compacting fine reduced irons, and apparatus for manufacturing molten iron comprising the same
JP2600803B2 (en) Blast furnace raw material charging method
JP3791710B2 (en) Method and apparatus for continuous heat treatment of fine powder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 04022869

Country of ref document: SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048001564

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10508381

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 04022869

Country of ref document: SE

122 Ep: pct application non-entry in european phase