JP4321174B2 - Reversible multicolor recording medium and recording method using the same - Google Patents

Reversible multicolor recording medium and recording method using the same Download PDF

Info

Publication number
JP4321174B2
JP4321174B2 JP2003291513A JP2003291513A JP4321174B2 JP 4321174 B2 JP4321174 B2 JP 4321174B2 JP 2003291513 A JP2003291513 A JP 2003291513A JP 2003291513 A JP2003291513 A JP 2003291513A JP 4321174 B2 JP4321174 B2 JP 4321174B2
Authority
JP
Japan
Prior art keywords
color
recording
recording layer
reducing agent
reversible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003291513A
Other languages
Japanese (ja)
Other versions
JP2004168024A (en
Inventor
研一 栗原
寿憲 坪井
典之 岸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003291513A priority Critical patent/JP4321174B2/en
Publication of JP2004168024A publication Critical patent/JP2004168024A/en
Application granted granted Critical
Publication of JP4321174B2 publication Critical patent/JP4321174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/30Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
    • B41M5/305Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers with reversible electron-donor electron-acceptor compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/34Multicolour thermography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/04Direct thermal recording [DTR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/38Intermediate layers; Layers between substrate and imaging layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/40Cover layers; Layers separated from substrate by imaging layer; Protective layers; Layers applied before imaging

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Description

本発明は画像またはデータを記録するための可逆性多色記録媒体、及びこれを用いた記録方法に関わる。   The present invention relates to a reversible multicolor recording medium for recording an image or data, and a recording method using the same.

近年、地球環境的な見地から、リライタブル記録技術の必要性が強く認識されている。コンピューターのネットワーク技術、通信技術、OA機器、記録メディア、記憶メディア等の進歩を背景としてオフィスや家庭でのペーパーレス化が進んでいる。   In recent years, the necessity of rewritable recording technology has been strongly recognized from the viewpoint of the global environment. With the progress of computer network technology, communication technology, OA equipment, recording media, storage media, etc., paperless is progressing in offices and homes.

印刷物に替わる表示媒体の一例として、熱により可逆的に情報の記録や消去が可能な記録媒体、いわゆる可逆性感熱記録媒体が、各種プリペイドカード、ポイントカード、クレジットカード、ICカード等の普及に伴い、残額やその他の記録情報等の可視化、可読化の用途において実用化されており、さらには複写機及びプリンター等の用途においても実用化されつつある。   As an example of a display medium that replaces printed matter, a recording medium capable of reversibly recording and erasing information by heat, a so-called reversible thermosensitive recording medium, has been widely used for various types of prepaid cards, point cards, credit cards, IC cards, In addition, it has been put into practical use in applications such as visualization and reading of balances and other recorded information, and further in applications such as copying machines and printers.

上記のような可逆性感熱記録媒体、及びこれを用いた記録方法に関しては、従来においても各種提案がなされている(例えば、特許文献1〜4参照。)。これらは、いわゆる低分子分散タイプ、すなわち樹脂母材中に有機低分子物質を分散させた記録媒体であり、熱履歴により光の散乱を変化させ、記録層を白濁あるいは透明状態に変化させるものであるため、画像形成部と画像未形成部のコントラストが不充分であるという欠点を有しているため、記録層の下に反射層を設けることによりコントラストを向上させた媒体のみが実用化されている。   Various proposals have been made regarding the reversible thermosensitive recording medium and the recording method using the same (see, for example, Patent Documents 1 to 4). These are so-called low-molecular dispersion types, that is, recording media in which organic low-molecular substances are dispersed in a resin base material, which changes the scattering of light by the thermal history and changes the recording layer to cloudy or transparent. Therefore, since the contrast between the image forming portion and the image non-forming portion is insufficient, only a medium whose contrast is improved by providing a reflective layer under the recording layer has been put into practical use. Yes.

一方、ロイコ染料タイプ、すなわち樹脂母材中に電子供与性呈色性化合物であるロイコ染料と、顕・減色剤とが分散された記録層を有する記録媒体、及びこれを用いた記録方法についての開示がなされている(例えば、特許文献5〜9参照。)。これらにおいて、顕・減色剤としては、ロイコ染料を発色させる酸性基と、発色したロイコ染料を消色させる塩基性基を有する両性化合物、または長鎖アルキルをもつフェノール化合物等が用いられている。この記録媒体及び記録方法は、ロイコ染料自体の発色を利用するため、低分子分散タイプに比較してコントラスト、視認性が良好であり、近年広く実用化されつつある。   On the other hand, a leuco dye type, that is, a recording medium having a recording layer in which a leuco dye that is an electron donating color developing compound and a developer / color-reducing agent are dispersed in a resin base material, and a recording method using the same Disclosure has been made (see, for example, Patent Documents 5 to 9). In these, as the developing / color-reducing agent, an amphoteric compound having an acidic group for developing a leuco dye and a basic group for decoloring the developed leuco dye, a phenol compound having a long-chain alkyl, or the like is used. Since this recording medium and recording method utilize the color developed by the leuco dye itself, the recording medium and the recording method have better contrast and visibility than the low molecular dispersion type, and have been widely put into practical use in recent years.

上記各特許文献により開示されている従来技術においては、母材の材料の色すなわち地肌の色と、熱により変色した色の2種類の色のみしか表現することができない。しかし近年では、視認性やファッション性向上のために、多色画像の表示や各種データを色識別して記録したりすることへの要求が非常に高まっている。
これに対し、上記従来方法を応用し、かつ多色画像の表示を行う記録方法が種々提案されている。
In the prior art disclosed in each of the above patent documents, only two types of colors, that is, the color of the base material, that is, the background color, and the color changed by heat can be expressed. However, in recent years, in order to improve visibility and fashionability, there has been a great demand for displaying multicolor images and recording various data by color identification.
On the other hand, various recording methods that apply the above-described conventional method and display a multicolor image have been proposed.

例えば、多色に塗り分けられた層や粒子を、低分子分散タイプの記録層で可視化あるいは隠蔽することで、多色表示を行う記録媒体、及びこれを用いた記録方法が開示されている(特許文献10〜12参照。)。しかしこのような構成の記録媒体においては、記録層が下層の色を完全に隠蔽することはできず、母材の色が透けてしまい、高いコントラストが得られなかった。   For example, a recording medium that performs multicolor display by visualizing or concealing layers and particles separately coated in multiple colors with a low molecular dispersion type recording layer, and a recording method using the same are disclosed ( (See Patent Documents 10 to 12.) However, in the recording medium having such a configuration, the recording layer cannot completely hide the color of the lower layer, the color of the base material is transparent, and high contrast cannot be obtained.

また、ロイコ染料を用いた可逆性感熱多色記録媒体について、その他の開示もなされているが(例えば、特許文献13、14参照。)、これらは面内に色相の異なる繰り返し単位を有するものであるため、各色相が実際に記録される面積比が小さいため、記録した画像は非常に暗い、または薄い画像しか得ることはできないという問題がある。   Although other disclosures have been made on reversible thermosensitive multicolor recording media using leuco dyes (see, for example, Patent Documents 13 and 14), these have repeating units having different hues in the plane. Therefore, since the area ratio in which each hue is actually recorded is small, there is a problem that a recorded image can be obtained only in a very dark or thin image.

また、発色温度、消色温度、冷却速度等が異なるロイコ染料を用いた記録層を分離、独立した状態で形成された構成の可逆性感熱多色記録媒体に関する開示もなされている(例えば、特許文献15〜23参照。)。
しかし、サーマルヘッド等の記録熱源による温度コントロールが困難な上、良好なコントラストが得られず、色のかぶりを避けられないという問題を有している。さらには、三色以上の多色化をサーマルヘッド等による加熱温度及び/または加熱後の冷却速度の違いのみでコントロールするのは非常に困難である。
Also disclosed is a reversible thermosensitive multicolor recording medium having a structure in which recording layers using leuco dyes having different color development temperature, decoloring temperature, cooling rate, etc. are separated and formed independently (for example, patents). Reference 15-23).
However, there are problems that it is difficult to control the temperature with a recording heat source such as a thermal head, a good contrast cannot be obtained, and color fog cannot be avoided. Furthermore, it is very difficult to control the increase of three or more colors only by the difference in heating temperature and / or cooling rate after heating with a thermal head or the like.

また、ロイコ染料を用いた記録層を、分離、独立した状態で形成した構成の可逆性感熱多色記録媒体において、レーザー光の照射による光−熱変換により任意の記録層のみを加熱し、発色させる記録方法に関する開示もなされている(例えば、特許文献24参照。)。この方法によれば、光−熱変換層の波長選択性の効果により、任意の記録層のみを発色させることができ、従来の可逆性多色記録媒体で問題であった、色のかぶりの問題が解決できる可能性がある。
しかしながら、この可逆性感熱多色記録媒体においては、光−熱変換層が、記録層とは別個独立して設けられているため、構成層数が多くなり、製造プロセスが複雑化するという問題を有している。また、レーザー光照射により光−熱変換されたエネルギーが記録層に効率良く伝わらず、充分な発色が得られず、記録に要する時間が長くなる等の問題を有している。
さらには、光−熱変換層(レーザー光の吸収層)が、バインダーを含有せず、有機溶剤に溶解した光吸収材料を被着させることにより形成されているため、極めて広い波長領域においてレーザー光の吸収を有するようになってしまい、表示精度が劣化するという欠点を有している。また、かかる方法において成膜されたレーザー光の吸収層は、可視域においても光吸収を有しているため、消去状態において記録層の透明性が劣化し、記録精度が悪化を招来するという問題も有している。
In addition, in a reversible thermosensitive multicolor recording medium having a structure in which a recording layer using a leuco dye is separated and formed independently, only an arbitrary recording layer is heated by light-to-heat conversion by laser light irradiation, and color development The recording method to be performed is also disclosed (for example, refer to Patent Document 24). According to this method, due to the wavelength selectivity effect of the light-to-heat conversion layer, only an arbitrary recording layer can be colored, and the problem of color fog, which has been a problem with conventional reversible multicolor recording media. May be resolved.
However, in this reversible thermosensitive multicolor recording medium, since the light-heat conversion layer is provided independently of the recording layer, the number of constituent layers increases and the manufacturing process becomes complicated. Have. Further, there is a problem that energy converted into light-heat by laser light irradiation is not efficiently transmitted to the recording layer, sufficient color development cannot be obtained, and the time required for recording becomes long.
Furthermore, since the light-to-heat conversion layer (laser light absorption layer) is formed by depositing a light-absorbing material that does not contain a binder and is dissolved in an organic solvent, laser light can be emitted in an extremely wide wavelength region. In other words, the display accuracy is deteriorated. In addition, the laser light absorption layer formed by such a method has light absorption even in the visible region, so that the transparency of the recording layer is deteriorated in the erased state, and the recording accuracy is deteriorated. Also have.

特開昭54−119377号公報JP 54-119377 A 特開昭55−154198号公報JP 55-154198 A 特開昭63−39377号公報JP-A-63-39377 特開昭63−41186号公報JP-A-63-41186 特開平2−188293号公報JP-A-2-188293 特開平2−188294号公報JP-A-2-188294 特開平5−124360号公報JP-A-5-124360 特開平7−108761号公報Japanese Patent Laid-Open No. 7-108761 特開平7−188294号公報JP 7-188294 A 特開平5−62189号公報Japanese Patent Laid-Open No. 5-62189 特開平8−80682号公報JP-A-8-80682 特開2000−198275号公報JP 2000-198275 A 特開平8−58245号公報JP-A-8-58245 特開2000−25338号公報JP 2000-25338 A 特開平6−305247号公報JP-A-6-305247 特開平6−328844号公報JP-A-6-328844 特開平6−79970号公報JP-A-6-79970 特開平8−164669号公報JP-A-8-164669 特開平8−300825号公報JP-A-8-300825 特開平9−52445号公報Japanese Patent Laid-Open No. 9-52445 特開平11−138997号公報JP 11-138997 A 特開2001−162941号公報JP 2001-162941 A 特開2002−59654号公報JP 2002-59654 A 特開2001−1645号公報JP 2001-1645 A

上述したように多色感熱記録への要望は大きく、従来においても種々の研究が盛んに行われているが、実用的に満足できる記録媒体、あるいは記録方式は未だ実現されていない。   As described above, there is a great demand for multicolor thermal recording, and various studies have been actively conducted in the past, but a recording medium or a recording method that is practically satisfactory has not yet been realized.

そこで本発明においては、このような従来技術の問題に鑑みて、安定な発消色、コントラストを有し、かつ日常生活においても実用上優れた画像安定性を実現でき、任意の色調を発色・消去可能な可逆性多色感熱記録媒体、及びこれを用いた記録方法を提供する。   Therefore, in the present invention, in view of such problems of the prior art, stable color development / contrast, contrast, and practically excellent image stability can be realized in daily life. An erasable reversible multicolor thermal recording medium and a recording method using the same are provided.

発明においては、支持基板の面方向に、発色色調の異なる複数の可逆性感熱発色性組成物を、それぞれ含有する記録層が、分離・積層形成されてなり、複数の可逆性感熱発色性組成物は、それぞれ異なる波長域の赤外線を吸収して発熱する光−熱変換材料を含有しており、記録層には、電子供与性を有する呈色性化合物と、電子受容性を有する顕・減色剤とが含有されてなり、電子受容性を有する顕・減色剤の少なくとも一種が、下記一般式(4)で表される化合物であり、電子供与性を有する呈色性化合物と、電子受容性を有する顕・減色剤との間の可逆的反応により、記録層を発色あるいは消色の二状態に可逆的に変化するようになされている可逆性多色記録媒体を提供する。
In the present invention, a plurality of reversible thermosensitive color forming compositions each having a plurality of reversible thermosensitive color developing compositions having different color tone in the surface direction of the support substrate are separated and laminated to form a plurality of reversible thermosensitive color forming compositions. The material contains a light-to-heat conversion material that generates heat by absorbing infrared rays in different wavelength ranges, and the recording layer has a color-forming compound having an electron donating property and a visible / subtractive color having an electron accepting property. And at least one of the color developing / color-reducing agents having electron accepting properties is a compound represented by the following general formula (4), a color-forming compound having electron donating properties, and electron accepting properties: There is provided a reversible multicolor recording medium adapted to reversibly change the recording layer into two states of color development or color erasure by a reversible reaction between the developer and the color-reducing agent.

Figure 0004321174
Figure 0004321174

但し、R5とR6とは、これらの炭素数の合計が8〜26の炭化水素基、nは5以下の整数であるものとする。   However, R5 and R6 are hydrocarbon groups having a total carbon number of 8 to 26, and n is an integer of 5 or less.

また、本発明の記録方法においては、支持基板の面方向に、発色色調の異なる複数の可逆性感熱発色性組成物を、それぞれ含有する記録層が、分離・積層形成されてなり、複数の可逆性感熱発色性組成物は、それぞれ異なる波長域の赤外線を吸収して発熱する光−熱変換材料を含有しており、記録層には、電子供与性を有する呈色性化合物と、電子受容性を有する顕・減色剤とが含有されてなり、電子受容性を有する顕・減色剤の少なくとも一種が、下記一般式(4)で表される化合物であり、電子供与性を有する呈色性化合物と、電子受容性を有する顕・減色剤との間の可逆的反応により、記録層を発色あるいは消色の二状態に可逆的に変化するようになされている可逆性多色記録媒体を用いて、加熱処理を施して予め記録層全体を消色状態にしておき、所望の画像情報に応じ、記録層のうちの選択されたものに対応して選択された波長領域の赤外線を照射して露光を行い、記録層を発熱せしめ、選択的に発色化させることにより、画像情報の記録を行うものとする。   Further, in the recording method of the present invention, a plurality of reversible thermosensitive color-forming compositions having different color tones are separated and laminated in the surface direction of the support substrate, and a plurality of reversible layers are formed. The heat-sensitive color-forming composition contains a light-to-heat conversion material that generates heat by absorbing infrared rays in different wavelength ranges, and the recording layer has a color-forming compound having electron donating properties and an electron accepting property. A color developing compound having an electron donating property, wherein at least one of the color developing / color reducing agents having electron acceptability is a compound represented by the following general formula (4): And a reversible multicolor recording medium in which the recording layer is reversibly changed into two states of color development or decoloration by a reversible reaction between the color developing agent and the color-reducing agent having electron acceptability. , Decolorize the whole recording layer in advance by heat treatment Depending on the desired image information, exposure is performed by irradiating infrared rays of a selected wavelength region corresponding to the selected one of the recording layers, and the recording layer is heated to selectively develop color. By doing so, image information is recorded.

Figure 0004321174
Figure 0004321174

但し、R5とR6とは、これらの炭素数の合計が8〜26の炭化水素基、nは5以下の整数であるものとする。   However, R5 and R6 are hydrocarbon groups having a total carbon number of 8 to 26, and n is an integer of 5 or less.

また、本発明の記録方法においては、支持基板の面方向に、発色色調の異なる複数の可逆性感熱発色性組成物を、それぞれ含有する記録層が、分離・積層形成されてなり、複数の可逆性感熱発色性組成物は、それぞれ異なる波長域の赤外線を吸収して発熱する光−熱変換材料を含有しており、記録層には、電子供与性を有する呈色性化合物と、電子受容性を有する顕・減色剤とが含有されてなり、電子受容性を有する顕・減色剤の少なくとも一種が、下記一般式(4)で表される化合物であり、電子供与性を有する呈色性化合物と、電子受容性を有する顕・減色剤との間の可逆的反応により、記録層を発色あるいは消色の二状態に可逆的に変化するようになされている可逆性多色記録媒体を用いて、加熱処理を施して予め上記記録層全体を発色状態にしておき、所望の画像情報に応じ、記録層のうちの選択されたものに対応して選択された波長領域の赤外線を照射して露光を行い、記録層を発熱せしめ、選択的に消色化することにより、画像情報の記録を行うものとする。   Further, in the recording method of the present invention, a plurality of reversible thermosensitive color-forming compositions having different color tones are separated and laminated in the surface direction of the support substrate, and a plurality of reversible layers are formed. The heat-sensitive color-forming composition contains a light-to-heat conversion material that generates heat by absorbing infrared rays in different wavelength ranges, and the recording layer has a color-forming compound having electron donating properties and an electron accepting property. A color developing compound having an electron donating property, wherein at least one of the color developing / color reducing agents having electron acceptability is a compound represented by the following general formula (4): And a reversible multicolor recording medium in which the recording layer is reversibly changed into two states of color development or decoloration by a reversible reaction between the color developing agent and the color-reducing agent having electron acceptability. , Preheat the entire recording layer. In accordance with the desired image information, exposure is performed by irradiating with infrared rays of a wavelength region selected corresponding to the selected one of the recording layers, causing the recording layer to generate heat and selectively erase. It is assumed that image information is recorded by colorization.

Figure 0004321174
Figure 0004321174

但し、R5とR6とは、これらの炭素数の合計が8〜26の炭化水素基、nは5以下の整数であるものとする。   However, R5 and R6 are hydrocarbon groups having a total carbon number of 8 to 26, and n is an integer of 5 or less.

本発明によれば、適用する顕・減色剤の化学式の構成を特定することにより、溶媒やポリマーへの溶解性、融点、発色・消色可能な温度等の各種条件の制御が可能となり、記録感度の向上が図られる。   According to the present invention, it is possible to control various conditions such as solubility in a solvent or polymer, melting point, temperature capable of color development / decoloring, etc. Sensitivity is improved.

本発明によれば、記録層中に含有される顕・減色剤を、任意の化学構造を有するものに特定したことにより、波長選択した赤外線を照射した場合に任意の記録層を的確に発熱せしめ、可逆的な発色状態と消色状態との変換を、迅速かつ高精度に行うことができ、これによって繰り返して情報の記録、及び消去を行う際に、優れた発色性、コントラスト、精細さが得られ、極めて感度の高い可逆性多色記録媒体を得ることができた。   According to the present invention, the developer / color-reducing agent contained in the recording layer is specified to have an arbitrary chemical structure, so that an arbitrary recording layer can be heated accurately when irradiated with wavelength-selected infrared rays. Therefore, it is possible to quickly and accurately convert between a reversible coloring state and a decoloring state, and thus excellent reproducibility, contrast, and fineness can be obtained when information is repeatedly recorded and erased. The resulting reversible multicolor recording medium was extremely sensitive.

また本発明によれば、安定かつ鮮明な発消色、明瞭なコントラストが得られ、実用上充分な画像安定性を有し、更には高速記録・高速消去可能な記録方法が実現できた。   Further, according to the present invention, a stable and clear color erasing and decoloring and clear contrast can be obtained, and a recording method capable of high-speed recording and high-speed erasing can be realized with practically sufficient image stability.

以下、本発明の具体的な実施の形態について図面を参照して説明するが、本発明の可逆性多色記録媒体は、以下の例に限定されるものではない。
図1に本発明における可逆性多色記録媒体の概略断面図を示す。
可逆性多色記録媒体10は、支持基板1上に、第1の記録層11、第2の記録層12、及び第3の記録層13が、それぞれ断熱層14、15を介して積層されており、最上層に保護層16が形成された構成を有している。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, the reversible multicolor recording medium of the present invention is not limited to the following examples.
FIG. 1 is a schematic sectional view of a reversible multicolor recording medium according to the present invention.
In the reversible multicolor recording medium 10, a first recording layer 11, a second recording layer 12, and a third recording layer 13 are laminated on a support substrate 1 via heat insulating layers 14 and 15, respectively. The protective layer 16 is formed as the uppermost layer.

支持基板1は、耐熱性に優れ、かつ平面方向の寸法安定性の高い材料であれば従来公知の材料を適宜使用することができる。例えばポリエステル、硬質塩化ビニル等の高分子材料の他、ガラス材料、ステンレス等の金属材料、あるいは紙等の材料から適宜選択できる。但し、オーバーヘッドプロジェクター等の透過用途以外では、支持基板1は最終的に得られる可逆性多色記録媒体10に対して情報の記録を行った際の視認性の向上を図るため、白色、あるいは金属色を有する可視光に対する反射率の高い材料によって形成することが好ましい。   As the support substrate 1, a conventionally known material can be appropriately used as long as the material has excellent heat resistance and high dimensional stability in the planar direction. For example, it can be appropriately selected from polymer materials such as polyester and hard vinyl chloride, glass materials, metal materials such as stainless steel, and materials such as paper. However, for purposes other than transmission applications such as overhead projectors, the support substrate 1 is white or metallic in order to improve the visibility when information is recorded on the finally obtained reversible multicolor recording medium 10. It is preferably formed of a material having a high reflectance with respect to visible light having a color.

第1〜第3の記録層11〜13は、安定した繰り返し記録が可能な、消色状態と発色状態とを制御し得る材料を用いて形成する。
第1〜第3の記録層11〜13には、それぞれ異なる波長の赤外線(図1中λ1、λ2、λ3)を吸収して発熱する光−熱変換材料が含有されている。また、 第1〜第3の記録層11〜13には、それぞれ可逆性感熱発色性組成物、すなわち電子供与性を有する呈色性化合物、例えばロイコ染料と、所定の電子受容性を有する顕・減色剤とが含有されてなるものとし、これらを樹脂母材中に分散させた塗料を塗布することによって形成されたものとする。
The first to third recording layers 11 to 13 are formed using a material capable of controlling a decoloring state and a coloring state, which enables stable repeated recording.
The first to third recording layers 11 to 13 contain light-heat conversion materials that generate heat by absorbing infrared rays having different wavelengths (λ 1 , λ 2 , λ 3 in FIG. 1). Each of the first to third recording layers 11 to 13 has a reversible thermosensitive color-developing composition, that is, a color-forming compound having electron donating properties, such as a leuco dye, and a visible / photosensitive material having a predetermined electron accepting property. It is assumed that it is formed by applying a paint in which these are contained in a resin base material.

また、第1〜第3の記録層11〜13は、それぞれが発色する所望の色に応じた所定のロイコ染料を適用する。例えば第1〜第3の記録層11〜13において三原色を発色するようにすれば、この可逆性多色記録媒体10全体としてフルカラー画像の形成が可能になる。
電子供与性を有する呈色性化合物であるロイコ染料としては、例えば、既存の感熱紙用染料等を適用することができる。
Further, the first to third recording layers 11 to 13 apply a predetermined leuco dye corresponding to a desired color to be colored. For example, if the three primary colors are developed in the first to third recording layers 11 to 13, a full color image can be formed as the entire reversible multicolor recording medium 10.
As the leuco dye, which is a color-forming compound having an electron donating property, for example, an existing thermal paper dye can be applied.

本発明の可逆性多色記録媒体10の記録層11〜13中に含有される、電子受容性を有する顕・減色剤としては、下記一般式(1)で表される化合物を適用することができる。   A compound represented by the following general formula (1) may be applied as the electron accepting developer / color-reducing agent contained in the recording layers 11 to 13 of the reversible multicolor recording medium 10 of the present invention. it can.

Figure 0004321174
Figure 0004321174

但し、Xは、OH、COOH、ハロゲン、Hのいずれかよりなり、Yは、−NHCO−、−CONH−、−NHCONH−、−CONHCO−、−NHNHCO−、−CONHNH−、−CONHNHCO−、−NHCOCONH−、−NHCONHCO−、−CONHCONH−、−NHNHCONH−、−NHCONHNH−、−CONHNHCONH−、−NHCONHNHCO−、−CONHNHCONH−のいずれかよりなり、R1、R2は、それぞれ炭素数2〜26の炭化水素基であり、かつR1、R2の炭素数の合計が9〜30であり、Zは、−COO−、−OCO−、−O−、−CONH−、−NHCO−、−NHCONH−、−NHNHCO−、−CONHNH−、−CH(Cn2nOH)−(但し、n=0〜5)のいずれかよりなり、aは0又は1であるものとする。 However, X consists of any one of OH, COOH, halogen, and H, Y is -NHCO-, -CONH-, -NHCONH-, -CONHCO-, -NHNHCO-, -CONHNH-, -CONHNHCO-,- NHCONCONH-, -NHCONHCO-, -CONHCONH-, -NHNHCONH-, -NHCONHNH-, -CONHNHCONH-, -NHCONHNHCO-, -CONHNHCONH-, R1 and R2 are each a hydrocarbon having 2 to 26 carbon atoms And the total number of carbon atoms of R 1 and R 2 is 9 to 30, and Z is —COO—, —OCO—, —O—, —CONH—, —NHCO—, —NHCONH—, —NHNHCO—. , -CONHNH -, - CH (C n H 2n OH) - or (where, n = 0 to 5) Rinari, a is assumed to be 0 or 1.

顕・減色剤の化学式を構成するX、Y、Z、R1、R2は、目的とする可逆性多色記録媒体10に要求される記録・消去感度、すなわち溶媒やポリマーへの溶解性、融点、発色・消色可能な温度等の各種条件応じて適宜選定し、組み合わせるものとする。
例えば、電子受容性を有する顕・減色剤としては、下記一般式(2)〜(4)で表される化合物を適用できる。
X, Y, Z, R1, and R2 constituting the chemical formula of the developer / color reducing agent are recording / erasing sensitivities required for the target reversible multicolor recording medium 10, that is, solubility in a solvent or polymer, melting point, Select and combine them appropriately according to various conditions such as the temperature at which coloring and decoloring are possible.
For example, compounds represented by the following general formulas (2) to (4) can be applied as the developer / color-reducing agent having electron acceptability.

Figure 0004321174
Figure 0004321174

但し、R3は炭素数8〜24の炭化水素基を示すものとする。   However, R3 shall represent a C8-24 hydrocarbon group.

Figure 0004321174
Figure 0004321174

但し、R4は、炭素数8〜24の炭化水素基であるものとする。   R4 is a hydrocarbon group having 8 to 24 carbon atoms.

Figure 0004321174
Figure 0004321174

但し、R5とR6とは、これらの炭素数の合計が8〜26の炭化水素基、nは5以下の整数であるものとする。   However, R5 and R6 are hydrocarbon groups having a total carbon number of 8 to 26, and n is an integer of 5 or less.

第1〜第3の記録層11〜13は、それぞれ異なる波長域に吸収をもつ光−熱変換材料を含有しているものとする。
光−熱変換材料としては、例えば、第1の記録層11が波長λ1の赤外線を、第2の記録層12が波長λ2の赤外線を、第3の記録層13が波長λ3の赤外線をそれぞれ吸収して発熱する材料が適用できる。
The first to third recording layers 11 to 13 contain light-to-heat conversion materials having absorption in different wavelength ranges.
As the light-heat conversion material, for example, the first recording layer 11 emits infrared light with a wavelength λ 1 , the second recording layer 12 emits infrared light with a wavelength λ 2 , and the third recording layer 13 emits infrared light with a wavelength λ 3 . A material that absorbs heat and generates heat can be applied.

第1〜第3の記録層11〜13内に含有される光−熱変換材料としては、例えば、可視波長域にほとんど吸収がない赤外線吸収色素として一般的に用いられる、フタロシアニン系染料やシアニン系染料、金属錯体染料、ジインモニウム系染料等を適用できる。
さらには、任意の光−熱変換材料のみを発熱させるために、光吸収帯が狭く、互いに重なり合わない材料の組み合わせを選択することが好ましい。
Examples of the light-to-heat conversion material contained in the first to third recording layers 11 to 13 include, for example, phthalocyanine dyes and cyanine dyes that are generally used as infrared absorbing dyes that hardly absorb in the visible wavelength range. Dyes, metal complex dyes, diimonium dyes, and the like can be applied.
Furthermore, in order to generate heat only in an arbitrary light-heat conversion material, it is preferable to select a combination of materials having a narrow light absorption band and not overlapping each other.

第1〜第3の記録層11〜13形成用の樹脂としては、例えばポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル−酢酸ビニル共重合体、エチルセルロース、ポリスチレン、スチレン系共重合体、フェノキシ樹脂、ポリエステル、芳香族ポリエステル、ポリウレタン、ポリカーボネート、ポリアクリル酸エステル、ポリメタクリル酸エステル、アクリル酸系共重合体、マレイン酸系重合体、ポリビニルアルコール、変性ポリビニルアルコール、ヒドロキシエチルセルロース、カルボキシメチルセルロース、デンプン等が挙げられる。これらの樹脂に必要に応じて紫外線吸収剤等の各種添加剤を併用してもよい。   Examples of the resin for forming the first to third recording layers 11 to 13 include polyvinyl chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, ethyl cellulose, polystyrene, styrene copolymer, phenoxy resin, and polyester. , Aromatic polyester, polyurethane, polycarbonate, polyacrylic acid ester, polymethacrylic acid ester, acrylic acid copolymer, maleic acid polymer, polyvinyl alcohol, modified polyvinyl alcohol, hydroxyethyl cellulose, carboxymethyl cellulose, starch and the like. . Various additives such as an ultraviolet absorber may be used in combination with these resins as necessary.

第1〜第3の記録層11〜13は、上記ロイコ染料、顕・減色剤よりなる可逆性感熱発色性組成物と、光−熱変換材料と、各種添加剤とを溶媒を用いて上記樹脂中に溶解させて調整された塗料を、それぞれの所定の形成面に塗布することによって形成することができる。このとき使用する溶媒は、顕・減色剤の溶解性が高いものが好ましい。   The first to third recording layers 11 to 13 are prepared by using the above-mentioned resin using a solvent for the reversible thermosensitive coloring composition composed of the leuco dye, the developer and the color reducing agent, the light-heat conversion material, and various additives. It can form by apply | coating the coating material dissolved and adjusted in each predetermined | prescribed formation surface. The solvent used at this time is preferably a solvent having high solubility of the developer / color reducing agent.

第1〜第3の記録層11〜13は、それぞれ膜厚1〜20μm程度に形成することが望ましく、更には3〜15μm程度が望ましい。これらの膜厚が1μm未満であると充分な発色濃度が得られず、20μmを超えた膜厚になると記録層11〜13の熱容量が大きくなり、発色性や消色性が劣化するためである。   The first to third recording layers 11 to 13 are each preferably formed to a thickness of about 1 to 20 μm, and more preferably about 3 to 15 μm. If these film thicknesses are less than 1 μm, a sufficient color density cannot be obtained, and if the film thickness exceeds 20 μm, the heat capacity of the recording layers 11 to 13 increases, and the color developability and decoloring properties deteriorate. .

第1の記録層11と第2の記録層12との間、第2の記録層12と第3の記録層13との間には、それぞれ透光性の断熱層14、15を形成することが望ましい。これによって隣接する記録層からの熱伝導が回避され、いわゆる色かぶりの発生を防止することができる。   Translucent heat insulating layers 14 and 15 are formed between the first recording layer 11 and the second recording layer 12 and between the second recording layer 12 and the third recording layer 13, respectively. Is desirable. As a result, heat conduction from the adjacent recording layer is avoided, and so-called color fogging can be prevented.

断熱層14、15は、従来公知の透光性のポリマーを用いて形成することができる。例えば、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル−酢酸ビニル共重合体、エチルセルロース、ポリスチレン、スチレン系共重合体、フェノキシ樹脂、ポリエステル、芳香族ポリエステル、ポリウレタン、ポリカーボネート、ポリアクリル酸エステル、ポリメタクリル酸エステル、アクリル酸系共重合体、マレイン酸系重合体、ポリビニルアルコール、変性ポリビニルアルコール、ヒドロキシエチルセルロース、カルボキシメチルセルロース、デンプン等が挙げられる。これらのポリマーには必要に応じて紫外線吸収剤等の各種添加剤を併用してもよい。
また、断熱層14、15は透光性の無機膜を用いて形成することもできる。例えば、多孔質のシリカ、アルミナ、チタニア、カーボン、またはこれらの複合体等を用いると、熱伝導率が低くなり断熱効果が高く好ましい。これらは液層から膜形成できるゾル−ゲル法によって形成することができる。
The heat insulation layers 14 and 15 can be formed using a conventionally known translucent polymer. For example, polyvinyl chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, ethyl cellulose, polystyrene, styrene copolymer, phenoxy resin, polyester, aromatic polyester, polyurethane, polycarbonate, polyacrylic acid ester, polymethacrylic acid Examples include esters, acrylic acid copolymers, maleic acid polymers, polyvinyl alcohol, modified polyvinyl alcohol, hydroxyethyl cellulose, carboxymethyl cellulose, and starch. These polymers may be used in combination with various additives such as ultraviolet absorbers as necessary.
Moreover, the heat insulation layers 14 and 15 can also be formed using a translucent inorganic film. For example, when porous silica, alumina, titania, carbon, or a composite thereof is used, the thermal conductivity is lowered and the heat insulating effect is high, which is preferable. These can be formed by a sol-gel method capable of forming a film from a liquid layer.

断熱層14、15は、膜厚3〜100μm程度に形成することが望ましく、さらには5〜50μm程度に形成することが好ましい。これらの膜厚が薄すぎると充分な断熱効果が得られず、膜厚が厚すぎると、後述する記録方法において記録媒体全体を均一加熱する際に熱伝導性が劣化したり、透光性が低下したりするためである。   The heat insulating layers 14 and 15 are preferably formed to a thickness of about 3 to 100 μm, and more preferably about 5 to 50 μm. If these film thicknesses are too thin, a sufficient heat insulating effect cannot be obtained, and if the film thickness is too thick, the thermal conductivity deteriorates when the entire recording medium is uniformly heated in the recording method to be described later, or the translucency is low. It is because it falls.

保護層16は、従来公知の紫外線硬化性樹脂や熱硬化性樹脂を用いて形成することができ、膜厚は0.1〜20μm、さらには0.5〜5μm程度とすることが望ましい。
保護層16の膜厚が0.1μm未満であると充分な保護効果が得られず、一方、20μmを超えた膜厚にすると熱伝導性が悪化するという不都合を生じるためである。
The protective layer 16 can be formed using a conventionally known ultraviolet curable resin or thermosetting resin, and the film thickness is preferably about 0.1 to 20 μm, more preferably about 0.5 to 5 μm.
This is because if the film thickness of the protective layer 16 is less than 0.1 μm, a sufficient protective effect cannot be obtained, whereas if the film thickness exceeds 20 μm, there is a disadvantage that the thermal conductivity deteriorates.

次に、図1に示した可逆性多色記録媒体10を用いて、多色記録を行う原理について説明する。   Next, the principle of performing multicolor recording using the reversible multicolor recording medium 10 shown in FIG. 1 will be described.

先ず、多色記録の第1の原理を説明する。
図1に示した可逆性多色記録媒体10を、各記録層が消色する程度の温度、例えば120℃程度の温度で全面加熱し、第1〜第3の記録層11〜13を予め消色状態にしておく。すなわちこの状態においては、支持基板1の色が露出している状態となっているものとする。
First, the first principle of multicolor recording will be described.
The reversible multicolor recording medium 10 shown in FIG. 1 is entirely heated at a temperature at which each recording layer is erased, for example, at a temperature of about 120 ° C., and the first to third recording layers 11 to 13 are erased in advance. Leave in color. That is, in this state, it is assumed that the color of the support substrate 1 is exposed.

次に、可逆性多色記録媒体10の任意の部分に、波長及び出力を任意に選択した赤外線を半導体レーザー等により照射する。
例えば第1の記録層11を発色させる場合には、波長λ1の赤外線を第1の記録層11が発色温度に達する程度のエネルギーで照射し、光−熱変換材料を発熱させて、電子供与性呈色化合物と電子供与性顕・減色剤との間の発色反応を起こさせ、照射部分を発色させる。
同様に、第2の記録層12及び第3の記録層13についても、それぞれ波長λ2、λ3の赤外線を発色温度に達する程度のエネルギーを照射してそれぞれの光−熱変換材料を発熱させて照射部分を発色させる。
上述したように、可逆性多色記録媒体10の任意の部分を発色させることができ、フルカラー画像形成や種々の情報の記録が可能となる。
Next, an arbitrary part of the reversible multicolor recording medium 10 is irradiated with infrared light having an arbitrarily selected wavelength and output by a semiconductor laser or the like.
For example, when the first recording layer 11 is colored, an infrared ray having a wavelength λ 1 is irradiated with energy that the first recording layer 11 reaches the coloring temperature, and the light-to-heat conversion material is heated to donate electrons. The color development reaction between the color developing compound and the electron donating developer / color-reducing agent is caused to color the irradiated portion.
Similarly, the second recording layer 12 and the third recording layer 13 are also irradiated with energy having a wavelength of λ 2 and λ 3 to reach the coloring temperature, respectively, so that each light-heat conversion material generates heat. To color the irradiated area.
As described above, an arbitrary portion of the reversible multicolor recording medium 10 can be colored, and a full-color image can be formed and various information can be recorded.

ところで、第1の記録層11、あるいは第2の記録層12を記録する際、それらの上層に形成されている記録層の透明性が、下層の記録層の記録感度に大きな影響を及ぼす。すなわち、所定の記録層の上層に形成されている記録層に使用されている顕・減色剤のポリマー中への溶解性が悪く、記録層が分散白濁しているような場合には、照射した赤外線が上層で反射、散乱されてしまうため、記録感度は著しく低下してしまう。このため、図1に示すような構成を有する積層型の可逆性多色記録媒体10においては、記録層を形成するための溶媒あるいはポリマーへの溶解性が高い顕・減色剤を使用することが重要である。   By the way, when the first recording layer 11 or the second recording layer 12 is recorded, the transparency of the recording layer formed on the upper layer greatly affects the recording sensitivity of the lower recording layer. That is, when the recording layer is poorly soluble in the polymer of the developer / color reducing agent used in the recording layer formed on the upper layer of the predetermined recording layer and the recording layer is dispersed and cloudy, the irradiation is performed. Since the infrared rays are reflected and scattered by the upper layer, the recording sensitivity is remarkably lowered. For this reason, in the multilayer reversible multicolor recording medium 10 having the configuration shown in FIG. 1, it is possible to use a developing / color-reducing agent having a high solubility in a solvent or polymer for forming the recording layer. is important.

また、上記のようにして発色させた所定の記録層において、さらに任意の波長の赤外線を、各記録層11〜13が消色温度に達する程度のエネルギーで照射し、光−熱変換材料を発熱させて、呈色化合物と顕・減色剤との間で消色反応を起こさせることによって、記録の消去を行うことができる。   Further, in the predetermined recording layer colored as described above, an infrared ray having an arbitrary wavelength is further irradiated with energy at which each recording layer 11 to 13 reaches the decoloring temperature, and the light-heat conversion material generates heat. Thus, the recording can be erased by causing a decoloring reaction between the coloring compound and the developer / color-reducing agent.

また、上述のようにして一部を着色化させた可逆性多色記録媒体10の全体を、全ての記録層が消色する程度の温度、例えば120℃で一様に加熱することによって、記録情報や画像を消去することができ、その後上述したような操作を行うことにより繰り返し記録が可能である。   Further, the entire reversible multicolor recording medium 10 partially colored as described above is uniformly heated at a temperature at which all the recording layers are decolored, for example, 120 ° C. Information and images can be erased, and recording can be repeated by performing the operations described above.

次に、多色記録の第2の原理を説明する。
先ず、図1に示した可逆性多色記録媒体10を、各記録層11〜13が発色する程度の温度、例えば200℃程度の高温で全面加熱し、次に冷却し、第1〜第3の記録層11〜13を全て予め発色状態にしておく。
Next, the second principle of multicolor recording will be described.
First, the reversible multicolor recording medium 10 shown in FIG. 1 is heated on the entire surface at a temperature at which each of the recording layers 11 to 13 develops color, for example, at a high temperature of about 200 ° C., and then cooled. All of the recording layers 11 to 13 are colored in advance.

次に、可逆性多色記録媒体10の任意の部分に、波長及び出力を任意に選択した赤外線を半導体レーザー等により照射する。
例えば第1の記録層11を消色させる場合には、波長λ1の赤外線を第1の記録層11が消色する程度のエネルギーで照射し、光−熱変換材料を発熱させて記録層11を消色状態とする。
同様に、第2の記録層12及び第3の記録層13についても、それぞれ波長λ2、λ3の赤外線を、消色温度に達する程度のエネルギーで照射してそれぞれの光−熱変換材料を発熱させて照射部分を消色させることができる。
上述のようにすることによって、可逆性多色記録媒体10の任意の部分を消色させることができ、フルカラー画像形成や種々の情報の記録が可能となる。
Next, an arbitrary part of the reversible multicolor recording medium 10 is irradiated with infrared light having an arbitrarily selected wavelength and output by a semiconductor laser or the like.
For example, when the first recording layer 11 is decolored, the recording layer 11 is irradiated with infrared light having a wavelength λ 1 with such energy that the first recording layer 11 is decolored to generate heat. Is decolored.
Similarly, the second recording layer 12 and the third recording layer 13 are each irradiated with infrared rays having wavelengths λ 2 and λ 3 with energy to reach the decoloring temperature, and the respective light-to-heat conversion materials are applied. The irradiated portion can be decolored by generating heat.
As described above, an arbitrary portion of the reversible multicolor recording medium 10 can be erased, and a full-color image can be formed and various information can be recorded.

上記のようにして消色させた各記録層11〜13において、さらに任意の波長の赤外線を、各記録層11〜13が発色温度に達する程度のエネルギーで照射し、光−熱変換材料を発熱させて、呈色化合物と顕・減色剤との間の発色反応を起こさせることによって、記録層の任意の部分を発色化させることができる。   In each of the recording layers 11 to 13 decolorized as described above, an infrared ray having an arbitrary wavelength is further irradiated with energy at which the recording layers 11 to 13 reach the coloring temperature, and the light-heat conversion material generates heat. Thus, by causing a color development reaction between the color forming compound and the developer / subtractor, any portion of the recording layer can be colored.

更に、上述のようにして一部を消色化、あるいは発色化させた可逆性多色記録媒体10の全体を、全ての記録層が着色する程度の温度、例えば200℃で一様に加熱し、次いで冷却することによって、記録情報や画像を消去することができ、上述した操作を行うことにより、再度繰り返し記録が可能となる。   Further, the entire reversible multicolor recording medium 10 partially erased or developed as described above is uniformly heated at a temperature at which all the recording layers are colored, for example, 200 ° C. Then, the recording information and the image can be erased by cooling, and the recording can be repeated again by performing the operation described above.

本発明の可逆性多色記録媒体10に対して、上記第1の原理、及び第2の原理に示した記録方法のうち、いずれの方法を適用するかは、記録層の特性、記録光源の性能に合わせて適宜選択する。
例えば、記録層を高温で発色してそれ以下の温度で消色する、いわゆるポジ型の層として形成してもよく、高温で消色してそれ以下の温度で発色する、いわゆるネガ型の層として形成してもよい(例えば特開平8−197853号公報)。
Which of the recording methods shown in the first principle and the second principle is applied to the reversible multicolor recording medium 10 of the present invention depends on the characteristics of the recording layer and the recording light source. Select appropriately according to the performance.
For example, the recording layer may be formed as a so-called positive type layer that develops color at a high temperature and erases at a temperature lower than that, or a so-called negative type layer that erases at a high temperature and develops color at a temperature below that. (For example, JP-A-8-197853).

次に、本発明の可逆性多色記録媒体について、具体的な実施例及び比較例を挙げて説明するが、本発明の可逆性多色記録媒体は以下に示す例に限定されるものではない。尚、以下に示す〔実験A〕〜〔実験C〕における実施例A1〜8、B1〜4、およびC1〜4は、いずれも本発明の範囲に属するものではない参考例に相当する例である。 Next, the reversible multicolor recording medium of the present invention will be described with specific examples and comparative examples. However, the reversible multicolor recording medium of the present invention is not limited to the following examples. . In addition, Examples A1 to 8, B1 to 4, and C1 to C4 in [Experiment A] to [Experiment C] shown below are examples corresponding to reference examples not belonging to the scope of the present invention. .

〔実験A〕
〔実施例A1〕
この例においては、図1に示したように、支持基板1上に第1の記録層11、断熱層14、第2の記録層12、断熱層15、第3の記録層13、及び保護層16が順次積層された、いわゆる三層の記録層を有する可逆性多色記録媒体を作製する。
[Experiment A]
[Example A1]
In this example, as shown in FIG. 1, the first recording layer 11, the heat insulating layer 14, the second recording layer 12, the heat insulating layer 15, the third recording layer 13, and the protective layer are formed on the support substrate 1. A reversible multicolor recording medium having a so-called three-layer recording layer in which 16 is sequentially laminated is manufactured.

支持基板1として、厚さ1mmの白色のポリエチレンテレフタレート基板を使用した。
第1の記録層11としては、支持基板1上に下記組成物を含有する塗料をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、イエローに発色させることのできる記録層を膜厚5μmに形成した。第1の記録層11の波長915nmの光における吸光度は1.0であった。
As the supporting substrate 1, a white polyethylene terephthalate substrate having a thickness of 1 mm was used.
As the first recording layer 11, a recording layer that can be colored yellow by applying a coating containing the following composition on the support substrate 1 with a wire bar and subjecting it to a heat drying treatment at 110 ° C. for 5 minutes. The film thickness was 5 μm. The absorbance of the first recording layer 11 with light having a wavelength of 915 nm was 1.0.

(組成物)
ロイコ染料(フルオラン化合物:λmax=490nm):1重量部
顕・減色剤(下記化学式(5)に示す物質):4重量部
(Composition)
Leuco dye (fluorane compound: λmax = 490 nm): 1 part by weight developer / color-reducing agent (substance shown in the following chemical formula (5)): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、平均分子量(M.W.)115000)
シアニン系赤外吸収色素:0.10重量部
(山本化成製、YKR−2081、記録層中での吸収波長ピーク:910nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, average molecular weight (M.W.) 115000)
Cyanine-based infrared absorbing dye: 0.10 parts by weight (Yamamoto Kasei, YKR-2081, absorption wavelength peak in recording layer: 910 nm)
Tetrahydrofuran (THF): 140 parts by weight

上述のようにして形成した第1の記録層11上に、ポリビニルアルコール水溶液を塗布、乾燥して膜厚20μmの断熱層14を形成した。   On the first recording layer 11 formed as described above, an aqueous polyvinyl alcohol solution was applied and dried to form a heat insulating layer 14 having a thickness of 20 μm.

上記断熱層14上に、第2の記録層12として下記組成物をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、シアンに発色させることのできる層を膜厚6μmに形成した。第2の記録層12の波長830nmの光における吸光度は1.0であった。   On the heat insulation layer 14, the following composition as a second recording layer 12 is applied with a wire bar, and heat-dried at 110 ° C. for 5 minutes to form a layer capable of developing cyan in a thickness of 6 μm. did. The absorbance of the second recording layer 12 with light having a wavelength of 830 nm was 1.0.

(組成物)
ロイコ染料(山田化学工業製、H−3035):1重量部
顕・減色剤(下記化学式(5)に示す物質):4重量部
(Composition)
Leuco dye (manufactured by Yamada Chemical Co., Ltd., H-3035): 1 part by weight developer / color-reducing agent (substance shown in the following chemical formula (5)): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、M.W.115000)
シアニン系赤外吸収色素:0.08重量部
(山本化成製、YKR−2900、記録層中での吸収波長ピーク830nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, MW 115000)
Cyanine-based infrared absorbing dye: 0.08 parts by weight (manufactured by Yamamoto Kasei, YKR-2900, absorption wavelength peak in recording layer 830 nm)
Tetrahydrofuran (THF): 140 parts by weight

上述のようにして形成した第2の記録層12上に、ポリビニルアルコール水溶液を塗布、乾燥して膜厚20μmの断熱層15を形成した。   On the second recording layer 12 formed as described above, a polyvinyl alcohol aqueous solution was applied and dried to form a heat insulating layer 15 having a thickness of 20 μm.

上記断熱層15上に、第3の記録層13として下記組成物を含有する塗料をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、マゼンダに発色させることのできる記録層を膜厚6μmに形成した。第3の記録層13の波長785nmの光における吸光度は1.0であった。   A coating layer containing the following composition as a third recording layer 13 is applied to the heat insulating layer 15 with a wire bar, and subjected to a heat drying treatment at 110 ° C. for 5 minutes to form a recording layer capable of coloring magenta. The film thickness was 6 μm. The absorbance of the third recording layer 13 with light having a wavelength of 785 nm was 1.0.

(組成物)
ロイコ染料(保土ヶ谷化学社製、Red DCF):2重量部
顕・減色剤(下記化学式(5)に示す物質):4重量部
(Composition)
Leuco dye (manufactured by Hodogaya Chemical Co., Ltd., Red DCF): 2 parts by weight developer / color-reducing agent (substance shown in chemical formula (5) below): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、M.W.115000)
シアニン系赤外吸収色素:0.08重量部
(日本化薬製CY−10、記録層中での吸収波長ピーク790nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, MW 115000)
Cyanine-based infrared absorbing dye: 0.08 part by weight (Nippon Kayaku CY-10, absorption wavelength peak in recording layer 790 nm)
Tetrahydrofuran (THF): 140 parts by weight

上記第3の記録層13上に、紫外線硬化性樹脂を用いて膜厚約2μmの保護層16を形成し、目的とする可逆性多色記録媒体10を作製した。   A protective layer 16 having a film thickness of about 2 μm was formed on the third recording layer 13 using an ultraviolet curable resin, and the intended reversible multicolor recording medium 10 was produced.

第1〜第3の記録層11〜13中に含有されている化学式(5)に示した顕・減色剤の合成方法について具体的な例を示す。
攪拌機を付けた500mlのフラスコ内に、4-Hydroxybenzoic Acidを13.8g、Stearic Hydrazideを29.9g、N,N’-Diisopropylcarbodiimideを12.6g、1-Hydroxybenzotriazoleを13.5g、及びテトラヒドロフラン(THF)を250ml、それぞれ仕込み、90℃で6時間還流した。その後、室温まで冷却し、析出物をろ過した。ろ過した反応混合物をIPAにて再結晶し、目的物を得た。収率は85%で、目的物の融点は155℃であった。
A specific example of the method for synthesizing the developer / color-reducing agent represented by the chemical formula (5) contained in the first to third recording layers 11 to 13 will be described.
In a 500 ml flask equipped with a stirrer, 13.8 g of 4-Hydroxybenzoic Acid, 29.9 g of Steric Hydrazide, 12.6 g of N, N'-Diisopropylcarbodiimide, 13.5 g of 1-Hydroxybenzotriazole, and tetrahydrofuran (THF) 250 ml of each was charged and refluxed at 90 ° C. for 6 hours. Then, it cooled to room temperature and filtered the deposit. The filtered reaction mixture was recrystallized with IPA to obtain the desired product. The yield was 85%, and the melting point of the target product was 155 ° C.

上述のようにして作製した可逆性多色記録媒体10を、120℃に加熱したセラミックスバーを用いて一様に加熱し、第1、第2及び第3の記録層11、12、13を消色状態にしたものをサンプルとした。   The reversible multicolor recording medium 10 produced as described above is uniformly heated using a ceramic bar heated to 120 ° C., and the first, second and third recording layers 11, 12 and 13 are erased. A sample in a color state was used.

〔実施例A2〕
上述した実施例A1において適用した顕・減色剤を、下記化学式(6)に示す化合物に変更した。その他の条件は実施例A1と同様とし、サンプルを作製した。
下記化学式(6)に示す化合物の合成方法は、上記化学式(5)の顕・減色剤の合成方法における4-Hydroxybenzoic Acidを3-Hydroxybenzoic Acidに変更した以外、他は同様とする。
[Example A2]
The developing / color-reducing agent applied in Example A1 described above was changed to a compound represented by the following chemical formula (6). Other conditions were the same as in Example A1, and a sample was produced.
The synthesis method of the compound represented by the following chemical formula (6) is the same except that 4-Hydroxybenzoic Acid is changed to 3-Hydroxybenzoic Acid in the method of synthesizing the developer / color-reducing agent of the above chemical formula (5).

Figure 0004321174
Figure 0004321174

〔実施例A3〕
上述した実施例A1において適用した顕・減色剤を、下記化学式(7)に示す化合物に変更した。その他の条件は実施例A1と同様としサンプルを作製した。
下記化学式(7)に示す化合物の合成方法は、上記化学式(5)の顕・減色剤の合成方法における4-Hydroxybenzoic Acidを3,5-Dihydroxybenzoic Acidに変更した以外、他は同様とする。
[Example A3]
The developing / color-reducing agent applied in Example A1 described above was changed to a compound represented by the following chemical formula (7). Other conditions were the same as in Example A1, and a sample was produced.
The method for synthesizing the compound represented by the following chemical formula (7) is the same except that 4-Hydroxybenzoic Acid in the method for synthesizing the developer / color-reducing agent represented by the chemical formula (5) is changed to 3,5-Dihydroxybenzoic Acid.

Figure 0004321174
Figure 0004321174

〔実施例A4〕
上述した実施例A1において適用した顕・減色剤を、下記化学式(8)に示す化合物に変更した。その他の条件は実施例A1と同様としサンプルを作製した。
下記化学式(8)に示す化合物の合成方法は、上記化学式(5)の顕・減色剤の合成方法における、4-Hydroxybenzoic Acidを3,4-Dihydroxybenzoic Acidに変更した以外、他は同様とする。
[Example A4]
The developing / color-reducing agent applied in Example A1 described above was changed to a compound represented by the following chemical formula (8). Other conditions were the same as in Example A1, and a sample was produced.
The method for synthesizing the compound represented by the following chemical formula (8) is the same except that 4-Hydroxybenzoic Acid is changed to 3,4-Dihydroxybenzoic Acid in the method for synthesizing the developer / color-reducing agent of the chemical formula (5).

Figure 0004321174
Figure 0004321174

〔実施例A5〕
上述した実施例A1において適用した顕・減色剤を、下記化学式(9)に示す化合物に変更した。その他の条件は実施例A1と同様としサンプルを作製した。
下記化学式(9)に示す化合物の合成方法は、上記化学式(5)の顕・減色剤の合成方法における、4-Hydroxybenzoic Acidを3-Chloro-4-hydroxybenzoic Acidに変更した以外、他は同様とする。
[Example A5]
The developing / color-reducing agent applied in Example A1 described above was changed to a compound represented by the following chemical formula (9). Other conditions were the same as in Example A1, and a sample was produced.
The synthesis method of the compound represented by the following chemical formula (9) is the same except that 4-Hydroxybenzoic Acid is changed to 3-Chloro-4-hydroxybenzoic Acid in the method of synthesizing the developer / color-reducing agent of the above chemical formula (5). To do.

Figure 0004321174
Figure 0004321174

〔実施例A6〕
上述した実施例A1において適用した顕・減色剤を、下記化学式(10)に示す化合物に変更した。その他の条件は実施例A1と同様としサンプルを作製した。
下記化学式(10)に示す化合物の合成方法を以下に示す。
攪拌機を付けた500mlのフラスコ内に、n-Octadecyl Isocyanateを29.6g、4-Amino-3-Chlorophenolを14.4g、およびテトラヒドロフラン(THF)を250ml、それぞれ仕込み、90℃で5時間還流した。その後、室温まで冷却し、析出物をろ過した。ろ過した反応混合物をIPAにて再結晶し、目的物を得た。収率は95%で、目的物の融点は133℃であった。
[Example A6]
The developing / color-reducing agent applied in Example A1 described above was changed to a compound represented by the following chemical formula (10). Other conditions were the same as in Example A1, and a sample was produced.
A method for synthesizing the compound represented by the following chemical formula (10) is shown below.
In a 500 ml flask equipped with a stirrer, 29.6 g of n-Octadecyl Isocyanate, 14.4 g of 4-Amino-3-Chlorophenol, and 250 ml of tetrahydrofuran (THF) were charged and refluxed at 90 ° C. for 5 hours. Then, it cooled to room temperature and filtered the deposit. The filtered reaction mixture was recrystallized with IPA to obtain the desired product. The yield was 95%, and the melting point of the target product was 133 ° C.

Figure 0004321174
Figure 0004321174

〔実施例A7〕
上述した実施例A1において適用した顕・減色剤を、下記化学式(11)に示す化合物に変更した。その他の条件は実施例A1と同様としサンプルを作製した。
下記化学式(11)に示す化合物の合成方法を以下に示す。
攪拌機を付けた500mlのフラスコ内に、n-Octadecyl Isocyanateを29.6g、2,4-Dihydroxybenzoic acid hydradideを16.8g、およびテトラヒドロフラン(THF)を250ml、それぞれ仕込み、90℃で5時間還流した。その後、室温まで冷却し、析出物をろ過した。ろ過した反応混合物をIPAにて再結晶し、目的物を得た。収率は95%で、目的物の融点は200℃であった。
[Example A7]
The developing / color-reducing agent applied in Example A1 described above was changed to a compound represented by the following chemical formula (11). Other conditions were the same as in Example A1, and a sample was produced.
A method for synthesizing the compound represented by the following chemical formula (11) is shown below.
In a 500 ml flask equipped with a stirrer, 29.6 g of n-Octadecyl Isocyanate, 16.8 g of 2,4-dihydroxybenzoic acid hydradide, and 250 ml of tetrahydrofuran (THF) were charged and refluxed at 90 ° C. for 5 hours. Then, it cooled to room temperature and filtered the deposit. The filtered reaction mixture was recrystallized with IPA to obtain the desired product. The yield was 95%, and the melting point of the target product was 200 ° C.

Figure 0004321174
Figure 0004321174

〔実施例A8〕
上述した実施例A1において適用した顕・減色剤を、下記化学式(12)に示す化合物に変更した。その他の条件は実施例A1と同様としサンプルを作製した。
下記化学式(12)に示す化合物の合成方法は、上記化学式(11)の顕・減色剤の合成方法における、2,4-Dihydroxybenzoic acid hydrazideを3,5-Dihydroxybenzoic acid hydrazideに変更した以外、他は同様とする。
[Example A8]
The developing / color-reducing agent applied in Example A1 described above was changed to a compound represented by the following chemical formula (12). Other conditions were the same as in Example A1, and a sample was produced.
The synthesis method of the compound represented by the following chemical formula (12) is the same as the synthesis method of the developer / color-reducing agent of the above chemical formula (11) except that 2,4-Dihydroxybenzoic acid hydrazide is changed to 3,5-Dihydroxybenzoic acid hydrazide. The same shall apply.

Figure 0004321174
Figure 0004321174

上述のようにして作製した各記録媒体のサンプルについて、記録線幅、反射濃度、記録層の透明性、及び消去特性について評価を行った。
評価方法、及び評価結果について下記に示す。
Each recording medium sample produced as described above was evaluated for recording line width, reflection density, recording layer transparency, and erasing characteristics.
Evaluation methods and evaluation results are shown below.

(記録線幅測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、300mm/sec速度でスキャンさせながら照射し、その記録線幅を測定した。
(2)また、半導体レーザー光の出力を100mWとし、スキャン速度を300mm/secとしたときの記録線幅を測定した。
(3)さらに、半導体レーザー光の出力を70mWとし、スキャン速度を150mm/secとしたときの記録線幅を測定した。
(Recording line width measurement)
(1) An arbitrary position of the sample was irradiated with a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW and a spot diameter of 80 μm while scanning at a speed of 300 mm / sec, and the recording line width was measured.
(2) Further, the recording line width was measured when the output of the semiconductor laser light was 100 mW and the scanning speed was 300 mm / sec.
(3) Further, the recording line width was measured when the output of the semiconductor laser light was 70 mW and the scanning speed was 150 mm / sec.

(反射濃度測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、スキャン速度300mm/sの条件下、10μm間隔で線を記録し、ベタ画像の記録を行った。記録したサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。なお、波長785nm、830nm、915nmのレーザー光照射時のピーク波長は、それぞれ490nm、660nm、530nmであった。
(2)また、半導体レーザー光の出力を100mWとし、スキャン速度を300mm/secとしたときのピーク波長での反射濃度を求めた。
(3)さらに、半導体レーザー光の出力を70mWとし、スキャン速度を150mm/secとしたときの反射濃度を求めた。
(Reflectance density measurement)
(1) Recording a solid image at an arbitrary position of the sample by recording a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 80 μm at a scanning speed of 300 mm / s at an interval of 10 μm. Went. The reflectance of the recorded sample was measured with a self-recording spectrophotometer equipped with an integrating sphere, and the reflection density (reflectance) at the peak wavelength was determined. In addition, the peak wavelengths at the time of laser beam irradiation with wavelengths of 785 nm, 830 nm, and 915 nm were 490 nm, 660 nm, and 530 nm, respectively.
(2) Further, the reflection density at the peak wavelength when the output of the semiconductor laser light was 100 mW and the scan speed was 300 mm / sec was obtained.
(3) Further, the reflection density was determined when the output of the semiconductor laser light was 70 mW and the scan speed was 150 mm / sec.

(記録層の透明性評価)
各記録層を単層膜厚6μmで成膜し、目視にて透明性の良いものから、◎、○、△、×と4段階に評価した。
(Evaluation of recording layer transparency)
Each recording layer was formed with a single layer thickness of 6 μm, and was evaluated in four stages: ◎, ○, Δ, × from the one with good transparency.

(消去特性評価:消去後の反射濃度測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、スキャン速度300mm/sの条件下、10μm間隔で線を記録し、ベタ画像の記録を行った。
その後サンプルに、波長785nm、830nm、915nm、出力70mW、スポット径250μmの半導体レーザー光を、200mm/secの速度でスキャンさせながら照射し、記録部を消去した。
消去後のサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。
(2)消去時に、半導体レーザー光のスキャン速度を100mm/secとし、記録部の消去を行った。消去後のサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。
(Erase characteristics evaluation: reflection density measurement after erasure)
(1) Recording a solid image at an arbitrary position of the sample by recording a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 80 μm at a scanning speed of 300 mm / s at an interval of 10 μm. Went.
Thereafter, the sample was irradiated with semiconductor laser light having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 250 μm while scanning at a speed of 200 mm / sec to erase the recording portion.
About the sample after erasure | elimination, the reflectance was measured with the self-recording spectrophotometer equipped with the integrating sphere, and the reflection density (reflectance) in a peak wavelength was calculated | required.
(2) At the time of erasing, the scanning speed of the semiconductor laser beam was set to 100 mm / sec, and the recording part was erased. About the sample after erasure | elimination, the reflectance was measured with the self-recording spectrophotometer equipped with the integrating sphere, and the reflection density (reflectance) in a peak wavelength was calculated | required.

(評価結果)
〔実施例A1〜A8〕の記録媒体について、出力70mW、スキャン速度300mm/sec、スポット径80μm、波長915nm、830nm、785nmのレーザー光を用いて、ベタ画像の記録を行ったときの、記録線幅、得られたピーク波長での反射濃度、及び記録層の透明性の評価結果を下記〔表1〕に示す。
また、出力100mW、スキャン速度300mm/secとしたときの記録線幅、得られたピーク波長での反射濃度の測定結果を下記〔表2〕に示す。
さらに、出力70mW、スキャン速度150mm/secとしたときの記録線幅、得られたピーク波長での反射濃度の測定結果を下記〔表3〕に示す。
(Evaluation results)
For the recording medium of [Examples A1 to A8], a recording line when recording a solid image using a laser beam with an output of 70 mW, a scanning speed of 300 mm / sec, a spot diameter of 80 μm, wavelengths of 915 nm, 830 nm, and 785 nm Table 1 below shows the evaluation results of the width, the reflection density at the obtained peak wavelength, and the transparency of the recording layer.
Table 2 below shows the measurement results of the recording line width when the output is 100 mW and the scanning speed is 300 mm / sec, and the obtained reflection density at the peak wavelength.
Further, the measurement results of the recording line width when the output is 70 mW and the scanning speed is 150 mm / sec and the obtained reflection density at the peak wavelength are shown in Table 3 below.

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

表1〜3に示すように、〔実施例A1〜A8〕の記録媒体において記録された線幅は、いずれの条件においても実用上充分に幅広で、優れた記録感度を有していることがわかった。
また、ベタ画像の反射濃度についてもいずれの条件においても実用上充分に高く、照射光を高い効率で熱に変換し、記録層を発色させていることが分かった。
また、〔実施例A1〜A8〕の記録媒体を構成する記録層は、透明性評価が極めて良好であった。このことから、本発明の記録媒体を構成する記録層は、溶媒及びポリマーに対し、顕・減色剤の溶解性が高く、かつ光−熱変換効率及び発色効率が高く、優れた記録感度を実現できたことがわかった。
As shown in Tables 1 to 3, the line width recorded on the recording media of [Examples A1 to A8] is sufficiently wide for practical use under any conditions and has excellent recording sensitivity. all right.
Also, it was found that the reflection density of the solid image was sufficiently high for practical use under any conditions, and the irradiation light was converted into heat with high efficiency, and the recording layer was colored.
In addition, the recording layers constituting the recording media of [Examples A1 to A8] had very good transparency evaluation. Therefore, the recording layer constituting the recording medium of the present invention has high solubility of the developer / color reducing agent, high light-heat conversion efficiency and coloring efficiency in the solvent and the polymer, and realizes excellent recording sensitivity. I understood that I was able to do it.

次に、〔実施例A1〜A8〕の記録媒体における、上記消去特性評価について、消去時の半導体レーザー光の出力を70mW、スキャン速度を200mm/sとしたときの測定結果を下記〔表4〕に示す。
また、半導体レーザー光の出力を70mW、スキャン速度を100mm/sとしたときの測定結果を下記〔表5〕に示す。
Next, with respect to the erasing characteristics evaluation in the recording media of [Examples A1 to A8], the measurement results when the output of the semiconductor laser light at the time of erasing is 70 mW and the scanning speed is 200 mm / s are shown in [Table 4] below. Shown in
The measurement results when the output of the semiconductor laser light is 70 mW and the scanning speed is 100 mm / s are shown in Table 5 below.

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

〔表4〕、〔表5〕に示すように、〔実施例A1〜A8〕の記録媒体における消去後の反射濃度は、各波長ともに0.10以下で、ほぼ無色状態であった。これは、〔実施例A1〜A8〕に用いられた記録層の透明性が良好で、光−熱変換を効率良く行うことができたため、充分な消去を行うことが可能となったためである。   As shown in [Table 4] and [Table 5], the reflection density after erasure in the recording media of [Examples A1 to A8] was 0.10 or less at each wavelength and was almost colorless. This is because the recording layers used in [Examples A1 to A8] have good transparency and can perform light-to-heat conversion efficiently, so that sufficient erasure can be performed.

〔実験B〕
〔実施例B1〕
この例においては、図1に示すように、支持基板1上に第1の記録層11、断熱層14、第2の記録層12、断熱層15、第3の記録層13、及び保護層16が順次積層された、いわゆる三層の記録層を有する可逆性多色記録媒体を作製した。
[Experiment B]
[Example B1]
In this example, as shown in FIG. 1, the first recording layer 11, the heat insulating layer 14, the second recording layer 12, the heat insulating layer 15, the third recording layer 13, and the protective layer 16 are formed on the support substrate 1. A reversible multi-color recording medium having a so-called three-layer recording layer in which are sequentially laminated is prepared.

支持基板1としては、厚さ1mmの白色のポリエチレンテレフタレート基板を用意した。次に第1の記録層11としては、支持基板1上に下記組成物をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、イエローに発色させることのできる記録層を膜厚6μmに形成した。このとき、波長915nmの光における吸光度は1.0であった。   As the support substrate 1, a white polyethylene terephthalate substrate having a thickness of 1 mm was prepared. Next, as the first recording layer 11, the following composition is applied on the support substrate 1 with a wire bar and subjected to a heat drying treatment at 110 ° C. for 5 minutes to form a recording layer capable of developing yellow. The thickness was 6 μm. At this time, the absorbance in light having a wavelength of 915 nm was 1.0.

(組成物)
ロイコ染料(フルオラン化合物:λmax=490nm):1重量部
顕・減色剤(下記化学式(13)に示す物質):4重量部
(Composition)
Leuco dye (fluorane compound: λmax = 490 nm): 1 part by weight developer / color-reducing agent (substance shown in chemical formula (13) below): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、平均分子量(M.W.)115000)
シアニン系赤外吸収色素:0.10重量部
(山本化成製、YKR−2081、記録層中での吸収波長ピーク910nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, average molecular weight (M.W.) 115000)
Cyanine infrared absorbing dye: 0.10 parts by weight (manufactured by Yamamoto Kasei, YKR-2081, absorption wavelength peak in recording layer 910 nm)
Tetrahydrofuran (THF): 140 parts by weight

上述のようにして形成した第1の記録層11上に、ポリビニルアルコール水溶液を塗布、乾燥して膜厚20μmの断熱層14を形成した。   On the first recording layer 11 formed as described above, an aqueous polyvinyl alcohol solution was applied and dried to form a heat insulating layer 14 having a thickness of 20 μm.

断熱層14上に、第2の記録層12として下記組成物をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、シアンに発色させることのできる層を膜厚6μmに形成した。このとき、波長830nmの光における吸光度は1.0であった。   On the heat insulation layer 14, the following composition was applied as a second recording layer 12 with a wire bar and subjected to a heat drying treatment at 110 ° C. for 5 minutes to form a layer capable of developing cyan in a thickness of 6 μm. . At this time, the absorbance in light having a wavelength of 830 nm was 1.0.

(組成物)
ロイコ染料:1重量部
(山田化学工業製:H−3035、下記化学式(14)に示す物質)
(Composition)
Leuco dye: 1 part by weight (manufactured by Yamada Chemical Co., Ltd .: H-3035, a substance represented by the following chemical formula (14))

Figure 0004321174
Figure 0004321174

顕・減色剤(下記化学式(13)に示す物質):4重量部 Developer / color-reducing agent (substance shown in chemical formula (13) below): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、M.W.115000)
シアニン系赤外吸収色素:0.08重量部
(山本化成製、YKR−2900、記録層中での吸収波長ピーク830nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, MW 115000)
Cyanine-based infrared absorbing dye: 0.08 parts by weight (manufactured by Yamamoto Kasei, YKR-2900, absorption wavelength peak in recording layer 830 nm)
Tetrahydrofuran (THF): 140 parts by weight

上述のようにして形成した第2の記録層12上に、ポリビニルアルコール水溶液を塗布、乾燥して膜厚20μmの断熱層15を形成した。   On the second recording layer 12 formed as described above, a polyvinyl alcohol aqueous solution was applied and dried to form a heat insulating layer 15 having a thickness of 20 μm.

断熱層15上に、第3の記録層13として下記組成物をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、マゼンダに発色させることのできる層を膜厚6μmに形成した。このとき、波長785nmの光における吸光度は1.0であった。   On the heat insulation layer 15, the following composition as a third recording layer 13 was applied with a wire bar and subjected to a heat drying treatment at 110 ° C. for 5 minutes to form a layer capable of developing magenta with a film thickness of 6 μm. . At this time, the absorbance in light having a wavelength of 785 nm was 1.0.

(組成物)
ロイコ染料:2重量部
(保土ヶ谷化学社製:Red DCF(下記化学式(15)に示す物質)
(Composition)
Leuco dye: 2 parts by weight (manufactured by Hodogaya Chemical Co., Ltd .: Red DCF (substance shown in chemical formula (15) below)

Figure 0004321174
Figure 0004321174

顕・減色剤(下記化学式(13)に示す物質):4重量部 Developer / color-reducing agent (substance shown in chemical formula (13) below): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、M.W.115000)
シアニン系赤外吸収色素:0.08重量部
(日本化薬製CY−10、記録層中での吸収波長ピーク790nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, MW 115000)
Cyanine-based infrared absorbing dye: 0.08 part by weight (Nippon Kayaku CY-10, absorption wavelength peak in recording layer 790 nm)
Tetrahydrofuran (THF): 140 parts by weight

第3の記録層13上に、紫外線硬化性樹脂を用いて膜厚約2μmの保護層16を形成し、目的とする可逆性多色記録媒体10を作製した。   A protective layer 16 having a film thickness of about 2 μm was formed on the third recording layer 13 using an ultraviolet curable resin, and the intended reversible multicolor recording medium 10 was produced.

上述のようにして作製した可逆性多色記録媒体10を、120℃に加熱したセラミックスバーを用いて一様に加熱し、第1〜第3の記録層11〜13を消色状態にしたものをサンプルとした。   The reversible multicolor recording medium 10 manufactured as described above is uniformly heated using a ceramic bar heated to 120 ° C., and the first to third recording layers 11 to 13 are decolored. Was used as a sample.

次に、第1〜第3の記録層11〜13中に含有されている化学式(13)に示した顕・減色剤の合成方法について具体的な例を示す。
攪拌機を付けた500mlのフラスコ内に、5-Aminosalicylic acidを15.3g、Stearic acidを28.4g、1-Hydroxybenzotriazoleを13.5g、N,N'-Diisopropylcarodiimide 12.6g、及びテトラヒドロフラン(THF)を250ml、それぞれ仕込み、90℃で5時間還流した。
反応終了後、反応混合物を濾過し、結晶を採取し、その後IPAにて再結晶し目的物を得た。収率は70%であった。
Next, a specific example of the method for synthesizing the developer / color-reducing agent shown in the chemical formula (13) contained in the first to third recording layers 11 to 13 will be shown.
In a 500 ml flask equipped with a stirrer, 15.3 g of 5-aminosalicylic acid, 28.4 g of stearic acid, 13.5 g of 1-hydroxybenzotriazole, 12.6 g of N, N′-Diisopropylcarodiimide, and tetrahydrofuran (THF) were added. 250 ml each was charged and refluxed at 90 ° C. for 5 hours.
After completion of the reaction, the reaction mixture was filtered to collect crystals, and then recrystallized with IPA to obtain the desired product. The yield was 70%.

〔実施例B2〕
上述した実施例B1において適用した顕・減色剤を、下記化学式(16)に示す化合物に変更した。その他の条件は実施例B1と同様とし、サンプルを作製した。
下記化学式(16)に示す化合物の合成方法は、上記化学式(13)に示した顕・減色剤の合成方法における5-Aminosalicylic acidを、4-Aminosalicylic acidに変更した以外、同様とする。
[Example B2]
The developing / color-reducing agent applied in Example B1 described above was changed to a compound represented by the following chemical formula (16). Other conditions were the same as in Example B1, and a sample was produced.
The synthesis method of the compound represented by the following chemical formula (16) is the same except that the 5-Aminosalicylic acid in the method for synthesizing the developer / color-reducing agent represented by the chemical formula (13) is changed to 4-Aminosalicylic acid.

Figure 0004321174
Figure 0004321174

〔実施例B3〕
上述した実施例B1において適用した顕・減色剤を、下記の化学式(17)に示す化合物に変更した。その他の条件は実施例B1と同様としサンプルを作製した。
下記化学式(17)に示す化合物の合成方法は、上記化学式(13)に示した顕・減色剤の合成方法における5-Aminosalicylic acidを、3-Aminosalicylic acidに変更した以外、他は同様とする。
[Example B3]
The developing / color-reducing agent applied in Example B1 described above was changed to a compound represented by the following chemical formula (17). The other conditions were the same as in Example B1, and a sample was produced.
The method for synthesizing the compound represented by the following chemical formula (17) is the same except that 5-Aminosalicylic acid in the method for synthesizing the developer / color-reducing agent represented by the chemical formula (13) is changed to 3-Aminosalicylic acid.

Figure 0004321174
Figure 0004321174

〔実施例B4〕
上述した実施例B1において適用した顕・減色剤を、下記の化学式(18)に示す化合物に変更した。その他の条件は実施例B1と同様としサンプルを作製した。
下記化学式(18)に示す化合物の合成方法は、上記化学式(13)の顕・減色剤の合成方法における5-Aminosalicylic acidを、3-Hydroxy-4aminobenzoic acidに変更した以外、他は同様とする。
[Example B4]
The developing / color-reducing agent applied in Example B1 described above was changed to a compound represented by the following chemical formula (18). The other conditions were the same as in Example B1, and a sample was produced.
The method for synthesizing the compound represented by the following chemical formula (18) is the same except that 5-Aminosalicylic acid in the method for synthesizing the developer / color-reducing agent represented by the chemical formula (13) is changed to 3-Hydroxy-4aminobenzoic acid.

Figure 0004321174
Figure 0004321174

〔実施例B5〕
上述した実施例B1において作製した可逆性多色記録媒体を、180℃に加熱したセラミックスバーを用いて加熱、続いて冷却し、第1の記録層11、第2の記録層12、および第3の記録層13を、いずれも予め発色化させたものをサンプルとした。
[Example B5]
The reversible multicolor recording medium produced in Example B1 described above was heated using a ceramic bar heated to 180 ° C., then cooled, and the first recording layer 11, the second recording layer 12, and the third recording medium were then cooled. Each of the recording layers 13 was colored in advance as a sample.

〔試験例B1〕
上述した実施例B1において適用した顕・減色剤を、下記の化学式(19)に示す化合物に変更した。その他の条件は実施例B1と同様としサンプルを作製した。
[Test Example B1]
The developing / color-reducing agent applied in Example B1 described above was changed to a compound represented by the following chemical formula (19). The other conditions were the same as in Example B1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔比較例B1〕
上述した実施例B1において適用した顕・減色剤を、下記の化学式(20)に示す化合物に変更した。その他の条件は実施例B1と同様としサンプルを作製した。
[Comparative Example B1]
The developing / color-reducing agent applied in Example B1 described above was changed to a compound represented by the following chemical formula (20). The other conditions were the same as in Example B1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔試験例B2〕
上述した実施例B1において、顕・減色剤を、下記の化学式(21)に示す化合物に変更した。その他の条件は実施例B1と同様としサンプルを作製した。
[Test Example B2]
In Example B1 described above, the developer / color reducing agent was changed to a compound represented by the following chemical formula (21). The other conditions were the same as in Example B1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔比較例B2〕
上述した実施例B1において、顕・減色剤を、下記の化学式(22)に示す化合物に変更した。その他の条件は実施例B1と同様としサンプルを作製した。
[Comparative Example B2]
In Example B1 described above, the developing / color-reducing agent was changed to a compound represented by the following chemical formula (22). The other conditions were the same as in Example B1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔試験例B3〕
上述した実施例B1において、顕・減色剤を、下記の化学式(23)に示す化合物に変更した。その他の条件は実施例B1と同様としサンプルを作製した。
[Test Example B3]
In Example B1 described above, the developer / color reducing agent was changed to a compound represented by the following chemical formula (23). The other conditions were the same as in Example B1, and a sample was produced.

Figure 0004321174
Figure 0004321174

上述のようにして作製した各記録媒体のサンプルについて、記録線幅、反射濃度、記録層の透明性、及び消去特性について評価を行った。
評価方法、及び評価結果について下記に示す。
Each recording medium sample produced as described above was evaluated for recording line width, reflection density, recording layer transparency, and erasing characteristics.
Evaluation methods and evaluation results are shown below.

(記録線幅測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、300mm/sec速度でスキャンさせながら照射し、その記録線幅を測定した。
(2)また、半導体レーザー光の出力を100mWとし、スキャン速度を300mm/secとしたときの記録線幅を測定した。
(3)さらに、半導体レーザー光の出力を70mWとし、スキャン速度を150mm/secとしたときの記録線幅を測定した。
(Recording line width measurement)
(1) An arbitrary position of the sample was irradiated with a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW and a spot diameter of 80 μm while scanning at a speed of 300 mm / sec, and the recording line width was measured.
(2) Further, the recording line width was measured when the output of the semiconductor laser light was 100 mW and the scanning speed was 300 mm / sec.
(3) Further, the recording line width was measured when the output of the semiconductor laser light was 70 mW and the scanning speed was 150 mm / sec.

(反射濃度測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、スキャン速度300mm/sの条件下、10μm間隔で線を記録し、ベタ画像の記録を行った。記録したサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。なお、波長785nm、830nm、915nmのレーザー光照射時のピーク波長は、それぞれ490nm、660nm、530nmであった。
(2)また、半導体レーザー光の出力を100mWとし、スキャン速度を300mm/secとしたときのピーク波長での反射濃度を求めた。
(3)さらに、半導体レーザー光の出力を70mWとし、スキャン速度を150mm/secとしたときの反射濃度を求めた。
(Reflectance density measurement)
(1) Recording a solid image at an arbitrary position of the sample by recording a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 80 μm at a scanning speed of 300 mm / s at an interval of 10 μm. Went. The reflectance of the recorded sample was measured with a self-recording spectrophotometer equipped with an integrating sphere, and the reflection density (reflectance) at the peak wavelength was determined. In addition, the peak wavelengths at the time of laser beam irradiation with wavelengths of 785 nm, 830 nm, and 915 nm were 490 nm, 660 nm, and 530 nm, respectively.
(2) Further, the reflection density at the peak wavelength when the output of the semiconductor laser light was 100 mW and the scan speed was 300 mm / sec was obtained.
(3) Further, the reflection density was determined when the output of the semiconductor laser light was 70 mW and the scan speed was 150 mm / sec.

(記録層の透明性評価)
各記録層を単層膜厚6μmで成膜し、目視にて透明性の良いものから、◎、○、△、×と4段階に評価した。
(Evaluation of recording layer transparency)
Each recording layer was formed with a single layer thickness of 6 μm, and was evaluated in four stages: ◎, ○, Δ, × from the one with good transparency.

(消去特性評価:消去後の反射濃度測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、スキャン速度300mm/sの条件下、10μm間隔で線を記録し、ベタ画像の記録を行った。
その後サンプルに、波長785nm、830nm、915nm、出力70mW、スポット径250μmの半導体レーザー光を、200mm/secの速度でスキャンさせながら照射し、記録部を消去した。
消去後のサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。
(2)消去時に、半導体レーザー光のスキャン速度を100mm/secとし、記録部の消去を行った。消去後のサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。
(Erase characteristics evaluation: reflection density measurement after erasure)
(1) Recording a solid image at an arbitrary position of the sample by recording a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 80 μm at a scanning speed of 300 mm / s at an interval of 10 μm. Went.
Thereafter, the sample was irradiated with semiconductor laser light having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 250 μm while scanning at a speed of 200 mm / sec to erase the recording portion.
About the sample after erasure | elimination, the reflectance was measured with the self-recording spectrophotometer equipped with the integrating sphere, and the reflection density (reflectance) in a peak wavelength was calculated | required.
(2) At the time of erasing, the scanning speed of the semiconductor laser beam was set to 100 mm / sec, and the recording part was erased. About the sample after erasure | elimination, the reflectance was measured with the self-recording spectrophotometer equipped with the integrating sphere, and the reflection density (reflectance) in a peak wavelength was calculated | required.

(評価結果)
〔実施例B1〜B4〕、〔試験例B1〜B3〕、〔比較例B1〕の記録媒体について、出力70mW、スポット径80μm、波長915nm、830nm、785nmのレーザー光を用いて、スキャン速度300mm/secにてベタ画像の記録を行ったときの、記録線幅、得られたピーク波長での反射濃度、及び記録層の透明性の評価結果を下記〔表6〕に示す。
また、出力100mW、スキャン速度300mm/secとしたときの記録線幅、得られたピーク波長での反射濃度の測定結果を下記〔表7〕に示す。
さらに、出力70mW、スキャン速度150mm/secとしたときの記録線幅、得られたピーク波長での反射濃度の測定結果を下記〔表8〕に示す。
(Evaluation results)
With respect to the recording media of [Examples B1 to B4], [Test Examples B1 to B3], and [Comparative Example B1], using a laser beam with an output of 70 mW, a spot diameter of 80 μm, wavelengths of 915 nm, 830 nm, and 785 nm, a scanning speed of 300 mm / Table 6 below shows the evaluation results of the recording line width, the reflection density at the obtained peak wavelength, and the transparency of the recording layer when a solid image was recorded in sec.
Table 7 below shows the measurement results of the recording line width when the output is 100 mW, the scanning speed is 300 mm / sec, and the obtained reflection density at the peak wavelength.
Further, the measurement results of the recording line width when the output is 70 mW and the scanning speed is 150 mm / sec and the obtained reflection density at the peak wavelength are shown in Table 8 below.

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

表6〜8に示すように、〔実施例B1〜B4〕の記録媒体において記録された線幅は、いずれの条件においても〔試験例B1〜B3〕、〔比較例B1〕と比較して広く、優れた記録感度を有していることがわかった。
また、ベタ画像の反射濃度についてもいずれの条件においても実用上充分に高く、照射光を高い効率で熱に変換し、記録層を発色させていることが分かった。
また、〔実施例B1〜B4〕の記録媒体を構成する記録層は、透明性評価が極めて良好であった。このことから、本発明の記録媒体を構成する記録層は、溶媒及びポリマーに対し、顕・減色剤の溶解性が高く、かつ光−熱変換効率及び発色効率が高く、優れた記録感度を実現できたことがわかった。
As shown in Tables 6 to 8, the line width recorded on the recording medium of [Examples B1 to B4] is wider than that of [Test Examples B1 to B3] and [Comparative Example B1] in any condition. It was found that the recording sensitivity was excellent.
Also, it was found that the reflection density of the solid image was sufficiently high for practical use under any conditions, and the irradiation light was converted into heat with high efficiency, and the recording layer was colored.
The recording layers constituting the recording media of [Examples B1 to B4] had very good transparency evaluation. Therefore, the recording layer constituting the recording medium of the present invention has high solubility of the developer / color reducing agent, high light-heat conversion efficiency and coloring efficiency in the solvent and the polymer, and realizes excellent recording sensitivity. I understood that I was able to do it.

〔試験例B1〜B3〕の記録媒体においては、半導体レーザーの条件を、パワーを70mWとしスキャン速度を300mm/sとした場合においては、表6に示すように、記録線幅が狭く、反射濃度が低くなり、充分な記録感度が得られなかったが、レーザーのパワーを100mWに上げた場合や、スキャン速度を150mm/sに遅くした場合には、〔実施例B1〜B4〕の記録媒体と同程度の記録線幅が得られ、かつ反射濃度についても良好であり、優れた記録感度が実現された。   In the recording media of [Test Examples B1 to B3], when the semiconductor laser conditions are a power of 70 mW and a scanning speed of 300 mm / s, as shown in Table 6, the recording line width is narrow and the reflection density is low. However, when the laser power was increased to 100 mW or the scan speed was decreased to 150 mm / s, the recording media of [Examples B1 to B4] The same recording line width was obtained, the reflection density was good, and excellent recording sensitivity was realized.

一方、〔比較例B1〕に示した顕・減色剤を用いた記録層は、ポリマー内での溶解性に劣り、分散白濁しており、透明性が劣化した。その結果、第3、第2、第1の記録層の順に、下層ほど記録線幅が狭くなり、感度が低下した。これは、上層の未溶解の顕・減色剤により、照射されたレーザー光が反射、散乱してしまい、光−熱変換の効率を低下させたためである。光書き込み型の感熱記録媒体において、記録層の透明性は記録感度に大きく影響を及ぼすことがわかった。   On the other hand, the recording layer using the developing / color-reducing agent shown in [Comparative Example B1] was inferior in solubility in the polymer, dispersed and clouded, and the transparency was deteriorated. As a result, in the order of the third, second, and first recording layers, the lower the recording line width, the lower the sensitivity. This is because the irradiated laser light is reflected and scattered by the undissolved developing / color-reducing agent in the upper layer, and the efficiency of light-heat conversion is lowered. It has been found that the transparency of the recording layer has a great influence on the recording sensitivity in the optical writing type thermal recording medium.

次に、〔実施例B1〕、〔試験例B1、B3〕、〔比較例B2〕の各記録媒体における、上記消去特性評価について、消去時の半導体レーザー光の出力を70mW、スキャン速度を200mm/sとしたときの測定結果を下記〔表9〕に示す。
また、半導体レーザー光の出力を70mW、スキャン速度を100mm/sとしたときの測定結果を下記〔表10〕に示す。
Next, for the erasing characteristics evaluation in the recording media of [Example B1], [Test Examples B1, B3], and [Comparative Example B2], the output of the semiconductor laser light at the time of erasing is 70 mW, and the scanning speed is 200 mm / second. The measurement results when s is shown in Table 9 below.
The measurement results when the output of the semiconductor laser light is 70 mW and the scanning speed is 100 mm / s are shown in Table 10 below.

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

表9、10に示すように、〔実施例B1〕の記録媒体における消去後の反射濃度は、各波長とも0.02以下で、ほぼ無色状態であった。これは、〔実施例B1〕に用いられた記録層の透明性が良好で、光−熱変換を効率良く行うことができたため、充分な消去を行うことが可能となったためである。   As shown in Tables 9 and 10, the reflection density after erasure in the recording medium of [Example B1] was 0.02 or less at each wavelength and was almost colorless. This is because the transparency of the recording layer used in [Example B1] was good and the light-heat conversion could be performed efficiently, so that sufficient erasure could be performed.

一方において〔比較例B2〕では、顕・減色剤の化合物のアルキル鎖長が短く、分子間の凝集力が低下したため、消去特性が悪化した。   On the other hand, in [Comparative Example B2], since the alkyl chain length of the compound of the developer / color-reducing agent was short and the cohesive force between the molecules was lowered, the erasing characteristics were deteriorated.

また、〔試験例B1、B3〕においては、分子間の凝集力が増加し、溶解性が低減したため、光−熱変換効率が低下を招来し、半導体レーザーのスキャン速度を200mm/sとした場合においては、表9に示すように消去特性が悪化したが、スキャン速度を100mm/sとした場合においては、表10に示すように、実用上充分な消去特性が得られた。   In [Test Examples B1 and B3], the cohesive force between molecules increased and the solubility was reduced, leading to a decrease in light-heat conversion efficiency, and a semiconductor laser scanning speed of 200 mm / s. In Table 1, the erasing characteristics deteriorated as shown in Table 9. However, when the scanning speed was set to 100 mm / s, practically sufficient erasing characteristics were obtained as shown in Table 10.

また、溶媒、及びポリマーに対し、溶解性が高い顕・減色剤の化合物を使用し、光-熱変換効率の高い本発明に係る記録媒体は、優れた消去特性が得られることから、〔実施例B5〕において作製した可逆性多色記録媒体を、180℃に加熱したセラミックスバーを用いて加熱し、続いて冷却し、予め発色化させた状態とし、その後、波長915nm、830nm、785nmそれぞれのレーザー光を照射し、記録部を消去することで、多色記録の記録画像を得ることが可能であることが確かめられた。
このようにして得られた画像は、〔実施例B1〕のように予め消色化させた状態から記録した多色記録画像と同等の発色性、コントラスト、精細さを示すことが確認された。
In addition, since the recording medium according to the present invention having a high light-to-heat conversion efficiency using a compound of a developer / color reducing agent having high solubility in a solvent and a polymer can obtain excellent erasing characteristics, The reversible multicolor recording medium produced in Example B5] was heated using a ceramic bar heated to 180 ° C., then cooled and pre-colored, and then each of wavelengths 915 nm, 830 nm, and 785 nm. It was confirmed that it is possible to obtain a recorded image of multicolor recording by irradiating a laser beam and erasing the recording portion.
It was confirmed that the image thus obtained showed color development, contrast, and fineness equivalent to those of a multicolor recording image recorded from a previously decolored state as in [Example B1].

〔実験C〕
〔実施例C1〕
この例においては、図1に示すように支持基板1上に第1の記録層11、断熱層14、第2の記録層12、断熱層15、第3の記録層13、及び保護層16が順次積層された、いわゆる三層の記録層を有する可逆性多色記録媒体を作製した。
[Experiment C]
[Example C1]
In this example, as shown in FIG. 1, the first recording layer 11, the heat insulating layer 14, the second recording layer 12, the heat insulating layer 15, the third recording layer 13, and the protective layer 16 are provided on the support substrate 1. A reversible multicolor recording medium having a so-called three-layer recording layer sequentially laminated was produced.

支持基板1としては、厚さ1mmの白色のポリエチレンテレフタレート基板を用意した。次に第1の記録層11としては、支持基板1上に下記組成物をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、イエローに発色させることのできる記録層を膜厚6μmに形成した。このとき、波長915nmの光における吸光度は1.0であった。   As the support substrate 1, a white polyethylene terephthalate substrate having a thickness of 1 mm was prepared. Next, as the first recording layer 11, the following composition is applied on the support substrate 1 with a wire bar and subjected to a heat drying treatment at 110 ° C. for 5 minutes to form a recording layer capable of developing yellow. The thickness was 6 μm. At this time, the absorbance in light having a wavelength of 915 nm was 1.0.

(組成物)
ロイコ染料(フルオラン化合物:λmax=490nm):1重量部
顕・減色剤(下記化学式(24)に示す物質):4重量部
(Composition)
Leuco dye (fluorane compound: λmax = 490 nm): 1 part by weight developer / color-reducing agent (substance shown in chemical formula (24) below): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、平均分子量(M.W.)115000)
シアニン系赤外吸収色素:0.10重量部
(山本化成製、YKR−2081、記録層中での吸収波長ピーク910nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, average molecular weight (M.W.) 115000)
Cyanine infrared absorbing dye: 0.10 parts by weight (manufactured by Yamamoto Kasei, YKR-2081, absorption wavelength peak in recording layer 910 nm)
Tetrahydrofuran (THF): 140 parts by weight

上述のようにして形成した第1の記録層11上に、ポリビニルアルコール水溶液を塗布、乾燥して膜厚20μmの断熱層14を形成した。   On the first recording layer 11 formed as described above, an aqueous polyvinyl alcohol solution was applied and dried to form a heat insulating layer 14 having a thickness of 20 μm.

断熱層14上に、第2の記録層12として下記組成物をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、シアンに発色させることのできる層を膜厚6μmに形成した。このとき、波長830nmの光における吸光度は1.0であった。   On the heat insulation layer 14, the following composition was applied as a second recording layer 12 with a wire bar and subjected to a heat drying treatment at 110 ° C. for 5 minutes to form a layer capable of developing cyan in a thickness of 6 μm. . At this time, the absorbance in light having a wavelength of 830 nm was 1.0.

(組成物)
ロイコ染料:1重量部
(山田化学工業製:H−3035(下記化学式(25)に示す物質)
(Composition)
Leuco dye: 1 part by weight (manufactured by Yamada Chemical Industry: H-3035 (substance shown in chemical formula (25) below)

Figure 0004321174
Figure 0004321174

顕・減色剤(下記化学式(24)に示す物質):4重量部 Developer / subtractor (substance shown in chemical formula (24) below): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、M.W.115000)
シアニン系赤外吸収色素:0.08重量部
(山本化成製、YKR−2900、記録層中での吸収波長ピーク830nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, MW 115000)
Cyanine-based infrared absorbing dye: 0.08 parts by weight (manufactured by Yamamoto Kasei, YKR-2900, absorption wavelength peak in recording layer 830 nm)
Tetrahydrofuran (THF): 140 parts by weight

上述のようにして形成した第2の記録層12上に、ポリビニルアルコール水溶液を塗布、乾燥して膜厚20μmの断熱層15を形成した。   On the second recording layer 12 formed as described above, a polyvinyl alcohol aqueous solution was applied and dried to form a heat insulating layer 15 having a thickness of 20 μm.

断熱層15上に、第3の記録層13として下記組成物をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、マゼンダに発色させることのできる層を膜厚6μmに形成した。第3の記録層13の波長785nmの光における吸光度は1.0であった。   On the heat insulation layer 15, the following composition as a third recording layer 13 was applied with a wire bar and subjected to a heat drying treatment at 110 ° C. for 5 minutes to form a layer capable of developing magenta with a film thickness of 6 μm. . The absorbance of the third recording layer 13 with light having a wavelength of 785 nm was 1.0.

(組成物)
ロイコ染料:2重量部
(保土ヶ谷化学社製:Red DCF(下記化学式(26)に示す物質)
(Composition)
Leuco dye: 2 parts by weight (manufactured by Hodogaya Chemical Co., Ltd .: Red DCF (substance represented by the following chemical formula (26))

Figure 0004321174
Figure 0004321174

顕・減色剤(下記化学式(24)に示す物質):4重量部 Developer / subtractor (substance shown in chemical formula (24) below): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、M.W.115000)
シアニン系赤外吸収色素:0.08重量部
(日本化薬製CY−10、記録層中での吸収波長ピーク790nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, MW 115000)
Cyanine-based infrared absorbing dye: 0.08 part by weight (Nippon Kayaku CY-10, absorption wavelength peak in recording layer 790 nm)
Tetrahydrofuran (THF): 140 parts by weight

第3の記録層13上に、紫外線硬化性樹脂を用いて膜厚約2μmの保護層16を形成し、目的とする可逆性多色記録媒体10を作製した。   A protective layer 16 having a film thickness of about 2 μm was formed on the third recording layer 13 using an ultraviolet curable resin, and the intended reversible multicolor recording medium 10 was produced.

上述のようにして作製した可逆性多色記録媒体10を、120℃に加熱したセラミックスバーを用いて一様に加熱し、第1〜第3の記録層11〜13を消色状態にしたものをサンプルとした。   The reversible multicolor recording medium 10 manufactured as described above is uniformly heated using a ceramic bar heated to 120 ° C., and the first to third recording layers 11 to 13 are decolored. Was used as a sample.

次に、第1〜第3の記録層11〜13中に含有されている化学式(24)に示した顕・減色剤の合成方法について具体的な例を示す。
攪拌機を付けた500mlのフラスコ内に、5-Aminosalicylic acidを15.3g、n-Octadecyl isocyanateを29.5g、及びテトラヒドロフラン(THF)を250ml、それぞれ仕込み、90℃で6時間還流した。
反応終了後、反応混合物を再結晶して目的物を得た。
収率は75%で、目的物の融点は210℃であった。
Next, a specific example of the method for synthesizing the developer / color reducing agent represented by the chemical formula (24) contained in the first to third recording layers 11 to 13 will be described.
In a 500 ml flask equipped with a stirrer, 15.3 g of 5-aminosalicylic acid, 29.5 g of n-Octadecyl isocyanate, and 250 ml of tetrahydrofuran (THF) were charged and refluxed at 90 ° C. for 6 hours.
After completion of the reaction, the reaction mixture was recrystallized to obtain the desired product.
The yield was 75%, and the melting point of the target product was 210 ° C.

〔実施例C2〕
上述した実施例C1において適用した顕・減色剤を、下記化学式(27)に示す化合物に変更した。その他の条件は実施例C1と同様とし、サンプルを作製した。
下記化学式(27)に示す化合物の合成方法は、上記化学式(24)に示した顕・減色剤の合成方法における5-Aminosalicylic acidを4-Aminosalicylic acidに変更した以外、他は同様とする。
[Example C2]
The developing / color-reducing agent applied in Example C1 described above was changed to a compound represented by the following chemical formula (27). Other conditions were the same as in Example C1, and a sample was produced.
The method for synthesizing the compound represented by the following chemical formula (27) is the same except that 5-Aminosalicylic acid in the method for synthesizing the developer / color-reducing agent represented by the chemical formula (24) is changed to 4-Aminosalicylic acid.

Figure 0004321174
Figure 0004321174

〔実施例C3〕
上述した実施例C1において適用した顕・減色剤を、下記の化学式(28)に示す化合物に変更した。その他の条件は実施例C1と同様としサンプルを作製した。
下記化学式(28)に示す化合物の合成方法は、上記化学式(24)に示した顕・減色剤の合成方法における5-Aminosalicylic acidを3-Aminosalicylic acidに変更した以外、他は同様とする。
[Example C3]
The developing / color-reducing agent applied in Example C1 was changed to the compound represented by the following chemical formula (28). The other conditions were the same as in Example C1, and a sample was produced.
The method for synthesizing the compound represented by the following chemical formula (28) is the same except that 5-Aminosalicylic acid in the method for synthesizing the developer / color-reducing agent represented by the chemical formula (24) is changed to 3-Aminosalicylic acid.

Figure 0004321174
Figure 0004321174

〔実施例C4〕
上述した実施例C1において適用した顕・減色剤を、下記の化学式(29)に示す化合物に変更した。その他の条件は実施例C1と同様としサンプルを作製した。
下記化学式(29)に示す化合物の合成方法は、上記化学式(24)の顕・減色剤の合成方法における5-Aminosalicylic acidを3-Hydroxy-4aminobenzoic acidに変更した以外、他は同様とする。
[Example C4]
The developing / color-reducing agent applied in Example C1 was changed to the compound represented by the following chemical formula (29). The other conditions were the same as in Example C1, and a sample was produced.
The synthesis method of the compound represented by the following chemical formula (29) is the same except that 5-Aminosalicylic acid in the synthesis method of the developer / color-reducing agent of the above chemical formula (24) is changed to 3-Hydroxy-4aminobenzoic acid.

Figure 0004321174
Figure 0004321174

〔実施例C5〕
上述した実施例C1において作製した可逆性多色記録媒体を、180℃に加熱したセラミックスバーを用いて加熱、続いて冷却し、第1の記録層11、第2の記録層12、および第3の記録層13を、いずれも予め発色化させたものをサンプルとした。
[Example C5]
The reversible multicolor recording medium produced in Example C1 described above was heated using a ceramic bar heated to 180 ° C., then cooled, and the first recording layer 11, the second recording layer 12, and the third recording medium were then cooled. Each of the recording layers 13 was colored in advance as a sample.

〔試験例C1〕
上述した実施例C1において適用した顕・減色剤を、下記の化学式(30)に示す化合物に変更した。その他の条件は実施例C1と同様としサンプルを作製した。
[Test Example C1]
The developing / color-reducing agent applied in Example C1 was changed to the compound represented by the following chemical formula (30). The other conditions were the same as in Example C1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔比較例C1〕
上述した実施例C1において適用した顕・減色剤を、下記の化学式(31)に示す化合物に変更した。その他の条件は実施例C1と同様としサンプルを作製した。
[Comparative Example C1]
The developing / color-reducing agent applied in Example C1 described above was changed to a compound represented by the following chemical formula (31). The other conditions were the same as in Example C1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔試験例C2〕
上述した実施例C1において、顕・減色剤を、下記の化学式(32)に示す化合物に変更した。その他の条件は実施例C1と同様としサンプルを作製した。
[Test Example C2]
In Example C1 described above, the developing / color-reducing agent was changed to a compound represented by the following chemical formula (32). The other conditions were the same as in Example C1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔比較例C2〕
上述した実施例C1において、顕・減色剤を、下記の化学式(33)に示す化合物に変更した。その他の条件は実施例C1と同様としサンプルを作製した。
[Comparative Example C2]
In Example C1 described above, the developing / color-reducing agent was changed to a compound represented by the following chemical formula (33). The other conditions were the same as in Example C1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔試験例C3〕
上述した実施例C1において、顕・減色剤を、下記の化学式(34)に示す化合物に変更した。その他の条件は実施例C1と同様としサンプルを作製した。
[Test Example C3]
In Example C1 described above, the developing / color-reducing agent was changed to a compound represented by the following chemical formula (34). The other conditions were the same as in Example C1, and a sample was produced.

Figure 0004321174
Figure 0004321174

上述のようにして作製した各記録媒体のサンプルについて、記録線幅、反射濃度、記録層の透明性、及び消去特性について評価を行った。
評価方法、及び評価結果について下記に示す。
Each recording medium sample produced as described above was evaluated for recording line width, reflection density, recording layer transparency, and erasing characteristics.
Evaluation methods and evaluation results are shown below.

(記録線幅測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、300mm/sec速度でスキャンさせながら照射し、その記録線幅を測定した。
(2)また、半導体レーザー光の出力を100mWとし、スキャン速度を300mm/secとしたときの記録線幅を測定した。
(3)さらに、半導体レーザー光の出力を70mWとし、スキャン速度を150mm/secとしたときの記録線幅を測定した。
(Recording line width measurement)
(1) An arbitrary position of the sample was irradiated with a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW and a spot diameter of 80 μm while scanning at a speed of 300 mm / sec, and the recording line width was measured.
(2) Further, the recording line width was measured when the output of the semiconductor laser light was 100 mW and the scanning speed was 300 mm / sec.
(3) Further, the recording line width was measured when the output of the semiconductor laser light was 70 mW and the scanning speed was 150 mm / sec.

(反射濃度測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、スキャン速度300mm/sの条件下、10μm間隔で線を記録し、ベタ画像の記録を行った。記録したサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。なお、波長785nm、830nm、915nmのレーザー光照射時のピーク波長は、それぞれ490nm、660nm、530nmであった。
(2)また、半導体レーザー光の出力を100mWとし、スキャン速度を300mm/secとしたときのピーク波長での反射濃度を求めた。
(3)さらに、半導体レーザー光の出力を70mWとし、スキャン速度を150mm/secとしたときの反射濃度を求めた。
(Reflectance density measurement)
(1) Recording a solid image at an arbitrary position of the sample by recording a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 80 μm at a scanning speed of 300 mm / s at an interval of 10 μm. Went. The reflectance of the recorded sample was measured with a self-recording spectrophotometer equipped with an integrating sphere, and the reflection density (reflectance) at the peak wavelength was determined. In addition, the peak wavelengths at the time of laser beam irradiation with wavelengths of 785 nm, 830 nm, and 915 nm were 490 nm, 660 nm, and 530 nm, respectively.
(2) Further, the reflection density at the peak wavelength when the output of the semiconductor laser light was 100 mW and the scan speed was 300 mm / sec was obtained.
(3) Further, the reflection density was determined when the output of the semiconductor laser light was 70 mW and the scan speed was 150 mm / sec.

(記録層の透明性評価)
各記録層を単層膜厚6μmで成膜し、目視にて透明性の良いものから、◎、○、△、×と4段階に評価した。
(Evaluation of recording layer transparency)
Each recording layer was formed with a single layer thickness of 6 μm, and was evaluated in four stages: ◎, ○, Δ, × from the one with good transparency.

(消去特性評価:消去後の反射濃度測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、スキャン速度300mm/sの条件下、10μm間隔で線を記録し、ベタ画像の記録を行った。
その後サンプルに、波長785nm、830nm、915nm、出力70mW、スポット径250μmの半導体レーザー光を、200mm/secの速度でスキャンさせながら照射し、記録部を消去した。
消去後のサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。
(2)消去時に、半導体レーザー光のスキャン速度を100mm/secとし、記録部の消去を行った。消去後のサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。
(Erase characteristics evaluation: reflection density measurement after erasure)
(1) Recording a solid image at an arbitrary position of the sample by recording a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 80 μm at a scanning speed of 300 mm / s at an interval of 10 μm. Went.
Thereafter, the sample was irradiated with semiconductor laser light having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 250 μm while scanning at a speed of 200 mm / sec to erase the recording portion.
About the sample after erasure | elimination, the reflectance was measured with the self-recording spectrophotometer equipped with the integrating sphere, and the reflection density (reflectance) in a peak wavelength was calculated | required.
(2) At the time of erasing, the scanning speed of the semiconductor laser beam was set to 100 mm / sec, and the recording part was erased. About the sample after erasure | elimination, the reflectance was measured with the self-recording spectrophotometer equipped with the integrating sphere, and the reflection density (reflectance) in a peak wavelength was calculated | required.

(評価結果)
〔実施例C1〜C4〕、〔試験例C1〜C3〕、〔比較例C1〕の記録媒体について、出力70mW、スポット径80μm、波長915nm、830nm、785nmのレーザー光を用いて、スキャン速度300mm/secにてベタ画像の記録を行ったときの、記録線幅、得られたピーク波長での反射濃度、及び記録層の透明性の評価結果を下記〔表11〕に示す。
また、出力100mW、スキャン速度300mm/secとしたときの記録線幅、得られたピーク波長での反射濃度の測定結果を下記〔表12〕に示す。
さらに、出力70mW、スキャン速度150mm/secとしたときの記録線幅、得られたピーク波長での反射濃度の測定結果を下記〔表13〕に示す。
(Evaluation results)
For the recording media of [Examples C1 to C4], [Test Examples C1 to C3], and [Comparative Example C1], using a laser beam with an output of 70 mW, a spot diameter of 80 μm, wavelengths of 915 nm, 830 nm, and 785 nm, a scanning speed of 300 mm / [Table 11] shows the evaluation results of the recording line width, the reflection density at the obtained peak wavelength, and the transparency of the recording layer when a solid image is recorded in sec.
The measurement results of the recording line width when the output is 100 mW, the scanning speed is 300 mm / sec, and the obtained reflection density at the peak wavelength are shown in Table 12 below.
Furthermore, the measurement results of the recording line width when the output is 70 mW and the scanning speed is 150 mm / sec and the obtained reflection density at the peak wavelength are shown in Table 13 below.

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

表11〜13に示すように、〔実施例C1〜C4〕の記録媒体において記録された線幅は、いずれの条件においても〔試験例C1〜C3〕、〔比較例C1〕と比較して広く、優れた記録感度を有していることがわかった。
また、ベタ画像の反射濃度についてもいずれの条件においても実用上充分に高く、照射光を高い効率で熱に変換し、記録層を発色させていることが分かった。
また、〔実施例C1〜C4〕の記録媒体を構成する記録層は、透明性評価が極めて良好であった。このことから、本発明の記録媒体を構成する記録層は、溶媒及びポリマーに対し、顕・減色剤の溶解性が高く、かつ光−熱変換効率及び発色効率が高く、優れた記録感度を実現できたことがわかった。
As shown in Tables 11 to 13, the line width recorded on the recording medium of [Examples C1 to C4] is wider than that of [Test Examples C1 to C3] and [Comparative Example C1] under any conditions. It was found that the recording sensitivity was excellent.
Also, it was found that the reflection density of the solid image was sufficiently high for practical use under any conditions, and the irradiation light was converted into heat with high efficiency, and the recording layer was colored.
The recording layers constituting the recording media of [Examples C1 to C4] had very good transparency evaluation. Therefore, the recording layer constituting the recording medium of the present invention has high solubility of the developer / color reducing agent, high light-heat conversion efficiency and coloring efficiency in the solvent and the polymer, and realizes excellent recording sensitivity. I understood that I was able to do it.

〔試験例C1〜C3〕の記録媒体においては、半導体レーザーの条件を、パワーを70mWとしスキャン速度を300mm/sとした場合においては、表11に示すように、記録線幅が狭く、反射濃度が低くなり、充分な記録感度が得られなかったが、レーザーのパワーを100mWに上げた場合や、スキャン速度を150mm/sに遅くした場合には、〔実施例C1〜C4〕の記録媒体と同程度の記録線幅が得られ、かつ反射濃度についても良好であり、優れた記録感度が実現された。 In the recording media of [Test Examples C1 to C3], as shown in Table 11, when the power of the semiconductor laser is 70 mW and the scan speed is 300 mm / s, the recording line width is narrow and the reflection density is as shown in Table 11. However, when the laser power was increased to 100 mW or the scan speed was decreased to 150 mm / s, the recording media of [Examples C1 to C4] The same recording line width was obtained, the reflection density was good, and excellent recording sensitivity was realized.

一方、〔比較例C1〕に示した顕・減色剤を用いた記録層は、ポリマー内での溶解性に劣り、分散白濁しており、透明性が劣化した。その結果、第3、第2、第1の記録層の順に、下層ほど記録線幅が狭くなり、感度が低下した。これは、上層の未溶解の顕・減色剤により、照射されたレーザー光が反射、散乱してしまい、光−熱変換の効率を低下させたためである。光書き込み型の感熱記録媒体において、記録層の透明性は記録感度に大きく影響を及ぼすことがわかった。   On the other hand, the recording layer using the developing / color-reducing agent shown in [Comparative Example C1] was inferior in solubility in the polymer, dispersed and clouded, and the transparency was deteriorated. As a result, in the order of the third, second, and first recording layers, the lower the recording line width, the lower the sensitivity. This is because the irradiated laser light is reflected and scattered by the undissolved developing / color-reducing agent in the upper layer, and the efficiency of light-heat conversion is lowered. It has been found that the transparency of the recording layer has a great influence on the recording sensitivity in the optical writing type thermal recording medium.

次に、〔実施例C1〕、〔試験例C1、C3〕、〔比較例C2〕の各記録媒体における、上記消去特性評価について、消去時の半導体レーザー光の出力を70mW、スキャン速度を200mm/sとしたときの測定結果を下記〔表14〕に示す。
また、半導体レーザー光の出力を70mW、スキャン速度を100mm/sとしたときの測定結果を下記〔表15〕に示す。
Next, for the erasing characteristics evaluation in the recording media of [Example C1], [Test Examples C1, C3], and [Comparative Example C2], the output of the semiconductor laser light at the time of erasing is 70 mW, and the scanning speed is 200 mm / The measurement results when s is shown in Table 14 below.
The measurement results when the output of the semiconductor laser light is 70 mW and the scanning speed is 100 mm / s are shown in Table 15 below.

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

表14、15に示すように、〔実施例C1〕の記録媒体における消去後の反射濃度は、各波長とも0.02以下で、ほぼ無色状態であった。これは、〔実施例C1〕に用いられた記録層の透明性が良好で、光−熱変換を効率良く行うことができ、充分な消去を行うことが可能となったためである。   As shown in Tables 14 and 15, the reflection density after erasure in the recording medium of [Example C1] was 0.02 or less at each wavelength and was almost colorless. This is because the recording layer used in [Example C1] has good transparency, can perform light-to-heat conversion efficiently, and can perform sufficient erasure.

一方において〔比較例C2〕では、顕・減色剤の化合物のアルキル鎖長が短く、分子間の凝集力が低下したため、消去特性が悪化した。   On the other hand, in [Comparative Example C2], the alkyl chain length of the compound of the developer / color-reducing agent was short and the cohesive force between the molecules was reduced, so that the erasing characteristics deteriorated.

また、〔試験例C1、C3〕においては、顕・減色剤の化合物の分子間の凝集力が増加したため溶解性が低減してしまい、半導体レーザーのスキャン速度を200mm/sとした場合においては、表14に示すように消去特性が悪化したが、スキャン速度を100mm/sとした場合においては、表15に示すように、実用上充分な消去特性が得られた。   In [Test Examples C1 and C3], the solubility between the molecules of the compound of the developer / color-reducing agent increased, so that the solubility was reduced. When the semiconductor laser scan speed was 200 mm / s, As shown in Table 14, the erasing characteristics deteriorated. However, when the scanning speed was set to 100 mm / s, practically sufficient erasing characteristics were obtained as shown in Table 15.

また、溶媒、及びポリマーに対し、溶解性が高い顕・減色剤の化合物を使用し、光-熱変換効率の高い本発明に係る記録媒体は、優れた消去特性が得られることから、〔実施例C5〕において作製した可逆性多色記録媒体を、180℃に加熱したセラミックスバーを用いて加熱し、続いて冷却し、予め発色化させた状態とし、その後、波長915nm、830nm、785nmそれぞれのレーザー光を照射し、記録部を消去することで、多色記録の記録画像を得ることが可能であることが確かめられた。
このようにして得られた画像は、〔実施例C1〕のように予め消色化させた状態から記録した多色記録画像と同等の発色性、コントラスト、精細さを示すことが確認された。
In addition, since the recording medium according to the present invention having a high light-to-heat conversion efficiency using a compound of a developer / color reducing agent having high solubility in a solvent and a polymer can obtain excellent erasing characteristics, The reversible multicolor recording medium produced in Example C5] was heated using a ceramic bar heated to 180 ° C., then cooled and pre-colored, and then each of wavelengths 915 nm, 830 nm, and 785 nm. It was confirmed that it is possible to obtain a recorded image of multicolor recording by irradiating a laser beam and erasing the recording portion.
It was confirmed that the image thus obtained showed color development, contrast, and fineness equivalent to those of a multicolor recording image recorded from a previously decolored state as in [Example C1].

〔実験D〕
〔実施例D1〕
この例においては、図1に示すように、支持基板1上に第1の記録層11、断熱層14、第2の記録層12、断熱層15、第3の記録層13、及び保護層16が順次積層された、いわゆる三層の記録層を有する可逆性多色記録媒体を作製する。
[Experiment D]
[Example D1]
In this example, as shown in FIG. 1, the first recording layer 11, the heat insulating layer 14, the second recording layer 12, the heat insulating layer 15, the third recording layer 13, and the protective layer 16 are formed on the support substrate 1. A reversible multicolor recording medium having a so-called three-layer recording layer in which are sequentially stacked.

支持基板1としては、厚さ1mmの白色のポリエチレンテレフタレート基板を用意した。次に第1の記録層11としては、支持基板1上に下記組成物をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、イエローに発色させることのできる記録層を膜厚6μmに形成した。このとき、波長915nmの光における吸光度は1.0であった。   As the support substrate 1, a white polyethylene terephthalate substrate having a thickness of 1 mm was prepared. Next, as the first recording layer 11, the following composition is applied on the support substrate 1 with a wire bar and subjected to a heat drying treatment at 110 ° C. for 5 minutes to form a recording layer capable of developing yellow. The thickness was 6 μm. At this time, the absorbance in light having a wavelength of 915 nm was 1.0.

(組成物)
ロイコ染料(フルオラン化合物:λmax=490nm):1重量部
顕・減色剤(下記化学式(35)に示す物質):4重量部
(Composition)
Leuco dye (fluoran compound: λmax = 490 nm): 1 part by weight developer / color-reducing agent (substance shown in chemical formula (35) below): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、平均分子量(M.W.)115000)
シアニン系赤外吸収色素:0.10重量部
(山本化成製、YKR−2081、記録層中での吸収波長ピーク910nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, average molecular weight (M.W.) 115000)
Cyanine infrared absorbing dye: 0.10 parts by weight (manufactured by Yamamoto Kasei, YKR-2081, absorption wavelength peak in recording layer 910 nm)
Tetrahydrofuran (THF): 140 parts by weight

上述のようにして形成した第1の記録層11上に、ポリビニルアルコール水溶液を塗布、乾燥して膜厚20μmの断熱層14を形成した。   On the first recording layer 11 formed as described above, an aqueous polyvinyl alcohol solution was applied and dried to form a heat insulating layer 14 having a thickness of 20 μm.

断熱層14上に、第2の記録層12として下記組成物をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、シアンに発色させることのできる層を膜厚6μmに形成した。このとき、波長830nmの光における吸光度は1.0であった。   On the heat insulation layer 14, the following composition was applied as a second recording layer 12 with a wire bar and subjected to a heat drying treatment at 110 ° C. for 5 minutes to form a layer capable of developing cyan in a thickness of 6 μm. . At this time, the absorbance in light having a wavelength of 830 nm was 1.0.

(組成物)
ロイコ染料:1重量部
(山田化学工業製:H−3035(下記化学式(36)に示す物質)
(Composition)
Leuco dye: 1 part by weight (manufactured by Yamada Chemical Industries: H-3035 (substance shown in chemical formula (36) below)

Figure 0004321174
Figure 0004321174

顕・減色剤(下記化学式(35)に示す物質):4重量部 Developer / color-reducing agent (substance shown in chemical formula (35) below): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、M.W.115000)
シアニン系赤外吸収色素:0.08重量部
(山本化成製、YKR−2900、記録層中での吸収波長ピーク830nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, MW 115000)
Cyanine-based infrared absorbing dye: 0.08 parts by weight (manufactured by Yamamoto Kasei, YKR-2900, absorption wavelength peak in recording layer 830 nm)
Tetrahydrofuran (THF): 140 parts by weight

上述のようにして形成した第2の記録層12上に、ポリビニルアルコール水溶液を塗布、乾燥して膜厚20μmの断熱層15を形成した。   On the second recording layer 12 formed as described above, a polyvinyl alcohol aqueous solution was applied and dried to form a heat insulating layer 15 having a thickness of 20 μm.

断熱層15上に、第3の記録層13として下記組成物をワイヤーバーで塗布し、110℃にて5分間加熱乾燥処理を施し、マゼンダに発色させることのできる層を膜厚6μmに形成した。第3の記録層13の波長785nmの光における吸光度は1.0であった。   On the heat insulation layer 15, the following composition as a third recording layer 13 was applied with a wire bar and subjected to a heat drying treatment at 110 ° C. for 5 minutes to form a layer capable of developing magenta with a film thickness of 6 μm. . The absorbance of the third recording layer 13 with light having a wavelength of 785 nm was 1.0.

(組成物)
ロイコ染料:2重量部
(保土ヶ谷化学社製:Red DCF(下記化学式(37)に示す物質)
(Composition)
Leuco dye: 2 parts by weight (manufactured by Hodogaya Chemical Co., Ltd .: Red DCF (substance represented by the following chemical formula (37))

Figure 0004321174
Figure 0004321174

顕・減色剤(下記化学式(35)に示す物質):4重量部 Developer / color-reducing agent (substance shown in chemical formula (35) below): 4 parts by weight

Figure 0004321174
Figure 0004321174

塩化ビニル酢酸ビニル共重合体:10重量部
(塩化ビニル90%、酢酸ビニル10%、M.W.115000)
シアニン系赤外吸収色素:0.08重量部
(日本化薬製CY−10、記録層中での吸収波長ピーク790nm)
テトラヒドロフラン(THF):140重量部
Vinyl chloride vinyl acetate copolymer: 10 parts by weight (90% vinyl chloride, 10% vinyl acetate, MW 115000)
Cyanine-based infrared absorbing dye: 0.08 part by weight (Nippon Kayaku CY-10, absorption wavelength peak in recording layer 790 nm)
Tetrahydrofuran (THF): 140 parts by weight

第3の記録層13上に、紫外線硬化性樹脂を用いて膜厚約2μmの保護層16を形成し、目的とする可逆性多色記録媒体10を作製した。   A protective layer 16 having a thickness of about 2 μm was formed on the third recording layer 13 using an ultraviolet curable resin, and the intended reversible multicolor recording medium 10 was produced.

上述のようにして作製した可逆性多色記録媒体10を、120℃に加熱したセラミックスバーを用いて一様に加熱し、第1〜第3の記録層11〜13を消色状態にしたものをサンプルとした。   The reversible multicolor recording medium 10 manufactured as described above is uniformly heated using a ceramic bar heated to 120 ° C., and the first to third recording layers 11 to 13 are decolored. Was used as a sample.

次に、第1〜第3の記録層11〜13中に含有されている化学式(35)に示した顕・減色剤の合成方法について具体的な例を示す。
攪拌機を付けた1000mlのフラスコ内に、5-Aminosalicylic acid:15.3g、12-Hydroxystearic acid:30.0g、Diphenylphosphoryl azide:27.5g、Triethylamine:10.1g、およびテトラヒドロフラン(THF):500mlをそれぞれ仕込み、90℃で6時間還流した。
反応終了後、反応混合物を室温まで冷却し、濾過して得られた結晶物を、IPAにて再結晶して目的物を得た。収率は55%であった。
Next, a specific example of the method for synthesizing the developer / color reducing agent represented by the chemical formula (35) contained in the first to third recording layers 11 to 13 will be described.
In a 1000 ml flask equipped with a stirrer, 5-Aminosalicylic acid: 15.3 g, 12-Hydroxystearic acid: 30.0 g, Diphenylphosphoryl azide: 27.5 g, Triethylamine: 10.1 g, and tetrahydrofuran (THF): 500 ml, respectively Charged and refluxed at 90 ° C. for 6 hours.
After completion of the reaction, the reaction mixture was cooled to room temperature and filtered to obtain a desired product by recrystallization from IPA. The yield was 55%.

〔実施例D2〕
上述した実施例D1において適用した顕・減色剤を、下記化学式(38)に示す化合物に変更した。その他の条件は実施例D1と同様とし、サンプルを作製した。
下記化学式(38)に示す化合物の合成方法は、上記化学式(35)に示した顕・減色剤の合成方法における5-Aminosalicylic acidを4-Aminosalicylic acidに変更した以外、他は同様とする。
[Example D2]
The developing / color-reducing agent applied in Example D1 described above was changed to a compound represented by the following chemical formula (38). Other conditions were the same as in Example D1, and a sample was produced.
The synthesis method of the compound represented by the following chemical formula (38) is the same except that the 5-Aminosalicylic acid in the synthesis method of the developer / color-reducing agent represented by the chemical formula (35) is changed to 4-Aminosalicylic acid.

Figure 0004321174
Figure 0004321174

〔実施例D3〕
上述した実施例D1において適用した顕・減色剤を、下記の化学式(39)に示す化合物に変更した。その他の条件は実施例D1と同様としサンプルを作製した。
下記化学式(39)に示す化合物の合成方法は、上記化学式(35)に示した顕・減色剤の合成方法における5-Aminosalicylic acidを3-Aminosalicylic acidに変更した以外、他は同様とする。
[Example D3]
The developing / color-reducing agent applied in Example D1 described above was changed to a compound represented by the following chemical formula (39). Other conditions were the same as in Example D1, and a sample was produced.
The method for synthesizing the compound represented by the following chemical formula (39) is the same except that 5-Aminosalicylic acid in the method for synthesizing the developer / color-reducing agent represented by the chemical formula (35) is changed to 3-Aminosalicylic acid.

Figure 0004321174
Figure 0004321174

〔実施例D4〕
上述した実施例D1において適用した顕・減色剤を、下記の化学式(40)に示す化合物に変更した。その他の条件は実施例D1と同様としサンプルを作製した。
下記化学式(40)に示す化合物の合成方法は、上記化学式(35)の顕・減色剤の合成方法における5-Aminosalicylic acidを、3-Hydroxy-4aminobenzoic acidに変更した以外、他は同様とする。
[Example D4]
The developing / color-reducing agent applied in Example D1 described above was changed to a compound represented by the following chemical formula (40). Other conditions were the same as in Example D1, and a sample was produced.
The synthesis method of the compound represented by the following chemical formula (40) is the same except that 5-Aminosalicylic acid in the method for synthesizing the developer / color-reducing agent of the above chemical formula (35) is changed to 3-Hydroxy-4aminobenzoic acid.

Figure 0004321174
Figure 0004321174

〔実施例D5〕
上述した実施例D1において作製した可逆性多色記録媒体を、180℃に加熱したセラミックスバーを用いて加熱、続いて冷却し、第1の記録層11、第2の記録層12、及び第3の記録層13を、いずれも予め発色化させたものをサンプルとした。
[Example D5]
The reversible multicolor recording medium produced in Example D1 described above was heated using a ceramic bar heated to 180 ° C., then cooled, and the first recording layer 11, the second recording layer 12, and the third recording medium were then cooled. Each of the recording layers 13 was colored in advance as a sample.

〔試験例D1〕
上述した実施例D1において適用した顕・減色剤を、下記の化学式(41)に示す化合物に変更した。その他の条件は実施例D1と同様としサンプルを作製した。
[Test Example D1]
The developing / color-reducing agent applied in Example D1 described above was changed to a compound represented by the following chemical formula (41). Other conditions were the same as in Example D1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔比較例D1〕
上述した実施例D1において適用した顕・減色剤を、下記の化学式(42)に示す化合物に変更した。その他の条件は実施例D1と同様としサンプルを作製した。
[Comparative Example D1]
The developing / color-reducing agent applied in Example D1 described above was changed to a compound represented by the following chemical formula (42). Other conditions were the same as in Example D1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔試験例D2〕
上述した実施例D1において、顕・減色剤を、下記の化学式(43)に示す化合物に変更した。その他の条件は実施例D1と同様としサンプルを作製した。
[Test Example D2]
In Example D1 described above, the developing / color-reducing agent was changed to a compound represented by the following chemical formula (43). Other conditions were the same as in Example D1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔比較例D2〕
上述した実施例D1において、顕・減色剤を、下記の化学式(44)に示す化合物に変更した。その他の条件は実施例D1と同様としサンプルを作製した。
[Comparative Example D2]
In Example D1 described above, the developing / color-reducing agent was changed to a compound represented by the following chemical formula (44). Other conditions were the same as in Example D1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔試験例D3〕
上述した実施例D1において、顕・減色剤を、下記の化学式(45)に示す化合物に変更した。その他の条件は実施例D1と同様としサンプルを作製した。
[Test Example D3]
In Example D1 described above, the developing / color-reducing agent was changed to a compound represented by the following chemical formula (45). Other conditions were the same as in Example D1, and a sample was produced.

Figure 0004321174
Figure 0004321174

〔試験例D4〕
上述した実施例D1において、顕・減色剤を、下記の化学式(46)に示す化合物に変更した。その他の条件は実施例D1と同様としサンプルを作製した。
[Test Example D4]
In Example D1 described above, the developer / color reducing agent was changed to the compound represented by the following chemical formula (46). Other conditions were the same as in Example D1, and a sample was produced.

Figure 0004321174
Figure 0004321174

上述のようにして作製した各記録媒体のサンプルについて、記録線幅、反射濃度、記録層の透明性、及び消去特性について評価を行った。
評価方法、及び評価結果について下記に示す。
Each recording medium sample produced as described above was evaluated for recording line width, reflection density, recording layer transparency, and erasing characteristics.
Evaluation methods and evaluation results are shown below.

(記録線幅測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、300mm/sec速度でスキャンさせながら照射し、その記録線幅を測定した。
(2)また、半導体レーザー光の出力を100mWとし、スキャン速度を300mm/secとしたときの記録線幅を測定した。
(3)さらに、半導体レーザー光の出力を70mWとし、スキャン速度を150mm/secとしたときの記録線幅を測定した。
(Recording line width measurement)
(1) An arbitrary position of the sample was irradiated with a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW and a spot diameter of 80 μm while scanning at a speed of 300 mm / sec, and the recording line width was measured.
(2) Further, the recording line width was measured when the output of the semiconductor laser light was 100 mW and the scanning speed was 300 mm / sec.
(3) Further, the recording line width was measured when the output of the semiconductor laser light was 70 mW and the scanning speed was 150 mm / sec.

(反射濃度測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、スキャン速度300mm/sの条件下、10μm間隔で線を記録し、ベタ画像の記録を行った。記録したサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。なお、波長785nm、830nm、915nmのレーザー光照射時のピーク波長は、それぞれ490nm、660nm、530nmであった。
(2)また、半導体レーザー光の出力を100mWとし、スキャン速度を300mm/secとしたときの反射濃度を求めた。
(3)さらに、半導体レーザー光の出力を70mWとし、スキャン速度を150mm/secとしたときの反射濃度を求めた。
(Reflectance density measurement)
(1) Recording a solid image at an arbitrary position of the sample by recording a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 80 μm at a scanning speed of 300 mm / s at an interval of 10 μm. Went. The reflectance of the recorded sample was measured with a self-recording spectrophotometer equipped with an integrating sphere, and the reflection density (reflectance) at the peak wavelength was determined. In addition, the peak wavelengths at the time of laser beam irradiation with wavelengths of 785 nm, 830 nm, and 915 nm were 490 nm, 660 nm, and 530 nm, respectively.
(2) The reflection density was determined when the output of the semiconductor laser light was 100 mW and the scan speed was 300 mm / sec.
(3) Further, the reflection density was determined when the output of the semiconductor laser light was 70 mW and the scan speed was 150 mm / sec.

(記録層の透明性評価)
各記録層を単層膜厚6μmで成膜し、目視にて透明性の良いものから、◎、○、△、×と4段階に評価した。
(Evaluation of recording layer transparency)
Each recording layer was formed with a single layer thickness of 6 μm, and was evaluated in four stages: ◎, ○, Δ, × from the one with good transparency.

(消去特性評価:消去後の反射濃度測定)
(1)サンプルの任意の位置に、波長785nm、830nm、915nm、出力70mW、スポット径80μmの半導体レーザー光を、スキャン速度300mm/sの条件下、10μm間隔で線を記録し、ベタ画像の記録を行った。
その後サンプルに、波長785nm、830nm、915nm、出力70mW、スポット径250μmの半導体レーザー光を、200mm/secの速度でスキャンさせながら照射し、記録部を消去した。
消去後のサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。
(2)消去時に、半導体レーザー光のスキャン速度を100mm/secとし、記録部の消去を行った。消去後のサンプルについて、積分球を装着した自記分光光度計で反射率を測定し、ピーク波長での反射濃度(反射率)を求めた。
(Erase characteristics evaluation: reflection density measurement after erasure)
(1) Recording a solid image at an arbitrary position of the sample by recording a semiconductor laser beam having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 80 μm at a scanning speed of 300 mm / s at an interval of 10 μm. Went.
Thereafter, the sample was irradiated with semiconductor laser light having a wavelength of 785 nm, 830 nm, 915 nm, an output of 70 mW, and a spot diameter of 250 μm while scanning at a speed of 200 mm / sec to erase the recording portion.
About the sample after erasure | elimination, the reflectance was measured with the self-recording spectrophotometer equipped with the integrating sphere, and the reflection density (reflectance) in a peak wavelength was calculated | required.
(2) At the time of erasing, the scanning speed of the semiconductor laser beam was set to 100 mm / sec, and the recording part was erased. About the sample after erasure | elimination, the reflectance was measured with the self-recording spectrophotometer equipped with the integrating sphere, and the reflection density (reflectance) in a peak wavelength was calculated | required.

(評価結果)
〔実施例D1〜D4〕、〔試験例D1〜D3〕、〔比較例D1〕の記録媒体について、出力70mW、スポット径80μm、波長915nm、830nm、785nmのレーザー光を用いて、スキャン速度300mm/secにてベタ画像の記録を行ったときの、記録線幅、得られたピーク波長での反射濃度、及び記録層の透明性の評価結果を下記〔表16〕に示す。
また、出力100mW、スキャン速度300mm/secとしたときの記録線幅、得られたピーク波長での反射濃度の測定結果を下記〔表17〕に示す。
さらに、出力70mW、スキャン速度150mm/secとしたときの記録線幅、得られたピーク波長での反射濃度の測定結果を下記〔表18〕に示す。
(Evaluation results)
With respect to the recording media of [Examples D1 to D4], [Test Examples D1 to D3], and [Comparative Example D1], a scanning speed of 300 mm / mm was used using a laser beam with an output of 70 mW, a spot diameter of 80 μm, wavelengths of 915 nm, 830 nm, and 785 nm. Table 16 below shows the evaluation results of the recording line width, the reflection density at the obtained peak wavelength, and the transparency of the recording layer when a solid image was recorded in sec.
The measurement results of the recording line width when the output is 100 mW, the scanning speed is 300 mm / sec, and the obtained reflection density at the peak wavelength are shown in Table 17 below.
Furthermore, the measurement results of the recording line width when the output is 70 mW and the scanning speed is 150 mm / sec and the obtained reflection density at the peak wavelength are shown in Table 18 below.

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

表16〜18に示すように、〔実施例D1〜D4〕の記録媒体において記録された線幅は、いずれの条件においても〔試験例D1〜D3〕、〔比較例D1〕と比較して広く、優れた記録感度を有していることがわかった。
また、ベタ画像の反射濃度についても、いずれの条件においても実用上充分に高く、照射光を高い効率で熱に変換し、記録層を発色させていることが分かった。
また、〔実施例D1〜D4〕の記録媒体を構成する記録層は、透明性評価が極めて良好であった。このことから、本発明の記録媒体を構成する記録層は、溶媒及びポリマーに対し、顕・減色剤の溶解性が高く、かつ光−熱変換効率及び発色効率が高く、優れた記録感度を実現できたことがわかった。
As shown in Tables 16 to 18, the line width recorded on the recording medium of [Examples D1 to D4] is wider than that of [Test Examples D1 to D3] and [Comparative Example D1] under any conditions. It was found that the recording sensitivity was excellent.
It was also found that the reflection density of the solid image was sufficiently high for practical use under any condition, and the irradiation light was converted into heat with high efficiency, and the recording layer was colored.
The recording layers constituting the recording media of [Examples D1 to D4] had very good transparency evaluation. Therefore, the recording layer constituting the recording medium of the present invention has high solubility of the developer / color reducing agent, high light-heat conversion efficiency and coloring efficiency in the solvent and the polymer, and realizes excellent recording sensitivity. I understood that I was able to do it.

〔試験例D1〜D3〕の記録媒体においては、半導体レーザーの条件を、パワーを70mWとしスキャン速度を300mm/sとした場合においては、表16に示すように、記録線幅が狭く、反射濃度が低くなり、充分な記録感度が得られなかったが、レーザーのパワーを100mWに上げた場合や、スキャン速度を150mm/sに遅くした場合には、〔実施例D1〜D4〕の記録媒体と同程度の記録線幅が得られ、かつ反射濃度についても実用上良好であった。   In the recording media of [Test Examples D1 to D3], when the conditions of the semiconductor laser are 70 mW and the scanning speed is 300 mm / s, as shown in Table 16, the recording line width is narrow and the reflection density is low. However, when the laser power was increased to 100 mW or the scan speed was decreased to 150 mm / s, the recording media of [Examples D1 to D4] The same recording line width was obtained, and the reflection density was practically good.

一方、〔比較例D1〕に示した顕・減色剤を用いた記録層は、ポリマー内での溶解性に劣り、分散白濁しており、透明性が劣化した。その結果、第3、第2、第1の記録層の順に、下層ほど記録線幅が狭くなり、感度が低下した。これは、上層の未溶解の顕・減色剤により、照射されたレーザー光が反射、散乱してしまい、光−熱変換の効率を低下させたためである。光書き込み型の感熱記録媒体において、記録層の透明性は記録感度に大きく影響を及ぼすことがわかった。   On the other hand, the recording layer using the developing / color-reducing agent shown in [Comparative Example D1] was inferior in solubility in the polymer, dispersed and clouded, and the transparency was deteriorated. As a result, in the order of the third, second, and first recording layers, the lower the recording line width, the lower the sensitivity. This is because the irradiated laser light is reflected and scattered by the undissolved developing / color-reducing agent in the upper layer, and the efficiency of light-heat conversion is lowered. It has been found that the transparency of the recording layer has a great influence on the recording sensitivity in the optical writing type thermal recording medium.

次に、〔実施例D1〕、〔試験例D1、D3、D4〕、〔比較例D2〕の各記録媒体における、上記消去特性評価について、消去時の半導体レーザー光の出力を70mW、スキャン速度を200mm/sとしたときの測定結果を下記〔表19〕に示す。
また、半導体レーザー光の出力を70mW、スキャン速度を100mm/sとしたときの測定結果を下記〔表20〕に示す。
Next, for the above erasing characteristics evaluation in the recording media of [Example D1], [Test Examples D1, D3, D4], and [Comparative Example D2], the output of the semiconductor laser light at the time of erasing is 70 mW, and the scanning speed is The measurement results at 200 mm / s are shown in [Table 19] below.
The measurement results when the output of the semiconductor laser light is 70 mW and the scanning speed is 100 mm / s are shown in Table 20 below.

Figure 0004321174
Figure 0004321174

Figure 0004321174
Figure 0004321174

表19、表20に示すように、〔実施例D1〕の記録媒体における消去後の反射濃度は、各波長とも0.02以下で、ほぼ無色状態であった。これは、〔実施例C1〕に用いられた記録層の透明性が良好で、光−熱変換を効率良く行うことができ、充分な消去を行うことが可能となったためである。   As shown in Tables 19 and 20, the reflection density after erasure in the recording medium of [Example D1] was 0.02 or less at each wavelength and was almost colorless. This is because the recording layer used in [Example C1] has good transparency, can perform light-to-heat conversion efficiently, and can perform sufficient erasure.

一方において〔比較例D2〕では、顕・減色剤の化合物のアルキル鎖長が短く、分子間の凝集力が低下したため、消去特性が悪化した。   On the other hand, in [Comparative Example D2], the alkyl chain length of the compound of the developer / color-reducing agent was short and the cohesive force between the molecules was reduced, so that the erasing characteristics were deteriorated.

〔試験例D2、D3〕においては、顕・減色剤の化合物のアルキル鎖長が長く、分子間の凝集力が増加し、溶解性が低減したため、光−熱変換効率が低下を招来し、半導体レーザーのスキャン速度を200mm/sとした場合においては、表19に示すように消去特性が悪化したが、スキャン速度を100mm/sとした場合においては、表20に示すように、実用上充分な消去特性が得られた。
また、〔試験例D4〕においては、顕・減色剤の化合物のアルキル鎖長が分岐構造を取っており、分子間の凝集力が低下したため消去特性の悪化を招来し、半導体レーザーのスキャン速度を200mm/sとした場合においては、表19に示すように消去特性が悪化したが、スキャン速度を100mm/sとした場合においては、表20に示すように、実用上充分な消去特性が得られた。
In [Test Examples D2 and D3], since the alkyl chain length of the compound of the developer / color-reducing agent is long, the cohesion between molecules is increased, and the solubility is reduced, the light-heat conversion efficiency is reduced, and the semiconductor When the laser scanning speed was set to 200 mm / s, the erasing characteristics deteriorated as shown in Table 19, but when the scanning speed was set to 100 mm / s, as shown in Table 20, it was practically sufficient. Erase characteristics were obtained.
Further, in [Test Example D4], the alkyl chain length of the compound of the developer / color-reducing agent has a branched structure, and the cohesive force between the molecules is reduced, leading to deterioration of the erasing characteristics, and the scanning speed of the semiconductor laser is increased. In the case of 200 mm / s, the erasing characteristics deteriorated as shown in Table 19, but when the scanning speed was set to 100 mm / s, practically sufficient erasing characteristics were obtained as shown in Table 20. It was.

また、溶媒、及びポリマーに対し、溶解性が高い顕・減色剤の化合物を使用し、光-熱変換効率の高い本発明に係る記録媒体は、優れた消去特性が得られることから、〔実施例D5〕において作製した可逆性多色記録媒体を、180℃に加熱したセラミックスバーを用いて加熱し、続いて冷却し、予め発色化させた状態とし、その後、波長915nm、830nm、785nmそれぞれのレーザー光を照射し、記録部を消去することで、多色記録の記録画像を得ることが可能であることが確かめられた。   In addition, since the recording medium according to the present invention having a high light-to-heat conversion efficiency using a compound of a developer / color reducing agent having high solubility in a solvent and a polymer can obtain excellent erasing characteristics, The reversible multicolor recording medium produced in Example D5] was heated using a ceramic bar heated to 180 ° C., then cooled and pre-colored, and then each of wavelengths 915 nm, 830 nm, and 785 nm. It was confirmed that it is possible to obtain a recorded image of multicolor recording by irradiating a laser beam and erasing the recording portion.

このようにして得られた画像は、〔実施例D1〕のように予め消色化させた状態から記録した多色記録画像と同等の発色性、コントラスト、精細さを示すことが確認された。   It was confirmed that the image thus obtained showed color development, contrast, and fineness equivalent to those of a multicolor recording image recorded from a previously erased state as in [Example D1].

本発明の可逆性多色記録媒体の一例の概略断面図を示す。1 shows a schematic cross-sectional view of an example of a reversible multicolor recording medium of the present invention.

符号の説明Explanation of symbols

1……支持基板、10……可逆性多色記録媒体、11……第1の記録層、12……第2の記録層、13……第3の記録層、14,15……断熱層、16……保護層

DESCRIPTION OF SYMBOLS 1 ... Support substrate, 10 ... Reversible multicolor recording medium, 11 ... 1st recording layer, 12 ... 2nd recording layer, 13 ... 3rd recording layer, 14, 15 ... Heat insulation layer , 16 …… Protective layer

Claims (5)

支持基板の面方向に、発色色調の異なる複数の可逆性感熱発色性組成物を、それぞれ含有する記録層が、分離・積層形成されてなり、
上記複数の可逆性感熱発色性組成物は、それぞれ異なる波長域の赤外線を吸収して発熱する光−熱変換材料を含有しており、
上記記録層には、電子供与性を有する呈色性化合物と、電子受容性を有する顕・減色剤とが含有されてなり、
上記電子受容性を有する顕・減色剤の少なくとも一種が、下記一般式(4)で表される化合物であり、
上記電子供与性を有する呈色性化合物と、上記電子受容性を有する顕・減色剤との間の可逆的反応により、上記記録層を発色あるいは消色の二状態に可逆的に変化するようになされている可逆性多色記録媒体。
Figure 0004321174

(R5とR6とは、これらの炭素数の合計が8〜26の炭化水素基、nは5以下の整数。)
Recording layers each containing a plurality of reversible thermosensitive color-developing compositions with different color tones in the surface direction of the support substrate are separated and laminated.
The plurality of reversible thermosensitive color-developing compositions contain light-to-heat conversion materials that generate heat by absorbing infrared rays in different wavelength ranges,
The recording layer contains a color developing compound having electron donating properties and a developer / color-reducing agent having electron accepting properties.
At least one of the above-described electron accepting developer / color-reducing agent is a compound represented by the following general formula (4):
Reversible reaction between the electron donating color former and the electron accepting developer / color-reducing agent so that the recording layer is reversibly changed into two states of color development and decoloration. A reversible multicolor recording medium.
Figure 0004321174

(R5 and R6 are hydrocarbon groups having a total carbon number of 8 to 26, and n is an integer of 5 or less.)
支持基板の面方向に、発色色調の異なる複数の可逆性感熱発色性組成物を、それぞれ含有する記録層が、分離・積層形成されてなり、
上記複数の可逆性感熱発色性組成物は、それぞれ異なる波長域の赤外線を吸収して発熱する光−熱変換材料を含有しており、
上記記録層には、電子供与性を有する呈色性化合物と、電子受容性を有する顕・減色剤とが含有されてなり、
上記電子受容性を有する顕・減色剤の少なくとも一種が、下記一般式(4)で表される化合物であり、
上記電子供与性を有する呈色性化合物と、上記電子受容性を有する顕・減色剤との間の可逆的反応により、上記記録層を発色あるいは消色の二状態に可逆的に変化するようになされている可逆性多色記録媒体を用いて、
加熱処理を施して予め上記記録層全体を消色状態にしておき、
所望の画像情報に応じ、上記記録層のうちの選択されたものに対応して選択された波長領域の赤外線を照射して露光を行い、
上記記録層を発熱せしめ、選択的に発色化させることにより、上記画像情報の記録を行う可逆性多色記録媒体の記録方法。
Figure 0004321174

(R5とR6とは、これらの炭素数の合計が8〜26の炭化水素基、nは5以下の整数。)
Recording layers each containing a plurality of reversible thermosensitive color-developing compositions with different color tones in the surface direction of the support substrate are separated and laminated.
The plurality of reversible thermosensitive color-developing compositions contain light-to-heat conversion materials that generate heat by absorbing infrared rays in different wavelength ranges,
The recording layer contains a color developing compound having electron donating properties and a developer / color-reducing agent having electron accepting properties.
At least one of the above-described electron accepting developer / color-reducing agent is a compound represented by the following general formula (4):
Reversible reaction between the electron donating color former and the electron accepting developer / color-reducing agent so that the recording layer is reversibly changed into two states of color development and decoloration. Using the reversible multicolor recording medium that has been made,
Apply heat treatment to pre-decolor the entire recording layer,
In accordance with desired image information, exposure is performed by irradiating infrared rays of a wavelength region selected corresponding to the selected one of the recording layers,
A recording method for a reversible multicolor recording medium, wherein the image information is recorded by causing the recording layer to generate heat and selectively develop color.
Figure 0004321174

(R5 and R6 are hydrocarbon groups having a total carbon number of 8 to 26, and n is an integer of 5 or less.)
支持基板の面方向に、発色色調の異なる複数の可逆性感熱発色性組成物を、それぞれ含有する記録層が、分離・積層形成されてなり、
上記複数の可逆性感熱発色性組成物は、それぞれ異なる波長域の赤外線を吸収して発熱する光−熱変換材料を含有しており、
上記記録層には、電子供与性を有する呈色性化合物と、電子受容性を有する顕・減色剤とが含有されてなり、
上記電子受容性を有する顕・減色剤の少なくとも一種が、下記一般式(4)で表される化合物であり、
上記電子供与性を有する呈色性化合物と、上記電子受容性を有する顕・減色剤との間の可逆的反応により、上記記録層を発色あるいは消色の二状態に可逆的に変化するようになされている可逆性多色記録媒体を用いて、
加熱処理を施して予め上記記録層全体を発色状態にしておき、
所望の画像情報に応じ、上記記録層のうちの選択されたものに対応して選択された波長領域の赤外線を照射して露光を行い、
上記記録層を発熱せしめ、選択的に消色化することにより、上記画像情報の記録を行う可逆性多色記録媒体の記録方法。
Figure 0004321174

(R5とR6とは、これらの炭素数の合計が8〜26の炭化水素基、nは5以下の整数。)
Recording layers each containing a plurality of reversible thermosensitive color-developing compositions with different color tones in the surface direction of the support substrate are separated and laminated.
The plurality of reversible thermosensitive color-developing compositions contain light-to-heat conversion materials that generate heat by absorbing infrared rays in different wavelength ranges,
The recording layer contains a color developing compound having electron donating properties and a developer / color-reducing agent having electron accepting properties.
At least one of the above-described electron accepting developer / color-reducing agent is a compound represented by the following general formula (4):
Reversible reaction between the electron donating color former and the electron accepting developer / color-reducing agent so that the recording layer is reversibly changed into two states of color development and decoloration. Using the reversible multicolor recording medium that has been made,
Apply heat treatment to make the entire recording layer in a colored state in advance.
In accordance with desired image information, exposure is performed by irradiating infrared rays of a wavelength region selected corresponding to the selected one of the recording layers,
A recording method for a reversible multicolor recording medium, wherein the image information is recorded by causing the recording layer to generate heat and selectively decoloring.
Figure 0004321174

(R5 and R6 are hydrocarbon groups having a total carbon number of 8 to 26, and n is an integer of 5 or less.)
上記支持基板の面方向に、上記記録層が、それぞれ断熱層を介して積層形成された請求項1に記載の可逆性多色記録媒体。 The reversible multicolor recording medium according to claim 1, wherein the recording layer is laminated in the surface direction of the support substrate via a heat insulating layer. 最表面に保護層が形成されている請求項1に記載の可逆性多色記録媒体。 The reversible multicolor recording medium according to claim 1, wherein a protective layer is formed on the outermost surface.
JP2003291513A 2002-10-24 2003-08-11 Reversible multicolor recording medium and recording method using the same Expired - Fee Related JP4321174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291513A JP4321174B2 (en) 2002-10-24 2003-08-11 Reversible multicolor recording medium and recording method using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002309087 2002-10-24
JP2002312158 2002-10-28
JP2002312159 2002-10-28
JP2003291513A JP4321174B2 (en) 2002-10-24 2003-08-11 Reversible multicolor recording medium and recording method using the same

Publications (2)

Publication Number Publication Date
JP2004168024A JP2004168024A (en) 2004-06-17
JP4321174B2 true JP4321174B2 (en) 2009-08-26

Family

ID=32719341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291513A Expired - Fee Related JP4321174B2 (en) 2002-10-24 2003-08-11 Reversible multicolor recording medium and recording method using the same

Country Status (1)

Country Link
JP (1) JP4321174B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010878B2 (en) 2006-09-07 2012-08-29 リンテック株式会社 Recording method for non-contact type rewritable recording medium
US9085527B2 (en) 2008-07-08 2015-07-21 Catabasis Pharmaceuticals, Inc. Fatty acid acylated salicylates and their uses
JP5688015B2 (en) 2008-07-08 2015-03-25 カタバシス ファーマシューティカルズ,インコーポレイテッド Fatty acid acetylated salicylates and uses thereof
WO2017187808A1 (en) 2016-04-27 2017-11-02 ソニー株式会社 Fiber aggregate, display device, and electronic device
US11590787B2 (en) 2016-11-17 2023-02-28 Sony Corporation Reversible recording medium, reversible recording medium coating, and exterior member
JP2018079672A (en) * 2016-11-18 2018-05-24 ソニー株式会社 Reversible recording medium and exterior member
WO2019124003A1 (en) 2017-12-20 2019-06-27 ソニー株式会社 Recording medium, outer packaging member, and method for recording on recording medium
WO2020003868A1 (en) * 2018-06-29 2020-01-02 ソニー株式会社 Reversible recording medium and exterior member

Also Published As

Publication number Publication date
JP2004168024A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP2005066936A (en) Reversible multi-color recording medium and recording method using this medium
US6995116B2 (en) Reversible multicolor recording medium, and recording method using the same
JP4321174B2 (en) Reversible multicolor recording medium and recording method using the same
US7560415B2 (en) Reversible multicolor recording medium and recording method using it
JP4407184B2 (en) Reversible multicolor recording medium and recording method using the same
JP4407186B2 (en) Reversible multicolor recording medium and recording method using the same
JP2006088645A (en) Reversible thermal recording medium
JP4525109B2 (en) Reversible recording medium and recording method using the same
JP2004074583A (en) Reversible multi-color recording medium and recording method using the recording medium
JP4264542B2 (en) Reversible multicolor recording medium and recording method using the same
JP4345474B2 (en) Recording method using reversible recording medium
JP2004188826A (en) Optical recording medium having reversible recording layer and recording method using the same
JP2005131909A (en) Recording medium and coloring composition
JP4466226B2 (en) Reversible thermosensitive recording medium and recording method using the same
JP4345520B2 (en) Reversible recording medium and recording method using the same
JP4345451B2 (en) Reversible multicolor recording medium and recording method using the same
JP4586353B2 (en) Recording method
JP2005131910A (en) Recording medium and coloring composition
JP2005199494A (en) Thermal recording medium and recording method using the same
JP2005131911A (en) Recording medium and coloring composition
JP4470468B2 (en) Reversible multicolor recording medium and method for producing the same
JP4470469B2 (en) Reversible multicolor recording medium and method for producing the same
JP2004203026A (en) Sheet material containing reversible multi-color recording layer, card, and recording method using them
JP2004155011A (en) Recording method with reversible multicolor recording medium
JP2006088644A (en) Reversible thermal recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees