JP4320698B2 - Multilayer coil for brushless motor - Google Patents

Multilayer coil for brushless motor Download PDF

Info

Publication number
JP4320698B2
JP4320698B2 JP2002253413A JP2002253413A JP4320698B2 JP 4320698 B2 JP4320698 B2 JP 4320698B2 JP 2002253413 A JP2002253413 A JP 2002253413A JP 2002253413 A JP2002253413 A JP 2002253413A JP 4320698 B2 JP4320698 B2 JP 4320698B2
Authority
JP
Japan
Prior art keywords
coil
terminal electrode
laminated
electrode
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002253413A
Other languages
Japanese (ja)
Other versions
JP2004096872A (en
Inventor
博之 伊藤
忠昭 蓬莱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002253413A priority Critical patent/JP4320698B2/en
Publication of JP2004096872A publication Critical patent/JP2004096872A/en
Application granted granted Critical
Publication of JP4320698B2 publication Critical patent/JP4320698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Brushless Motors (AREA)
  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、小型で薄型であり、かつ変形の少ないモータ用積層コイルに関する。
【0002】
電子機器の小型化にともない、各電子機器に用いられるモータも小型・薄型化の要求が強い。このようなモータとして例えば特開昭64−59902号には、セラミック粉末から得られたグリーンシート上に例えばスクリーン印刷技術などによりコイル導体パターンを形成してコイルシートとし、これを複数枚積層し、スルーホールによりコイル導体パターン間を導通させ、さらにコイル導体パターンとグリーンシートとを一体として焼成したブラシレスモータ用の積層コイルが開示されている。図9にその分解斜視図を示す。
【0003】
【発明が解決しようとする課題】
このような従来のコイルは、外部端子電極が形成されたグリーンシート基板60に複数のコイルシート61a、61bを積層している。コイルが形成された円形部分の厚みと外部端子電極が形成された矩形部分の厚みが異なるので、製造が困難であって、その積層コイルの形状は生産性に乏しい。また外部端子電極部分65の機械的強度を得る為に、コイル導体パターンが形成されていないグリーンシート60基板を厚く構成することが必要となり、その結果積層コイルの厚みが増加し、また外部端子電極部分65が積層コイルの面積を大きくし、その結果ブラシレスモータの外形寸法が大きくなるといった問題があった。
【0004】
また、コイル導体パターンはAgやCuなどで構成され、グリーンシートは例えばAlを主成分とする低温焼結可能なセラミック材料であって、セラミックス成分を工夫して低温焼結化させている。このようなグリーンシートとコイル導体パターンは互いに焼結収縮率が大きく、また収縮特性が異なる。一般にグリーンシートと、その表面に形成した導体パターンを一体焼成する際、まずAg,Cuなどの導体パターンを構成する導体が、そのガラス転移点に達した時点より収縮を開始する。続いてグリーンシートのセラミックスが、そのガラス転移点に達した時点より収縮を開始する。
このように収縮は導体パターンの方が先行し、導体が結晶化ピーク点を抑えると、その収縮はほぼ完了する。一方、セラミックスはその結晶化ピーク点が導体よりも更に高いため引き続き収縮し、結晶化ピーク点を迎えて収縮はほぼ完了する。
積層コイルに用いられるセラミックは、比較的低温で焼結が可能となるように、焼結の途中でガラスとなり易い成分、あるいは液相を形成しやすい成分を含んでいるため、焼結過程の後半における高密度化が進行する段階で、セラミック自体が柔らかくなり、前記セラミックと導体パターンの収縮特性の異なりによる焼結時の積層コイル内における応力の不均一な分布によって変形が生じる。
とりわけ、積層コイル内における導体パターンの配置が積層方向に非対称になっていると、導体パターンが集中している側の収縮と、集中していない側の収縮に差が生じ変形を生じていた。
そこで本発明は、小型・薄型でかつ変形の小さい積層コイルを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、導体パターンが形成されたセラミックグリーンシートを積層して一体に焼結してなる矩形平板状の積層体に、積層方向に設けられた貫通孔、前記貫通孔を中心に、前記導体パターンで形成したコイルからなる複数のコイル極が配置されたブラシレスモータ用積層コイルであって、積層体の一方の主面には、コイル極と接続する一つの入力端子電極及び複数の出力端子電極とを備え、各端子電極は前記コイル極と積層方向に実質的に重ならない積層体の隅部にそれぞれ形成され、前記主面と対向する他の主面各端子電極と積層方向に重なる部位に、焼結時の変形を抑止する変形抑止電極パターンが形成され、前記変形抑止電極パターンはコイル極と電気的接続を有さないブラシレスモータ用積層コイルである。
前記変形抑止電極パターンは前記入力端子電極及び前記出力端子電極と近似形状であるのが好ましい。本発明では積層コイルに形成される導体パターンの配置を積層方向に対称的に構成することで変形を抑制している。
また、矩形の積層コイルの一主面において、コイル極と積層方向に重複しないように主面の異なる四隅に入力端子と出力端子を形成すれば、実質的に積層コイルを大型化することが無く積層コイルを構成することが出来る。さらには、入出力端子を比較的大きく形成出来るので印刷回路基板との端子接続強度を向上させることも出来、コイル極が形成されない積層コイルの空きスペースを有効に使用することが出来る。
前記入力端子電極、出力端子電極とが積層コイルの同一主面に形成されているので、印刷回路基板(PCB)との接続を容易に、面実装化している。入力端子電極、出力端子電極は、それぞれLGA(Land Grid Array)やBGA(Ball Grid Array)とするのが好ましい。
本発明において、前記入力端子電極及び前記出力端子電極と前記変形抑止電極パターンとを、積層体に形成されたスールホール又は側面電極により接続すれば、積層コイルの両主面のどちらでも面実装可能となるので好ましい。また側面電極を形成すれば、その部分にもはんだが回り込み接続をより強固なものとすることが出来る。
【0006】
【0007】
【発明の実施の形態】
以下本発明の一実施例に係る積層コイルついて説明する。
図1は本発明の一実施態様による積層コイルの斜視図である。この積層コイルは、低温焼成が可能なセラミック材料(LTCC材料)からなる厚さ数μm〜200μmのグリーンシート上にAgやCuなどを主体とする導電ペーストを印刷してコイルとなる所望の導体パターンを形成し、導体パターンを有するグリーンシートを適宜積層し、焼成することにより複数のコイル極を一体化したものである。前記コイルを形成するグリーンシートは、占積率を上げるため20μm以下のものを使用するのが好ましい。
積層コイルは矩形板状に形成され、その主面には前記コイル極と外部回路との接続用の入力端子電極IN、出力端子電極OUT1〜3を有し、他の主面には、前記入力・出力端子電極と近似形状で、入力・出力端子電極と積層方向に重なり合う変形抑止電極パターン310a〜dが形成されている。入力端子電極IN、出力端子電極OUT1〜3は矩形の積層コイルの4隅に、積層コイルに内含するコイル極と積層方向に重なり合わないように形成される。その形状は特に限定されるものではないが、実装基板とのはんだ付け強度を確保する点から、可能な限り大きな面積で形成するのが好ましく、本実施例では略三角形の電極パターンとして形成した。そして積層コイルを対称性よく構成するように変形抑止電極パターンを前記入力端子電極、出力端子電極と重なり合い、入力端子電極、出力端子電極と近似形状で形成している。
その電極厚みも入力端子電極、出力端子電極と同様に形成するの好ましく、その厚みは8〜25μmである。本実施例においては、変形抑止電極パターンを積層コイルの主面にのみ形成しているが、コイルと同様に積層コイルに内包してもよい。そして、変形抑止電極パターンと入力端子電極、出力端子電極とを、積層コイルに内包するスルーホールや側面に形成した側面電極で電気的に接続するのが好ましい。
図5は、積層コイルの四隅の各部にキャスタレーションを形成して、そこに入力端子電極、出力端子電極が形成された主面から変形抑止電極パターンが形成された他の主面に至る側面電極を形成したものである。このように形成すれば、実装基板への実装面を適宜選択することが出来、また側面電極があれば、はんだ付けをより強固なものにすることが出来る。また前記変形抑止電極パターンは必ずしも入力端子電極、出力端子電極と近似な形状でなくてもよく、変形を抑止するような形状を積層コイルに合わせて適宜形状を設定すれば良い。
【0008】
本発明に係る積層コイルでは、前記スパイラルコイル間の絶縁体層厚みをAとし、前記入力端子電極及び前記出力端子電極が形成された主面からスパイラルコイル間の第1のコイル未形成領域の絶縁体層厚みをBとし、積層コイルの他の主面からスパイラルコイル間の第2のコイル未形成領域の絶縁層厚みをCとするとき、第1の導体パターン未形成領域の絶縁体層厚みBとスパイラルコイル間の絶縁体層厚みAとの比が1≦(B/A)≦10であり、第2のコイル未形成領域の絶縁体層厚みCとスパイラルコイル間の絶縁体層厚みAとの比が1≦(C/A)≦10であり、絶縁体層厚みBと絶縁体層厚みCが実質的に等しいことが好ましい。
第1のコイル未形成領域の絶縁体層と第2のコイル未形成領域の絶縁体層の厚みが異なると、積層コイルにおける電極パターンの対称性が損なわれ、変形量が大きくなってしまい好ましくない。また第1のコイル未形成領域の絶縁体層と第2のコイル未形成領域の絶縁層の厚さB、Cは、スパイラルコイル間の絶縁体層厚みA以上で前記厚さAの10倍以下の厚みであるのが好ましい。コイル未形成領域の絶縁層の厚さがスパイラルコイル間の絶縁体層厚みよりも薄いと、圧着時に十分な圧力を積層コイルに作用させることが出来ずに、デラミネーションなどの構造欠陥が生じたり、無理に圧着しようとすると、コイルの変形や断線、コイル間の絶縁体層にクラック等が生じたりするので好ましくない。また、絶縁体層厚みAの10倍よりも厚く形成しても、単に積層コイルが厚くなるのみであり、積層コイルを所定の厚みとするとコイルを形成する絶縁体層を減じねばならず、その結果コイル巻き数が減じ、所望のトルク特性が得られなくなるので好ましくない。
【0009】
本発明に係る積層コイルの製造方法の一例を図6及び図7を用いて説明する。まずドクターブレード法などの公知のシート成形方法により、セラミックス粉末、バインダ、及び可塑剤よりなるセラミックスラリーを、ポリエチレンテレフタレートフィルムからなるキャリアフィルム上に均一な厚さで塗布し、数十μmから数百μmのグリーンシートを形成する。そして乾燥後のグリーンシートを、キャリアシートが付いたまま所定の寸法に裁断する。
セラミックス粉末としては、例えばAlを主成分としSiO、SrO、CaO、PbO、NaO及びKOの少なくとも1種を複成分とする低温焼結可能な誘電体材料であり、また他の例では、Alを主成分としMgO、SiO及びGdOの少なくとも1種を複成分として含む低温焼結可能な誘電体材料である。また他の例では、Bi、Y、CaCO、Fe、In及びVの少なくとも1種を含む低温焼結可能な磁性セラミック材料であって、セラミックス成分を工夫して低温焼結化させている。
本実施例においては、主成分がAl,Si,Sr,Tiの酸化物で構成され、Al,Si,Sr,TiをそれぞれAl、SiO、SrO、TiOに換算し合計100質量%としたとき、Al換算で10〜60質量%、SiO2換算で25〜60質量%、SrO換算で7.5〜50質量%、TiO換算で20質量%以下のAl,Si,Sr,Tiを含有し、前記合計100質量%に対し副成分として、Bi換算で0.1〜10質量%のBiを含有する誘電体セラミックスを用いた。この誘電体セラミックスの基本特性は、誘電率が7〜9で、JIS R 1601で規定される曲げ強さ試験方法の3点曲げ(試料形状 長さ36mm、幅4mm、厚さ3mm、支点間距離30mm)による抗折強度が240MPa以上であり、ヤング率が110GPa以上であり、LTCC材料としては高い抗折強度とヤング率を備えるものである。
【0010】
このようなグリーンシートに後述するコイル(図示せず)や入出力端子等を導体パターンにより形成し、所定の順序に積層・圧着し、厚さがほぼ0.4mmの平板状積層体300とした。そして前記積層体の入力端子IN、出力端子OUT1、OUT2、OUT3、前記入力端子とコイル極との接続の為の導体パターン210、201a、201b、201cが形成された主面と反対側の主面上に前記コイル極と積層方向に重ならないが前記入力端子電極及び出力端子電極と積層方向に重なり、実質的に等しい形状の電極パターン310a、310b、310c、310dを、導体ペーストの印刷や転写により形成した。また同一面上に同相のコイル極を直列に接続する第2の接続線路300a、300b、300cを形成している。前記グリーンシートにはスルーホール(図示せず)が形成されており、シート間の導体パターンが適宜接続され、コイル極として機能するように構成される。
その後、前記積層体のモータ回転軸の回転中心となる部分を金型により打ち抜いたり、レーザ加工処理を行いφ2mmの貫通孔10を形成した。
そして、平板状積層体の主面に互いに平行な複数の分割溝とこの分割溝320と直交する複数の分割溝320を、それぞれほぼ0.1mmの深さとなるように鋼刃で刻設した。前記分割溝の深さは、分割のし易さや、取り扱い易さ等から、50μm〜300μmの範囲で適宜設定される。その後、平板状成形体を脱脂・焼結して65mm×60mm×0.3mmの積層基板300(積層コイルの集合体)とした。前記積層基板300の外表面には積層コイルの入出力端子等が形成されており、これに無電解めっきによりNiめっき、Auめっきを施した。めっき処理の後分割溝にそって分割して、外形寸法が図1に示す8mm×8mm×0.3mmのブラシレスモータ用積層コイル1とした。
【0011】
次に図2を参照して本発明の一実施例に係る積層コイルの内部構造を積層順に詳細に説明する。この積層コイルは3相駆動電源を用いるブラシレスモータ用の積層コイルであり、図3に示す等価回路を有するものである。
まず最下層の第1層の裏面には、同相のコイル極を接続するための第2の接続線路300a、300b、300cが形成されている。これら第2の接続線路はそれそれ後述するモータ回転軸の周りに等角度間隔で配置され、前記モータ回転軸を中心とする2つの円弧状部と、モータ回転軸中心から放射状に形成され前記2つ円弧状部を接続する放射状部を有している。
本実施例においては、第2の接続線路を前記のように構成してモータ回転軸の回転中心に180°で回転対称な位置に配置される同相のコイル極を接続するようにしているが、前記2つの円弧状部をモータ回転軸を中心とする円周上に配置することでモータの回転特性を阻害せず、わずかであるがトルク特性を向上させることが出来る。また前記第2の接続線路を積層体外部に形成しているが、コイル極と同様に積層体内部に導電ペーストを印刷して形成してもよい。
そして、積層コイルの主面の4隅には三角形状の変形抑止導体パターン310a、310b、310c、310dが形成されている。これらの電極パターンは、もう一方の主面に形成された入力端子電極、出力端子電極と積層方向に重なる部位に形成され、前記入力端子電極、出力端子電極と近似形状をしている。
【0012】
そして第1層には複数のコイルが形成される。前記コイルはモータ回転軸の周りに等角度間隔で配置され複数相のコイル極を形成する。第1層に形成された複数のコイルは3相のコイル極となる6つのコイル251g、252g、253g、251h、252h、253hがそれぞれ60°間隔で同一層上に形成されている。
そして、前記コイルは内周側から外周側へと時計方向に巻回され外周端部に他層のコイルと接続する為のスルーホール部(図面中黒丸で表示)を有する第1のコイル251h、252h、253hと、外周側から内周側へと時計方向に巻回され内周端部に他層のコイルと接続する為のスルーホール部が形成された第2のコイル251g、252g、253gで構成される。第1のコイルと第2のコイルはモータ回転軸の周りに図示するように交互に配置される。
本実施例においてはモータ回転軸に対して180°の回転対称の位置にあるコイルは前記第2の接続線路により電気的に直列に接続され同相のコイル極となる。すなわち第1のコイル251hと第2のコイル251gが第2の接続線路300aにより接続され、第1のコイル252hと第2のコイル252gが第2の接続線路300bにより接続され、第1のコイル253hと第2のコイル253gが第2の接続線路300cにより接続され、それぞれ異なる相のコイル極を構成する。つまり接続線路300aは図3に示す第2相のコイル極61の中点を、接続線路300bは第1相のコイル極60の中点を、そして接続線路300cは第3相のコイル極62の中点をそれぞれ構成しているのである。
【0013】
第1層の上層には、複数のコイルが形成された第2層が配置される。この複数のコイルはモータ回転軸の周りに3相のコイル極となる6つのコイル251e、252e、253e、251f、252f、253fが60°間隔で同一層上に形成されており、それぞれ4ターン巻回されたスパイラル状コイルとなっている。ここで、第1層に形成されたコイルが内周側から外周側へと時計方向に巻回された第1のコイルであれば、このコイルと積層方向に重なり合う第2層に形成されるコイルは、外周側から内周側へと時計方向に巻回された第2のコイルとして形成され、また第1層に形成されたコイルが第2のコイルであれば、その上方に配置される第2層には第1のコイルが形成され、そしてそれぞれがスルーホールにより接続され、同じ巻回方向に接続される。
【0014】
第3層は前記第1層と、第4層は前記第2層と実質的に同様に構成され、順次積層される。第1〜4層に形成され、積層方向に重なり合う同相のスパイラル状コイルは、内周側から外周側へと時計方向に巻回された第1のコイルと、前記第1のコイルの外周端と接続し外周側から内周側へと時計方向に巻回された第2のコイルとで構成して同じ巻回方向としているので、第1のコイルと第2のコイルとに一定な方向に電流が印可されるひとつのコイル極として動作する。本実施例においてはコイル極の巻数をより多くし、モータを高トルク化するように、一つのコイルで4ターン巻き回し、かつ平面的に異なる領域に形成された同相のコイル極を電気的に接続して、1相あたりのコイルの巻き数を32ターンとしている。コイルの巻き数は、コイルが形成された各層の積層数を増減すれば容易に所望のコイルの巻き数を調整することが出来る。上記のようにコイルを積層方向に対称配置し、収縮に差が極力生じない様に構成した。
【0015】
そして、その上層に積層される第5層には、コイルを形成するのと同じ導電ペーストを印刷して入力端子電極INと出力端子電極OUT1〜3と、コイル極を接続する第1の接続線路を形成した。前記第1の接続線路は前記積層体の略中央部に形成される貫通孔10を囲むように形成された環状導体部210と、前記環状導体部と入力端子との接続を行う第1の導体部200と、前記環状導体部210から延出しコイル極との接続を行う第2の導体部201a〜cとで構成される。
このようにして図4に二点破線でコイル間の接続状態を示すように、入力端子INから出力端子OUT1間に配置される第1相のコイル極60をコイル252a〜252hで形成し、入力端子INから出力端子OUT2間に配置される第2相のコイル極61をコイル251a〜251hで形成し、入力端子INから出力端子OUT3間に配置される第3相のコイル極62をコイル253a〜253hで形成した。
前記積層体の略中央部に形成された貫通孔10の中心が回転子の軸の中心とほぼ一致する。前記貫通孔10は積層体を金型により打ち抜いたり、レーザ加工などにより形成される。
以上のようにして、8mm×8mm×0.3mmのブラシレスモータ用積層コイルを作成した。なお、積層コイルの主面にオーバーコートガラスでコート層を形成するのも本発明の範囲内である。
【0016】
上記のような工程を経て、表1に示す層構成にて積層コイルを作製した。ここに示す積層コイルはすべてそのスパイラルコイル間の絶縁体層厚みをグリーシート厚みで20μmとしている。なお表中の厚みはすべてグリーシート厚みで示している。試料No.1は第1のコイルパターン未形成領域厚みAと第2のコイルパターン未形成厚みBとを異ならせて構成し、変形抑制電極パターンを有さない本発明の比較例であり、試料Noに括弧を付した。試料No.2積層構成は試料No.1と同様であるが変形抑制電極パターンを積層コイルの主面に形成した実施例であり、試料No.3は第1のコイルパターン未形成領域厚みAと第2のコイルパターン未形成厚みBとを等しく構成し、変形抑制電極パターンを有さない参考例であり、試料No.4は積層構成は試料No.3と同様であるが変形抑制電極パターンを積層コイルの主面に形成した実施例である。
【0017】
【表1】

Figure 0004320698
【0018】
表1で示した層構成を有する積層コイルの変形(反り量)を評価した。評価方法は、レーザ光線を利用して測定物の高さを非接触で測定することが出来る3次元CNC画像測定器を用い、積層コイルの入力、出力端子電極が形成された主面側を縁部と平行に100μmピッチで掃引して80×80点(6400点)測定し、その最大値と最小値の差を被測定物の反り量とした。これを各試料毎に10枚づつ測定して各試料の反り量を平均値、最大値、最小値として表2に示す。実装基板に積層コイルを直接搭載する場合には、その反り量を150μm以下とするのが好ましいが、本発明の実施例においてはすべて150μm以下の反り量とすることが出来た。
【0019】
【表2】
Figure 0004320698
【0020】
【発明の効果】
本発明によれば、小型・薄型でかつ変形の小さい積層コイルを得る事が出来る。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る積層コイルの斜視図である。
【図2】 本発明の一実施例に係る積層コイルの内部構造を示す分解図である。
【図3】 本発明の一実施例に係る積層コイルの等価回路である。
【図4】 本発明の一実施例に係る積層コイルのコイル接続状態を示す内部構造分解図である。
【図5】 本発明の他の実施例に係る積層コイルの斜視図である。
【図6】 本発明に係る積層コイルの製造方法の一例を示す積層基板の分解斜視図である。
【図7】 本発明に係る積層コイルが複数形成された積層基板の平面図である。
【図8】 本発明の一実施例に係る積層コイルを用いたブラシレスモータの断面図である
【図9】 従来の積層コイルの分解斜視図である。
【符号の説明】
1 積層コイル
10 貫通孔
60 第1のコイル極
61 第2のコイル極
62 第3のコイル極
200、201a、201b、201c、210 第1の接続線路
251a〜251h、252a〜252h、253a〜253h コイル
300a〜300c 第2のコイル
310a〜310c 変形抑止電極パターン[0001]
[Industrial application fields]
The present invention relates to a laminated coil for a motor that is small and thin and has little deformation.
[0002]
Along with the downsizing of electronic devices, motors used in each electronic device are strongly demanded to be small and thin. As such a motor, for example, in Japanese Patent Laid-Open No. 64-59902, a coil conductor pattern is formed on a green sheet obtained from ceramic powder by , for example, a screen printing technique to form a coil sheet, and a plurality of such sheets are laminated. In addition, a multilayer coil for a brushless motor is disclosed in which a coil conductor pattern is electrically connected by a through hole, and the coil conductor pattern and a green sheet are integrally fired. FIG. 9 shows an exploded perspective view thereof.
[0003]
[Problems to be solved by the invention]
In such a conventional coil, a plurality of coil sheets 61a and 61b are laminated on a green sheet substrate 60 on which external terminal electrodes are formed. Coil Runode thickness is different rectangular portion thickness and the external terminal electrodes are formed of a circular portion formed, a difficult to manufacture, the shape of the laminated coil has poor productivity. Further, in order to obtain the mechanical strength of the external terminal electrode portion 65, it is necessary to make the green sheet 60 substrate on which the coil conductor pattern is not formed thick. As a result, the thickness of the laminated coil is increased, and the external terminal electrode is increased. There is a problem that the portion 65 increases the area of the laminated coil, and as a result, the outer dimension of the brushless motor increases.
[0004]
The coil conductor pattern is made of Ag, Cu, or the like, and the green sheet is a low-temperature sinterable ceramic material mainly composed of, for example, Al 2 O 3. Yes. Such a green sheet and a coil conductor pattern have a large sintering shrinkage ratio and different shrinkage characteristics. In general, when a green sheet and a conductor pattern formed on the surface thereof are integrally fired, first, the conductor constituting the conductor pattern such as Ag, Cu starts to shrink when reaching the glass transition point. Subsequently, the ceramic of the green sheet starts to shrink when it reaches its glass transition point.
Thus, the contraction is preceded by the conductor pattern, and when the conductor suppresses the crystallization peak point, the contraction is almost completed. On the other hand, ceramics continue to shrink because the crystallization peak point is higher than that of the conductor, and the shrinkage is almost completed at the crystallization peak point.
Ceramics used in laminated coils contain components that tend to become glass during sintering or components that easily form a liquid phase so that sintering can be performed at a relatively low temperature. At the stage of increasing the density in the ceramic, the ceramic itself becomes soft, and deformation occurs due to the uneven distribution of stress in the laminated coil during sintering due to the difference in shrinkage characteristics between the ceramic and the conductor pattern.
In particular, when the arrangement of the conductor pattern in the laminated coil is asymmetric in the lamination direction, there is a difference between the contraction on the side where the conductor pattern is concentrated and the contraction on the side where the conductor pattern is not concentrated, resulting in deformation.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a laminated coil that is small and thin and has little deformation.
[0005]
[Means for Solving the Problems]
The present invention relates to a rectangular flat laminate formed by laminating ceramic green sheets on which conductor patterns are formed and integrally sintering the through holes provided in the laminating direction, with the through holes as the center. A multilayer coil for a brushless motor, in which a plurality of coil poles made of a coil formed of a conductor pattern are arranged, and one main surface of the multilayer body has one input terminal electrode and a plurality of output terminals connected to the coil pole Each terminal electrode is formed at a corner of the laminate that does not substantially overlap with the coil pole in the stacking direction, and overlaps with each terminal electrode on the other main surface facing the main surface in the stacking direction. A deformation-inhibiting electrode pattern that suppresses deformation during sintering is formed in the portion , and the deformation-inhibiting electrode pattern is a laminated coil for a brushless motor that does not have an electrical connection with a coil pole .
The deformation suppressing electrode pattern preferably has an approximate shape to the input terminal electrode and the output terminal electrode. In the present invention, deformation is suppressed by configuring the arrangement of conductor patterns formed in the laminated coil symmetrically in the laminating direction.
Further, if the input terminal and the output terminal are formed at four corners of the main surface so as not to overlap with the coil pole in the stacking direction on one main surface of the rectangular stacked coil, the stacked coil is not substantially enlarged. A laminated coil can be constructed. Furthermore, since the input / output terminals can be formed relatively large, the terminal connection strength with the printed circuit board can be improved, and the empty space of the laminated coil in which no coil pole is formed can be used effectively.
Since the input terminal electrode and the output terminal electrode are formed on the same main surface of the laminated coil, the connection to the printed circuit board (PCB) is easily surface-mounted. The input terminal electrode and the output terminal electrode are preferably LGA (Land Grid Array) and BGA (Ball Grid Array), respectively.
In the present invention, if the input terminal electrode, the output terminal electrode, and the deformation-inhibiting electrode pattern are connected by a through hole or a side electrode formed in the multilayer body, surface mounting is possible on either of the main surfaces of the multilayer coil. Therefore, it is preferable. Further, if the side electrode is formed, the solder can wrap around that portion to further strengthen the connection.
[0006]
[0007]
DETAILED DESCRIPTION OF THE INVENTION
A laminated coil according to an embodiment of the present invention will be described below.
FIG. 1 is a perspective view of a laminated coil according to an embodiment of the present invention. The laminated coil has, on a green sheet having a thickness of several μm~200μm of ceramic material which enables low-temperature co-fired (LTCC material), the desired conductor by printing a conductive paste mainly containing or Ag or Cu becomes coil A plurality of coil poles are integrated by forming a pattern, appropriately laminating green sheets having a conductor pattern, and firing. The green sheet forming the coil is preferably 20 μm or less in order to increase the space factor.
The laminated coil is formed in a rectangular plate shape, and has an input terminal electrode IN and output terminal electrodes OUT1 to OUT3 for connection between the coil pole and an external circuit on its main surface, and the input surface on the other main surface. Deformation suppression electrode patterns 310a to 310d that are approximately the same shape as the output terminal electrode and overlap the input / output terminal electrode in the stacking direction are formed. The input terminal electrode IN and the output terminal electrodes OUT1 to OUT3 are formed at the four corners of the rectangular laminated coil so as not to overlap with the coil poles included in the laminated coil in the laminating direction. Although the shape is not particularly limited, it is preferably formed in as large an area as possible from the viewpoint of securing the soldering strength with the mounting substrate. In this embodiment, the electrode pattern is formed as a substantially triangular electrode pattern. Then, the deformation suppressing electrode pattern is overlapped with the input terminal electrode and the output terminal electrode so as to constitute the laminated coil with good symmetry, and is formed in an approximate shape with the input terminal electrode and the output terminal electrode.
The electrode thickness is preferably formed in the same manner as the input terminal electrode and output terminal electrode, and the thickness is 8 to 25 μm. In the present embodiment, the deformation suppressing electrode pattern is formed only on the main surface of the laminated coil, but it may be included in the laminated coil similarly to the coil. And it is preferable to electrically connect a deformation | transformation suppression electrode pattern, an input terminal electrode, and an output terminal electrode with the through-hole enclosed in a laminated coil, or the side electrode formed in the side surface.
FIG. 5 shows a side electrode from which a castellation is formed at each of the four corners of the laminated coil and from which the main surface on which the input terminal electrode and the output terminal electrode are formed to another main surface on which the deformation suppression electrode pattern is formed. Is formed. If formed in this way, the mounting surface on the mounting substrate can be selected as appropriate, and if there are side electrodes, soldering can be made stronger. The deformation suppression electrode pattern does not necessarily have a shape approximate to that of the input terminal electrode and the output terminal electrode, and a shape that suppresses the deformation may be appropriately set according to the laminated coil.
[0008]
In the laminated coil according to the present invention, the insulation layer thickness between the spiral coils is A, and the insulation of the first coil-unformed region between the spiral coils from the main surface on which the input terminal electrode and the output terminal electrode are formed. When the body layer thickness is B and the insulation layer thickness of the second coil non-formation region between the spiral coils from the other main surface of the laminated coil is C, the insulation layer thickness B of the first conductor pattern non-formation region And the insulator layer thickness A between the spiral coils is 1 ≦ (B / A) ≦ 10, and the insulator layer thickness C in the second coil non-formation region and the insulator layer thickness A between the spiral coils are Is preferably 1 ≦ (C / A) ≦ 10, and the insulator layer thickness B and the insulator layer thickness C are preferably substantially equal.
If the thickness of the insulator layer in the first coil-unformed region and the thickness of the insulator layer in the second coil-unformed region are different, the symmetry of the electrode pattern in the laminated coil is impaired, and the deformation amount is increased. Absent. Further, the thicknesses B and C of the insulating layer in the first coil non-forming region and the insulating layer in the second coil non-forming region are not less than 10 times the thickness A but not less than the insulating layer thickness A between the spiral coils. It is preferable that it is the thickness of this. If the thickness of the insulating layer in the area where the coil is not formed is thinner than the thickness of the insulating layer between the spiral coils, sufficient pressure cannot be applied to the laminated coil during crimping, resulting in structural defects such as delamination. Forcibly crimping is not preferable because the coil is deformed or disconnected, and a crack or the like is generated in the insulating layer between the coils. Further, even if the insulating layer thickness A is formed to be thicker than 10 times, the laminated coil is merely thickened. If the laminated coil has a predetermined thickness, the insulating layer forming the coil must be reduced. As a result, the number of coil turns is reduced, and a desired torque characteristic cannot be obtained.
[0009]
An example of the manufacturing method of the laminated coil which concerns on this invention is demonstrated using FIG.6 and FIG.7. First, by a known sheet forming method such as a doctor blade method, a ceramic slurry made of ceramic powder, a binder, and a plasticizer is applied on a carrier film made of a polyethylene terephthalate film with a uniform thickness, and several tens μm to several hundreds A green sheet of μm is formed. Then, the dried green sheet is cut into a predetermined size with the carrier sheet attached.
The ceramic powder is, for example, a low-temperature sinterable dielectric material containing Al 2 O 3 as a main component and at least one of SiO 2 , SrO, CaO, PbO, Na 2 O and K 2 O as a multicomponent, In another example, a low-temperature sinterable dielectric material containing Al 2 O 3 as a main component and containing at least one of MgO, SiO 2, and GdO as a multicomponent. In another example, a low-temperature-sinterable magnetic ceramic material containing at least one of Bi 2 O 3 , Y 2 O 3 , CaCO 3 , Fe 2 O 3 , In 2 O 3 and V 2 O 5 is provided. The ceramic component is devised to be sintered at low temperature.
In this embodiment, the main component is composed of oxides of Al, Si, Sr, and Ti, and Al, Si, Sr, and Ti are converted into Al 2 O 3 , SiO 2 , SrO, and TiO 2 , respectively, and a total of 100 masses. % In terms of Al 2 O 3 , 10 to 60% by mass, 25 to 60% by mass in terms of SiO2, 7.5 to 50% by mass in terms of SrO, and 20% by mass or less in terms of TiO 2 , Al, Si, Dielectric ceramics containing Sr and Ti and containing 0.1 to 10% by mass of Bi in terms of Bi 2 O 3 were used as subcomponents with respect to the total of 100% by mass. The basic characteristics of this dielectric ceramic are a dielectric constant of 7 to 9, and a three-point bending (sample shape length 36 mm, width 4 mm, thickness 3 mm, fulcrum distance) according to the bending strength test method defined in JIS R 1601. 30 mm) has a bending strength of 240 MPa or more, a Young's modulus of 110 GPa or more, and the LTCC material has a high bending strength and a Young's modulus.
[0010]
A coil (not shown), input / output terminals, and the like, which will be described later, are formed on such a green sheet by a conductor pattern, and are laminated and pressure-bonded in a predetermined order to obtain a flat laminate 300 having a thickness of approximately 0.4 mm. . And the main surface on the opposite side to the main surface on which the conductor patterns 210, 201a, 201b, 201c for connecting the input terminal IN, the output terminals OUT1, OUT2, OUT3, the input terminal and the coil pole of the laminate are formed. The electrode patterns 310a, 310b, 310c, and 310d that do not overlap the coil pole in the stacking direction but overlap the input terminal electrode and the output terminal electrode in the stacking direction and have substantially the same shape are printed or transferred by conductor paste. Formed. In addition, second connection lines 300a, 300b, and 300c that connect in-phase coil poles in series on the same surface are formed. A through hole (not shown) is formed in the green sheet, and a conductor pattern between the sheets is appropriately connected so as to function as a coil pole.
Thereafter, a portion serving as the rotation center of the motor rotation shaft of the laminate was punched out by a mold, or laser processing was performed to form a through hole 10 having a diameter of 2 mm.
Then, a plurality of divided grooves parallel to each other and a plurality of divided grooves 320 perpendicular to the divided grooves 320 were formed on the main surface of the flat laminate with a steel blade so as to have a depth of approximately 0.1 mm. The depth of the dividing groove is appropriately set in the range of 50 μm to 300 μm from the viewpoint of easiness of dividing and handling. Thereafter, the flat molded body was degreased and sintered to obtain a laminated substrate 300 (an assembly of laminated coils) of 65 mm × 60 mm × 0.3 mm. Input / output terminals of laminated coils are formed on the outer surface of the laminated substrate 300, and Ni plating and Au plating are applied thereto by electroless plating. After the plating process, it was divided along the divided grooves to obtain a laminated coil 1 for a brushless motor having an outer dimension of 8 mm × 8 mm × 0.3 mm shown in FIG.
[0011]
Next, referring to FIG. 2, the internal structure of the laminated coil according to one embodiment of the present invention will be described in detail in the order of lamination. This laminated coil is a laminated coil for a brushless motor using a three-phase driving power source, and has an equivalent circuit shown in FIG.
First, second connection lines 300a, 300b, and 300c for connecting in-phase coil poles are formed on the back surface of the lowermost first layer. These second connection lines are arranged at equiangular intervals around a motor rotation shaft, which will be described later, and are formed by two arcuate portions centering on the motor rotation shaft and radially formed from the center of the motor rotation shaft. It has a radial part connecting the two arcuate parts.
In this embodiment, the second connection line is configured as described above, and the in-phase coil poles arranged at the rotationally symmetric position at 180 ° are connected to the rotation center of the motor rotation shaft. By arranging the two arcuate portions on the circumference around the motor rotation axis, the torque characteristics can be improved to a slight extent without hindering the rotation characteristics of the motor. Moreover, although the said 2nd connection line is formed in the laminated body exterior, you may print and form a conductive paste inside a laminated body similarly to a coil pole.
Triangular deformation suppressing conductor patterns 310a, 310b, 310c, and 310d are formed at the four corners of the main surface of the laminated coil. These electrode patterns are formed in a portion overlapping the input terminal electrode and output terminal electrode formed on the other main surface in the stacking direction, and have an approximate shape to the input terminal electrode and output terminal electrode.
[0012]
A plurality of coils are formed on the first layer. The coils are arranged at equiangular intervals around the motor rotation shaft to form a multi-phase coil pole. In the plurality of coils formed in the first layer, six coils 251g, 252g, 253g, 251h, 252h, and 253h serving as three-phase coil poles are formed on the same layer at intervals of 60 °.
The first coil 251h having a through-hole portion (indicated by a black circle in the drawing) wound in the clockwise direction from the inner peripheral side to the outer peripheral side and connected to the coil of the other layer at the outer peripheral end, 252h, 253h, and second coils 251g, 252g, 253g wound in a clockwise direction from the outer peripheral side to the inner peripheral side and having a through-hole portion for connecting to the coil of the other layer at the inner peripheral end portion Composed. The first coil and the second coil are alternately arranged around the motor rotation axis as shown in the figure.
In the present embodiment, the coils at a rotationally symmetric position of 180 ° with respect to the motor rotation shaft are electrically connected in series by the second connection line to form in-phase coil poles. That is, the first coil 251h and the second coil 251g are connected by the second connection line 300a, the first coil 252h and the second coil 252g are connected by the second connection line 300b, and the first coil 253h. And the second coil 253g are connected by the second connection line 300c to constitute coil poles of different phases. That is, the connection line 300a is the midpoint of the second phase coil pole 61 shown in FIG. 3, the connection line 300b is the midpoint of the first phase coil pole 60, and the connection line 300c is the third phase coil pole 62. Each of the midpoints is configured.
[0013]
A second layer on which a plurality of coils are formed is disposed on the first layer. The plurality of coils are formed by forming six coils 251e, 252e, 253e, 251f, 252f, and 253f on the same layer at intervals of 60 ° around the rotation axis of the motor, and winding them by four turns. It is a spiral coil that is turned. Here, if the coil formed in the first layer is the first coil wound clockwise from the inner peripheral side to the outer peripheral side, the coil formed in the second layer overlapping with this coil in the stacking direction Is formed as a second coil wound clockwise from the outer peripheral side to the inner peripheral side, and if the coil formed on the first layer is the second coil, the second coil is disposed above the second coil. A first coil is formed in the two layers, and each is connected by a through hole and connected in the same winding direction.
[0014]
The third layer is configured in the same manner as the first layer and the fourth layer is substantially the same as the second layer, and are sequentially stacked. A spiral coil of the same phase formed in the first to fourth layers and overlapping in the stacking direction includes a first coil wound clockwise from the inner peripheral side to the outer peripheral side, and an outer peripheral end of the first coil. Since it is composed of a second coil that is connected and wound in the clockwise direction from the outer peripheral side to the inner peripheral side, the same winding direction is used, so that the current flows in a constant direction between the first coil and the second coil. It operates as one coil pole to which is applied. In the present embodiment, in order to increase the number of turns of the coil pole and increase the motor torque, the coil poles of the same phase formed in different areas in a plane are electrically wound with one coil for four turns. Connected, the number of coil turns per phase is 32 turns. As for the number of turns of the coil, the desired number of turns of the coil can be easily adjusted by increasing or decreasing the number of layers of each layer on which the coil is formed. As described above, the coils are symmetrically arranged in the stacking direction so that a difference in contraction does not occur as much as possible.
[0015]
Then, on the fifth layer laminated thereon, the same conductive paste as that for forming the coil is printed to connect the input terminal electrode IN, the output terminal electrodes OUT1 to OUT3, and the coil electrode, the first connection line. Formed. The first connection line is an annular conductor portion 210 formed so as to surround the through hole 10 formed in a substantially central portion of the multilayer body, and a first conductor that connects the annular conductor portion and the input terminal. Part 200 and second conductor parts 201a to 201c extending from the annular conductor part 210 and connected to the coil pole.
In this manner, as shown in FIG. 4 by the two-dot broken line, the connection state between the coils is shown, and the first phase coil pole 60 disposed between the input terminal IN and the output terminal OUT1 is formed by the coils 252a to 252h. A second-phase coil pole 61 disposed between the terminal IN and the output terminal OUT2 is formed by the coils 251a to 251h, and a third-phase coil pole 62 disposed between the input terminal IN and the output terminal OUT3 is defined as the coils 253a to 253a. Formed in 253 h.
The center of the through hole 10 formed in the substantially central portion of the laminate substantially coincides with the center of the rotor shaft. The through-hole 10 is formed by punching the laminate with a mold, laser processing, or the like.
As described above, an 8 mm × 8 mm × 0.3 mm laminated coil for a brushless motor was produced. In addition, it is also within the scope of the present invention to form a coat layer with overcoat glass on the main surface of the laminated coil.
[0016]
Through the steps as described above, a laminated coil was manufactured with the layer structure shown in Table 1. In all the laminated coils shown here, the insulator layer thickness between the spiral coils is set to 20 μm in terms of the thickness of the green sheet. In addition, all the thickness in a table | surface is shown by the greece sheet thickness. Sample No. Reference numeral 1 is a comparative example of the present invention in which the first coil pattern non-formed region thickness A and the second coil pattern non-formed thickness B are different from each other and does not have a deformation suppressing electrode pattern. Was attached. Sample No. Stacked configuration of the two-sample No. 1 is an example in which a deformation suppressing electrode pattern is formed on the main surface of the laminated coil. 3 is a reference example in which the first coil pattern non-formed region thickness A and the second coil pattern non-formed thickness B are configured to be equal and have no deformation suppression electrode pattern. No. 4 shows the stacking structure of Sample No. 3 is an example in which a deformation suppressing electrode pattern is formed on the main surface of the laminated coil.
[0017]
[Table 1]
Figure 0004320698
[0018]
The deformation (the amount of warpage) of the laminated coil having the layer configuration shown in Table 1 was evaluated. The evaluation method uses a three-dimensional CNC image measuring device that can measure the height of the object to be measured in a non-contact manner using a laser beam, and borders the main surface side where the input and output terminal electrodes of the laminated coil are formed. Sweep at a pitch of 100 μm parallel to the part and measured 80 × 80 points (6400 points), and the difference between the maximum value and the minimum value was taken as the amount of warpage of the object to be measured. This is measured for every 10 samples, and the warpage amount of each sample is shown in Table 2 as an average value, a maximum value, and a minimum value. When the laminated coil is directly mounted on the mounting substrate, the amount of warpage is preferably 150 μm or less, but in all the examples of the present invention, the amount of warpage could be 150 μm or less.
[0019]
[Table 2]
Figure 0004320698
[0020]
【The invention's effect】
According to the present invention, it is possible to obtain a laminated coil that is small and thin and has little deformation.
[Brief description of the drawings]
FIG. 1 is a perspective view of a laminated coil according to an embodiment of the present invention.
FIG. 2 is an exploded view showing an internal structure of a laminated coil according to an embodiment of the present invention.
FIG. 3 is an equivalent circuit of a laminated coil according to an embodiment of the present invention.
FIG. 4 is an internal structure exploded view showing a coil connection state of a laminated coil according to an embodiment of the present invention.
FIG. 5 is a perspective view of a laminated coil according to another embodiment of the present invention.
FIG. 6 is an exploded perspective view of a multilayer substrate showing an example of a method for manufacturing a multilayer coil according to the present invention.
FIG. 7 is a plan view of a multilayer substrate on which a plurality of multilayer coils according to the present invention are formed.
FIG. 8 is a cross-sectional view of a brushless motor using a laminated coil according to an embodiment of the present invention. FIG. 9 is an exploded perspective view of a conventional laminated coil.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Laminated coil 10 Through-hole 60 1st coil pole 61 2nd coil pole 62 3rd coil pole 200, 201a, 201b, 201c, 210 1st connection line 251a-251h, 252a-252h, 253a-253h Coil 300a to 300c Second coils 310a to 310c Deformation inhibiting electrode pattern

Claims (3)

導体パターンが形成されたセラミックグリーンシートを積層して一体に焼結してなる矩形平板状の積層体に、積層方向に設けられた貫通孔、前記貫通孔を中心に、前記導体パターンで形成したコイルからなる複数のコイル極が配置されたブラシレスモータ用積層コイルであって
積層体の一方の主面には、コイル極と接続する一つの入力端子電極及び複数の出力端子電極とを備え、各端子電極は前記コイル極と積層方向に実質的に重ならない積層体の隅部にそれぞれ形成され、前記主面と対向する他の主面各端子電極と積層方向に重なる部位に、焼結時の変形を抑止する変形抑止電極パターンが形成され
前記変形抑止電極パターンはコイル極と電気的接続を有さないことを特徴とするブラシレスモータ用積層コイル。
A rectangular plate-shaped laminate formed by sintering integrally with the laminated ceramic green sheets with the conductor pattern is formed, at the center a through hole provided, the through holes in the stacking direction, formed in the conductor pattern A laminated coil for a brushless motor in which a plurality of coil poles made of a coil are arranged,
One main surface of the laminate is provided with one input terminal electrode and a plurality of output terminal electrodes connected to the coil pole, and each terminal electrode is a corner of the laminate that does not substantially overlap the coil pole in the stacking direction. A deformation-inhibiting electrode pattern that suppresses deformation during sintering is formed on each of the portions and overlaps with each terminal electrode on the other main surface facing the main surface in the stacking direction ,
The deformation inhibiting electrode pattern does not have an electrical connection with a coil pole, and is a laminated coil for a brushless motor.
前記変形抑止電極パターンは、前記入力端子電極及び前記出力端子電極と近似形状に形成されることを特徴とする請求項1に記載のブラシレスモータ用積層コイル。  The multilayer coil for a brushless motor according to claim 1, wherein the deformation suppression electrode pattern is formed in an approximate shape with the input terminal electrode and the output terminal electrode. 前記入力端子電極及び前記出力端子電極と前記変形抑止電極パターンとが、積層体に形成されたスールホール又は側面電極により接続されることを特徴とする請求項1又は2に記載のブラシレスモータ用積層コイル。  The brushless motor laminate according to claim 1, wherein the input terminal electrode, the output terminal electrode, and the deformation suppressing electrode pattern are connected by a through hole or a side electrode formed in the laminate. coil.
JP2002253413A 2002-08-30 2002-08-30 Multilayer coil for brushless motor Expired - Fee Related JP4320698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253413A JP4320698B2 (en) 2002-08-30 2002-08-30 Multilayer coil for brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253413A JP4320698B2 (en) 2002-08-30 2002-08-30 Multilayer coil for brushless motor

Publications (2)

Publication Number Publication Date
JP2004096872A JP2004096872A (en) 2004-03-25
JP4320698B2 true JP4320698B2 (en) 2009-08-26

Family

ID=32059416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253413A Expired - Fee Related JP4320698B2 (en) 2002-08-30 2002-08-30 Multilayer coil for brushless motor

Country Status (1)

Country Link
JP (1) JP4320698B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219999A (en) * 2007-03-01 2008-09-18 Mitsuba Corp Brushless motor
JP2011041414A (en) * 2009-08-14 2011-02-24 Jianzhun Electric Mach Ind Co Ltd Miniature motor
US10340760B2 (en) 2017-01-11 2019-07-02 Infinitum Electric Inc. System and apparatus for segmented axial field rotary energy device
US10186922B2 (en) 2017-01-11 2019-01-22 Infinitum Electric Inc. System and apparatus for axial field rotary energy device
US11177726B2 (en) 2017-01-11 2021-11-16 Infinitum Electric, Inc. System and apparatus for axial field rotary energy device
WO2019190959A1 (en) 2018-03-26 2019-10-03 Infinitum Electric Inc. System and apparatus for axial field rotary energy device
JP7259545B2 (en) * 2019-05-24 2023-04-18 株式会社村田製作所 Laminated coil parts
US11283319B2 (en) 2019-11-11 2022-03-22 Infinitum Electric, Inc. Axial field rotary energy device with PCB stator having interleaved PCBS
US20210218304A1 (en) 2020-01-14 2021-07-15 Infinitum Electric, Inc. Axial field rotary energy device having pcb stator and variable frequency drive
US11482908B1 (en) 2021-04-12 2022-10-25 Infinitum Electric, Inc. System, method and apparatus for direct liquid-cooled axial flux electric machine with PCB stator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186940A (en) * 1981-05-13 1982-11-17 Kangiyou Denki Kiki Kk Coil for small sized motor
JPS60194303U (en) * 1984-06-01 1985-12-24 旭化成株式会社 Planar coil pattern
JPH1167554A (en) * 1997-08-26 1999-03-09 Murata Mfg Co Ltd Laminated coil component and its manufacture
JP3543290B2 (en) * 1998-08-25 2004-07-14 シャープ株式会社 Method for manufacturing multilayer coil substrate

Also Published As

Publication number Publication date
JP2004096872A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US7291956B2 (en) Laminate coil and brushless motor using same
JP3500319B2 (en) Electronic components
KR100297584B1 (en) Coiled component and its production method
JP3686908B2 (en) Multilayer coil component and manufacturing method thereof
KR100370670B1 (en) Inductor element and manufacturing method thereof
JP7235088B2 (en) Multilayer electronic component
JP4320698B2 (en) Multilayer coil for brushless motor
JP2019186696A (en) Electronic component
JP2017228768A (en) Coil component and manufacturing method thereof
JP2002093623A (en) Laminated inductor
JP2004088997A (en) Stacked coil and brushless electric motor using it
JP2004088969A (en) Ceramic coil for brushless motor
JP4317179B2 (en) Multilayer filter
JP4273744B2 (en) Disc type stator for brushless motor
JP2001102218A (en) Multilayer chip inductor and method for production thereof
JP2020194803A (en) Laminated coil component
JPH07320939A (en) Inductance component and manufacture thereof
JP3248294B2 (en) Chip inductor and manufacturing method thereof
JPH09199331A (en) Coil component and its manufacture
JP2004363291A (en) Laminated electronic component and manufacturing method thereof
JP2001102219A (en) Multilayer chip inductor and method for production thereof
JP2020194802A (en) Laminated coil component
JPH1027718A (en) Coil part and manufacture thereof
JPH11186052A (en) Composite component and its manufacture
JPH11186053A (en) Composite component and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Ref document number: 4320698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees