JP4329419B2 - ヒータ制御装置 - Google Patents

ヒータ制御装置 Download PDF

Info

Publication number
JP4329419B2
JP4329419B2 JP2003167021A JP2003167021A JP4329419B2 JP 4329419 B2 JP4329419 B2 JP 4329419B2 JP 2003167021 A JP2003167021 A JP 2003167021A JP 2003167021 A JP2003167021 A JP 2003167021A JP 4329419 B2 JP4329419 B2 JP 4329419B2
Authority
JP
Japan
Prior art keywords
heater
current
heaters
period
duty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003167021A
Other languages
English (en)
Other versions
JP2005003500A (ja
Inventor
一孝 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003167021A priority Critical patent/JP4329419B2/ja
Publication of JP2005003500A publication Critical patent/JP2005003500A/ja
Application granted granted Critical
Publication of JP4329419B2 publication Critical patent/JP4329419B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Resistance Heating (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Silencers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒータ制御装置に係り、特に、内燃機関の排気通路に配置される排気ガスセンサのヒータを制御するうえで好適な制御装置に関する。
【0002】
【従来の技術】
従来、例えば、特開平7−43336号公報に開示されているように、内燃機関の排気通路に、排気空燃比を検出するための空燃比センサを複数個備えたシステムが知られている。これらの空燃比センサは、それぞれヒータを備えており、ヒータが適切に制御されることで、センサ素子温が所定の活性温度に保たれる。
【0003】
上記従来の装置は、個々のセンサを流れるヒータ電流を各々制御するためのスイッチ素子を備えている。また、この装置は、複数のヒータに対して共通に用いられる故障検出用回路を備えている。この装置は、通常の制御時には、個々のヒータが目標温度となるように、上記のスイッチ素子が各々制御される。一方、異常を検出する際には、上記のスイッチ素子が1つずつONまたはOFFとされ、その際に個々のヒータにおいて適正な電圧降下が生ずるか否かが判断される。上記従来の装置によれば、ヒータ毎に故障判定用の回路を個別に設ける必要がなく、一つの検出回路で複数のヒータ付空燃比センサの故障を検出することができる。
【0004】
【特許文献1】
特開平7−43336号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の装置では、故障が発生しているヒータを特定する際に、ヒータを1つずつ検査するために、通常のヒータ駆動制御を一旦停止することが必要となる。
【0006】
本発明は、上記のような課題を解決するためになされたものであり、1つの検出回路を用いつつ、通常のヒータ駆動制御を停止することなく、複数のヒータの各々を流通するヒータ電流を検出することのできる排気ガスセンサのヒータ制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
第1の発明は、上記の目的を達成するため、複数のヒータをデューティ駆動するヒータ制御装置であって、
所望の発熱量を得るためのデューティ比をそれぞれのヒータについて100より小さい値で設定するデューティ比設定手段と、
それぞれのヒータのデューティONタイミングをヒータ毎に変更して前記デューティ比で前記ヒータを駆動するヒータ駆動手段と、
前記複数のヒータを流れる電流の合計値を検知する合計電流検知手段と、
1つのヒータのみがONである状況下で検知される前記合計値を当該ヒータを流れるヒータ電流として検出する処理を前記複数のヒータのすべてについて行うヒータ電流検出手段と、
を備えることを特徴とする。
【0008】
また、第2の発明は、複数のヒータをデューティ駆動するヒータ制御装置であって、
それぞれのヒータについて100より小さいデューティ比を設定するデューティ比設定手段と、
前記複数のヒータの各々を所定の電流検出用ON期間に渡り1つだけONとするヒータ駆動手段と、
前記複数のヒータを流れる電流の合計値を検知する合計電流検知手段と、
何れのヒータの電流検出用ON期間とも重ならない期間に、それぞれのヒータを、前記デューティ比に基づくON期間と前記電流検出用ON期間との差分だけONとする第2のヒータ駆動手段と、
各々のヒータに対応する前記電流検出用ON期間に検知される前記合計値を当該ヒータを流れるヒータ電流として検出する処理を前記複数のヒータのすべてについて行うヒータ電流検出手段と、
を備えることを特徴とする。
【0009】
また、第3の発明は、複数のヒータをデューティ駆動するヒータ制御装置であって、
それぞれのヒータについて100より小さいデューティ比を設定するデューティ比設定手段と、
所定の電流検出用ON期間毎に前記複数のヒータのすべてを順次ONするヒータ駆動手段と、
前記複数のヒータを流れる電流の合計値を検知する合計電流検知手段と、
前記ヒータがON状態にあるか否かを判別する通電状態判別手段と、
それぞれのヒータがONされた時点での前記合計値を当該ヒータを流れる電流の基本データとして検知する基本データ検知手段と、
それぞれのヒータがONされた時点で、既にONとなっているヒータを特定するONヒータ特定手段と、
前記基本データから前記ONヒータ特定手段により特定されたヒータを流れるヒータ電流の合計を差し引くことで、当該ヒータを流れるヒータ電流を検出する処理を前記複数のヒータのすべてについて行うヒータ電流検出手段と、
を備えることを特徴とする。
【0010】
また、第4の発明は、第1乃至第3の発明の何れかにおいて、前記ヒータ駆動手段は、最後にONされるヒータのデューティONタイミングをデューティ周期の終点から遡って設定することを特徴とする。
【0011】
また、第5の発明は、第1乃至第4の発明の何れかにおいて、前記デューティ比設定手段は、前記ヒータ電流の取得に要する測定期間と、ヒータ総数から1を差し引いた数との積で算出される期間以上のデューティOFF期間が確保されるように前記デーティ比を設定することを特徴とする。
【0012】
また、第6の発明は、第1乃至第5の発明の何れかにおいて、前記ヒータ電流に基づいて、前記ヒータの異常を検出する異常検出手段を備えることを特徴とする。
【0013】
また、第7の発明は、第6の発明において、前記複数のヒータは、内燃機関の排気通路に配置される複数の排気ガスセンサにそれぞれ組み込まれており、
内燃機関の排気温度に基づいて、前記異常検出の際に用いる判定値を設定する異常判定値設定手段を備え、
前記異常検出手段は、前記ヒータ電流と前記判定値とに基づき、前記ヒータの異常を検出することを特徴とする。
【0014】
【発明の実施の形態】
以下、図面を参照してこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
【0015】
実施の形態1.
図1は、本発明の実施の形態1のヒータ制御装置を搭載した内燃機関10を示す。内燃機関10には、吸気通路12および排気通路14が連通している。排気通路14には、触媒16が配置されている。触媒16の上流および下流には、空燃比センサ18、20が配置されている。空燃比センサ18、20は、排気ガス中の酸素濃度に応じた出力を発するセンサである。排気ガス中の酸素濃度は、排気空燃比と相関を有している。このため、空燃比センサ18、20によれば、触媒16の上流および下流で、排気ガスの空燃比を検出することができる。
【0016】
空燃比センサ18、20は、所定の活性温度に加熱されることにより正常な出力特性を発揮する。このため、空燃比センサ18、20の内部にはそれぞれヒータが組み込まれている。空燃比センサ18、20には、ECU(Electronic Control Unit)30が接続されている。ECU30は、車両のIGスイッチがオンされた後、空燃比センサ18、20の温度が上記の活性温度に維持されるように、それらのヒータを制御する。
【0017】
図2は、図1に示すECU30が備えるヒータ制御回路の回路図である。図2において、符号32、34は、各々空燃比センサ18、20に内蔵されるヒータを示す。以下、空燃比センサ18に内蔵されるヒータを「第1のヒータ32」、空燃比センサ20に内蔵されるヒータを「第2のヒータ34」と称す。第1のヒータ32および第2のヒータ34の一端には、それぞれ電源電圧+Bが供給されている。また、第1のヒータ32および第2のヒータ34の他端には、それぞれECU30が備える第1の駆動部36および第2の駆動部38が接続されている。第1の駆動部36と第2の駆動部38は、同様の内部構造を有している。以下、それらの代表例として、第1の駆動部36について説明する。
【0018】
第1の駆動部36は、直列に接続された抵抗40とスイッチ素子42を備えている。スイッチ素子42のゲートには、第1のポート44が接続されている。ECU30は、必要に応じて、この第1のポート44にON指令を発することによりスイッチ素子42をON状態とすることで、第1のヒータ32を通電させることができる。ECU30は、また、第2の駆動部38に対応する第2のポート46を備えている。ECU30は、必要に応じて、この第2のポート46にON指令を発することによりスイッチ素子42をON状態とすることで、第2のヒータ34を通電させることができる。
【0019】
更に、ECU30は、第1のヒータ32および第2のヒータ34を流れるヒータ電流を検出するための検出部48を備えている。検出部48は、抵抗50を備えている。抵抗50は、第1の駆動部36を介して第1のヒータ32と直列に接続されていると共に、第2の駆動部38を介して第2のヒータ34と直列に接続されている。検出部48は、また、オペアンプ52を備えている。オペアンプ52の出力端子は、抵抗54を介して接地されていると共に、抵抗56を介して反転入力端子に帰還されている。また、オペアンプ52の反転入力端子には、抵抗58を介して抵抗50の高圧側の電位が供給されている。他方、オペアンプ52の非反転入力端子には、電源電圧を抵抗60、62で分圧することにより生成された基準電圧が供給されている。
【0020】
上記の構成によれば、オペアンプ52の出力端子には、抵抗50を流れる電流に応じた電圧が表れる。ECU30は、オペアンプ52の出力電圧をディジタル信号に変換するADC64を備えている。ECU30において、第1のポート44がON出力を発すると、抵抗50には、第1のヒータ32を流れる電流が流通する。この場合、ECU30は、ADC64から第1のヒータ32を流れる電流に応じた信号を取り出すことができる。また、ECU30において、第2のポート46がON出力を発すると、抵抗50には、第2のヒータ34を流れる電流が流通する。この場合、ECU30は、ADC64から第2のヒータ34を流れる電流に応じた信号を取り出すことができる。
【0021】
従って、ECU30は、第1のポート44のみをONとすることにより、或いは、第2のポート46のみをONとすることにより、第1のヒータ32を流れる電流および第2のヒータ34を流れる電流をそれぞれ個別に検出することができる。
【0022】
図3は、図2に示すヒータ制御回路の動作を説明するためのタイミングチャートである。具体的には、図3(A)は、第1のヒータ32がデューティ駆動される様子を、また、図3(B)は、第2のヒータ34がデューティ駆動される様子を示す。更に、図3(C)は、ADC64から取り出される電圧波形(便宜上、反転させた波形)を示す。
【0023】
図3(A)および図3(B)に示すように、ECU30は、第1のヒータ32および第2のヒータ34を、それぞれ適当なデューティ比で駆動する。その結果、空燃比センサ18、20の素子温は、いずれも所定の活性温度に制御される。
【0024】
第1のヒータ32および第2のヒータ34がこのように制御されるにあたり、双方のヒータが共にONされている期間中は、ADC64に、2つのヒータを流れる電流の和に応じた電圧が表れる。この場合、個々のヒータを流れる電流を個別に検知することはできない。そこで、本実施形態では、通常のヒータ駆動制御時において、個々のヒータの電流値を検出可能とすべく、第1のヒータ32および第2のヒータ34のONタイミングをずらすことにより一方のヒータのみがONとなる期間を設けることとした。
【0025】
より具体的には、図3に示すように、第1のヒータ32は、所定のデューティ周期Tの開始時にONされ、デューティ比に対応する期間ON状態にされた後にOFFされる。第2のヒータ34は、第1のヒータ32のONタイミングから所定期間t1経過後にONされ、周期Tが終了するまでの間、所定期間ON状態とされる。この所定期間t1は、ヒータ電流取得のために必要な測定期間αと等しくなるように設定されている。尚、期間t1は、t1≧αであればよい。
【0026】
図3中に示す▲1▼の期間は、第1のヒータ32のみがON状態とされる期間を示す。図3中に示す▲2▼の期間は、第1のヒータ32および第2のヒータ34が共にON状態となる期間である。また、図3中に示す▲3▼の期間は、第2のヒータ34のみがON状態とされる期間である。第1のヒータ32を流通するヒータ電流は、▲1▼の期間で検出することができ、第2のヒータ34を流通するヒータ電流は、▲3▼の期間で検出することができる。
【0027】
本実施形態では、第1および第2のヒータ32、34のデューティ比は、それぞれ100%にならないよう上限を設けている。また、その上限値は、それぞれのOFF期間がヒータ電流取得のために必要な測定期間α以上の期間となるように設定されている。このような設定によれば、第1および第2のヒータ32、34の何れか一方のみがON状態となる期間が必ず測定期間α以上の期間として確保されるため、個々のヒータを流れる電流を確実に測定することができる。
【0028】
以下、図4乃至図7を参照して、本実施形態において、ECU30が実行する処理の内容を具体的に説明する。
図4(A)は、ECU30が第1のヒータ32を所望のデューティ比で駆動するために実行するルーチンのフローチャートである。また、図4(B)は、ECU30が第2のヒータ34を所望のデューティ比で駆動するために実行するルーチンのフローチャートである。
【0029】
図4(A)に示すルーチンでは、先ず、空燃比センサ18の素子温度が検出される(ステップ100)。素子温度は、センサ素子の抵抗値と相関を有している。このため、本ステップでは、センサ素子の抵抗値から素子温度を推定することができる。
【0030】
次に、上記ステップ100で得られた素子温度推定値と素子温度の目標値との偏差が算出される(ステップ102)。次いで、上記の偏差に基づき、第1のヒータ32の駆動に要求されるデューティ比DUTYが算出される(ステップ104)。
【0031】
次に、上記ステップ104の処理により算出されたデューティ比DUTYが、上限値MAX以上か否かが判定される(ステップ106)。
その結果、DUTY≧MAXの成立が判定された場合は、デューティ比DUTYが上限値MAXに置き換えられる(ステップ108)。
【0032】
上記ステップ106において、DUTY≧MAXが成立しないと判定された場合は、デューティ比DUTYの要求値が0%か否かが判定される(ステップ110)。
その結果、DUTY=0%の成立が判定された場合は、後述するステップ118において、第1のヒータ32がOFF状態とされた後、今回の処理サイクルが終了される。
【0033】
上記ステップ110において、DUTY=0%が成立しないと判定された場合は、上記ステップ104で算出されたデューティ比DUTYを用いて、以下の処理が行われる。ここでは、先ず、第1のヒータ32のONタイミングが到来したか否かが判定される(ステップ112)。既述した通り、本実施形態では、デューティ周期の開始時を第1のヒータ32のONタイミングとしている。従って、本ステップでは、新たなデューティ周期の開始時が到来したか否かが判別される。本ステップ112の処理は、第1のヒータ32のONタイミングが到来するまで、繰り返し実行される。
【0034】
上記ステップ112において、第1のヒータ32のONタイミングが到来したと判別されると、第1のヒータ32がON状態とされる(ステップ114)。その後、第1のヒータ32は、上述した処理により算出されたデューティ比DUTYに対応するON期間が経過した時点で(ステップ116)、OFFされる(ステップ118)。
上記ルーチンの処理によれば、第1のヒータ32を図3(A)に示すような波形でデューティ駆動することができる。
【0035】
次に、図4(B)に示すフローチャートを用いて、ECU30が第2のヒータ34をデューディ駆動する際に実行するルーチンについて説明する。尚、図4(B)において、上記図4(A)に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
図4(B)に示すルーチンは、ステップ112、114、および118がそれぞれステップ120、122、および124に置き換えられている点を除き、図4(A)に示すルーチンと同様である。
【0036】
図4(B)に示すルーチンでは、デューティ比DUTYの算出処理の後、第1のヒータ32がONされてから所定期間t1が経過したか否かが判定される(ステップ120)。このステップ120の処理は、第1のヒータ32がONされてから所定期間t1を経過するまで、繰り返し実行される。
【0037】
上記ステップ120において、第1のヒータ32がONされてから所定期間t1が経過したと判別されると、第2のヒータ34がON状態とされる(ステップ122)。その後、デューティ比DUTYに対応するON期間が経過すると(ステップ116)、第2のヒータ34がOFFされて(ステップ124)、今回の処理サイクルが終了する。
【0038】
上記ルーチンによれば、第2のヒータ34を図3(B)に示すような波形でデューティ駆動することができる。このため、上記図4(A)および(B)に示すルーチンによれば、第1のヒータ32および第2のヒータ34のONタイミングをずらして、一方のヒータのみがONとなる期間を設けることができる。
【0039】
本実施形態では、上記手法で第1および第2のヒータ32、34を駆動しつつ、以下に説明する手法により、各ヒータについての異常判定を実行することができる。
図5は、図1に示すECU30が第1のヒータ32の異常を判定するために実行するルーチンのフローチャートである。尚、このルーチンは、ヒータの駆動に用いられるデューティ周期T毎に実行されるものとする。
【0040】
図5に示すルーチンでは、先ず、今回の周期Tで使用されるデューティ比DUTYがヒータ電流の検出に最低限必要なデューティ比α/T以上か否かが判定される(ステップ126)。
その結果、DUTY≧(α/T)が成立しないと判定された場合は、ヒータ異常検出処理が行われずに本ルーチンの処理が終了される。
【0041】
一方、DUTY≧(α/T)の成立が判定されると、第1のヒータ32を流通するヒータ電流Iが取得される(ステップ128)。既述した通り、本実施形態では、第1のヒータ32がON状態とされた後、所定期間t1は第1のヒータ32のみが通電される。このため、ECU30は、第1のヒータ32のみがON状態とされた直後に、ADC64の出力を取り込むことで、第1のヒータ32を流れるヒータ電流Iを取得することができる。
【0042】
次に、今回のデューティ比DUTYがその上限値に張り付いた状態にあるか否かが判定される(ステップ130)。本実施形態では、ヒータ電流Iが素子温を目標温度とするのに不十分である場合に、デューティ比DUTYが増やされる。従って、デューティ比DUTYは、ヒータ電流I不足の状態が継続することで、上限値に達する。換言すると、デューティ比DUTYが上限値に達していない場合は、ヒータ電流Iが十分に確保されていると判断することができ、一方、デューティ比DUTYが上限値に達している場合は、ヒータ電流Iが不足している可能性が高いと判断できる。
【0043】
図5に示すルーチンでは、上記ステップ130において、今回のデューティ比DUTYが上限値に張り付いていると判定されると、先ず、断線の有無を判断するため、ヒータ電流Iが判定値ILより大きいか否かが判定される(ステップ132)。ヒータが断線している場合には、ヒータには電流が流通しない。判定値ILは、そのようなヒータの断線を判定するために設定された小さな電流値である。このため、ヒータ電流I>ILの不成立が認められる場合は、ヒータの断線が判定できる。
【0044】
図5に示すルーチンでは、上記ステップ132において、ヒータ電流I>ILが成立しないと判定された場合は、第1のヒータ32の断線が判定された後(ステップ134)、今回の処理サイクルが終了される。一方、上記ステップ132において、ヒータ電流I>ILの成立が判定された場合は、次に、ヒータ性能の低下を判断するための判定値IMが読み出される(ステップ136)。
【0045】
ヒータの性能が低下したか否かは、ヒータに適当な電流が流通するか否かにより判断することができる。つまり、ヒータは、その抵抗が大きくなり、十分な電流を流通させることができなくなった場合に性能が低下したと判断すべきものである。具体的には、本実施形態のシステムでは、デューティ比DUTYが上限値に張り付いた状態でヒータ電流Iが十分に流れていない場合に、ヒータの性能低下を判断することができる。上記の判定値IMは、その判断を下すための判定値である。
【0046】
図6中に符号IMを付して示す曲線は、判定値IMと推定排気温との関係を示す。また、符号Iを付して示す曲線は、正常なヒータ電流Iと排気温との関係を示す。内燃機関の始動後におけるヒータの温度は、排気温の上昇と共に上昇する。従って、暖機の過程では、ヒータ温度と排気温の間に相関が認められる。ヒータの抵抗は、ヒータの温度が高いほど大きくなる。つまり、暖機の過程では、ヒータの抵抗は排気温度が上がるにつれて大きくなる。従って、ヒータ電流Iは、図6に示すように、排気温度が上昇するにつれて小さな値となる。ヒータ電流Iが上記のような温度特性を示すため、ヒータの性能低下を判断するうえでは、その判定値にも温度特性を与えることが望ましい。そこで、本実施形態では、図6に示すように、判定値IMを排気温度に応じて変化させることとした。すなわち、ECU30は、図6に示すように、排気温との関係で定めた判定値IMのマップを記憶している。そして、上記ステップ136では、このマップを参照して排気温に対応する判定値IMが設定される。尚、上記ステップ132において用いられる判定値ILは、一定値であり、排気温との関係では図6に示すように表すことができる。
【0047】
ここで、本実施形態のECU30は、排気温とヒータ通電積算時間(または積算吸入空気量)との関係で定めたマップを記憶しており、既述した排気温の推定値はヒータ通電積算時間(または積算吸入空気量)に基づいて算出するものとする。尚、ここでは、推定排気温に基づいて判定値IMを設定することとしているが、ヒータ温度を推定し、その推定値より判定値IMを設定してもよい。
【0048】
図5に示すルーチンでは、次に、ヒータ電流Iが判定値IMより大きいか否かが判定される(ステップ138)。
その結果、ヒータ電流I>IMが成立しないと判定された場合は、十分な電流が流通していないと判断され、第1のヒータ32の性能低下が判定される(ステップ140)。
【0049】
上記ステップ138において、ヒータ電流I>IMの成立が判定された場合は、ヒータ電流Iが十分に流通していると判断できる。この場合、第1のヒータ32が正常状態にあると判定される(ステップ142)。
【0050】
一方、上記ステップ130において、今回のデューティ比DUTYがその上限値に張り付いていないと判定された場合、すなわち、ヒータ電流Iが十分に確保されていると判断できる場合には、次いで、ヒータが過電流であるか否かを判断するための判定値IHが読み出される(ステップ144)。ECU30は、図6に示すように、排気温との関係で定めた判定値IHのマップを記憶している。判定値IHには、既述した判定値IMと同様の温度特性が与えられている。そして、上記ステップ144では、このマップを参照して排気温に対応する判定値IHが設定される。
【0051】
図5に示すルーチンでは、次に、ヒータ電流Iが判定値IHより大きいか否かが判定される(ステップ146)。
その結果、ヒータ電流I>IHの成立が判定された場合は、第1のヒータ32が過電流状態であると判定される(ステップ148)。
【0052】
上記ステップ146において、ヒータ電流I>IHが成立しないと判定された場合は、次いで、上記ステップ136、138の処理が実行され、第1のヒータ32が正常状態にあるか、或いは、その性能が低下しているかが判定される。
【0053】
以上説明した通り、図5に示すルーチンによれば、第1のヒータ32のみがONである状況下でADC64の出力を見ることで、第1のヒータ32を流れるヒータ電流Iを正確に検知することができる。そのうえで、ヒータ電流Iを判定値IL、IM、IHと比較することで、第1のヒータ32の異常を判定することができる。また、ここでは、図6に示すように、判定値IM、IHに温度特性を与えているため、排気温、或いは、ヒータ温度に関わらず、第1のヒータ32に異常が生じているか否かを正確に判定することができる。
【0054】
次に、ECU30が第2のヒータ34の異常を判定するために実行する処理について説明する。図7は、その処理を実現するためにECU30が実行するルーチンのフローチャートである。尚、このルーチンは、ヒータの駆動に用いられるデューティ周期T毎に実行されるものとする。また、図7において、上記図5に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
【0055】
図7に示すルーチンは、図5に示すルーチンのステップ128の処理がステップ150の処理に置き換えられている点を除き、図5に示すルーチンと同様である。すなわち、図7に示すルーチンは、第2のヒータ34のヒータ電流Iを取得するタイミングが、第1のヒータ32の取得タイミングと異なる他は図5に示すルーチンと同様である。
【0056】
図7に示すルーチンでは、ステップ150において、第2のヒータ34を流通するヒータ電流Iが取得される。既述した通り、本実施形態の設定では、第1のヒータ32がOFF状態とされた後、所定期間は第2のヒータ34のみが通電される。このため、ECU30は、第1のヒータ32がOFF状態とされた直後に、ADC64の出力を取り込むことで、第2のヒータ34を流れるヒータ電流Iを取得することができる。
【0057】
図7に示すルーチンでは、上記ステップ150の処理により取得された第2のヒータ34のヒータ電流Iに基づいて、それ以降の処理が実行される。図5に示すルーチンの場合と同様の原理により、第2のヒータ34の異常判定が行われる。上記図7に示すルーチンによれば、図6に示すマップを参照して、第2のヒータ34を流れるヒータ電流Iを正確に検知することができ、また、排気温やヒータ温度に関わらず、第2のヒータ34の異常判定を正確に行うことができる。
【0058】
以上説明した通り、本実施形態のシステムによれば、通常のヒータ駆動制御時において、個々のヒータ電流Iを検出することが可能となる。更に、そのヒータ電流Iに基づいて、個々のヒータの異常判定を行うことができる。
【0059】
ところで、上述した実施の形態1においては、第1のヒータ32がONされてから所定期間t1が経過した時点を、第2のヒータ34のONタイミングとしているが、そのタイミングの決定手法はこれに限定されるものではない。すなわち、第1のヒータ32と第2のヒータ34のデューティ比は、それぞれ独立して設定されるものである。このため、実施の形態1の決定手法によると、第1のヒータ32がONである期間中に第2のヒータ34がOFFされる事態が生じ得る。この場合、第2のヒータ34のみがONとなる期間が確保できないことになる。これに対して、例えば、第2のヒータ34のONタイミングを、そのON期間の終点がデューティ周期Tの終点と一致するように設定すれば、第2のヒータ34のみがONとなる期間を常に確保することができる。このため、第2のヒータ34のONタイミングは、デューティ周期Tの終点から遡って設定することとしてもよい。
【0060】
尚、上述した実施の形態1においては、ECU30が、上記ステップ104〜108の処理を実行することにより前記第1乃至第3の発明における「デューティ比設定手段」が、図4に示すルーチン中の一連の処理を実行することにより前記第1の発明における「ヒータ駆動手段」が、上記ステップ128および150の処理を実行することにより前記第1の発明における「ヒータ電流検出手段」がそれぞれ実現されている。また、検出部48およびADC64が前記第1乃至第3の発明における「合計電流検知手段」に相当している。
また、ECU30が、図5および図7に示すルーチン中の一連の処理を実行することにより前記第6の発明における「異常検出手段」が実行されている。
また、ECU30が、上記ステップ136および144の処理を実行することにより前記第7の発明における「異常判定値設定手段」が実現されている。また、空燃比センサ18、20が前記第7の発明における「排気ガスセンサ」に相当している。
【0061】
実施の形態2.
次に、図8乃至図10を参照して、本発明の実施の形態2について説明する。本実施形態では、内部にヒータが組み込まれている空燃比センサを4つ備える内燃機関に、本発明を適用した例を示す。尚、このような構成は、例えば、V型エンジンにおいて用いられることがある。
【0062】
図8は、本実施形態において用いられるECU70が備えるヒータ制御回路の回路図である。尚、図8において、上記図2に示す構成要素と同一の部分には、同一の符号を付してその説明を省略または簡略する。図8において、符号72、74、76、78は、本実施形態が備える4つの空燃比センサに内蔵されるヒータをそれぞれ示している。以下、これらの4つのヒータを「第1のヒータ72」、「第2のヒータ74」、「第3のヒータ76」、「第4のヒータ78」と称す。
【0063】
図8に示すヒータ制御回路は、ヒータの総数が2つから4つに変更されたことに伴う変更、すなわち、ヒータ32、34がヒータ72、74、76、78に変更されている点、更に、ヒータ76に対応した第3の駆動部80および第3のポート84、並びにヒータ78に対応した第4の駆動部82および第4のポート86が追加されている点を除き、図2に示す回路と同様である。
【0064】
上記の構成によれば、ECU70は、第1乃至第4のポート44、46、84、86のいずれか1つのポートのみをONとすることにより、第1乃至第4のヒータ72、74、76、78のうち、ONされたポートに対応するヒータを流れる電流をそれぞれ個別に検出することができる。
【0065】
図9は、図8に示すヒータ制御回路の動作を説明するためのタイミングチャートである。具体的には、図9(A)乃至図9(D)は、それぞれ第1乃至第4のヒータ72、74、76、78がデューティ駆動される様子を示す。更に、図9(E)は、ADC64から取り出される電圧波形(便宜上、反転させた波形)を示す。
【0066】
本実施形態では、通常のヒータ駆動制御時において、個々のヒータの電流値を検出可能とすべく、第1乃至第4のヒータ72、74、76、78が1つだけONとなる期間(図9中にt2で示す期間)を、それぞれのヒータについて設けることとしている。尚、所定期間t2は、実施の形態1における期間t1と同様に、ヒータ電流取得のために必要な測定期間α以上の値である。
【0067】
より具体的には、図9に示すように、第1のヒータ72は、所定のデューティ周期Tの開始時にONされ、期間t2だけON状態とされた後にOFFされる。第2のヒータ74は、第1のヒータ72がOFFされた時点でONされ、期間t2だけON状態とされた後にOFFされる。更に、第3のヒータ76についても、第2のヒータ74と同様にしてON、OFFされる。次いで、第4のヒータ78は、第3のヒータ76がOFFされた時点でONされ、以後、デューティ比に対応するON期間が経過した後にOFFされる。
【0068】
本実施形態では、第4のヒータ78がONされた後に、期間t2が経過すると、第1乃至第3のヒータ72、74、76は共にONとされ、その後、所望のデューティ比を実現するのに必要な期間だけON状態に維持される。このような設定によれば、1つのデューティ期間中に、個々のヒータにつき所望のON期間を確保しつつ、すべてのヒータにつきその期間を確保することができる。このため、ECU70は、何れのヒータ72、74、76、78についても、そのヒータのみを流れるヒータ電流を検出することができる。以下、それぞれのヒータに対応する期間t2を「電流検出用ON期間」と称し、その期間の開始タイミングを「電流検出用ONタイミング」と称する。
【0069】
本実施形態では、第1乃至第4のヒータ72、74、76、78のデューティ比に上限値を設けている。ここで、第1のヒータ72を例に説明すると、他のヒータにおいて、ヒータ電流検出が行われている期間中は、第1のヒータ72がOFF状態とされている必要がある。このため、本実施形態では、デューティ比の上限値は、それぞれのヒータにおけるOFF期間が3α(3つのヒータがヒータ電流取得のために必要な測定時間)以上の期間となるように設定されている。このような設定によれば、それぞれ唯一のヒータのみがON状態となる期間が必ず確保されるため、個々のヒータを流れる電流を確実に測定することができる。
【0070】
以下、図10を参照して、本実施形態において、ECU70が実行する処理の内容を具体的に説明する。
図10(A)は、ECU70が第1のヒータ72を所望のデューティ比で駆動するために実行するルーチンのフローチャートである。また、図10(B)は、ECU70が第4のヒータ78を所望のデューティ比で駆動するために実行するルーチンのフローチャートである。尚、図10において、実施の形態1における上記図4に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。また、第2および第3のヒータ74、76に対する処理については、図10(A)のフローチャートを引用して、第1のヒータ72に対する処理と異なる点のみ説明する。
【0071】
図10(A)に示すルーチンは、ステップ112がステップ152〜160に置き換えられている点を除き、図4(A)に示すルーチンと同様である。
図10(A)に示すルーチンでは、デューティ比DUTYの算出処理の後(ステップ100〜110)、第1のヒータ72の電流検出用ONタイミングが到来したか否かが判定される(ステップ152)。既述した通り、本実施形態では、デューティ周期の開始時を第1のヒータ32の電流検出用ONタイミングとしている。従って、本ステップでは、新たなデューティ周期の開始時が到来したか否かが判別される。本ステップ152の処理は、そのONタイミングが到来するまで、繰り返し実行される。
【0072】
上記ステップ152において、第1のヒータ72の電流検出用ONタイミングが到来したと判別されると、第1のヒータ72がON状態とされる(ステップ154)。その後、電流検出用ON期間が経過した時点で、第1のヒータ72が一時OFFされる(ステップ156)。
【0073】
次に、上記ステップ104で算出されたデューティ比DUTYに対応するON期間が、電流検出用ON期間以上か否かが判定される(ステップ158)。
その結果、上記ステップ158において、デューティON期間が電流検出用ON期間以上でないと判定された場合は、電流検出用ON期間のみで、第1のヒータ72のデューティON期間が確保されたと判断され、その後速やかに今回の処理サイクルが終了する。
【0074】
一方、上記ステップ158において、デューティON期間が電流検出用ON期間以上であると判定された場合は、以後、残りのデューティON期間が経過するまで、第1のヒータ72をON状態とする必要がある。記述した通り、第1のヒータ72は、残りのヒータの電流検出用ON期間がすべて終了するまで、つまり、第4のヒータ78の電流検出用ON期間が終了するまでOFFとしておく必要がある。このため、ここでは、第4のヒータ78の電流検出用ON期間が終了したか否かが判定される(ステップ160)。尚、本ステップ160の処理は、第4のヒータ78の電流検出用ON期間が終了するまで、繰り返し実行される。
【0075】
上記ステップ160において、第4のヒータ78の電流検出用ON期間が終了したと判定されると、その後、残りのデューティON期間が経過するまで第1のヒータ72をONとする処理が実行された後、今回の処理サイクルが終了する(ステップ162〜166)。
上記ルーチンによれば、第1のヒータ72を図9(A)に示すような波形でデューティ駆動することができる。
【0076】
次に、ECU70が第2または第3のヒータ74、76をデューディ駆動するための処理について説明する。これらの処理は、実質的に図10(A)に示すルーチンと同様の処理を行うことで実現される。但し、本実施形態では、既述した通り、第2のヒータ74の電流検出用ONタイミングを第1のヒータ72の電流検出用ON期間の終了時とし、また、第3のヒータ76の電流検出用ONタイミングを第2のヒータ74の電流検出用ON期間の終了時としている。このため、それらのONタイミングを判定するステップ(上記ステップ152に対応するステップ)では、それぞれ第1のヒータ72の電流検出用ON期間、或いは、第2のヒータ74の電流検出用ON期間が終了したかを判定するものとする。
【0077】
次に、図10(B)に示すフローチャートを用いて、ECU70が第4のヒータ78をデューディ駆動するための処理について説明する。図10(B)に示すルーチンにおいて、デューティ比DUTYの算出処理(ステップ100〜110)については、図10(A)の場合と同様である。このDUTY算出処理が終了すると、先ず、第4のヒータ78の電流検出用ONタイミングが到来したか否かが判定される(ステップ168)。具体的には、第3のヒータ76のON期間が終了したか否かが判定される。ここで、第4のヒータ78の電流検出用ONタイミングが到来したと判別されると、第4のヒータ78がON状態とされる(ステップ170)。第4のヒータ78については、他のヒータと異なり、電流検出用ON期間の終了時に、その駆動を停止する必要がない。このため、図10(B)に示すルーチンでは、以後、デューティON期間が経過するまで第4のヒータ78をONとする処理が実行された後、今回の処理サイクルが終了する(ステップ172、174)。
上記ルーチンによれば、第4のヒータ78を図9(D)に示すような波形でデューティ駆動することができる。
【0078】
以上説明した一連のルーチンの処理によれば、何れのヒータ72、74、76、78についても、それぞれのデューティ周期T中にヒータ電流検出用のON期間を設けることができ、そのうえ、それぞれのヒータを所望のデューティ比で駆動することができる。従って、本実施形態の装置によれば、4つのヒータをそれぞれ所望のデューティ比で駆動しつつ、それらを流れるヒータ電流Iを個別に検知することができる。更に、ECU70に、それらのヒータ電流Iを対象として、図5または図7に対応するルーチンを実行させることにより、4つのヒータの各々につき異常判定を行うことができる。
【0079】
尚、上述した実施の形態2においては、ECU70が、図10に示すルーチン中の一連の処理を実行することにより前記第2の発明における「ヒータ駆動手段」および「第2のヒータ駆動手段」が、上記ステップ128および150と同様の処理を実行することにより前記第2の発明における「ヒータ電流検出手段」が、それぞれ実現されている。
【0080】
実施の形態3.
次に、図11および図12を参照して、本発明の実施の形態3について説明する。本実施形態の装置は、実施の形態2の場合と同様のシステム構成で実現できる(図8参照)。但し、本実施形態において、ECU70は、実施の形態2の場合とは異なる手法で、4つのヒータをデューティ駆動し、また、実施の形態2の場合とは異なる手法で個々のヒータを流れるヒータ電流を取得する。
【0081】
図11は、図8に示すヒータ制御回路の動作を説明するためのタイミングチャートである。具体的には、図11(A)乃至図11(D)は、それぞれ第1乃至第4のヒータ72、74、76、78がデューティ駆動される様子を示す。更に、図11(E)は、ADC64から取り出される電圧波形(便宜上、反転させた波形)を示す。
【0082】
図11(A)乃至図11(D)に示すように、第1乃至第4のヒータ72、74、76、78が所定期間t3毎に順次ON状態とされる。また、それらのヒータは、個々のヒータにつき設定されたON期間だけ継続的にON状態とされ、その期間が終了した時点でOFFとされる。尚、所定期間t3は、実施の形態2における期間t2と同様に、ヒータ電流取得のために必要な測定期間α以上の値である。また、ヒータの駆動デューティには、実施の形態2の場合と同様に、3α以上のOFF期間が確保されるように設定されている。尚、第1乃至第4のヒータ72、74、76、78を、図11(A)乃至図11(D)に示すように駆動する手法は、原理的に図4や図10に示すルーチンで用いられる手法と同じであるため、ここでは、その詳細な説明は省略する。
【0083】
上記設定によれば、第1のヒータ72がONされた後の所定期間t3では、第1のヒータ72のみONされる期間が確保されるため、この期間で第1のヒータ72を流通する電流を検出することができる。第1のヒータを流れる電流が検知できると、第2のヒータ74がONされた後に尚、第1のヒータ72がONされていても、その時点で検出される電流から上記第1のヒータ72を流れる電流を差し引くことで、第2のヒータ74を流通する電流を算出することができる。以下、第3および第4のヒータ76,78についても、同様の手法により、その都度得られた電流値から既知の電流値を差し引くことでヒータ電流を算出することができる。
【0084】
以下、図12を参照して、本実施形態において、ECU70が個々のヒータを流れる電流を検知するために実行する処理の内容を具体的に説明する。
【0085】
第1のヒータ72を流れる電流については、実施の形態1の場合と同様に、第1のヒータ72がONされた直後に、ADC64の出力を取り込むことで取得することができる。尚、この電流は、以下、符号IHT1を付して記すものとする。
【0086】
第2のヒータ74については、図12(A)に示すような手順でそこを流れる電流IHT2を取得することができる。すなわち、ここでは、先ず、第1のヒータ72がON状態にあるか否かが判定される(ステップ176)。
その結果、上記ステップ176において、第1のヒータ72がON状態でないと判定された場合は、第2のヒータ74のみがON状態であると判断できる。この場合、ADC64の出力信号に対応する電流(以下「IOUT」とする)が、第2のヒータ74を流れるヒータ電流IHT2として取得される(ステップ178)。
【0087】
一方、上記ステップ176において、第1のヒータ72がON状態にあると判定された場合は、第1のヒータ72と第2のヒータ74が共にON状態にあると判断できる。この場合は、ADC64の出力信号に対応する電流IOUTから第1のヒータ72を流れる電流IHT1を差し引くことで、第2のヒータ74を流れるヒータ電流IHT2を取得することができる(ステップ180)。
【0088】
第3のヒータ76については、図12(B)に示すような手順でそこを流れる電流IHT3を取得することができる。すなわち、ここでは、先ず、第1および第2のヒータ72、74が共にOFF状態にあるか否かが判定される(ステップ182)。
その結果、上記ステップ182において、第1および第2のヒータ72、74が共にOFF状態にあると判定された場合は、第3のヒータ76のみがON状態であると判断できる。この場合、ADC64の出力信号に対応する電流IOUTが、第3のヒータ76を流れるヒータ電流IHT3として取得される(ステップ184)。
【0089】
一方、上記ステップ182において、第1および第2のヒータ72、74が共にOFF状態でないと判定された場合は、ADC64の出力信号に対応する電流IOUTからON状態にあるヒータを流れる電流の和を差し引くことで第3のヒータ76を流れるヒータ電流IHT3を取得することができる(ステップ186)。
【0090】
第4のヒータ78については、図12(C)に示すような手順でそこを流れる電流IHT4を取得することができる。尚、この手順(ステップ188〜192)は、実質的に図12(B)に示す手順と同じであるため、詳細な説明は省略する。
【0091】
上記の処理によれば、第1乃至第4のヒータ72、74、76、78を流れるヒータ電流IHT1〜IHT4を個別に取得することができる。本実施形態では、ECU70に、これらの電流IHT1〜IHT4を対象として図5または図7に示すルーチンを実行させることにより、各ヒータの異常判定を行うことができる。
【0092】
尚、上述した実施の形態3においては、ECU70が、図4に示すルーチン中の処理と同様の処理を実行することにより前記第3の発明における「ヒータ駆動手段」が、上記ステップ176、182、188の処理を実行することにより前記第3の発明における「通電状態判別手段」および「ONヒータ特定手段」が、図12中に示すルーチン中の一連の処理を実行することにより前記第3の発明における「ヒータ電流検出手段」が、それぞれ実現されている。また、ADC64の出力信号に対応する電流IOUTが第3の発明における「基本データ」に、検出部48およびADC64が第3の発明における「基本データ検知手段」に、それぞれ相当している。
【0093】
ところで、上述した実施の形態1〜3においては、ECU30およびECU70の制御対象がヒータを備える空燃比センサ(排気ガス中の酸素濃度に応じた出力を発するセンサ)に限定されているが、本発明はこれに限定されるものではない。すなわち、本発明は、ヒータを備えていれば空燃比センサに限らず、排気空燃比がリッチであるかリーンであるかに応じた出力を発する酸素センサに適用することとしてもよい。更に、本発明は、ヒータ付空燃比センサに限らず、1つの検出回路を用いつつ複数の制御対象をデューティ駆動させる制御装置に適用することとしてもよい。
【0094】
【発明の効果】
この発明は以上説明したように構成されているので、以下に示すような効果を奏する。
第1の発明によれば、複数のヒータにそれぞれ所望の熱量を発生させながら、すべてのヒータにつき、1つのヒータのみがONとなる期間を確保することができる。このため、本発明によれば、1つの検出回路を用いつつ、通常のヒータ駆動制御を停止することなく、複数のヒータの各々を流通するヒータ電流を個別に検出することができる。
【0095】
第2の発明によれば、それぞれのヒータにつき、1つのヒータのみがONとなる所定の電流検出用ON期間に検出される電流を当該ヒータを流れるヒータ電流として確実に検出することができる。このため、本発明によれば、1つの検出回路を用いつつ、通常のヒータ駆動制御を停止することなく、複数のヒータの各々を流通するヒータ電流を個別に検出することができる。
【0096】
第3の発明によれば、1番目にONされるヒータ(以下、「第1のヒータ」と称す)については、既にONとなっているヒータがないため、基本データを当該ヒータを流れるヒータ電流として検出することができる。2番目にONされるヒータ(以下、「第2のヒータ」と称す)については、第2のヒータがONされた時点で第1のヒータがON状態であれば、第1のヒータを流れるヒータ電流(既知)を、基本データから差し引くことで、当該ヒータを流れるヒータ電流を検出することができる。一方、第1のヒータが既にOFFされている場合は、今回検知された基本データを当該ヒータを流れるヒータ電流として検出することができる。本発明によれば、複数のヒータの各々を流れるヒータ電流を上記の手法で順次検出することができる。このため、本発明によれば、1つの検出回路を用いつつ、通常のヒータ駆動制御を停止することなく、複数のヒータの各々を流通するヒータ電流を個別に検出することができる。
【0097】
第4の発明によれば、最後にONされるヒータのみがONとなる期間を、デューティ周期の終点近傍に設定することができる。このため、本発明によれば、他のヒータのデューティ比に関わらず、最後にONされるヒータを流れるヒータ電流を確実に検出することができる。
【0098】
第5の発明によれば、個々のヒータが1つだけONとなる期間をヒータ電流の取得に要する測定期間以上に確保することができる。このため、本発明によれば、個々のヒータを流れるヒータ電流を確実に検出することができる。
【0099】
第6の発明によれば、ヒータ電流に基づいて、個々のヒータの異常を検出することができる。このため、本発明によれば、1つの検出回路を用いつつ、通常のヒータ駆動制御を停止することなく、複数のヒータの各々について異常を検出することができる。
【0100】
第7の発明によれば、排気温度に基づいて、異常判定のための判定値を適宜変更することができる。このため、本発明によれば、排気温度がヒータ温度に及ぼす影響に左右されることなく、複数のヒータの各々について異常を正確に検出することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1のヒータ制御装置を搭載した内燃機関を示す図である。
【図2】 図1に示すECUが備えるヒータ制御回路の回路図である。
【図3】 図2に示すヒータ制御回路の動作を説明するためのタイミングチャートである。
【図4】 図1に示すECUが実施の形態1のヒータを所望のデューティ比で駆動するために実行するルーチンのフローチャートである。
【図5】 図1に示すECUが第1のヒータの異常を判定するために実行するルーチンのフローチャートである。
【図6】 図5または図7に示すルーチン中で判定値IM、IHを算出する際に参照されるマップの一例を示す図である。
【図7】 図1に示すECUが第2のヒータの異常を判定するために実行するルーチンのフローチャートである。
【図8】 実施の形態2および実施の形態3のECUが備えるヒータ制御回路の回路図である。
【図9】 実施の形態2のおいて、図8に示すヒータ制御回路の動作を説明するためのタイミングチャートである。
【図10】 図8に示すECUが実施の形態2のヒータを所望のデューティ比で駆動するために実行するルーチンのフローチャートである。
【図11】 実施の形態3において、図8に示すヒータ制御回路の動作を説明するためのタイミングチャートである。
【図12】 実施の形態3において、図8に示すECUがヒータ電流取得のために実行する処理の詳細を示すフローチャートである。
【符号の説明】
10 内燃機関
14 排気通路
18、20 空燃比センサ
30、70 ECU
32、72 第1のヒータ
34、74 第2のヒータ
76 第3のヒータ
78 第4のヒータ
64 ADC

Claims (7)

  1. 複数のヒータをデューティ駆動するヒータ制御装置であって、
    所望の発熱量を得るためのデューティ比をそれぞれのヒータについて100より小さい値で設定するデューティ比設定手段と、
    それぞれのヒータのデューティONタイミングをヒータ毎に変更して前記デューティ比で前記ヒータを駆動するヒータ駆動手段と、
    前記複数のヒータを流れる電流の合計値を検知する合計電流検知手段と、
    1つのヒータのみがONである状況下で検知される前記合計値を当該ヒータを流れるヒータ電流として検出する処理を前記複数のヒータのすべてについて行うヒータ電流検出手段と、
    を備えることを特徴とするヒータ制御装置。
  2. 複数のヒータをデューティ駆動するヒータ制御装置であって、
    それぞれのヒータについて100より小さいデューティ比を設定するデューティ比設定手段と、
    前記複数のヒータの各々を所定の電流検出用ON期間に渡り1つだけONとするヒータ駆動手段と、
    前記複数のヒータを流れる電流の合計値を検知する合計電流検知手段と、
    何れのヒータの電流検出用ON期間とも重ならない期間に、それぞれのヒータを、前記デューティ比に基づくON期間と前記電流検出用ON期間との差分だけONとする第2のヒータ駆動手段と、
    各々のヒータに対応する前記電流検出用ON期間に検知される前記合計値を当該ヒータを流れるヒータ電流として検出する処理を前記複数のヒータのすべてについて行うヒータ電流検出手段と、
    を備えることを特徴とするヒータ制御装置。
  3. 複数のヒータをデューティ駆動するヒータ制御装置であって、
    それぞれのヒータについて100より小さいデューティ比を設定するデューティ比設定手段と、
    所定の電流検出用ON期間毎に前記複数のヒータのすべてを順次ONするヒータ駆動手段と、
    前記複数のヒータを流れる電流の合計値を検知する合計電流検知手段と、
    前記ヒータがON状態にあるか否かを判別する通電状態判別手段と、
    それぞれのヒータがONされた時点での前記合計値を当該ヒータを流れる電流の基本データとして検知する基本データ検知手段と、
    それぞれのヒータがONされた時点で、既にONとなっているヒータを特定するONヒータ特定手段と、
    前記基本データから前記ONヒータ特定手段により特定されたヒータを流れるヒータ電流の合計を差し引くことで、当該ヒータを流れるヒータ電流を検出する処理を前記複数のヒータのすべてについて行うヒータ電流検出手段と、
    を備えることを特徴とするヒータ制御装置。
  4. 前記ヒータ駆動手段は、最後にONされるヒータのデューティONタイミングをデューティ周期の終点から遡って設定することを特徴とする請求項1乃至3の何れか1項記載のヒータ制御装置。
  5. 前記デューティ比設定手段は、前記ヒータ電流の取得に要する測定期間と、ヒータ総数から1を差し引いた数との積で算出される期間以上のデューティOFF期間が確保されるように前記デーティ比を設定することを特徴とする請求項1乃至4の何れか1項記載のヒータ制御装置。
  6. 前記ヒータ電流に基づいて、前記ヒータの異常を検出する異常検出手段を備えることを特徴とする請求項1乃至5の何れか1項記載のヒータ制御装置。
  7. 前記複数のヒータは、内燃機関の排気通路に配置される複数の排気ガスセンサにそれぞれ組み込まれており、
    内燃機関の排気温度に基づいて、前記異常検出の際に用いる判定値を設定する異常判定値設定手段を備え、
    前記異常検出手段は、前記ヒータ電流と前記判定値とに基づき、前記ヒータの異常を検出することを特徴とする請求項6記載のヒータ制御装置。
JP2003167021A 2003-06-11 2003-06-11 ヒータ制御装置 Expired - Fee Related JP4329419B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167021A JP4329419B2 (ja) 2003-06-11 2003-06-11 ヒータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167021A JP4329419B2 (ja) 2003-06-11 2003-06-11 ヒータ制御装置

Publications (2)

Publication Number Publication Date
JP2005003500A JP2005003500A (ja) 2005-01-06
JP4329419B2 true JP4329419B2 (ja) 2009-09-09

Family

ID=34092991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167021A Expired - Fee Related JP4329419B2 (ja) 2003-06-11 2003-06-11 ヒータ制御装置

Country Status (1)

Country Link
JP (1) JP4329419B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922899B2 (ja) * 2007-11-07 2012-04-25 株式会社日立ハイテクノロジーズ 尿素水注入装置
JP4894948B2 (ja) * 2010-10-13 2012-03-14 トヨタ自動車株式会社 排ガスセンサの劣化検出装置
JP5195896B2 (ja) * 2010-12-27 2013-05-15 株式会社デンソー 電気負荷駆動装置
JP5195897B2 (ja) * 2010-12-27 2013-05-15 株式会社デンソー 電気負荷駆動装置
JP5838644B2 (ja) * 2011-08-09 2016-01-06 日本電気硝子株式会社 発熱体の検査方法、及び検査装置
JP2012082835A (ja) * 2011-11-28 2012-04-26 Nissan Motor Co Ltd 内燃機関
JP5755628B2 (ja) * 2012-11-16 2015-07-29 株式会社日本製鋼所 ヒータの断線・劣化判定方法および射出成形機
JP5376073B2 (ja) * 2013-01-11 2013-12-25 日産自動車株式会社 内燃機関の空燃比制御装置
JP5996579B2 (ja) * 2014-06-09 2016-09-21 株式会社日本製鋼所 ヒータの断線・劣化判定方法および射出成形機
KR102071884B1 (ko) 2015-12-25 2020-01-31 리카고교가부시키가이샤 부하 제어장치, 부하 제어장치의 전류 계측방법
JP6345215B2 (ja) * 2016-10-25 2018-06-20 三菱電機株式会社 ガス濃度センサのヒータ制御装置
JP6730647B2 (ja) * 2016-12-09 2020-07-29 理化工業株式会社 電力制御装置及び電力制御方法
JPWO2019215836A1 (ja) * 2018-05-09 2021-01-07 理化工業株式会社 電流測定及び漏電検出装置、電力制御装置
JP7158987B2 (ja) * 2018-10-10 2022-10-24 日本碍子株式会社 ガスセンサ
JP2023178668A (ja) * 2022-06-06 2023-12-18 株式会社クボタ 作業車

Also Published As

Publication number Publication date
JP2005003500A (ja) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4329419B2 (ja) ヒータ制御装置
US8751187B2 (en) Apparatus for calculating temperature of conductive carrier of catalyst converter
US9606040B2 (en) Sensor controller
US8845798B2 (en) Particulate matter detecting apparatus for internal combustion engine
JP5278615B2 (ja) 内燃機関の粒子状物質検出装置
JP3744486B2 (ja) 酸素センサの劣化検出装置
JP5348336B2 (ja) 電気加熱式触媒の故障検出装置
KR101466591B1 (ko) 내연 기관의 배기 가스 프로브、 특히 람다 프로브를 위한 테스트 방법
JP4094538B2 (ja) 空燃比センサの故障診断装置
JP2009133238A (ja) NOxセンサの診断装置
US7293557B2 (en) Abnormality detecting apparatus and abnormality detecting method for an air/fuel ratio sensor
US8961761B2 (en) Oxygen sensor control apparatus
US9212971B2 (en) Oxygen sensor regeneration
US8504278B2 (en) Method and system for detecting a fault during catalyst light-off
JP2004092614A (ja) エアフローセンサ故障判定装置
JP3656501B2 (ja) 空燃比センサの異常診断装置
US9222852B2 (en) Method for detecting the operational readiness of a jump lambda sensor
JP5995993B2 (ja) グロープラグ診断方法及び車両用グロープラグ駆動制御装置
JP2008038720A (ja) 排出ガス浄化システムの下流側酸素センサの異常診断装置
JP2009031153A (ja) 酸素センサの制御装置
US11078859B2 (en) Oxygen sensor out of specification heater rationality monitor using cold start cycle
JP7055873B2 (ja) 車載電子制御装置
JP5614295B2 (ja) エンジンの排気浄化装置
JP2005140742A (ja) センサの劣化診断装置
US20230123607A1 (en) Method and device for diagnosing a heating element of an exhaust gas sensor of an internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees