JP4323058B2 - Wafer notch polishing equipment - Google Patents

Wafer notch polishing equipment Download PDF

Info

Publication number
JP4323058B2
JP4323058B2 JP2000122965A JP2000122965A JP4323058B2 JP 4323058 B2 JP4323058 B2 JP 4323058B2 JP 2000122965 A JP2000122965 A JP 2000122965A JP 2000122965 A JP2000122965 A JP 2000122965A JP 4323058 B2 JP4323058 B2 JP 4323058B2
Authority
JP
Japan
Prior art keywords
rubber wheel
notch
wafer
polishing
chamfered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000122965A
Other languages
Japanese (ja)
Other versions
JP2001300837A (en
Inventor
治雄 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Tec Co Ltd
Original Assignee
M Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Tec Co Ltd filed Critical M Tec Co Ltd
Priority to JP2000122965A priority Critical patent/JP4323058B2/en
Publication of JP2001300837A publication Critical patent/JP2001300837A/en
Application granted granted Critical
Publication of JP4323058B2 publication Critical patent/JP4323058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ウェーハのノッチの研摩装置に係り、特に研摩剤を含んだ1つの薄いゴムホイール(RBW=Rubber Bonded Wheel)を適切に移動させながら研摩を行うことで、前工程の研削によりウェーハのノッチの面取り面に形成された条痕等の傷を取り除くことができ、またノッチの上側及び下側の面取り面、端面、該端面と上側及び下側の面取り面との間の夫々の角部を、極めて均一で表面粗さの小さい連続的な世界最高水準の鏡面に研摩することができるようにし、ウェーハの品質を著しく高めることを可能とする画期的なウェーハのノッチの研摩装置に関する。
【0002】
【従来の技術】
シリコンウェーハには、シリコンの結晶軸の方向を示す目印として、直線上にカットされたOF(オリエンテーションフラット)又はV溝状に切り欠かれたノッチが形成されている。該ノッチは、主に直径200mmφ以上のシリコンウェーハに形成され、ウェーハの外周のエッジと同様に、面取り研削及び研摩がなされて鏡面に仕上げられるようになっている。
【0003】
ノッチの研削は、直径の小さなメタルボンドホイールで例えば上側の面取り面、端面及び下側の面取り面が夫々形成されるように行うが、この際に砥粒の摩耗や脱落により、図14に示すように、ウェーハ1のノッチ1aの上側の面取り面1bに不良箇所である、例えば条痕1cが形成されてしまうことがあり、また多量のウェーハ1を生産すると、この条痕1cの大きさや位置が経時的に変化してしまい、対応が非常に難しかった。
【0004】
ノッチを鏡面に仕上げるためには、この条痕を研摩工程において完全に取り除く必要がある。特開2000−52210で開示されているように、研摩剤を含んだゴムホイールを研摩に用いると、スラリーを全く用いずに良好な研摩を行うことができるので、ノッチよりも幅広でかつ比較的柔らかいゴムホイールを使用してノッチの面取り面及び端面を研摩することが検討されていた。
【0005】
ところが、これではノッチの最深部にまでゴムホイールが届きにくく、また軟らかいゴムホイールでは、研摩時の接触圧力が小さいことから研摩力も小さくなってしまい、条痕がなくなるまで研摩するのに多くの時間を要するという不具合があった。
【0006】
一方ウェーハを平面的に見た場合のノッチの端面がなすV溝の角度は90°前後であるのに対し、面取り研削後のノッチの面取り面がなす角度は146°程度に広がっており、このため端面を研摩するゴムホイールと、面取り面を研摩するゴムホイールとでは、その外周面の形状を若干変えなければならず、最低2つのゴムホイールが必要であった。
【0007】
また従来の研摩方法は、まず上側の面取り面、次に下側の面取り面、最後に端面の順に研摩するものであったが、研摩後の端面の表面粗さは研摩後の面取り面に比べて粗くなる傾向があり、該端面の表面粗さを小さくして表面粗さを均一化するための方策が必要とされていた。
【0008】
【発明が解決しようとする課題】
本発明は、上記した従来技術の欠点を除くためになされたものであって、その目的とするところは、ウェーハの面と垂直な方向に回転し該ウェーハのノッチの最深部にまで余裕をもって入り込むことができる程度に薄く形成されかつ研摩剤を含有するゴムホイールを、ウェーハの面方向にトラバースさせながらノッチの面取り面から端面に沿って移動させて該面取り面及び該端面を連続的に研摩し、該端面の研摩完了後そのまま該端面方向にゴムホイールを逃がすことにより、粗くなり易い端面を少なくとも2度研摩し、かつ面取り面と連続した極めて表面粗さの小さい鏡面に研摩できるようにすることである。
【0009】
また他の目的は、ウェーハの面と垂直な方向に回転し該ウェーハのノッチの最深部にまで余裕をもって入り込むことができる程度に薄く形成されかつ研摩剤を含有するゴムホイールを、ウェーハの面方向に一定振幅又は漸増振幅でトラバースさせ、かつノッチとの接触状態を維持しながらノッチの面取り面を研摩することによって、前工程の研削で形成された条痕を速やかに除去できるようにすることである。
【0010】
更に他の目的は、上記方法に加えて、上側の面取り面と端面との間の角部及び下側の面取り面と端面との間の角部を夫々研摩することによって、面取り面に形成された条痕を容易に除去すると共に、面取り面と端面とがなす上下の角部を研摩により除去できるようにすることである。
【0011】
また他の目的は、上記したゴムホイールによるウェーハのノッチの面取り面の研摩と、該ゴムホイールにより面取り面から端面まで連続的に行う研摩とを組み合わせて行うことによって、上側及び下側の面取り面だけでなく、上側及び下側の面取り面と端面とが夫々なす上下の角部を丸めることができるようにすることであり、またこれによって1つのゴムホイールにより上側及び下側の面取り面と端面とを連続した鏡面に研摩できるようにすることである。
【0012】
更に他の目的は、上記したゴムホイールによるウェーハのノッチの上側及び下側の面取り面、端面、上側及び下側の面取り面と端面との間の夫々の角部の研摩と、該ゴムホイールにより面取り面から端面まで連続的に行う研摩とを組み合わせて行うことによって、1つのゴムホイールにより上側及び下側の夫々の面取り面と端面とを、極めて均一で表面粗さの小さい連続的な世界最高水準の鏡面(表面粗さ200オングストローム)に研摩できるようにすることである。
【0013】
また他の目的は、ウェーハのノッチの幅よりも薄く形成されかつ研摩剤を含んだゴムホイールをウェーハの面と直角方向に回転させるスピンドル部と、該スピンドル部が固定されノッチへゴムホイールを押圧付勢する弾性体の押圧力を調節する研摩力調節機構が設けられた浮動部と、該浮動部をリニアガイドを介して支持するテーブル部と、該テーブル部をゴムホイールの回転軸方向に一定振幅又は漸増振幅でトラバースさせると同時に研摩中はゴムホイールを浮動部によりノッチの形状に追従させながら直進往復動させる駆動機構とを備え、テーブル部に対して浮動部をゴムホイールとノッチとが接近又は離脱する方向にわずかに摺動自在に構成すると共に、ゴムホイールを駆動機構により該ゴムホイールの回転軸方向に一定振幅又は漸増振幅でトラバースさせながらノッチの上側の面取り面、下側の面取り面、端面、前記上側の面取り面と端面との間の角部及び前記下側の面取り面と端面との間の角部を夫々研摩可能に構成し、ゴムホイールを同様にトラバースさせながら上側の面取り面又は下側の面取り面から端面に沿って移動させて該面取り面から該端面までを連続的に研摩するように構成することによって、非常に取扱いの困難なスラッジの使用を不要としながら非常に表面粗さの小さいウェーハのノッチを得ることである。
【0014】
【課題を解決するための手段】
【0019】
要するに本発明は、ウェーハのノッチの幅よりも薄く形成されかつ研摩剤を含んだゴムホイールを前記ウェーハの面と直角方向に回転させるスピンドル部と、該スピンドル部が固定され前記ノッチへ前記ゴムホイールを押圧付勢する弾性体の押圧力を調節する研摩力調節機構が設けられた浮動部と、該浮動部をリニアガイドを介して支持するテーブル部と、該テーブル部を前記ゴムホイールの回転軸方向に一定振幅又は漸増振幅でトラバースさせると同時に研摩中は前記ゴムホイールを前記浮動部により前記ノッチの形状に追従させながら直進往復動させる駆動機構とを備え、前記テーブル部に対して前記浮動部を前記ゴムホイールと前記ノッチとが接近又は離脱する方向にわずかに摺動自在に構成すると共に、前記ゴムホイールを前記駆動機構により該ゴムホイールの回転軸方向に一定振幅又は漸増振幅でトラバースさせながら前記ノッチの上側の面取り面、下側の面取り面、端面、前記上側の面取り面と前記端面との間の角部及び前記下側の面取り面と前記端面との間の角部を夫々研摩可能に構成し、前記ゴムホイールを同様にトラバースさせながら前記上側の面取り面又は前記下側の面取り面から前記端面に沿って移動させて該面取り面から該端面までを連続的に研摩するように構成したことを特徴とするものである。
【0020】
【発明の実施の形態】
以下本発明を図面に示す実施例に基いて説明する。本発明に係るウェーハのノッチの研摩装置2は、図において、スピンドル部3と、浮動部4と、テーブル部5と、駆動機構6とを備えている。
【0021】
スピンドル部3は、図2から図4に示すように、ウェーハ1のノッチ1aの最深部1dまで余裕をもって入り込むことができる程度にノッチ1aの幅よりも薄く形成され、かつ研摩剤(図示せず)を含んだゴムホィール8をウェーハ1の面1eと直角方向に回転させるためのものであって、浮動部4の浮動板10に挿通し、ゴムホィール8が下方に突き出るようにブロック11及びブロック12によって挟持されている。該スピンドル部3は縦型スピンドルであり、先端部3aで回転方向が横軸回転に変換されるようになっており、該先端部3aにゴムホィール8を取り付けて、その軸8aを中心としてウェーハ1の面1eと直角方向に回転させることかできる構造になっている。
【0022】
浮動部4は、スピンドル部3が固定され、ウェーハ1のノッチ1aへゴムホイール8を押圧付勢する弾性体(図示せず)の押圧力を調節する研摩力調節機構9が設けられたものであって、水平に配置された断面コの字形の浮動板10にスピンドル部3と、研摩力調節機構9とが取り付けられたものである。
【0023】
浮動部4は、リニアガイド1を介してテーブル部5に取り付けられており、研摩時にテーブル部5に対してゴムホイール8とノッチ1aとが接近又は離脱する方向にわずかに摺動自在となるように構成されている。
【0024】
研摩力調節機構9は、図示しない弾性体の研摩力をウェーハ1の材質に応じて調節するためのものであって、浮動板10の上面10aに固定されたブロック14内に弾性体を収納し、該弾性体のばね力を調節する調節ねじ15と、浮動部4の後退時にテーブル部5の垂直テーブル20に当接し、ブロック14内に押し込まれることによって弾性体を押し縮めて研摩力を発生させるピン16とを弾性体と同軸上に配設してなっており、調節ねじ15によって弾性体を予め変形させることによって、研摩力を変化させることができるようになっている。
【0025】
テーブル部5は、浮動部4をリニアガイド18を介して支持するための土台となる部分であって、断面凸の字形の水平テーブル19を上に凸に水平に配置し、該水平テーブル19と直角に配設された垂直テーブル20に固定してなるもので、上下動も可能に構成されている。また水平テーブル19には、スピンドル部3が貫通する図示しない長穴が穿孔されており、浮動部4の浮動時にスピンドル部3が水平テーブル19に干渉しないようになっている。垂直テーブル20には、例えば4個のガイドブロック21が固着され、該ガイドブロック21はベース板22に取り付けられたガイドレール23上を摺動するようになっている。
【0026】
駆動機構6は、テーブル部5をゴムホイール8の回転軸方向に一定振幅又は漸増振幅でトラバースさせると同時に研摩中はゴムホイール8を浮動部4によりノッチ1aの形状に追従させながら直進往復動させるためのものであって、垂直テーブル20をボールねじ24と図示しないサーボモータによりゴムホイール8の回転軸方向、即ち矢印A又はB方向に直進往復動させることができるようになっている。
【0027】
垂直テーブル20を矢印A又はB方向に直進往復動させることによって、ゴムホイール8もそれに伴って直進往復動するので、研摩時には該機構を用いてゴムホイール8をトラバースさせながら研摩できるようになっている。
【0028】
また駆動機構6は、図3に示すように、ゴムホイール8をウェーハ1に対して相対的に上下方向、即ち矢印C又はD方向に往復動させることができるようになっている。ウェーハ1は、図示しない機構によりゴムホイール8と接近又は離間する方向、即ち矢印E又はF方向に移動できるようになっている。
【0034】
本発明は、上記のように構成されており、以下その作用について説明する。まず図4において、ゴムホイール8は、スピンドル部3の回転方向により、矢印G又はH方向に回転し、駆動機構6により矢印A又はB方向にトラバースすることができ、またウェーハ1はゴムホイール8と接近又は離脱するように矢印E又はF方向に移動することができる。
【0035】
ウェーハ4のノッチ1aを研摩する際には、特定の場所が集中的に研摩されて掘れてしまうことを防ぐために、ゴムホイール8を常にトラバースさせておくようにしている。その振幅は、図5に示す振幅線図Lのような漸増振幅の場合と、図6に示す振幅線図Lのような一定振幅の場合とがある。
【0036】
漸増振幅の場合には、回転するゴムホイール8をノッチ1aの最深部1dに接触させ次第にトラバースの振幅を増加させながら、例えば2乃至4往復研摩を行い、一定振幅の場合には、回転するゴムホイール8をノッチ1aの最深部1dに接触させトラバースの振幅を一定に保ちながら、例えば2乃至4往復研摩を行う。
【0037】
なお、図5及び図6において、振幅線図L,Lは、単にトラバース中の振幅を示しているものであり、ゴムホイール8とノッチ1aとの距離を示しているものではない。従ってトラバースの回数の増加と共にゴムホイール8がノッチ1aから離間して行くわけではなく、ゴムホイール8は常にノッチ1aに接触した状態で研摩が行われる。
【0038】
ノッチ1aは、V溝であるので、トラバース時には浮動部4と共にゴムホイール8が適切に移動し、該ノッチ1aの形状に追従しながら研摩が行われる。またこれによりウェーハ1を折損することなく研摩することが可能である。
【0039】
次に実際の研摩工程における作用について説明する。ウェーハ1のノッチ1aは前工程で面取り研削されて、図7及び図14に示すように、上側の面取り面1b、下側の面取り面1f及び端面1gが形成された状態になっているが、研削工程で上側の面取り面1b等に条痕1cが残ってしまっているものとする。
【0040】
上側の面取り面1b及び下側の面取り面1fを夫々研摩する2面研摩では、ゴムホイール8を矢印G方向に回転させながら、高さを一定にしたまま矢印I方向に移動させて上側の面取り面1bに接触させ、上記した一定振幅又は漸増振幅のトラバースを行いながら例えば2乃至4往復させて研摩を行う。これにより上側の面取り面1bに残っていた条痕1cを消すことができる。研摩後はゴムホイール8が矢印J方向に引かれ、ウェーハ1から離間する。
【0041】
下側の面取り面1fの研摩においては、ゴムホイール8の回転方向が矢印H方向となるだけで、その他の作用は上側の面取り面1bの研摩における作用と同様であり、下側の面取り面1fの条痕(図示せず)も容易に消すことができる。
【0042】
なお、矢印I方向及び矢印J方向は、ゴムホイール8を移動させる場合の方向を示しており、ゴムホイール8とウェーハ1との接近及び離間はあくまで相対的なものである。従って、図3において、ウェーハ1を移動させる場合には、矢印I方向が矢印E方向に相当し、矢印J方向が矢印F方向に相当する。
【0043】
上記の2面研摩が終了した後、半軌跡研摩を行う。図5及び図6、図10及び図11に示すように、ゴムホイール8を矢印G方向に回転させ、ウェーハ1の面1e方向に一定振幅又は漸増振幅でトラバースさせながら、まずノッチ1aの上側の面取り面1bから端面1gに沿って移動させて該面取り面1b及び該端面1gを連続的に研摩し、そのまま矢印K方向、即ち下方向にゴムホイール8を逃がすことにより、図11に示すように、上側の面取り面1bと端面1gとの間の角部1hが丸められ、極めて表面粗さの小さい連続した鏡面に研摩される。
【0044】
次に図5及び図6、図12及び図13に示すように、ゴムホイール8を矢印H方向に回転させ、同様にトラバースさせながら、ノッチ1aの下側の面取り面1fから端面1gに沿って移動させて該面取り面1b及び該端面1gを連続的に研摩し、そのまま矢印M方向、即ち上方向にゴムホイール8を逃がすことにより、図13に示すように、下側の面取り面1fと端面1gとの間の角部1iが丸められ、極めて表面粗さの小さい連続した鏡面に研摩される。ここで端面1gについても2回の研摩が行われたことになる。
【0045】
このように、2面研摩と半軌跡研摩を行うことにより、図13に示すように、上側の面取り面1b、端面1g及び下側の面取り面1fが極めて均一で表面粗さの小さい連続的な世界最高水準の鏡面(表面粗さ200オングストローム)に研摩される。
【0046】
一方上側の面取り面1b、下側の面取り面1f、端面1g、上側の面取り面1bと端面1gとの間の角部1h及び下側の面取り面1fと端面1gとの間の角部1iを夫々研摩する5面研摩では、図8に示すように、まずゴムホイール8を矢印G方向に回転させながら、高さを一定にしたまま矢印I方向に移動させて上側の面取り面1bに接触させ、上記した一定振幅又は漸増振幅のトラバースを行いながら例えば2乃至4往復させて研摩を行う。これにより上側の面取り面1bに残っていた条痕1cを消すことができる。研摩後はゴムホイール8が矢印J方向に引かれ、ウェーハ1から離間する。
【0047】
次にゴムホイール8を矢印H方向に回転させ、同様にゴムホイール8を移動させて、トラバースを行いながら下側の面取り面1fの研摩を行い、更にゴムホイール8を矢印G又はH方向に回転させ、同様にゴムホイール8を移動させて、トラバースを行いながら端面1gの研摩を行う。
【0048】
そしてゴムホイール8を夫々矢印G,H方向に回転させ、同様にゴムホイール8を移動させて、トラバースを行いながら角部1h及び角部1iの研摩を行う。
【0049】
5面研摩を行うと、角部1h,1iも面取りされたような形状となるため、図9に示すように、ノッチ1aの断面が5角形となる。そこで図10から図12に示す上記した半軌跡研摩をあわせて行うと、図13に示すように、上側の面取り面1b、端面1g及び下側の面取り面1fが極めて均一で表面粗さの小さい連続的な世界最高水準の鏡面(表面粗さ200オングストローム)に研摩される。端面1gについては、3回の研摩が行われ、2面研摩よりも更に良好な仕上がりとなる。
【0050】
【発明の効果】
本発明は、上記のようにウェーハの面と垂直な方向に回転し該ウェーハのノッチの幅よりも薄く形成されかつ研摩剤を含んだゴムホイールを、ウェーハの面方向にトラバースさせながらノッチの面取り面から端面に沿って移動させて該面取り面及び該端面を連続的に研摩し、該端面の研摩完了後そのまま該端面方向にゴムホイールを逃がすようにしたので、粗くなり易い端面を少なくとも2度研摩し、かつ面取り面と連続した極めて表面粗さの小さい鏡面に研摩できるという効果がある。
【0051】
またウェーハの面と垂直な方向に回転し該ウェーハのノッチの最深部にまで余裕をもって入り込むことができる程度に薄く形成されかつ研摩剤を含有するゴムホイールを、ウェーハの面方向に一定振幅又は漸増振幅でトラバースさせ、かつノッチとの接触状態を維持しながらノッチの面取り面を研摩するようにしたので、前工程の研削で形成された条痕を速やかに除去できるという効果がある。
【0052】
更には、上記方法に加えて、上側の面取り面と端面との間の角部及び下側の面取り面と端面との間の角部を夫々研摩するようにしたので、面取り面に形成された条痕を容易に除去することができると共に、面取り面と端面とがなす上下の角部を研摩により除去できるという効果が得られる。
【0053】
また上記したゴムホイールによるウェーハのノッチの面取り面の研摩と、該ゴムホイールにより面取り面から端面まで連続的に行う研摩とを組み合わせて行うようにしたので、上側及び下側の面取り面だけでなく、上側及び下側の面取り面と端面とが夫々なす上下の角部を丸めることができ、またこの結果1つのゴムホイールにより上側及び下側の面取り面と端面とを連続した鏡面に研摩できるという効果がある。
【0054】
更には、上記したゴムホイールによるウェーハのノッチの上側及び下側の面取り面、端面、上側及び下側の面取り面と端面との間の夫々の角部の研摩と、該ゴムホイールにより面取り面から端面まで連続的に行う研摩とを組み合わせて行うようにしたので、1つのゴムホイールにより上側及び下側の夫々の面取り面と端面とを、極めて均一で表面粗さの小さい連続的な世界最高水準の鏡面(表面粗さ200オングストローム)に研摩できるという優れた効果が得られる。
【0055】
また、ウェーハのノッチの最深部にまで余裕をもって入り込むことができる程度にノッチの幅よりも薄く形成されかつ研摩剤を含んだゴムホイールをウェーハの面と直角方向に回転させるスピンドル部と、該スピンドル部が固定されノッチへゴムホイールを押圧付勢する弾性体の押圧力を調節する研摩力調節機構が設けられた浮動部と、該浮動部をリニアガイドを介して支持するテーブル部と、該テーブル部をゴムホイールの回転軸方向に一定振幅又は漸増振幅でトラバースさせると同時に研摩中はゴムホイールを浮動部によりノッチの形状に追従させながら直進往復動させる駆動機構とを備え、テーブル部に対して浮動部をゴムホイールとノッチとが接近又は離脱する方向にわずかに摺動自在に構成すると共に、ゴムホイールを駆動機構により該ゴムホイールの回転軸方向に一定振幅又は漸増振幅でトラバースさせながらノッチの上側の面取り面、下側の面取り面、端面、前記上側の面取り面と端面との間の角部及び下側の面取り面と前記端面との間の角部を夫々研摩可能に構成し、ゴムホイールを同様にトラバースさせながら上側の面取り面又は下側の面取り面から端面に沿って移動させて該面取り面から該端面までを連続的に研摩するように構成したので、非常に取扱いの困難なスラッジの使用を不要としながら非常に表面粗さの小さいウェーハのノッチを得ることができる効果が得られる。
【図面の簡単な説明】
【図1】図1から図13は、本発明の実施例に係り、図1は、ノッチ及びOFが形成され、面取り研削がされたウェーハの斜視図である。
【図2】ウェーハのノッチに対するゴムホイールの位置を示す要部平面図である。
【図3】ウェーハのノッチの研摩装置の斜視図である。
【図4】ゴムホイールの回転方向、移動方向、及びウェーハの移動方向を示す要部斜視図である。
【図5】ノッチ研摩時にゴムホイールを漸増振幅でトラバースさせる場合の、振幅の変化を示す平面図である。
【図6】ノッチ研摩時にゴムホイールを一定振幅でトラバースさせる場合の振幅の変化を示す平面図である。
【図7】2面研摩時のゴムホイールの回転方向及び移動方向、並びにウェーハとの位置関係を示す縦断面図である。
【図8】5面研摩時のゴムホイールの回転方向及び移動方向、並びにウェーハとの位置関係を示す縦断面図である。
【図9】5面研摩により角部が面取り状態となり、断面が5角形となったウェーハのノッチ部の縦断面図である。
【図10】ウェーハのノッチの上側の面取り面から端面までを半軌跡研摩により研摩する状態を示す縦断面図である。
【図11】半軌跡研摩により上側の面取り面と端面との間の角部が丸く研摩され、上側の面取り面から端面までが連続的な鏡面に研摩された状態を示すウェーハのノッチの縦断面図である。
【図12】ウェーハのノッチの下側の面取り面から端面までを半軌跡研摩により研摩する状態を示す縦断面図である。
【図13】半軌跡研摩により下側の面取り面と端面との間の角部が丸く研摩され、上側の面取り面、端面及び下側の面取り面までが連続的な鏡面に研摩された状態を示すウェーハのノッチ部の縦断面図である。
【図14】従来例に係り、面取り研削により面取り面に条痕が残されたウェーハのノッチの斜視図である。
【符号の説明】
1 ウェーハ
1a ノッチ
1b 上側の面取り面
1c 条痕
1d 最深部
1e 面
1f 下側の面取り面
1g 端面
1h 角部
1i 角部
2 ウェーハのノッチの研摩装置
3 スピンドル部
4 浮動部
5 テーブル部
6 駆動機構
8 ゴムホイール
9 研摩力調節機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a research masou location of the wafer notch, in particular a single thin rubber wheel containing abrasive (RBW = Rubber Bonded Wheel) by performing polishing while appropriately moving the grinding of the previous step It is possible to remove scratches such as streaks formed on the chamfered surface of the notch of the wafer, and the upper and lower chamfered surfaces of the notch, the end surface, and the chamfered surfaces between the end surface and the upper and lower chamfered surfaces, respectively. corners, very uniform and to be able to be polished to a mirror surface of a small continuous world-class surface roughness, Ken friction breakthrough wafer notch that allows to increase significantly the quality of the wafer on the equipment.
[0002]
[Prior art]
On the silicon wafer, as a mark indicating the direction of the crystal axis of silicon, an OF (orientation flat) cut on a straight line or a notch cut into a V-groove shape is formed. The notch is mainly formed in a silicon wafer having a diameter of 200 mmφ or more, and is chamfered and polished to be finished to a mirror surface in the same manner as the outer peripheral edge of the wafer.
[0003]
The notch grinding is performed by a metal bond wheel having a small diameter so that, for example, the upper chamfered surface, the end surface, and the lower chamfered surface are respectively formed. As described above, the chamfered surface 1b on the upper side of the notch 1a of the wafer 1 may have a defective portion, for example, a streak 1c. If a large amount of the wafer 1 is produced, the size and position of the streak 1c may be produced. Changed over time, and it was very difficult to deal with.
[0004]
In order to finish the notch into a mirror surface, it is necessary to completely remove this streak in the polishing process. As disclosed in Japanese Patent Laid-Open No. 2000-52210, when a rubber wheel containing an abrasive is used for polishing, a good polishing can be performed without using any slurry. It has been considered to use a soft rubber wheel to polish the chamfered and end faces of the notch.
[0005]
However, this makes it difficult for the rubber wheel to reach the deepest part of the notch, and the soft rubber wheel reduces the polishing force due to the low contact pressure at the time of polishing, and it takes a lot of time to polish until there are no streaks. There was a problem of requiring.
[0006]
On the other hand, the angle of the V groove formed by the end face of the notch when the wafer is viewed in plan is about 90 °, whereas the angle formed by the chamfered surface of the notch after chamfering is widened to about 146 °. Therefore, the shape of the outer peripheral surface has to be slightly changed between the rubber wheel for polishing the end face and the rubber wheel for polishing the chamfered surface, and at least two rubber wheels are required.
[0007]
In addition, the conventional polishing method involves polishing first in the order of the upper chamfered surface, then the lower chamfered surface, and finally the end surface. The surface roughness of the end surface after polishing is compared to the chamfered surface after polishing. Therefore, there has been a need for a measure for reducing the surface roughness of the end face and making the surface roughness uniform.
[0008]
[Problems to be solved by the invention]
The present invention has been made in order to eliminate the above-described drawbacks of the prior art, and the object of the present invention is to rotate in a direction perpendicular to the surface of the wafer and enter the deepest part of the notch of the wafer with a margin. The chamfered surface and the end surface are continuously polished by moving a rubber wheel formed as thin as possible and containing an abrasive, from the chamfered surface of the notch to the end surface while traversing in the surface direction of the wafer. By polishing the end face as it is, the rubber wheel is allowed to escape in the direction of the end face so that the end face that tends to become rough can be polished at least twice and polished to a mirror surface having a very small surface roughness that is continuous with the chamfered face. It is.
[0009]
Another object of the present invention is to provide a rubber wheel that is formed thin enough to rotate in a direction perpendicular to the wafer surface and can enter the deepest part of the notch of the wafer with sufficient margin and contains an abrasive. By traversing with a constant amplitude or gradually increasing amplitude and polishing the chamfered surface of the notch while maintaining the contact state with the notch, it is possible to quickly remove the streak formed by the previous grinding. is there.
[0010]
In addition to the above method, a further object is formed on the chamfered surface by polishing the corner between the upper chamfered surface and the end surface and the corner between the lower chamfered surface and the end surface, respectively. In addition, the upper and lower corners formed by the chamfered surface and the end surface can be removed by polishing.
[0011]
Another object is to perform upper and lower chamfered surfaces by combining polishing of the chamfered surface of the notch of the wafer with the rubber wheel and polishing performed continuously from the chamfered surface to the end surface by the rubber wheel. In addition, the upper and lower chamfered surfaces and end surfaces of the upper and lower chamfered surfaces and end surfaces can be rounded, and the upper and lower chamfered surfaces and end surfaces can be rounded by one rubber wheel. Is to be able to polish to a continuous mirror surface.
[0012]
Still another object is to polish the upper and lower chamfered surfaces of the notch of the wafer by the above-described rubber wheel, the end surfaces, the corners between the upper and lower chamfered surfaces and the end surfaces, and the rubber wheel. By combining polishing continuously from the chamfered surface to the end surface, the upper and lower chamfered surfaces and the end surface can be connected to the top and bottom surfaces with a single rubber wheel. It is to be able to polish to a level mirror surface (surface roughness 200 angstrom).
[0013]
Another object is to rotate a rubber wheel formed thinner than the width of the notch of the wafer and containing an abrasive in a direction perpendicular to the surface of the wafer, and the spindle is fixed and presses the rubber wheel to the notch. A floating portion provided with a polishing force adjusting mechanism for adjusting the pressing force of the urging elastic body, a table portion for supporting the floating portion via a linear guide, and the table portion being fixed in the rotation axis direction of the rubber wheel. It is equipped with a drive mechanism that makes the rubber wheel follow the shape of the notch by the floating part while reciprocating at the same time as traversing with amplitude or gradually increasing amplitude, and moving the rubber part and the notch close to the table part. Alternatively, the rubber wheel is configured to be slightly slidable in the direction of separation, and the rubber wheel is driven by a drive mechanism with a constant amplitude or a gradual increase in the rotation axis direction of the rubber wheel. While traversing by width, the upper chamfered surface, the lower chamfered surface, the end surface, the corner between the upper chamfered surface and the end surface, and the corner between the lower chamfered surface and the end surface, respectively. It is constructed so that it can be polished, and the rubber wheel is similarly traversed and moved from the upper chamfered surface or the lower chamfered surface along the end surface to continuously polish from the chamfered surface to the end surface. Thus, it is possible to obtain a notch of a wafer having a very small surface roughness while eliminating the use of sludge that is very difficult to handle.
[0014]
[Means for Solving the Problems]
[0019]
In short, the present invention relates to a spindle part that is formed thinner than a notch width of a wafer and rotates a rubber wheel containing an abrasive in a direction perpendicular to the surface of the wafer, and the spindle part is fixed to the notch. A floating portion provided with a polishing force adjusting mechanism for adjusting a pressing force of an elastic body that presses and urges the elastic member, a table portion that supports the floating portion via a linear guide, and the table portion that is a rotating shaft of the rubber wheel. A driving mechanism for causing the rubber wheel to reciprocate in a straight line while following the shape of the notch by the floating portion while being traversed in a direction with a constant amplitude or gradually increasing amplitude, and with respect to the table portion, the floating portion Is configured to be slightly slidable in a direction in which the rubber wheel and the notch approach or separate from each other, and the rubber wheel is driven. A chamfered surface on the upper side of the notch, a lower chamfered surface, an end surface, a corner between the upper chamfered surface and the end surface, while traversing with a constant amplitude or gradually increasing amplitude in the rotation axis direction of the rubber wheel by the structure The corner portions between the lower chamfered surface and the end surface are each configured to be polished, and the rubber wheel is similarly traversed along the end surface from the upper chamfered surface or the lower chamfered surface. It is configured to move and continuously polish from the chamfered surface to the end surface.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the drawings. Polishing apparatus 2 of the wafer notch according to the present invention, in FIG. 3, a spindle unit 3, and the floating portion 4, and a table portion 5, and a driving mechanism 6.
[0021]
As shown in FIGS. 2 to 4, the spindle portion 3 is formed to be thinner than the width of the notch 1a so that it can enter the deepest portion 1d of the notch 1a of the wafer 1 with a margin, and an abrasive (not shown) ) Including a block 11 and a block so that the rubber wheel 8 protrudes downwardly. The rubber wheel 8 is inserted into the floating plate 10 of the floating portion 4. 12. The spindle portion 3 is a vertical spindle, and the rotation direction is converted to a horizontal axis rotation at the tip portion 3a. A rubber wheel 8 is attached to the tip portion 3a, and the wafer is centered on the shaft 8a. 1 has a structure that can be rotated in a direction perpendicular to the surface 1e.
[0022]
The floating portion 4 is provided with a polishing force adjusting mechanism 9 to which the spindle portion 3 is fixed and an elastic body (not shown) that presses and biases the rubber wheel 8 against the notch 1a of the wafer 1 is adjusted. The spindle unit 3 and the polishing force adjusting mechanism 9 are attached to a floating plate 10 having a U-shaped cross section disposed horizontally.
[0023]
The floating portion 4 is attached to the table portion 5 via a linear guide 18 and is slightly slidable in a direction in which the rubber wheel 8 and the notch 1a approach or separate from the table portion 5 during polishing. It is configured as follows.
[0024]
The polishing force adjusting mechanism 9 is for adjusting the polishing force of an elastic body (not shown) according to the material of the wafer 1. The polishing force adjusting mechanism 9 houses the elastic body in a block 14 fixed to the upper surface 10 a of the floating plate 10. The adjusting screw 15 that adjusts the spring force of the elastic body and the vertical table 20 of the table portion 5 abuts when the floating portion 4 is retracted, and is pushed into the block 14 to compress and shrink the elastic body to generate an abrasive force. The pin 16 is arranged coaxially with the elastic body, and the polishing force can be changed by previously deforming the elastic body with the adjusting screw 15.
[0025]
The table portion 5 is a portion that serves as a base for supporting the floating portion 4 via the linear guide 18, and a horizontal table 19 having a convex cross-sectional shape is disposed so as to protrude upward and horizontally. It is fixed to a vertical table 20 arranged at a right angle, and is configured to be movable up and down. The horizontal table 19 is provided with a long hole (not shown) through which the spindle unit 3 passes, so that the spindle unit 3 does not interfere with the horizontal table 19 when the floating unit 4 floats. For example, four guide blocks 21 are fixed to the vertical table 20, and the guide blocks 21 slide on guide rails 23 attached to a base plate 22.
[0026]
The drive mechanism 6 traverses the table portion 5 in the direction of the rotation axis of the rubber wheel 8 with a constant amplitude or gradually increasing amplitude, and at the same time, causes the rubber wheel 8 to reciprocate linearly while following the shape of the notch 1a by the floating portion 4 during polishing . Therefore, the vertical table 20 can be reciprocated linearly in the direction of the rotation axis of the rubber wheel 8, that is, in the direction of the arrow A or B, by a ball screw 24 and a servo motor (not shown).
[0027]
By reciprocating the vertical table 20 in the direction of arrow A or B, the rubber wheel 8 also reciprocates along with it. Therefore, during polishing, the rubber wheel 8 can be polished while traversing using the mechanism. Yes.
[0028]
Further, as shown in FIG. 3, the driving mechanism 6 can reciprocate the rubber wheel 8 in the vertical direction relative to the wafer 1, that is, in the direction of the arrow C or D. The wafer 1 can be moved in the direction approaching or separating from the rubber wheel 8 by a mechanism (not shown), that is, in the direction of arrow E or F.
[0034]
The present invention is configured as described above, and the operation thereof will be described below. First, in FIG. 4, the rubber wheel 8 rotates in the direction of arrow G or H depending on the rotation direction of the spindle unit 3, and can be traversed in the direction of arrow A or B by the drive mechanism 6. And move in the direction of arrow E or F so as to approach or leave.
[0035]
When the notch 1a of the wafer 4 is polished, the rubber wheel 8 is always traversed in order to prevent a specific location from being intensively polished and dug. Its amplitude, in the case of increasing amplitude, such as amplitude diagram L 1 shown in FIG. 5, and a case of constant amplitude such as amplitude diagram L 2 shown in FIG.
[0036]
In the case of gradually increasing amplitude, the rotating rubber wheel 8 is brought into contact with the deepest portion 1d of the notch 1a and the amplitude of the traverse is gradually increased. For example, 2 to 4 reciprocal polishing is performed. While the wheel 8 is in contact with the deepest part 1d of the notch 1a and the traverse amplitude is kept constant, for example, 2 to 4 reciprocal polishing is performed.
[0037]
5 and 6, the amplitude diagrams L 1 and L 2 merely indicate the amplitude during the traverse, and do not indicate the distance between the rubber wheel 8 and the notch 1a. Accordingly, the rubber wheel 8 does not move away from the notch 1a as the number of traverses increases, and the rubber wheel 8 is always polished while being in contact with the notch 1a.
[0038]
Since the notch 1a is a V-groove, the rubber wheel 8 appropriately moves together with the floating portion 4 during traverse, and polishing is performed while following the shape of the notch 1a. Further, it is possible to polish the wafer 1 without breaking it.
[0039]
Next, the operation in the actual polishing process will be described. The notch 1a of the wafer 1 is chamfered and ground in the previous step, and as shown in FIGS. 7 and 14, an upper chamfered surface 1b, a lower chamfered surface 1f, and an end surface 1g are formed. It is assumed that the streak 1c remains on the upper chamfered surface 1b and the like in the grinding process.
[0040]
In the two-surface polishing in which the upper chamfered surface 1b and the lower chamfered surface 1f are polished respectively, the upper chamfer is moved by moving the rubber wheel 8 in the arrow I direction while rotating the rubber wheel 8 in the arrow G direction. Polishing is performed by contacting the surface 1b and reciprocating, for example, 2 to 4 while traversing the above-described constant amplitude or gradually increasing amplitude. Thereby, the streak 1c remaining on the upper chamfered surface 1b can be erased. After polishing, the rubber wheel 8 is pulled in the direction of the arrow J and separated from the wafer 1.
[0041]
In the polishing of the lower chamfered surface 1f, only the rotation direction of the rubber wheel 8 is the direction of the arrow H, and the other operations are the same as those in the polishing of the upper chamfered surface 1b, and the lower chamfered surface 1f. The streak (not shown) can be easily erased.
[0042]
The arrow I direction and the arrow J direction indicate the directions in which the rubber wheel 8 is moved, and the approach and separation between the rubber wheel 8 and the wafer 1 are only relative. Therefore, in FIG. 3, when the wafer 1 is moved, the arrow I direction corresponds to the arrow E direction, and the arrow J direction corresponds to the arrow F direction.
[0043]
After the above-mentioned two-side polishing is completed, half-path polishing is performed. As shown in FIGS. 5, 6, 10, and 11, the rubber wheel 8 is rotated in the direction of the arrow G and traversed in the direction of the surface 1 e of the wafer 1 with a constant amplitude or gradually increasing amplitude. As shown in FIG. 11, the chamfered surface 1b is moved along the end surface 1g to continuously polish the chamfered surface 1b and the end surface 1g, and the rubber wheel 8 is allowed to escape in the direction of the arrow K, that is, downward. The corner 1h between the upper chamfered surface 1b and the end surface 1g is rounded and polished to a continuous mirror surface with extremely small surface roughness.
[0044]
Next, as shown in FIGS. 5, 6, 12, and 13, the rubber wheel 8 is rotated in the direction of the arrow H and traversed in the same manner, along the end surface 1 g from the lower chamfered surface 1 f of the notch 1 a. By moving the chamfered surface 1b and the end surface 1g continuously, the rubber wheel 8 is allowed to escape in the direction of arrow M, that is, upward, as shown in FIG. The corner 1i between 1 g is rounded and polished to a continuous mirror surface with very low surface roughness. Here, the end face 1g was also polished twice.
[0045]
In this way, by performing the two-surface polishing and the half-path polishing, as shown in FIG. 13, the upper chamfered surface 1b, the end surface 1g, and the lower chamfered surface 1f are continuously uniform and have a small surface roughness. Polished to the world's highest level mirror surface (surface roughness 200 Å).
[0046]
On the other hand, an upper chamfered surface 1b, a lower chamfered surface 1f, an end surface 1g, a corner 1h between the upper chamfered surface 1b and the end surface 1g, and a corner 1i between the lower chamfered surface 1f and the end surface 1g are provided. As shown in FIG. 8, in the five-side polishing for polishing, the rubber wheel 8 is first moved in the direction of arrow I while rotating in the direction of arrow G, and is brought into contact with the upper chamfered surface 1b while keeping the height constant. The polishing is performed by reciprocating 2 to 4 times, for example, while performing the above-described constant amplitude or gradually increasing amplitude traverse. Thereby, the streak 1c remaining on the upper chamfered surface 1b can be erased. After polishing, the rubber wheel 8 is pulled in the direction of the arrow J and separated from the wafer 1.
[0047]
Next, the rubber wheel 8 is rotated in the direction of arrow H, the rubber wheel 8 is similarly moved, the lower chamfered surface 1f is polished while traversing, and the rubber wheel 8 is further rotated in the direction of arrow G or H. Similarly, the rubber wheel 8 is moved to polish the end face 1g while traversing.
[0048]
Then, the rubber wheel 8 is rotated in the directions of arrows G and H, respectively, and the rubber wheel 8 is similarly moved to polish the corner 1h and the corner 1i while traversing.
[0049]
When the five-surface polishing is performed, the corner portions 1h and 1i are also chamfered, so that the cross section of the notch 1a is a pentagon as shown in FIG. Therefore, when the above-described half-track polishing shown in FIGS. 10 to 12 is performed together, as shown in FIG. 13, the upper chamfered surface 1b, the end surface 1g, and the lower chamfered surface 1f are extremely uniform and have a small surface roughness. Polished to the world's highest level mirror surface (surface roughness 200 Angstroms). The end face 1g is polished three times, resulting in a better finish than the two-face polishing.
[0050]
【The invention's effect】
As described above, the present invention provides a chamfered notch while rotating a rubber wheel formed in a direction perpendicular to the surface of the wafer and thinner than the width of the notch of the wafer and containing an abrasive, while traversing the surface of the wafer. Since the chamfered surface and the end surface are continuously polished by moving from the surface to the end surface, and the rubber wheel is allowed to escape in the direction of the end surface after the end surface has been polished, the end surface that tends to become rough is at least twice. It has the effect that it can be polished and polished to a mirror surface with a very small surface roughness that is continuous with the chamfered surface.
[0051]
In addition, a rubber wheel that is formed thin enough to rotate in a direction perpendicular to the wafer surface and can enter the deepest part of the notch of the wafer with sufficient margin, and containing an abrasive, has a constant amplitude or increase in the wafer surface direction. Since the chamfered surface of the notch is polished while traversing with the amplitude and maintaining the contact state with the notch, there is an effect that the streak formed by the grinding in the previous process can be quickly removed.
[0052]
Furthermore, in addition to the above method, the corner between the upper chamfered surface and the end surface and the corner between the lower chamfered surface and the end surface are each polished, so that the chamfered surface is formed. It is possible to easily remove the streak and to obtain an effect that the upper and lower corners formed by the chamfered surface and the end surface can be removed by polishing.
[0053]
In addition, since the polishing of the chamfered surface of the notch of the wafer by the rubber wheel and the polishing performed continuously from the chamfered surface to the end surface by the rubber wheel are performed in combination, not only the upper and lower chamfered surfaces. The upper and lower chamfered surfaces and end surfaces can be rounded at the upper and lower corners, and as a result, the upper and lower chamfered surfaces and end surfaces can be polished to a continuous mirror surface by one rubber wheel. effective.
[0054]
Further, the upper and lower chamfered surfaces of the notch of the wafer by the rubber wheel described above, the end surface, the polishing of the corners between the upper and lower chamfered surfaces and the end surface, and the chamfered surface by the rubber wheel. Since it is performed in combination with polishing that is continuously performed to the end face, the upper and lower chamfered faces and end faces are made uniform by one rubber wheel, and the world's highest level that is extremely uniform and has low surface roughness. An excellent effect can be obtained in that it can be polished to a mirror surface (surface roughness 200 angstroms).
[0055]
A spindle portion that is formed to be thinner than the width of the notch so that it can enter the deepest portion of the notch of the wafer with a margin and rotates a rubber wheel containing an abrasive in a direction perpendicular to the surface of the wafer; and the spindle A floating portion provided with a polishing force adjusting mechanism for adjusting a pressing force of an elastic body that presses and urges a rubber wheel to a notch, a table portion that supports the floating portion via a linear guide, and the table And a drive mechanism that causes the rubber wheel to reciprocate linearly while following the shape of the notch by the floating part during polishing while traversing the part with a constant amplitude or gradually increasing amplitude in the direction of the rotation axis of the rubber wheel. The floating part is configured to be slightly slidable in the direction in which the rubber wheel and the notch approach or leave, and the rubber wheel is used as the drive mechanism. The chamfered surface on the upper side of the notch, the lower chamfered surface, the end surface, the corner between the upper chamfered surface and the end surface, and the lower chamfered surface while traversing with a constant amplitude or gradually increasing amplitude in the rotational axis direction of the rubber wheel. The corners between the chamfered surface and the end surface are each configured to be polished, and the rubber wheel is similarly traversed while being moved along the end surface from the upper chamfered surface or the lower chamfered surface. Since the polishing is continuously performed up to the end face, it is possible to obtain a notch of a wafer having a very small surface roughness while eliminating the use of sludge that is extremely difficult to handle.
[Brief description of the drawings]
FIG. 1 to FIG. 13 relate to an embodiment of the present invention, and FIG. 1 is a perspective view of a wafer having a notch and OF formed and chamfered.
FIG. 2 is a plan view of an essential part showing a position of a rubber wheel with respect to a notch of a wafer.
FIG. 3 is a perspective view of a wafer notch polishing apparatus.
FIG. 4 is a perspective view of a main part showing a rotation direction of a rubber wheel, a moving direction, and a moving direction of a wafer.
FIG. 5 is a plan view showing a change in amplitude when a rubber wheel is traversed with gradually increasing amplitude during notch polishing.
FIG. 6 is a plan view showing a change in amplitude when the rubber wheel is traversed at a constant amplitude during notch polishing.
FIG. 7 is a longitudinal sectional view showing the rotation direction and movement direction of a rubber wheel during two-side polishing and the positional relationship with a wafer.
FIG. 8 is a longitudinal sectional view showing the rotational direction and moving direction of a rubber wheel during five-surface polishing, and the positional relationship with a wafer.
FIG. 9 is a vertical cross-sectional view of a notch portion of a wafer in which a corner portion is chamfered by pentahedral polishing and a cross section becomes a pentagon.
FIG. 10 is a longitudinal sectional view showing a state where polishing is performed from the chamfered surface to the end surface on the upper side of the notch of the wafer by half-path polishing.
FIG. 11 is a longitudinal cross-sectional view of a notch of a wafer showing a state in which a corner between an upper chamfered surface and an end surface is rounded by half-track polishing, and a continuous mirror surface is polished from the upper chamfered surface to the end surface. FIG.
FIG. 12 is a longitudinal sectional view showing a state in which the chamfered surface from the lower side of the notch of the wafer to the end surface is polished by half-path polishing.
FIG. 13 shows a state in which the corner between the lower chamfered surface and the end surface is rounded by half-track polishing, and the upper chamfered surface, the end surface, and the lower chamfered surface are polished to a continuous mirror surface. It is a longitudinal cross-sectional view of the notch part of the wafer shown.
FIG. 14 is a perspective view of a notch of a wafer in which a streak is left on a chamfered surface by chamfering grinding according to a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wafer 1a Notch 1b Upper chamfer surface 1c Strip 1d Deepest part 1e Surface 1f Lower chamfer surface 1g End surface 1h Corner part 1i Corner part 2 Wafer notch polishing apparatus 3 Spindle part 4 Floating part 5 Table part 6 Drive mechanism 8 Rubber wheel 9 Abrasive force adjustment mechanism

Claims (1)

ウェーハのノッチの幅よりも薄く形成されかつ研摩剤を含んだゴムホイールを前記ウェーハの面と直角方向に回転させるスピンドル部と、該スピンドル部が固定され前記ノッチへ前記ゴムホイールを押圧付勢する弾性体の押圧力を調節する研摩力調節機構が設けられた浮動部と、該浮動部をリニアガイドを介して支持するテーブル部と、該テーブル部を前記ゴムホイールの回転軸方向に一定振幅又は漸増振幅でトラバースさせると同時に研摩中は前記ゴムホイールを前記浮動部により前記ノッチの形状に追従させながら直進往復動させる駆動機構とを備え、前記テーブル部に対して前記浮動部を前記ゴムホイールと前記ノッチとが接近又は離脱する方向にわずかに摺動自在に構成すると共に、前記ゴムホイールを前記駆動機構により該ゴムホイールの回転軸方向に一定振幅又は漸増振幅でトラバースさせながら前記ノッチの上側の面取り面、下側の面取り面、端面、前記上側の面取り面と前記端面との間の角部及び前記下側の面取り面と前記端面との間の角部を夫々研摩可能に構成し、前記ゴムホイールを同様にトラバースさせながら前記上側の面取り面又は前記下側の面取り面から前記端面に沿って移動させて該面取り面から該端面までを連続的に研摩するように構成したことを特徴とするウェーハのノッチの研摩装置。A spindle portion that is formed thinner than the width of the notch of the wafer and that contains an abrasive and rotates in a direction perpendicular to the surface of the wafer, and the spindle portion is fixed and presses the rubber wheel against the notch. A floating portion provided with a polishing force adjusting mechanism for adjusting the pressing force of the elastic body, a table portion that supports the floating portion via a linear guide, and the table portion having a constant amplitude or in the rotational axis direction of the rubber wheel. And a drive mechanism for reciprocally reciprocating the rubber wheel while following the shape of the notch by the floating portion during polishing while traversing with gradually increasing amplitude, and the floating portion with the rubber wheel with respect to the table portion The rubber wheel is configured to be slightly slidable in a direction in which the notch approaches or leaves, and the rubber wheel is moved by the drive mechanism. A chamfered surface on the upper side of the notch, a lower chamfered surface, an end surface, a corner between the upper chamfered surface and the end surface, and the lower side Each corner between the chamfered surface and the end surface is configured to be polished, and the rubber wheel is similarly traversed while being moved along the end surface from the upper chamfered surface or the lower chamfered surface. A wafer notch polishing apparatus characterized by being configured to continuously polish from the chamfered surface to the end surface.
JP2000122965A 2000-04-24 2000-04-24 Wafer notch polishing equipment Expired - Lifetime JP4323058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122965A JP4323058B2 (en) 2000-04-24 2000-04-24 Wafer notch polishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122965A JP4323058B2 (en) 2000-04-24 2000-04-24 Wafer notch polishing equipment

Publications (2)

Publication Number Publication Date
JP2001300837A JP2001300837A (en) 2001-10-30
JP4323058B2 true JP4323058B2 (en) 2009-09-02

Family

ID=18633374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122965A Expired - Lifetime JP4323058B2 (en) 2000-04-24 2000-04-24 Wafer notch polishing equipment

Country Status (1)

Country Link
JP (1) JP4323058B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007657A (en) * 2001-06-18 2003-01-10 Speedfam Co Ltd Mirror-surface polisher for wafer notch, and mirror- surface polishing method
US7559825B2 (en) 2006-12-21 2009-07-14 Memc Electronic Materials, Inc. Method of polishing a semiconductor wafer
JP2009004765A (en) * 2007-05-21 2009-01-08 Applied Materials Inc Method and apparatus for using rolling backing pad for substrate polishing
JP2009045679A (en) * 2007-08-16 2009-03-05 Ebara Corp Polishing device
JP5491273B2 (en) 2010-05-11 2014-05-14 ダイトエレクトロン株式会社 Wafer chamfering device
CN109848826B (en) * 2019-03-04 2024-04-30 天通日进精密技术有限公司 Multi-station edge polishing equipment for wafer
CN109926911A (en) * 2019-03-04 2019-06-25 天通日进精密技术有限公司 Wafer bevel polishing device and wafer recess polishing method
JP7286596B2 (en) * 2020-09-08 2023-06-05 ダイトロン株式会社 Wafer notch processing method and grindstone
KR102358688B1 (en) * 2021-05-25 2022-02-08 (주)미래컴퍼니 Wafer prcessing method
KR102358687B1 (en) * 2020-10-13 2022-02-08 (주)미래컴퍼니 Wafer prcessing method and system
TW202417183A (en) * 2020-10-13 2024-05-01 南韓商未來股份有限公司 Wafer processing method and system
KR102543395B1 (en) * 2020-10-13 2023-06-15 (주)미래컴퍼니 Wafer prcessing method
WO2022219955A1 (en) 2021-04-12 2022-10-20 信越半導体株式会社 Method for manufacturing semiconductor wafer
JP7131724B1 (en) 2022-02-03 2022-09-06 信越半導体株式会社 Semiconductor wafer manufacturing method

Also Published As

Publication number Publication date
JP2001300837A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
JP4323058B2 (en) Wafer notch polishing equipment
JP4008586B2 (en) Work edge polishing machine
CN111203775B (en) Edge polishing machine and polishing method for production and manufacturing of toughened glass
CN110860971B (en) Automatic blank grinding machine for ceramics
CN1296562C (en) Method for grinding rail and device for carrying out said method
CN210818913U (en) Precision polishing device for semi-axis sleeve
CN212600901U (en) Floating polishing mechanism
CN210909270U (en) Copper foil cathode roller grinding head device
JP2000317787A (en) Work edge polishing device
CN219444683U (en) Steel polishing equipment
CN115555977B (en) Diamond thin slice polishing machine
CN209986722U (en) Cambered surface polishing machine
CN115008297B (en) Double-sided and efficient edging polisher for glass production
JP2000042916A (en) Grinding device for uniform abrasion
CN215510305U (en) Friction disc grinding device
JPH09174401A (en) Chamfering and outer periphery machining device for work
CN115533542A (en) Signboard cutting process device
US4980995A (en) Method of faceting gemstones
CN220279171U (en) Polyethylene sheet edge chamfering device
JP3099029B2 (en) Combined grinding machine
CN219044014U (en) Terrace construction slotting equipment
CN209774241U (en) Polishing device for mirror finishing
CN215432977U (en) Steel material grinding device for building engineering
CN212886717U (en) A edging device for glass processing
CN110744405B (en) Automatic cylinder grinding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Ref document number: 4323058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term