JP4325242B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4325242B2
JP4325242B2 JP2003087585A JP2003087585A JP4325242B2 JP 4325242 B2 JP4325242 B2 JP 4325242B2 JP 2003087585 A JP2003087585 A JP 2003087585A JP 2003087585 A JP2003087585 A JP 2003087585A JP 4325242 B2 JP4325242 B2 JP 4325242B2
Authority
JP
Japan
Prior art keywords
wafer
semiconductor wafer
layer
semiconductor
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003087585A
Other languages
Japanese (ja)
Other versions
JP2004296817A (en
Inventor
健一 風間
治雄 中澤
利隆 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003087585A priority Critical patent/JP4325242B2/en
Publication of JP2004296817A publication Critical patent/JP2004296817A/en
Application granted granted Critical
Publication of JP4325242B2 publication Critical patent/JP4325242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、絶縁ゲート型バイポーラトランジスタ(以下、IGBTとする)などの半導体装置の電極膜として、半導体ウエハの裏面に、金属電極膜を蒸着する半導体装置の製造方法に関し、特に半導体ウエハの裏面を研削・研磨して製作される薄型の半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、コンピュータや通信機器の重要部分には、多数のトランジスタや抵抗等が配線で接続して用いられると共に、半導体チップ(以下、単にチップとする)に集積した集積回路(以下、ICとする)も多用されている。このようなICに、パワー半導体素子をさらに集積したものはパワーICと呼ばれている。
IGBT(Insulated Gate Bipolor Transistor)は、MOSFETの高速スイッチング特性と電圧駆動特性と、バイポーラトランジスタの低オン電圧特性を併せ持つパワー半導体素子である。このため、IGBTは、汎用インバータ、ACサーボ、無停電電源(UPS)およびスイッチング電源などの産業機器分野をはじめ、電子レンジ、炊飯器、ストロボなどの民生機器分野への応用も進んでいる。さらに次世代素子への開発も進んでおり、新しい素子構造により、より低オン電圧のものが開発され、適用装置の低損失化や高効率化が図られている。
【0003】
このIGBTの構造には、パンチスルー型、ノンパンチスルー型、そしてフィールドストップ型等がある。そして、現在量産されているIGBTは、一部のオーディオ・パワー・アンプ用のpチャネル型を除いて、殆どが、nチャネル型の縦型二重拡散構造となっているので、以下、nチャネル型のIGBTで説明する。
パンチスルー型は、p+ エピタキシャル基板とn- 層(活性層)の間にn+ 層(バッファ層)を設け、活性層中の空乏層がn+ 層であるバッファ層に到達する構造であり、IGBTで主流の基本構造である。例えば、耐圧600V系に対しては、n- 層である活性層は厚さ70μm程度で十分であるが、p+ 基板部を含むと総厚さは200〜300μmになる。そこで、エピタキシャル基板を用いずに、FZ基板を用いて、チップの低コスト化を図った低ドーズ量の浅いp+ コレクタ層を採用したノンパンチスルー型IGBT、フィールドストップ型IGBTが開発されてきている。
【0004】
図3は、低ドーズ量の浅いp+ コレクタ層を採用したノンパンチスルー型IGBTの要部断面図である。図は1/2セルを示す。
低ドーズの浅いp+ コレクタ層58(低注入p+ コレクタ)を採用したノンパンチスルー型は、p+ エピタキシャル基板を使わないので、基板総厚さはパンチスルー型よりも大幅に薄くなる。この構造では、正孔の注入率を制御できるので、ライフタイム制御を行わなくても高速スイッチングが可能であるが、オン電圧は活性層であるn- 層51の厚みと比抵抗に依存するのでやや高い値である。但し、前述のようにp+ エピタキシャル基板を用いずに、FZ基板を用いているため、チップの低コスト化が可能である。
【0005】
尚、図中の52はpベース層、53はnエミッタ層、54はゲート絶縁膜、55はゲート電極、56はエミッタ電極、57は層間絶縁膜、59はコレクタ電極である。
図4は、フィールドストップ型IGBTの要部断面図である。図は1/2セルを示す。
基本構造は、パンチスルー型IGBTと同じであるが、やはりp+ エピタキシャル基板は用いずに、FZ(フローティング・ゾーン)基板を用いて基板の総厚さを100μm〜200μmとしている。パンチスルー型と同じく活性層であるn- 層51の厚さは600V耐圧の場合は70μm程度にしてあり、定格電圧を印加したときは全域が空乏化するため、活性層下にはn+ 層60(nバッファ層)を設ける。コレクタ側は、低ドーズ量の浅いp+ 拡散層をコレクタ層58として形成し、低注入コレクタとして用いる。これにより、ノンパンチスルー型の場合と同様にライフタイム制御は不要である。(さらにオン電圧の低減を目的として、チップ表面に狭く深い溝を形成し、その溝側面にゲート絶縁膜を介してゲート電極を形成したトレンチIGBTの構造をこのフールドストップ型IGBT(FS−IGBT)と組み合わせた構造のものもある)。また、設計の最適化を図る等によって、総厚さの低減が進められている。
【0006】
しかし、70μm程度の薄型IGBTを実現するために、裏面バックグラインドや裏面からのイオン注入、裏面熱処理等が必要であるが、ウエハの薄型化によって、ウエハに大きな反りが発生し製造プロセスに影響を与えてしまうなど技術的課題が多い。
図5は、FS−IGBTの表面構造を形成した後の製造プロセスを説明する図で、同図(a)から同図(e)は工程順に示した工程断面図である。先ず、図4のFS−IGBTの要部断面図を用いて表面構造61の製造プロセスを説明する。
(1)FZ−N基板(フローティング・ゾーン法で製作したn型の基板)であるn型の半導体ウエハ(以下、単にウエハ50とする)の表面側にゲート絶縁膜54(ここでは、SiO2 )を介して多結晶シリコン(ここでは、Poly−Si)からなるゲート電極55を堆積、加工、その表面に層間絶縁膜57(ここでは、BPSG)を堆積し、加工し、絶縁ゲート構造が作られる。
(2)ウエハ50にpベース層52(p+ )を形成し、その後にこのpベース層52内にnエミッタ層53(n+ )を形成する。
(3)nエミッタ層53に接するようにアルミ・シリコン膜からなる表面電極(エミッタ電極56)を形成する。アルミ・シリコン膜は、安定した接合性、低抵抗配線を実現するために、その後、400〜500℃程度の低温で熱処理される。さらに、図示しないが、表面を覆うようにポリイミド膜からなる絶縁保護膜を形成する。ここまでが、表面構造61を形成するプロセスである(図5(a))。
【0007】
つぎに、裏面側のプロセスについて説明する。尚、裏面側のプロセスは、表面側のプロセスが完了した後で行う。そのため、図5では図4に示した表面側の表面構造61の詳細は省略してある。
(4)裏面側より、所望の厚さまでウエハ50をバックグラインドやエッチングを用いて薄ウエハ化する(同図(b))。
(5)つぎに、バッファ層であるn+ 層60と高濃度のpコレクタ層58(p+ 層)を形成するために、裏面よりイオン注入を行う。この例では、n+ 層60はリン、pコレクタ層58はボロンを注入した。その後、電気炉により熱処理(アニール)を行う。熱処理温度は350℃〜500℃の低温である(同図(c))。
(6)つぎに、高濃度のpコレクタ層58(p+ 層)上に、アルミニウム層、チタン層、ニッケル層、金層などの金属膜の組合わせで裏面電極(コレクタ電極59)である金属電極膜を半導体ウエハ保持治具を用いて蒸着で形成する(同図(d))。
(8)つぎに、チップ状にダイシングする(同図(e))。
【0008】
最後に、図示しないが、表面構造のエミッタ電極56の表面には、アルミワイヤが超音波ワイヤボンディングで固着され、裏面のコレクタ電極59は、はんだ層を介して固定部材に固着される。
ここで、(6)の蒸着工程で使用する半導体ウエハ保持治具とウエハを治具にセットした状態を説明する。
図6は、従来の半導体ウエハ保持治具とウエハを治具にセットした状態を説明する図であり、同図(a)は治具の要部平面図、同図(b)から同図(d)は同図(a)のX−X線で切断した要部断面図である。
【0009】
従来の半導体ウエハ保持治具70は、ウエハ50の表面端部が当接する板状の治具本体71と、バネ72などの弾性復帰力を利用して、ウエハ50の中心に向かって外側4箇所からウエハ50を挟み込む4本のピン73とから構成されている。また、ウエハ50とあて板74とが直接接触しないように0.5mm程度の突起75を設けてある。
また、図6の他に、IGBTなどの半導体素子の金属電極膜などの薄膜をウエハに形成したり、また、ダイシングしたウエハをチップ化したりする場合の種々のウエハの保持方法について説明する。
【0010】
例えば、トレーの凹部にウエハを載せ、押し付け具でウエハの周縁部を押さえ、凹部の空間に昇圧用ガスを導入してウエハを固定し、露出したウエハ面に薄膜を形成する(特許文献1参照)。
また、基板台上にウエハを密着させて載せ、リング状の押さえ板でウエハの周縁部をバネで押さえ、露出したウエハ面に薄膜を形成する方法が知られている(特許文献2参照)。
また、ウエハからチップを取り出す方法として、ICウエハを粘着シートに貼着し、その粘着シートをウエハリングに張設し、ダイシングで予め所定のチップサイズに切れ目を入れておき、エキシバンド装置でウエハの外側を広げることでICチップ相互の間隔を広げてチップ化する方法が知られている(特許文献3)。
【0011】
また、クランプに押圧固定されたウエハをクランプから外す際に生じるウエハ押圧部の付着を防止し、製品歩留りの低下を抑えるためにウエハの周縁部を部分的の押圧してウエハを保持する方法も知られている(特許文献4参照)。
また、ウエハのオリフラ部分の割れや欠けを防止するために、ウエハのオリフラ部は全体を押圧しその他の箇所はウエハの周縁部を部分押圧してウエハを保持する方法がある(特許文献5参照)。
また、半導体ウエハの裏面を研削した後、この裏面に金属電極膜を形成するために半導体ウエハに水平方向のストレスをかけずに、半導体ウエハの周縁部を保持する方法を出願している(特願2002−233913)。
【0012】
【特許文献1】
特開2002−43404号公報 図1
【特許文献2】
特開平7−130824号公報 図1
【特許文献3】
特開平11−214487号公報 図1
【特許文献4】
特開2002−299422号公報 図1
【特許文献5】
特開2000−124295号公報 図2
【0013】
【発明が解決しようとする課題】
図6の半導体ウエハ保持治具を用いて蒸着する方法では、前記したように、バネ等72の弾性復帰力を利用して、ウエハ50の中心に向かって 外側4箇所からピン73でウエハ50を挟み込むようにして蒸着する。
この方法では、数100μmと厚いウエハの場合はウエハの反りは小さく問題とならないが、裏面をバックグラインドした後のウエハ50の厚さが70μm程度と薄くなると、ウエハ50が割れることが多い。これは、蒸着する金属膜は、ウエハ50に対して引っ張り応力を持ち、図7に示すように、その応力により発生する反り量はウエハ50を薄くすればするほど大きくなる。そのため、図8に示すように、ウエハの厚さを薄くすればする程、割れ発生率が大きくなり、生産性が著しく悪くなる。割れ発生率が大きくなる要因として、蒸着時のウエハの保持方法が大きく影響している。
【0014】
図6(a)のような半導体ウエハ保持治具では、ウエハの外周をバネ72の復帰力を使ってピン73で抑える方式であるため、ウエハ50が薄い場合には、ピン73に押されて曲がり割れてしまう。また、一部分しかウエハ50を押さえないために、図6(d)に示すように、ウエハ50の反そりが大きく、あて板74と接触してキズが付き外観不良になったり、割れが発生したりする。
これを解決するために、特願2002−233913に記載のように、ウエハの周縁部を押さえる方法にした場合は、ウエハ割れの防止には大きな効果があるが、ウエハが薄くなると反りが大きくなり、半導体ウエハ保持治具とウエハが接触してウエハにキズが入るため、外観不良を防止することは困難である。
【0015】
この発明の目的は、前記の課題を解決して、割れ不良、外観不良を低減し、生産性を向上させる半導体装置の製造方法を提供することにある。
【0016】
前記の目的を達成するために、半導体ウエハの裏面を研削した後、半導体ウエハ保持治具を用いて、前記裏面に、金属電極膜を蒸着する半導体装置の製造方法であって、有底筒状のホルダーの側壁内面に設けた支持台にて、前記半導体ウエハの表面の周縁部を、前記半導体ウエハの表面と前記ホルダーの底部との間隔が、前記金属電極膜の蒸着過程での半導体ウエハの反り量より広くなる位置で支持し、前記半導体ウエハの裏面の略全面を露出するように、リング状の外周部押さえにより前記半導体ウエハの周縁部を前記半導体ウエハの裏面側から押さえ、前記外周部押さえに対応する複数箇所に板バネを備えた蓋を被せ、前記外周部押さえを介して、前記半導体ウエハを、前記支持台とで挟んで、半導体ウエハ裏面に対して垂直な方向から前記半導体ウエハを保持し、前記裏面に金属電極膜を蒸着することを特徴とする半導体装置の製造方法とする。
【0018】
【発明の実施の形態】
図1は、この発明の一実施例の半導体装置の製造方法を説明する図であり、同図(a)は半導体ウエハ保持治具の斜視図、同図(b)から同図(d)は工程順に示した工程断面図である。同図(b)から同図(d)は同図(a)のX−X線で切断した断面図に相当する図であり、蒸着工程で、ウエハを半導体ウエハ保持治具にセットする方法について説明する図である。
最初に半導体ウエハ保持治具について説明する。半導体ウエハ保持治具は、ホルダー1(本体治具)、蓋3、外周部押さえリング2で構成され、ホルダー1はウエハ外周より大きな内周の側壁1aと、この側壁1aに接触し、ウエハ5の周縁部と接するホルダー1の椅子状の支持台1cと、凹状の底面1dから構成され、ウエハ5と接触する支持台の高さLは凹状の底部から6mm程度高くする。また、支持台の幅W1は、5〜7mmにする。外周部押さえリングの幅W2は、5〜7mm、厚さは0.5〜1mmである。蓋3には板バネ3aが取り付けてあり、外周部押さえリング2に把手部2aが設けられ、この把手部2aはホルダー1の側壁1aの切り欠き1bに嵌合するよう作られている。蓋とホルダーとはB部で蝶接する図示しない蝶番が付いている。(同図(a))。
【0019】
つぎに同図(b)〜同図(d)を用いて70μm〜100μm程度の薄いウエハを半導体ウエハ保持治具に取り付ける工程について説明する。
まず、図示しない蒸着装置のドームに取り付けられた半導体ウエハ保持治具のホルダー1の支持台1cに接するようにウエハ5を置く。支持台の高さL(凹状の底面1dからの高さ)が6mm程度あるため、ウエハ5に金属電極膜を蒸着した場合の熱膨張係数の差で、ウエハ5に反りが発生しても、ウエハ5がホルダー1の底面1dに接することはなく、ウエハ5にキズが付くことはない(同図(b))。
【0020】
つぎに、外周部押さえリング2の把手部2aをピンセットなどで挟んで、ホルダー1の側壁1aに形成された切り欠き1bに嵌合させ、ウエハ5上に載せる。(同図(c))。
つぎに、ホルダー1上に蓋3を被せ、止め金具4でホルダー1と蓋3を挟み込む。この蓋3には、板バネ3aが取り付けてあり、この板バネ3aで板状の外周部押さえリング2を介してウエハ5の周縁部を均一に押圧するため、ウエハ5の反り量が小さくなり、またウエハ5に局部的に強い圧力がかかることはないため、割れ発生率を低減することができる(同図(d))。
【0021】
つぎに、図示しない真空蒸着装置のベルジャーを真空にして、蒸着を開始する。
尚、本実施例では、支持台1cの高さLを6mm程度としたが、この高さは、ウエハ5をホルダー1にセットする際および蒸着中にウエハ5がたわむことにより、ウエハ5が底面1dに接触しない高さに設計すればよい。ウエハ5の直径が大きい場合や、ウエハ5の厚みが薄い場合には、この高さを高くすればよい。
また、板バネ3aの押さえ力はウエハ5を割らない程度の強さに調整する。また、ホルダー1の側部のC部に図示しない切り欠きを形成して、ピンセットなどでのウエハ5の取り付けと取り外しを容易に行えるようするとよい。
【0022】
前記の半導体ウエハ支持治具を用いて薄膜のウエハ面に金属電極膜を蒸着することで、前記したようにウエハ5のキズの発生が防止され、また、図2に示すように割れ発生率を大幅に低減することができる。特に、70μm〜100μm程度と薄いウエハの場合でも割れ発生率は数%にすることができる。その結果、薄型半導体装置の生産性を大幅に向上させることができる。また、キズの発生防止により外観不良を低減できて、良好な電気的特性を得ることができる。
以上のことをまとめると次のようになる。前記のように、ピン方式からホルダー方式にすることでウエハセット時の割れを低減することができる。また、ウエハの外周部を支持台1cと外周部押さえリング2で挟み込むことで、蒸着膜の成膜時のウエハ5の反りを強制的に抑えることができる。また、ホルダー1の底面1dとウエハ5の間に反り量より大きな隙間を開けることで、ウエハ5と底面1dとの接触がなくなり、キズや割れを低減することができる。また、ホルダー1の蓋3に板バネ3aがあることで、蓋3を閉めたとき、ウエハ5の外周部を上下方向からのストレスを与えずにソフトに押さえることができるので、割れを低減することができる。
【0023】
【発明の効果】
この発明において、薄膜ウエハを前記した半導体ウエハ保持治具を用いて蒸着することで、キズによる外観不良と割れ発生率を大幅に低減し、薄型半導体装置の生産性を高めることができる。
【図面の簡単な説明】
【図1】この発明の一実施例の半導体装置の製造方法を説明する図であり、(a)は半導体ウエハ保持治具の斜視図、(b)から(d)は工程順に示した工程断面図
【図2】ウエハの厚さと割れ発生率の関係を示す図
【図3】低ドーズ量の浅いp+ コレクタ層を採用したノンパンチスルー型IGBTの要部断面図
【図4】フィールドストップ型IGBTの要部断面図
【図5】FS−IGBTの表面構造を形成した後の製造プロセスを説明する図で、(a)から(e)は工程順に示した工程断面図
【図6】従来の半導体ウエハ保持治具とウエハを治具にセットした状態を説明する図であり、(a)は治具の要部平面図、(b)から(d)は(a)のX−X線で切断した要部断面図
【図7】ウエハの厚さと反り量の関係を示す図
【図8】ウエハの厚さと割れ発生率の関係を示す図
【符号の説明】
1 ホルダー
1a 側壁
1b 切り欠き
1c 支持台
1d 底面
2 外周部押さえリング
2a 把手部
3 蓋
3a 板バネ
4 止め金具
5 ウエハ
W1 支持台の幅
W2 外周部押さえリングの幅
L 支持台の高さ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device in which a metal electrode film is deposited on the back surface of a semiconductor wafer as an electrode film of a semiconductor device such as an insulated gate bipolar transistor (hereinafter referred to as IGBT). The present invention relates to a method for manufacturing a thin semiconductor device manufactured by grinding and polishing.
[0002]
[Prior art]
In recent years, a large number of transistors, resistors, and the like are connected and used in important parts of computers and communication devices, and an integrated circuit (hereinafter referred to as an IC) integrated on a semiconductor chip (hereinafter simply referred to as a chip). Is also frequently used. Such an IC in which a power semiconductor element is further integrated is called a power IC.
An IGBT (Insulated Gate Bipolar Transistor) is a power semiconductor element having both high-speed switching characteristics and voltage drive characteristics of a MOSFET and low on-voltage characteristics of a bipolar transistor. For this reason, IGBTs are being applied to consumer equipment fields such as microwave ovens, rice cookers, and strobes as well as industrial equipment fields such as general-purpose inverters, AC servos, uninterruptible power supplies (UPS), and switching power supplies. Furthermore, development of next-generation devices is also progressing, and devices with a lower on-voltage have been developed with a new device structure, so that the loss and the efficiency of applied devices are reduced.
[0003]
The IGBT structure includes a punch-through type, a non-punch-through type, and a field stop type. Most IGBTs that are currently mass-produced have an n-channel vertical double diffusion structure except for a p-channel type for some audio power amplifiers. The type IGBT will be described.
The punch-through type has a structure in which an n + layer (buffer layer) is provided between the p + epitaxial substrate and the n layer (active layer), and the depletion layer in the active layer reaches the buffer layer that is the n + layer. , IGBT is the mainstream basic structure. For example, for a withstand voltage of 600 V, an active layer which is an n layer is sufficient if the thickness is about 70 μm, but the total thickness is 200 to 300 μm including the p + substrate portion. Therefore, non-punch-through IGBTs and field stop IGBTs have been developed that employ a low-dose shallow p + collector layer to reduce the cost of the chip using an FZ substrate without using an epitaxial substrate. Yes.
[0004]
FIG. 3 is a cross-sectional view of a principal part of a non-punch through type IGBT employing a shallow p + collector layer with a low dose. The figure shows a half cell.
The non-punch through type employing the low dose shallow p + collector layer 58 (low implantation p + collector) does not use the p + epitaxial substrate, so the total substrate thickness is significantly thinner than the punch through type. In this structure, since the hole injection rate can be controlled, high-speed switching is possible without performing lifetime control, but the on-voltage depends on the thickness and specific resistance of the n layer 51 which is the active layer. Slightly high value. However, since the FZ substrate is used instead of the p + epitaxial substrate as described above, the cost of the chip can be reduced.
[0005]
In the figure, 52 is a p base layer, 53 is an n emitter layer, 54 is a gate insulating film, 55 is a gate electrode, 56 is an emitter electrode, 57 is an interlayer insulating film, and 59 is a collector electrode.
FIG. 4 is a cross-sectional view of a main part of the field stop type IGBT. The figure shows a half cell.
Although the basic structure is the same as that of the punch-through IGBT, the total thickness of the substrate is 100 μm to 200 μm using an FZ (floating zone) substrate without using a p + epitaxial substrate. N which is also active layer and the punch-through type - thickness of the layer 51 is Yes in the order of 70μm in the case of breakdown voltage of 600V, for depleted whole area is obtained by applying the rated voltage, it is under the active layer n + layer 60 (n buffer layer) is provided. On the collector side, a shallow p + diffusion layer with a low dose is formed as the collector layer 58 and used as a low injection collector. This eliminates the need for lifetime control as in the non-punch through type. (Further stop type IGBT (FS-IGBT) is a trench IGBT structure in which a narrow and deep groove is formed on the chip surface and a gate electrode is formed on the side of the groove via a gate insulating film for the purpose of further reducing the ON voltage. There is also a structure combined with the In addition, the total thickness is being reduced by, for example, optimizing the design.
[0006]
However, in order to realize a thin IGBT of about 70 μm, backside back-grinding, ion implantation from the backside, backside heat treatment, etc. are necessary. However, due to the thinning of the wafer, the wafer is greatly warped and affects the manufacturing process. There are many technical issues such as giving.
FIG. 5 is a diagram for explaining a manufacturing process after the surface structure of the FS-IGBT is formed, and FIGS. 5A to 5E are process cross-sectional views shown in the order of processes. First, the manufacturing process of the surface structure 61 will be described with reference to a cross-sectional view of the main part of the FS-IGBT in FIG.
(1) A gate insulating film 54 (here, SiO 2 ) is formed on the surface side of an n-type semiconductor wafer (hereinafter simply referred to as a wafer 50) which is an FZ-N substrate (an n-type substrate manufactured by a floating zone method). ) To deposit and process a gate electrode 55 made of polycrystalline silicon (here, Poly-Si), and deposit and process an interlayer insulating film 57 (here, BPSG) on the surface, thereby forming an insulated gate structure. It is done.
(2) A p base layer 52 (p + ) is formed on the wafer 50, and then an n emitter layer 53 (n + ) is formed in the p base layer 52.
(3) A surface electrode (emitter electrode 56) made of an aluminum / silicon film is formed in contact with the n emitter layer 53. The aluminum / silicon film is then heat-treated at a low temperature of about 400 to 500 ° C. in order to realize stable bonding and low resistance wiring. Further, although not shown, an insulating protective film made of a polyimide film is formed so as to cover the surface. This is the process for forming the surface structure 61 (FIG. 5A).
[0007]
Next, the back side process will be described. The back side process is performed after the front side process is completed. Therefore, in FIG. 5, the details of the surface-side surface structure 61 shown in FIG. 4 are omitted.
(4) From the back surface side, the wafer 50 is thinned to a desired thickness by using back grinding or etching ((b) in the figure).
(5) Next, in order to form the n + layer 60 as a buffer layer and the high-concentration p collector layer 58 (p + layer), ion implantation is performed from the back surface. In this example, the n + layer 60 is implanted with phosphorus, and the p collector layer 58 is implanted with boron. Thereafter, heat treatment (annealing) is performed in an electric furnace. The heat treatment temperature is as low as 350 ° C. to 500 ° C. ((c) in the figure).
(6) Next, on the high-concentration p collector layer 58 (p + layer), a metal that is a back electrode (collector electrode 59) by a combination of metal films such as an aluminum layer, a titanium layer, a nickel layer, and a gold layer. An electrode film is formed by vapor deposition using a semiconductor wafer holding jig ((d) in the figure).
(8) Next, dicing into chips is performed ((e) in the figure).
[0008]
Finally, although not shown, an aluminum wire is fixed to the surface of the emitter electrode 56 having a surface structure by ultrasonic wire bonding, and the collector electrode 59 on the back surface is fixed to a fixing member via a solder layer.
Here, a semiconductor wafer holding jig used in the vapor deposition step (6) and a state where the wafer is set on the jig will be described.
FIG. 6 is a diagram for explaining a conventional semiconductor wafer holding jig and a state in which the wafer is set on the jig. FIG. 6 (a) is a plan view of the main part of the jig, and FIG. d) is a cross-sectional view of the main part taken along line XX of FIG.
[0009]
The conventional semiconductor wafer holding jig 70 has four plate-like jig bodies 71 with which the front end of the wafer 50 abuts, and four elastic points such as springs 72 on the outer side toward the center of the wafer 50. And four pins 73 for sandwiching the wafer 50 therebetween. Further, a projection 75 of about 0.5 mm is provided so that the wafer 50 and the contact plate 74 are not in direct contact.
In addition to FIG. 6, various wafer holding methods in the case where a thin film such as a metal electrode film of a semiconductor element such as an IGBT is formed on a wafer or a diced wafer is formed into chips will be described.
[0010]
For example, the wafer is placed on the recess of the tray, the peripheral edge of the wafer is pressed with a pressing tool, the pressure increasing gas is introduced into the space of the recess to fix the wafer, and a thin film is formed on the exposed wafer surface (see Patent Document 1). ).
Further, a method is known in which a wafer is placed in close contact with a substrate table, a peripheral edge of the wafer is pressed by a spring with a ring-shaped pressing plate, and a thin film is formed on the exposed wafer surface (see Patent Document 2).
Also, as a method of taking out the chips from the wafer, an IC wafer is attached to an adhesive sheet, the adhesive sheet is stretched on a wafer ring, a cut is made in advance to a predetermined chip size by dicing, and an exciband apparatus is used to There is known a method in which the distance between IC chips is widened by widening the outside to form a chip (Patent Document 3).
[0011]
There is also a method of holding the wafer by partially pressing the peripheral edge of the wafer in order to prevent adhesion of the wafer pressing portion that occurs when the wafer pressed and fixed to the clamp is removed from the clamp, and to suppress a decrease in product yield. It is known (see Patent Document 4).
In order to prevent cracking or chipping of the orientation flat portion of the wafer, there is a method of holding the wafer by pressing the whole orientation flat portion of the wafer and partially pressing the peripheral portion of the wafer at other locations (see Patent Document 5). ).
In addition, after grinding the back surface of the semiconductor wafer, an application has been filed for a method of holding the peripheral edge of the semiconductor wafer without applying horizontal stress to the semiconductor wafer in order to form a metal electrode film on the back surface. Application 2002-233913).
[0012]
[Patent Document 1]
JP 2002-43404 A FIG.
[Patent Document 2]
Japanese Patent Laid-Open No. 7-130824 FIG.
[Patent Document 3]
Japanese Patent Laid-Open No. 11-214487 FIG.
[Patent Document 4]
Japanese Patent Laid-Open No. 2002-299422 FIG.
[Patent Document 5]
JP 2000-124295 A FIG.
[0013]
[Problems to be solved by the invention]
In the method of vapor deposition using the semiconductor wafer holding jig of FIG. 6, as described above, the elastic force of the spring 72 or the like is used to apply the wafer 50 to the center of the wafer 50 from the outer four locations with pins 73. Vapor deposition is carried out.
In this method, in the case of a wafer as thick as several hundred μm, the warpage of the wafer is small and does not cause a problem. However, when the thickness of the wafer 50 after back grinding is reduced to about 70 μm, the wafer 50 is often cracked. This is because the metal film to be deposited has a tensile stress on the wafer 50, and as shown in FIG. 7, the amount of warpage caused by the stress increases as the wafer 50 is made thinner. Therefore, as shown in FIG. 8, the thinner the wafer is, the larger the crack generation rate and the worse the productivity. As a factor that increases the rate of occurrence of cracks, the method of holding the wafer during vapor deposition has a great influence.
[0014]
In the semiconductor wafer holding jig as shown in FIG. 6A, the outer periphery of the wafer is held by the pin 73 using the restoring force of the spring 72. Therefore, when the wafer 50 is thin, it is pushed by the pin 73. It will bend and crack. Further, since the wafer 50 is pressed only partially, as shown in FIG. 6 (d), the warpage of the wafer 50 is large, and it comes into contact with the contact plate 74 and is scratched, resulting in poor appearance or cracks. Or
In order to solve this problem, as described in Japanese Patent Application No. 2002-233913, when the method of pressing the peripheral edge of the wafer is used, there is a great effect in preventing wafer cracking, but warping increases as the wafer becomes thinner. Since the semiconductor wafer holding jig and the wafer come into contact with each other and the wafer is scratched, it is difficult to prevent appearance defects.
[0015]
An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the above-described problems, reduces cracking defects and appearance defects, and improves productivity.
[0016]
In order to achieve the above object, a semiconductor device manufacturing method for depositing a metal electrode film on a back surface of a semiconductor wafer using a semiconductor wafer holding jig after grinding the back surface of the semiconductor wafer, and having a bottomed cylindrical shape In the support provided on the inner surface of the side wall of the holder, the peripheral portion of the surface of the semiconductor wafer is spaced from the surface of the semiconductor wafer and the bottom of the holder so that the semiconductor electrode in the vapor deposition process of the metal electrode film The peripheral edge of the semiconductor wafer is pressed from the back surface side of the semiconductor wafer by a ring-shaped outer periphery presser so as to be supported at a position wider than the warping amount and to expose substantially the entire back surface of the semiconductor wafer. Cover the semiconductor wafer with the support table through the outer periphery pressing member from a direction perpendicular to the back surface of the semiconductor wafer through a cover provided with a leaf spring at a plurality of locations corresponding to the pressing member. Serial holding a semiconductor wafer, a method of manufacturing a semiconductor device characterized by depositing a metal electrode film on the back surface.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. FIG. 1 (a) is a perspective view of a semiconductor wafer holding jig, and FIG. 1 (b) to FIG. It is process sectional drawing shown to process order. (B) to (d) in the figure are equivalent to a cross-sectional view taken along line XX in FIG. (A), and a method for setting a wafer on a semiconductor wafer holding jig in a vapor deposition process. It is a figure explaining.
First, the semiconductor wafer holding jig will be described. The semiconductor wafer holding jig is composed of a holder 1 (main body jig), a lid 3 and an outer peripheral holding ring 2. The holder 1 is in contact with the inner peripheral side wall 1a larger than the outer periphery of the wafer and the side wall 1a, and the wafer 5 The height L of the support base which contacts the wafer 5 is about 6 mm higher than the bottom of the concave shape. The width W1 of the support base is 5 to 7 mm. The width W2 of the outer periphery pressing ring is 5 to 7 mm, and the thickness is 0.5 to 1 mm. A leaf spring 3 a is attached to the lid 3, and a handle portion 2 a is provided on the outer peripheral holding ring 2, and this handle portion 2 a is made to fit into a notch 1 b on the side wall 1 a of the holder 1. The lid and the holder have a hinge (not shown) that makes a butterfly contact with B part. (Figure (a)).
[0019]
Next, a process of attaching a thin wafer of about 70 μm to 100 μm to the semiconductor wafer holding jig will be described with reference to FIGS.
First, the wafer 5 is placed in contact with the support 1c of the holder 1 of the semiconductor wafer holding jig attached to the dome of the vapor deposition apparatus (not shown). Since the height L of the support base (the height from the concave bottom surface 1d) is about 6 mm, even if the wafer 5 is warped due to a difference in thermal expansion coefficient when a metal electrode film is deposited on the wafer 5, The wafer 5 does not contact the bottom surface 1d of the holder 1, and the wafer 5 is not scratched ((b) in the figure).
[0020]
Next, the grip portion 2 a of the outer periphery pressing ring 2 is sandwiched between tweezers and the like, fitted into a notch 1 b formed in the side wall 1 a of the holder 1, and placed on the wafer 5. (FIG. (C)).
Next, the lid 3 is put on the holder 1, and the holder 1 and the lid 3 are sandwiched by the stopper 4. A leaf spring 3a is attached to the lid 3, and the edge of the wafer 5 is uniformly pressed by the leaf spring 3a through the plate-shaped outer peripheral holding ring 2, so that the amount of warpage of the wafer 5 is reduced. In addition, since a strong pressure is not applied to the wafer 5 locally, the crack generation rate can be reduced ((d) in the figure).
[0021]
Next, a vacuum is applied to a bell jar of a vacuum vapor deposition apparatus (not shown) to start vapor deposition.
In this embodiment, the height L of the support base 1c is set to about 6 mm. However, this height is lowered when the wafer 5 is bent when the wafer 5 is set in the holder 1 or during vapor deposition. What is necessary is just to design to the height which does not contact 1d. If the diameter of the wafer 5 is large or the thickness of the wafer 5 is thin, this height may be increased.
The pressing force of the leaf spring 3a is adjusted to a strength that does not break the wafer 5. Also, a notch (not shown) may be formed in a C portion on the side of the holder 1 so that the wafer 5 can be easily attached and detached with tweezers or the like.
[0022]
By depositing a metal electrode film on the wafer surface of the thin film using the semiconductor wafer support jig, the generation of scratches on the wafer 5 is prevented as described above, and the crack generation rate is reduced as shown in FIG. It can be greatly reduced. In particular, even in the case of a thin wafer of about 70 μm to 100 μm, the crack generation rate can be several percent. As a result, the productivity of the thin semiconductor device can be greatly improved. Further, appearance defects can be reduced by preventing the generation of scratches, and good electrical characteristics can be obtained.
The above can be summarized as follows. As described above, the crack at the time of wafer setting can be reduced by switching from the pin method to the holder method. Further, by sandwiching the outer peripheral portion of the wafer between the support base 1c and the outer peripheral holding ring 2, it is possible to forcibly suppress the warpage of the wafer 5 during the deposition film deposition. Further, by making a gap larger than the warp amount between the bottom surface 1d of the holder 1 and the wafer 5, contact between the wafer 5 and the bottom surface 1d is eliminated, and scratches and cracks can be reduced. Further, since the cover 3 of the holder 1 has the leaf spring 3a, when the cover 3 is closed, the outer peripheral portion of the wafer 5 can be softly pressed without applying stress in the vertical direction, thereby reducing cracks. be able to.
[0023]
【The invention's effect】
In the present invention, by depositing a thin film wafer using the above-described semiconductor wafer holding jig, it is possible to greatly reduce the appearance defect and crack generation rate due to scratches and increase the productivity of thin semiconductor devices.
[Brief description of the drawings]
1A and 1B are views for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention, wherein FIG. 1A is a perspective view of a semiconductor wafer holding jig, and FIGS. [Fig. 2] Fig. 2 is a diagram showing the relationship between wafer thickness and crack generation rate. [Fig. 3] Cross-sectional view of the main part of a non-punch-through IGBT employing a shallow p + collector layer with a low dose. [Fig. FIG. 5 is a diagram for explaining a manufacturing process after forming the surface structure of the FS-IGBT, and (a) to (e) are process sectional views showing the order of the processes. It is a figure explaining the state which set the semiconductor wafer holding jig and the wafer to the jig, (a) is a principal part top view of a jig, (b) to (d) is the XX line of (a). Cross-sectional view of the cut main part [FIG. 7] A diagram showing the relationship between the thickness of the wafer and the amount of warpage [FIG. 8] It shows a a To crack incidence of relationship EXPLANATION OF REFERENCE NUMERALS
DESCRIPTION OF SYMBOLS 1 Holder 1a Side wall 1b Notch 1c Support stand 1d Bottom surface 2 Outer peripheral part pressing ring 2a Handle part 3 Lid 3a Leaf spring 4 Stopper metal 5 Wafer W1 Support base width W2 Outer peripheral part pressing ring width L Support base height

Claims (1)

半導体ウエハの裏面を研削した後、半導体ウエハ保持治具を用いて、前記裏面に、金属電極膜を蒸着する半導体装置の製造方法であって、
有底筒状のホルダーの側壁内面に設けた支持台にて、前記半導体ウエハの表面の周縁部を、前記半導体ウエハの表面と前記ホルダーの底部との間隔が、前記金属電極膜の蒸着過程での半導体ウエハの反り量より広くなる位置で支持し、
前記半導体ウエハの裏面の略全面を露出するように、リング状の外周部押さえにより前記半導体ウエハの周縁部を前記半導体ウエハの裏面側から押さえ、
前記外周部押さえに対応する複数箇所に板バネを備えた蓋を被せ、前記外周部押さえを介して、前記半導体ウエハを、前記支持台とで挟んで、半導体ウエハ裏面に対して垂直な方向から前記半導体ウエハを保持し、
前記裏面に金属電極膜を蒸着することを特徴とする半導体装置の製造方法。
After grinding the back surface of the semiconductor wafer, using a semiconductor wafer holding jig, a semiconductor device manufacturing method for depositing a metal electrode film on the back surface,
In the support provided on the inner surface of the side wall of the bottomed cylindrical holder, the peripheral edge of the surface of the semiconductor wafer is spaced from the surface of the semiconductor wafer and the bottom of the holder in the vapor deposition process of the metal electrode film. Support at a position wider than the amount of warpage of the semiconductor wafer,
Pressing the peripheral edge of the semiconductor wafer from the back side of the semiconductor wafer with a ring-shaped outer periphery pressing so as to expose substantially the entire back surface of the semiconductor wafer ;
Cover the plurality of locations corresponding to the outer periphery pressing member with leaf springs, and sandwich the semiconductor wafer with the support base via the outer periphery pressing member from a direction perpendicular to the back surface of the semiconductor wafer. Holding the semiconductor wafer;
A method of manufacturing a semiconductor device, comprising depositing a metal electrode film on the back surface.
JP2003087585A 2003-03-27 2003-03-27 Manufacturing method of semiconductor device Expired - Fee Related JP4325242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087585A JP4325242B2 (en) 2003-03-27 2003-03-27 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087585A JP4325242B2 (en) 2003-03-27 2003-03-27 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004296817A JP2004296817A (en) 2004-10-21
JP4325242B2 true JP4325242B2 (en) 2009-09-02

Family

ID=33401943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087585A Expired - Fee Related JP4325242B2 (en) 2003-03-27 2003-03-27 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4325242B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484848B2 (en) * 2006-07-26 2010-06-16 株式会社テラセミコン Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP4853872B2 (en) 2007-05-24 2012-01-11 ラピスセミコンダクタ株式会社 Chip manufacturing method
JP4858636B2 (en) * 2009-09-29 2012-01-18 株式会社デンソー Metal electrode forming method and metal electrode forming apparatus for semiconductor device
US9583364B2 (en) * 2012-12-31 2017-02-28 Sunedison Semiconductor Limited (Uen201334164H) Processes and apparatus for preparing heterostructures with reduced strain by radial compression
KR102032348B1 (en) * 2017-09-15 2019-10-17 주식회사 쎄믹스 Wafer pusher of a wafer prober and method of controlling the wafer pusher
KR102016637B1 (en) * 2018-04-06 2019-08-30 오투컴(주) Sensor holder, processing tool and processing method thereof
CN115244680A (en) * 2020-02-17 2022-10-25 捷普有限公司 Apparatus, system and method for providing a semiconductor wafer leveling edge

Also Published As

Publication number Publication date
JP2004296817A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4185704B2 (en) Manufacturing method of semiconductor device
CN117253790B (en) IGBT device manufacturing method and IGBT device
US20030042525A1 (en) Semiconductor apparatus having vertical structure
US20020137264A1 (en) Method of fabrication thin wafer IGBT
JP4325242B2 (en) Manufacturing method of semiconductor device
JP2006196710A (en) Manufacturing method of semiconductor element
US8624358B2 (en) Semiconductor substrate and semiconductor device
JP2004140101A (en) Method for manufacturing semiconductor element
JP4665429B2 (en) Manufacturing method of semiconductor device
JP4972908B2 (en) Manufacturing method of semiconductor device
CN111540683A (en) Manufacturing method of power device
JP2022069819A (en) Manufacturing method for semiconductor device, and hot plate
CN114823367A (en) Manufacturing method of semiconductor power device
JP2006059929A (en) Method of manufacturing semiconductor device
CN114823368A (en) Manufacturing method of power device
JP5301091B2 (en) Manufacturing method of semiconductor device
JP2007329234A (en) Method for manufacturing semiconductor element
Burns et al. NPT-IGBT-Optimizing for manufacturability
JP5772670B2 (en) Method for manufacturing reverse blocking semiconductor element
JP4572529B2 (en) Manufacturing method of semiconductor device
JP4830253B2 (en) Manufacturing method of semiconductor device
JP3580293B2 (en) Method for manufacturing semiconductor device
JP4337637B2 (en) Manufacturing method of semiconductor device
JP2011210770A (en) Method of manufacturing semiconductor element
JP2002151692A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees