JPH07126724A - Production of sponge iron - Google Patents

Production of sponge iron

Info

Publication number
JPH07126724A
JPH07126724A JP27462393A JP27462393A JPH07126724A JP H07126724 A JPH07126724 A JP H07126724A JP 27462393 A JP27462393 A JP 27462393A JP 27462393 A JP27462393 A JP 27462393A JP H07126724 A JPH07126724 A JP H07126724A
Authority
JP
Japan
Prior art keywords
powdery
iron oxide
reducing agent
iron
sponge iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27462393A
Other languages
Japanese (ja)
Inventor
Shigeyuki Saito
滋之 齋藤
Hiroyuki Yamamoto
博行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27462393A priority Critical patent/JPH07126724A/en
Publication of JPH07126724A publication Critical patent/JPH07126724A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To provide a method for producing sponge iron in which the heating time required for reducing is short and the heating energy is less, thus, the production cost is inexpensive. CONSTITUTION:In the method for producing sponge iron by packing powdery iron oxide 2 and a powdery reducing agent 3 into a vessel 1 made of refractories and subjecting only the vessel 1 to indirect heating from the outside to reduce and sinter iron oxide, the powdery iron oxide 2 and powdery reducing agent 3 are previously mixed and are thereafter packed into the vessel 1 made of refractories. Thus, the reducing time and heating energy are remarkably reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉状酸化鉄から海綿鉄
を製造する方法に関し、特に粉状酸化鉄を耐火物製容器
(通称サガーという)に入れ、所謂トンネル炉で間接加
熱する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing sponge iron from powdered iron oxide, and particularly to a method in which powdered iron oxide is placed in a refractory container (commonly called sagar) and indirectly heated in a so-called tunnel furnace. It is about.

【0002】[0002]

【従来の技術】一般に、海綿鉄は、「金属便覧、改定4
版」(丸善)の1363ページ第1図(本明細書では図
2)に示すように、主原料であるミルスケールや鉄鉱石
粉などの粉状酸化鉄2を、還元剤3のコークスやチャー
などと分離した状態で同一耐火物製容器1へ充填し、そ
の容器1の外側からトンネル炉を利用して間接加熱する
ことによって、粉状酸化鉄を還元、焼結して製造され
る。
2. Description of the Related Art In general, sponge iron is described in "Handbook of Metals, Revision 4".
As shown in Fig. 1 (page 2 in this specification) on page 1363 of "Version" (Maruzen), powdery iron oxide 2 such as mill scale or iron ore powder, which is the main raw material, is mixed with coke, char, etc. as a reducing agent 3. It is filled in the same refractory container 1 in a state separated from the above, and indirectly heated from the outside of the container 1 using a tunnel furnace to reduce and sinter powdery iron oxide.

【0003】ところで、主原料と還元剤3の充填は、図
2に示すように、円筒状の耐火物製容器1内で粉状酸化
鉄2はリング状に充填され、還元剤3はそのリングを囲
むよう該容器1内の上下、中央部及び外周部に充填され
る。従って、原料充填後にこの容器1が加熱されると、
還元剤層内で還元剤3中の炭素が次式に従い反応してC
Oガスを発生する。
By the way, as shown in FIG. 2, the main raw material and the reducing agent 3 are filled with the powdery iron oxide 2 in a ring shape in the cylindrical refractory container 1 and the reducing agent 3 is filled with the ring. Are filled in the upper and lower parts, the central part and the outer peripheral part of the container 1 so as to surround the container. Therefore, when this container 1 is heated after filling the raw materials,
In the reducing agent layer, carbon in the reducing agent 3 reacts according to the following equation to generate C
Generates O gas.

【0004】C + CO2 → 2CO そこで発生したCOガスは、還元剤3層から原料層に拡
散し、酸化鉄層内に達すると、 FeOn + nCO → Fe + nCO2 の反応が起きて、粉状酸化鉄2が還元されるとともに、
CO2 ガスが生じる。このCO2 ガスは、粉状酸化鉄2
層を拡散して再び還元剤3層に至り、その層内で炭素を
COガスに変える。
C + CO 2 → 2CO The CO gas generated there diffuses from the reducing agent 3 layer to the raw material layer, and when it reaches the iron oxide layer, a reaction of FeO n + nCO → Fe + nCO 2 occurs, As powdery iron oxide 2 is reduced,
CO 2 gas is produced. This CO 2 gas is powdery iron oxide 2
The layer diffuses and reaches the reducing agent 3 layer again, in which carbon is changed to CO gas.

【0005】これらの反応が一定時間内で繰り返される
ことによって、前記耐火物製容器1内に充填した粉状酸
化鉄2がすべて還元され、また還元と同時に還元鉄同士
の焼結も進行して円筒体状の海綿鉄焼結体となる。しか
しながら、上記の従来技術では、COガス及びCO2
スの粉状酸化鉄2層内や還元剤3層内の拡散が、還元反
応の進行を律速している。とくに、図2に示した充填状
態にあっては、粉状酸化鉄2層と粉状還元剤3層が分離
していることから、COガス及びCO2 ガスの拡散距離
が長く、還元に必要な加熱時間が永くなる。例えば、加
熱にトンネル炉を使用する工業生産規模の製造工程で
は、原料の充填から製品の抜き出しまで数日を要し、生
産性が低いばかりでなく、還元に要する加熱エネルギー
の消費も著しく大きいという問題があった。
By repeating these reactions within a certain period of time, all the powdery iron oxide 2 filled in the refractory container 1 is reduced, and at the same time with the reduction, sintering of the reduced irons progresses. It becomes a sponge iron sintered body in the shape of a cylinder. However, in the above-mentioned conventional technique, diffusion of CO gas and CO 2 gas in the powdery iron oxide 2 layer and the reducing agent 3 layer determines the progress of the reduction reaction. In particular, in the packed state shown in FIG. 2, since the powdery iron oxide 2 layer and the powdery reducing agent 3 layer are separated, the diffusion distance of CO gas and CO 2 gas is long and necessary for reduction. Long heating time. For example, in a manufacturing process on an industrial production scale that uses a tunnel furnace for heating, it takes several days from the filling of raw materials to the withdrawal of products, not only the productivity is low, but also the consumption of heating energy required for reduction is significantly large. There was a problem.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる事情
を鑑みてなされたもので、還元に必要な加熱時間が短
く、且つ加熱エネルギーが少なく、したがって生産コス
トの安い海綿鉄製造方法の提供を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a method for producing sponge iron having a short heating time required for reduction, a small heating energy, and a low production cost. Has an aim.

【0007】[0007]

【課題を解決するための手段】発明者は、上記目的を達
成するため、COガスとCO2 ガスの拡散距離を短くす
ること及び還元後の鉄粉と還元剤との分離に関し多数の
実験、研究を繰り返した。本発明は、それらの実験結果
に基づきなされたもので、粉状酸化鉄と粉状還元剤を耐
火物製容器に充填し、該耐火物製容器の外側から間接加
熱することにより酸化鉄を還元、焼結させて海綿鉄を製
造する方法において、上記粉状酸化鉄と粉状還元剤をあ
らかじめ混合してから該耐火物製容器に充填することを
特徴とする海綿鉄の製造方法である。また、本発明の具
体的な実施に関しては、間接加熱手段がトンネル炉であ
ることを特徴とする請求項1記載の海綿鉄の製造方法で
ある。
In order to achieve the above object, the inventor has conducted a number of experiments on shortening the diffusion distance of CO gas and CO 2 gas and separating iron powder and reducing agent after reduction. The study was repeated. The present invention was made based on the results of these experiments, in which a powdered iron oxide and a powdery reducing agent are filled in a refractory container, and the iron oxide is reduced by indirect heating from the outside of the refractory container. In the method for producing sponge iron by sintering, the powdery iron oxide and the powdery reducing agent are mixed in advance and then filled in the refractory container. Further, regarding the concrete implementation of the present invention, the method for producing sponge iron according to claim 1, wherein the indirect heating means is a tunnel furnace.

【0008】[0008]

【作用】本発明では、ミルスケールや鉄鉱石などの粉状
酸化鉄とコークス粉やチャーなどの粉状還元剤をあらか
じめ混合してから、耐火物製容器に充填するようにした
ので、COガスとCO2 ガスの拡散距離はそれぞれの粒
径にほぼ等しくなるまで短縮できるようになる。その結
果、ガスの拡散による還元反応の進行は飛躍的に早くな
り、還元時間が大幅に短縮できた。さらに、海綿鉄製造
における生産能率を高め、生産コストの低減が可能にな
った。
In the present invention, the powdery iron oxide such as mill scale or iron ore and the powdery reducing agent such as coke powder or char are mixed in advance and then filled in the refractory container. The diffusion distances of CO 2 gas and CO 2 gas can be shortened until they become almost equal to the respective particle diameters. As a result, the progress of the reduction reaction due to the diffusion of gas was dramatically accelerated, and the reduction time could be shortened significantly. Furthermore, the production efficiency in the production of sponge iron has been improved, and the production cost can be reduced.

【0009】なお、本発明を適用して製造した海綿鉄
は、還元剤又はその灰分と混合して焼結した多孔焼結体
であったが、次工程の粉砕、分級装置で処理することに
よって純度の高い還元粉未を得た。
The sponge iron produced by applying the present invention was a porous sintered body obtained by mixing with a reducing agent or its ash and then sintering it. Highly pure reduced powder was obtained.

【0010】[0010]

【実施例】以下、実施例において、図1に基づき、本発
明の内容を説明する。図1は、本発明の1実施例におけ
る原料の充填状況を示す図である。主原料となる粉状酸
化鉄2は、150ミクロン以下の粒度に粉砕したミルス
ケールである。また、粉状還元剤3は、200ミクロン
以下の粒度のコークス・ブリーズである。
The contents of the present invention will be described below with reference to FIG. FIG. 1 is a diagram showing a raw material filling state in one embodiment of the present invention. The powdery iron oxide 2 as the main raw material is a mill scale crushed to a particle size of 150 microns or less. The powdery reducing agent 3 is a coke breeze having a particle size of 200 microns or less.

【0011】まず、このミルスケール2とコークス・ブ
リーズ3を重量比で等量になるように混合してから、円
筒状の耐火物製容器1に均一に充填した。そして、その
充填物を円盤状の耐火物製蓋4で覆い、加熱の準備を完
了した。比較例としては、前記の図1に示した充填構造
を有する容器が準備された。なお、この比較例と実施例
では、ミルスケール2とコークス・ブリーズ3の重量が
同じである。
First, the mill scale 2 and the coke breeze 3 were mixed in equal weight ratios, and then uniformly filled in a cylindrical refractory container 1. Then, the filling was covered with a disc-shaped refractory lid 4 to complete the preparation for heating. As a comparative example, a container having the filling structure shown in FIG. 1 was prepared. In this comparative example and the example, the mill scale 2 and the coke breeze 3 have the same weight.

【0012】次に、2種類の上記原料を充填した耐火物
製容器1を台車に載置し、トンネル炉を通過させること
により、ミルスケール2の加熱、還元が行われた。使用
したトンネル炉は、全炉長100mで、そのうち中央部
40mの領域が雰囲気温度1150℃に維持されるよう
ガス加熱されている。さらに、出炉後の海綿鉄の目標還
元率が98.0%になるように、台車の通炉速度が調整
された。すなわち、1150℃の温度領域は40mと一
定であるので、台車の通炉速度の調整は1150℃に保
持する時間を調整したことになる。
Next, the refractory container 1 filled with two kinds of the above raw materials was placed on a truck and passed through a tunnel furnace to heat and reduce the mill scale 2. The tunnel furnace used had a total furnace length of 100 m, and the region of the central portion 40 m was gas-heated so that the atmospheric temperature was maintained at 1150 ° C. Further, the trolley speed of the truck was adjusted so that the target reduction rate of sponge iron after the blast furnace was 98.0%. That is, since the temperature range of 1150 ° C. is constant at 40 m, the passing speed of the trolley is adjusted by adjusting the time of holding at 1150 ° C.

【0013】このような条件下で操業した結果をまとめ
て表1に示す。
The results of operation under such conditions are summarized in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より明らかなように、本実施例では、
台車速度が従来例の1.1m/hrに対して26%速
く、1.5m/hrとなった。これは、前記したよう
に、本実施例と従来例で生産する海綿鉄の重量は等量で
あるので、単位時間当たりの生産性が26%向上したこ
とを意味する。これにともない、加熱に要する海綿鉄単
位重量当たりの熱量も2730Mcal/tonから2
100Mcal/tonへ約30%削減できた。
As is clear from Table 1, in this embodiment,
The truck speed was 1.5 m / hr, which was 26% faster than the conventional example of 1.1 m / hr. This means that, as described above, the sponge irons produced in this example and the conventional example have the same weight, so that the productivity per unit time is improved by 26%. Along with this, the amount of heat required to heat the sponge iron per unit weight is 2730 Mcal / ton to 2
It was possible to reduce it to 100 Mcal / ton by about 30%.

【0016】[0016]

【発明の効果】本発明により、粉状酸化鉄よりトンネル
炉を利用する海綿鉄製造工程で、還元時間と加熱エネル
ギーの大幅な低減が可能となった。
According to the present invention, reduction time and heating energy can be significantly reduced in the sponge iron manufacturing process using a tunnel furnace rather than powdered iron oxide.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用する場合の円筒状耐火物製容器へ
の原料充填状態を示す図である。
FIG. 1 is a diagram showing a raw material filling state in a cylindrical refractory container when the present invention is applied.

【図2】従来法での円筒状耐火物製容器への原料充填状
態を示す図である。
FIG. 2 is a view showing a raw material filling state into a cylindrical refractory container according to a conventional method.

【符号の説明】[Explanation of symbols]

1 円筒状の耐火物製容器(容器) 2 粉状酸化鉄(ミルスケール) 3 粉状還元剤(コークス・ブリーズ) 4 耐火物製蓋 1 Cylindrical refractory container (container) 2 Powdered iron oxide (mill scale) 3 Powdered reducing agent (coke breeze) 4 Refractory lid

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉状酸化鉄と粉状還元剤を耐火物製容器
に充填し、該耐火物製容器の外側から間接加熱すること
により酸化鉄を還元、焼結させて海綿鉄を製造する方法
において、上記粉状酸化鉄と粉状還元剤をあらかじめ混
合してから該耐火物製容器に充填することを特徴とする
海綿鉄の製造方法。
1. A sponge iron is manufactured by filling a powdered iron oxide and a powdery reducing agent into a refractory container, and indirectly heating from the outside of the refractory container to reduce and sinter the iron oxide. In the method, the sponge iron is produced by previously mixing the powdery iron oxide and the powdery reducing agent and then filling the refractory container.
【請求項2】 間接加熱手段がトンネル炉であることを
特徴とする請求項1記載の海綿鉄の製造方法。
2. The method for producing sponge iron according to claim 1, wherein the indirect heating means is a tunnel furnace.
JP27462393A 1993-11-02 1993-11-02 Production of sponge iron Withdrawn JPH07126724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27462393A JPH07126724A (en) 1993-11-02 1993-11-02 Production of sponge iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27462393A JPH07126724A (en) 1993-11-02 1993-11-02 Production of sponge iron

Publications (1)

Publication Number Publication Date
JPH07126724A true JPH07126724A (en) 1995-05-16

Family

ID=17544304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27462393A Withdrawn JPH07126724A (en) 1993-11-02 1993-11-02 Production of sponge iron

Country Status (1)

Country Link
JP (1) JPH07126724A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629838B1 (en) 1999-03-02 2003-10-07 David Steyn Van Vuuren Endothermic heat treatment of solids loaded on trolleys moving in a kiln
WO2004067784A1 (en) * 2003-01-31 2004-08-12 Jfe Steel Corporation Process for producing sponge iron and reduced iron powder, sponge iron, and charging apparatus
JP2009280833A (en) * 2008-05-19 2009-12-03 Wakasawan Energ Kenkyu Center Low-temperature iron-making method allowing high speed smelting
CN102329910A (en) * 2011-09-06 2012-01-25 王俊 Method for industrial production of reduced iron through coal-based process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629838B1 (en) 1999-03-02 2003-10-07 David Steyn Van Vuuren Endothermic heat treatment of solids loaded on trolleys moving in a kiln
WO2004067784A1 (en) * 2003-01-31 2004-08-12 Jfe Steel Corporation Process for producing sponge iron and reduced iron powder, sponge iron, and charging apparatus
JP2009280833A (en) * 2008-05-19 2009-12-03 Wakasawan Energ Kenkyu Center Low-temperature iron-making method allowing high speed smelting
CN102329910A (en) * 2011-09-06 2012-01-25 王俊 Method for industrial production of reduced iron through coal-based process

Similar Documents

Publication Publication Date Title
US4834963A (en) Macrocrystalline tungsten monocarbide powder and process for producing
US3502461A (en) Method of reducing oxidic raw materials
US2707679A (en) Methods of producing zirconium and titanium
US2450343A (en) Treating oxide ores
US2205386A (en) Production of metals and alloys
CN108484180B (en) Method for preparing high-grade refractory material by using ferronickel smelting slag
Murti et al. Kinetics of reduction of synthetic chromite with carbon
JPH07126724A (en) Production of sponge iron
US4113479A (en) Vacuum smelting process for producing ferrotungsten
US2848324A (en) Method of producing agglomerates highly resistant against heat and/or chemical attack
US3004848A (en) Method of making titanium and zirconium alloys
Mukashev et al. Comparison of iron and chromium reduction from chrome ore concentrates by solid carbon and carbon monoxide
US2352316A (en) Method of producing shaped bodies from powdery ferrous material
US2082134A (en) Production of calcium hydride
US2653869A (en) Manufacture of ductile vanadium
US4747872A (en) Process and apparatus for producing high purity iron
CN107417286B (en) Reinforced ultra-low carbon Al2O3-ZrO2Preparation method of-SiC-C refractory material
US2287771A (en) Production of powdered alloys
US2584411A (en) Production of alkaline earth metal hydrides and use thereof in reducing refractory oxides
US2243785A (en) Chromium recovery
CN115491534A (en) Arsenic-iron alloy, preparation method and recycling treatment method
US3801308A (en) Method for the addition of metals to steel
US2598796A (en) Methods for the reduction and sintering of bodies containing reducible metal compounds
US3741756A (en) Metal consolidation
CA1174855A (en) Method of producing molten metal consisting mainly of manganese and iron

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130