JP4320345B2 - 直噴形エンジンの制御装置 - Google Patents

直噴形エンジンの制御装置 Download PDF

Info

Publication number
JP4320345B2
JP4320345B2 JP2007008259A JP2007008259A JP4320345B2 JP 4320345 B2 JP4320345 B2 JP 4320345B2 JP 2007008259 A JP2007008259 A JP 2007008259A JP 2007008259 A JP2007008259 A JP 2007008259A JP 4320345 B2 JP4320345 B2 JP 4320345B2
Authority
JP
Japan
Prior art keywords
combustion
combustion mode
fuel
spray
direct injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007008259A
Other languages
English (en)
Other versions
JP2008175112A (ja
Inventor
秀昭 片柴
哲也 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007008259A priority Critical patent/JP4320345B2/ja
Priority to DE200710031523 priority patent/DE102007031523B4/de
Publication of JP2008175112A publication Critical patent/JP2008175112A/ja
Application granted granted Critical
Publication of JP4320345B2 publication Critical patent/JP4320345B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1813Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Description

この発明は、燃焼室へ直接燃料を噴射する直噴形エンジンの制御装置に関するものである。
燃焼室内に直接燃料を噴射する直形ガソリンエンジンでは、点火プラグの近傍にのみ可燃混合気を形成し、成層リーン燃焼を実現することができる。この成層リーン燃焼では、燃焼室内の点火プラグの近傍にのみ可燃混合気を存在させ、それ以外の領域は、空気が占めているため、内燃機関の出力を制御する場合に、点火プラグの近傍の混合気の量を制御するだけでよく、一般的な均質混合気を供給するエンジンのようにスロットル弁によって吸入混合気量を制御する必要がない。そのため、直形ガソリンエンジンは、ポンピングロスに起因する出力損失を低減することができ、ガソリンエンジンの燃費改善方策として普及しつつある。
吸気行程または圧縮行程において、燃料インジェクタから燃焼室内に噴射された燃料は、燃料インジェクタの燃料噴射口から噴出された後に粒子に分裂し、蒸発しながら空気を取り込み、燃焼室内で混合気を形成するが、燃料の一部は燃料インジェクタの燃料噴射口の近傍に残留して液膜を形成する。その後、燃料噴射口の近傍に残留した燃料は燃焼行程において燃焼火炎に直接晒されるが、温度が低い状態だと燃料の蒸発はわずかであり、次
サイクルの燃料噴射で洗い流される。しかし、燃料噴射口の近傍の温度が高温になると、燃料噴射口の近傍に残留した燃料の蒸発が進み、燃料成分に含まれる高沸点成分がデポジット(すす)生成前駆物質として凝集が促進する。凝集した前駆物質は噴射サイクル毎に堆積し、燃料噴射口の内部またはその近傍にデポジットを形成する。一般に、温度が燃料の90%蒸発温度を超えると、デポジットの堆積が進むと考えられている。
燃料噴射口の内部またはその近傍に付着したデポジットは、流量抵抗となり、流量特性などの燃料インジェクの特性を変化させ、さらに、噴霧燃料粒子径、噴霧角度、貫徹力(ペネトレーション)等の噴霧特性を変化させる。
従来の直形ガソリンエンジンは点火プラグの近傍へ可燃混合気を搬送するためにピストンの上面にキャビティを形成し、キャビティから可燃混合気を燃焼室の壁面に反射させるウォールガイド燃焼方式が主流であったが、キャビティ壁面への燃料付着による排気ガスの悪化および燃焼火炎の消炎(クエンチング)等により燃焼効率が低下するという問題があった。なお、ウォールガイド燃焼方式は、混合気誘導に壁面反射を主として利用しているので、燃料噴射特性、および燃料噴霧特性の経時変化に対しては耐性を有し、エンジンの運転時間が長くなっても、燃料噴射特性が変化し難い特徴を有する。
このウォールガイド燃焼方式の排気ガスの悪化、燃焼効率低下の問題を解決するために提案された燃焼方式が、例えば特開平6−81656に示すスプレーガイド燃焼方式の直噴エンジンである。このスプレーガイド燃焼方式は、スプレーガイド燃焼モードを採用し、燃料インジェクタから点火プラグの近傍に向けて燃料を噴射し、点火プラグの近傍に噴霧成層混合気を形成する方式であり、ウォールガイド燃焼方式のように成層混合気を反射誘導するための壁面は不要で、燃料付着による排気ガスの悪化は発生しない。また、ピストンの上面にキャビティを形成しないので、ピストンの上面をフラットにすることができ、燃焼火炎の消炎による燃焼効率の低下も回避することができる。
特開平6−81656号公報
しかし、スプレーガイド燃焼モードでは、直形エンジンの運転時間の増大に伴ない、燃料インジェクタの燃料噴射口にデポジットが堆積するなどの原因で、燃料インジェクタの燃料噴霧特性が変化し、噴霧成層混合気の形状が変化すると、例えば噴霧成層混合気と点火プラグとの相対距離が変化し、点火プラグの近傍の噴霧成層混合気がリッチまたはリーンにシフトする。そのため、点火性能の不安定化により失火が発生し、また未燃焼の排気ガス成分またはNOx濃度の増加等排気ガス特性の悪化が発生する。
燃料インジェクタの噴出口の近傍へのデポジット付着を抑制するために、燃料インジェクタの噴出口を含む先端部分の温度の上昇を抑制する対策、例えば、燃焼火炎からの受熱量を低減するために、燃料インジェクタの先端部分の受熱面積を低減する方法、または燃料インジェクタの先端部分を断熱し、燃料インジェクタ内を流れる燃料によって冷却する方法が考えられる。しかし、これらの対策によってもデポジット付着を完全に抑制することはできず、直形エンジンの長時間の運転によって、徐々に特性が劣化するという問題があった。
この発明は、このような問題点を改善するものであり、燃焼室内に直接燃料を噴射する直噴ガソリンエンジンをスプレーガイド燃焼モードで運転した場合に、運転時間の増大に伴ない、噴霧成層混合気の形状が変化しても、安定した燃焼を継続させることのできる直形エンジンの制御装置を提案するものである。
この発明による直形エンジンの制御装置は、燃焼室に配置された燃料インジェクタと点火プラグを備え、前記燃料インジェクタから前記燃焼室に直接燃料を噴射し、この燃料と空気との混合気を、少なくともスプレーガイド燃焼モードと、拡散成層燃焼モードとのいずれかの燃焼モードで燃焼して運転できるように構成された直形エンジンの制御装置であって、直形エンジンは、前記スプレーガイド燃焼モードでは、圧縮行程で燃料インジェクタから燃料を噴射することにより、点火プラグの近傍にピストンに衝突していない態様の噴霧成層混合気を形成し、この噴霧成層混合気に前記点火プラグにより点火して、それを燃焼させるように制御され、また、スプレーガイド燃焼モードでの運転時間の増大に応じて、前記噴霧成層混合気の形状が変化し、その結果、燃焼室での燃焼状態が変化するものとなっており、また、前記拡散成層燃焼モードでは、前記直噴形エンジンの圧縮工程で、前記スプレーガイド燃焼モードより早い燃料噴射タイミングで前記燃料インジェクタから燃料を噴射し、前記ピストンに衝突していない態様の噴霧成層混合気を前記スプレーガイド燃焼モードよりも長い拡散時間で拡散させ、この拡散した噴霧成層混合気に前記圧縮工程の終期で、前記点火プラグにより点火し、それを燃焼させるように制御され、前記制御装置は、前記燃焼状態の変化に対応して燃焼安定度を表わす燃焼安定度信号を出力する燃焼状態検出手段と、前記燃焼安定度信号に基づき燃焼モードを切替える燃焼モード切替手段を有し、前記燃焼モード切替手段は、前記燃焼安定度信号に応じて、スプレーガイド燃焼モードを、前記拡散成層燃焼モードに切替えることを特徴とする。
この発明による直形エンジンの制御装置では、制御装置が、燃焼状態の変化に対応して燃焼安定度を表わす燃焼安定度信号を出力する燃焼状態検出手段と、前記燃焼安定度信号に基づき燃焼モードを切替える燃焼モード切替手段を有し、前記燃焼モード切替手段は、前記燃焼安定度信号に応じて、スプレーガイド燃焼モードを、拡散成層燃焼モードに切替え、前記拡散成層燃焼モードでは、直噴形エンジンの圧縮工程で、スプレーガイド燃焼モードより早い燃料噴射タイミングで燃料インジェクタから燃料を噴射し、ピストンに衝突していない態様の噴霧成層混合気をスプレーガイド燃焼モードよりも長い拡散時間で拡散させ、この拡散した噴霧成層混合気に圧縮工程の終期で、点火プラグにより点火し、それを燃焼させるように制御されるので、直形エンジンの運転時間の増大に伴ない、噴霧成層混合気の形状が変化しても、燃焼安定度の悪化を防止し、直形エンジンの排気ガスの悪化、および燃費増大を抑制することができる。
この発明の前記以外の目的、特徴、観点、および効果は、図面を参照する以下の発明の詳細な説明から、より明確とされる。
以下この発明の実施の形態について、図面を参照して説明する。
実施の形態1.
図1は、この発明による直形エンジンの制御装置の実施の形態1の全体な構成図である。まず、図1を参照して、実施の形態1の直形エンジンの制御装置の全体的な構成を説明する。この実施の形態1の直形エンジンの制御装置は、直形エンジン10と、その制御装置80を含む。
形エンジン10は周知の通り、エンジン本体20と、その吸気系60と、その排気系70を含む。エンジン本体20は、例えば4気筒4サイクルのガソリンエンジンであり、吸気、圧縮、燃焼(爆発)、排気の各行程を繰り返す。このエンジン本体20は、4つの気筒21を有するが、図1には、その1つの気筒21を代表として図示している。各気
筒21は、互いに同じに構成される。この気筒21は、燃焼室22と、ピストン25と、吸入弁26と、排気弁28と、燃料インジェクタ30と、点火プラグ40と、クランク軸50と、コネクティングロッド51と、エンジン回転センサ55を有する。
燃焼室22は、シリンダ23と、シリンダヘッド24と、ピストン25により構成される。シリンダ23は円筒形に構成され、シリンダヘッド24は、シリンダ23の上部を閉鎖するように、シリンダ23の上部にそれと一体に形成される。ピストン25は、シリンダ23の内部に、その軸線L−Lの方向に往復運動が可能なように嵌め込まれる。燃焼室22は、シリンダ23と、シリンダヘッド24と、ピストン25により囲まれた空間に形成される。
シリンダヘッド24には、吸気弁26と、排気弁28と、燃料インジェクタ30と、点火プラグ40が配置される。吸気弁26は、クランク軸50とともに回転する吸気制御カム(図示せず)により駆動され、クランク軸50の回転と同期して燃焼室2の吸気口27を開閉する。排気弁28は、クランク軸50とともに回転する排気制御カム(図示せず)により駆動され、クランク軸50の回転と同期して燃焼室2の排気口29を開閉する。
燃料インジェクタ30は、例えばシリンダヘッド24の上部の中心に配置される。この燃料インジェクタ30には、制御装置80から燃料噴射制御信号FCが供給される。燃料インジェクタ30は、燃料噴射制御信号FCに基づいて、制御された燃料噴射タイミングで燃焼室22に燃料を噴射する。具体的には、燃料インジェクタ30は、燃料噴射制御信号FCにより制御された燃料噴射開始タイミングtaで燃料室22への燃料噴射を開始し、また燃料噴射制御信号FCに基づいて制御された燃料噴射終了タイミングtbで燃料噴射を終了する。燃料インジェクタ30は、燃料噴射開始タイミングtaと燃料噴射終了タイミングtbとの間の燃料噴射時間tcを通じて、燃料を燃焼室22の直接噴射し、燃焼室22内に燃料と空気との混合気を生成する。燃焼室22へ噴射される燃料量は、燃料噴射時間tcに比例する。この燃料噴射時間tcは、燃料噴射制御信号FCにより制御される。
点火プラグ40は、例えば燃料インジェクタ30と排気口29との間に配置される。この点火プラグ40は、ベース電極41と、これに放電ギャップ42を介して対向する対向電極43を有する。この点火プラグ40には、点火回路45が接続され、この点火回路45には、制御装置80から点火制御信号IGが供給される。点火回路45は、制御装置80からの点火制御信号IGにより制御された点火タイミングtiで、高圧点火電圧を発生し、この高圧点火電圧を点火プラグ40に供給する。点火プラグ40は、点火タイミングtiで、点火回路45からの高圧点火電圧に基づいて、放電ギャップ42に点火スパークを発生し、燃焼室22内の混合気に点火して、それを燃焼させる。
点火プラグ40は、制御装置80へイオン電流信号IOを供給する。点火プラグ40のベース電極41と対向電極43の間には、例えば300ボルトの低圧直流電圧が常時印加され、この低圧直流電圧に基づいて、ベース電極41と対向電極43との間に流れるイオン電流をイオン電流信号IOとして、制御装置80に供給する。このイオン電流信号IOは、燃焼室22内の混合気の燃焼状態に対応して、大きさが変化する。
クランク軸50は、ピストン25の下方に配置される。コネクティングロッド51は、ピストン25とクランク軸50を連結し、シリンダ23内におけるピストン25の往復運動をクランク軸50の回転運動に変換する。クランク軸50の外周には、エンジン回転センサ55が配置される。このエンジン回転センサ55も周知であるので、詳細な説明は省略するが、クランク軸50の回転に伴ないエンジン回転信号RSを発生し、制御装置80
に供給する。エンジン回転センサ55は、例えばクランク軸50の1回転当たり、36個のパルスを発生し、このパルスをエンジン回転信号RSとして、制御装置80に供給する。
吸気系60は、吸気管61と、スロットルバルブ63と、スロットルアクチュエータ64を含む。吸気管61は、空気吸込口62と、燃焼室2の吸気口27とを連結する。空気吸入口62から空気AIRが取り込まれる。スロットルバルブ63は、吸気管61の途中に配置される。スロットルアクチュエータ64は、D.Cモータまたはステッピングモータを有し、スルットルバルブ63を駆動する。このスロットルアクチュエータ64は、アクセルポジションセンサ65から出力されるアクセルポジション信号APに応じて駆動される。アクセルポジションセンサ65は、直形エンジン10に付属するアクセルペダル66の踏込度合を検出し、このアクセルペダル66の踏込度合に対応するアクセルポジション信号APを制御装置80に供給する。制御装置80は、アクセルポジション信号APに基づき、スロットル駆動信号TDを発生し、スロットルアクチュエータ64はこのスロットル駆動信号TDに応じてスロットルバルブ63の開度を制御し、燃焼室2への吸入空気量を調整する。
排気系70は、排気管71と、三元触媒73と、リーンNOx触媒74と、空燃比センサ75を含む。排気管71は、燃焼室2の排気口29と、排気ガス排出口72とを連結する。排気ガス排出口72から、排気ガスEXGが排出される。三元触媒73は、排気管71の上流側に配置される。この三元触媒73は、燃焼室22内において、燃料が理論空燃比で完全燃焼したときに、排気ガス中に含まれるCO、HC、NOxの有害ガス成分を同時に酸化還元して、排気ガスを浄化する。この三元触媒73は、空燃比が空気の過剰なリーン状態になれば、CO、HCの有害ガスを酸化して浄化する酸化触媒として働き、また、空燃比が燃料の過剰なリッチ状態になれば、NOxの有害ガスを還元して浄化する。
リーンNOx触媒74は、三元触媒73の下流に配置される。このリーンNOx触媒74は、空燃比がリーン状態になった場合に、三元触媒73で浄化されないNOxの有害ガス成分を触媒内貯蔵し、そのNOxの貯蔵量が限界に達するまで、NOxの排出を抑制する。リーンNOx触媒74に貯蔵されたNOxは、空燃比をリーン状態からリッチ状態に切替えることにより分解し、放出される。放出されたNOxは、リッチ状態での燃焼で酸素が存在しない排気ガス中に含まれるHC、COの還元剤によってリーンNOx触媒74上によってNOxパージされる。このNOxの貯蔵とNOxパージのサイクルを繰り返すことにより、リーンNOx触媒74は排気ガス中のNOxの有害ガスを浄化する。排気管71には、三元触媒73の上流側に空燃比センサ75が配置される。この空燃比センサ75は、燃焼室22の排気口29から排気された排気ガスの空燃比を検出し、この空燃比の応じた空燃比信号A/Fを制御装置80に供給する。
制御装置80は、電子的な制御ユニット81で構成される。この制御ユニット81は、例えばマイクロプロセッサで構成され、CPU82と、メモリ83を有する。CPU82は、直形エンジン10の各種の制御を行う。イオン電流信号IO、エンジン回転信号RS、アクセルポジション信号APおよび空燃比信号A/Fは、制御ユニット81に供給される。
制御ユニット81は、この発明の特徴として、直形エンジン10の燃焼モードを制御する。この燃焼モードを制御するために、CPU82は、燃焼状態検出手段85と、燃焼状態選択手段86と、燃焼モード切替手段87を有する。燃焼状態検出手段85は、エンジン回転信号RSまたはイオン電流信号IOを使用して、燃焼室22の燃焼状態の変化に対応して燃焼安定度SCを表わす燃焼安定度信号SCSを発生する。燃焼状態選択手段86は、燃焼安定度信号SCSを閾値と比較して、燃焼状態選択信号SSCを発生する。燃
焼モード切替手段87は、燃焼状態選択信号SSCに基づき、直形エンジン10の燃焼モードを設定し、また切替える。また、制御ユニット81は、表示ランプなどの報知手段89を制御し、燃焼モードの切替えを運転者に報知する。
燃焼モード切替手段87は、燃料噴射制御信号FCと点火制御信号IGを発生し、これらに基づいて、燃料インジェクタ30と点火プラグ40を制御することにより、直形エンジン10の燃焼モードを設定し、また切替える。燃焼モード切替手段87は、直形エンジン10が新品であるか、またはメンテナンスの終了直後であって、燃焼安定度SCが第1閾値以上で場合には、燃焼モードをスプレーガイド燃焼モードC1に設定し、このスプレーガイド燃焼モードC1で直形エンジン10を運転するように制御する。スプレーガイド燃焼モードC1で直形エンジン10を運転し、その運転時間が増大して、燃焼安定度SCが低下し、第1閾値より小さくなれば、スプレーガイド燃焼モードC1から拡散成層燃焼モードC2に切替え、拡散成層燃焼モードC2で直形エンジン10を運転するように、直形エンジン10を制御する。さらに、拡散成層燃焼モードC2で運転時間が増大して、燃焼安定度SCが低下し、第2閾値より小さくなれば、拡散成層燃焼モードC2から吸気行程均質燃焼モードC3に切替えて、吸気行程均質燃焼モードC3で直形エンジン10を運転するように、直形エンジン10を制御する。
これらのスプレーガイド燃焼モードC1、拡散成層燃焼モードC2、および吸気行程均質燃焼モードC3について、以後詳細に説明する。
まず、燃料インジェクタ30の詳細と、この燃料インジェクタ30により形成される噴霧成層混合気について、図2から図5を参照して説明する。図2は、燃焼室22をさらに拡大して示す断面図であり、図3は、燃料インジェクタ30の先端部分の拡大図である。燃料インジェクタ30は、図3に示すように、シリンダヘッド24の上部の中心部に形成された取付孔31に、先端部を嵌め込んで固定される。取付孔31の中心は、シリンダ23の軸線L−Lと一致する。燃料インジェクタ30は、具体的にはマルチホール形の燃料インジェクタであり、先端部に燃料噴出板32を有し、この燃料噴出板32には、軸線L−Lを中心として、6つの燃料噴出口33が形成される。これらの燃料噴出口33は、軸線L−Lの周りに、6つの噴霧成層混合気35を形成する。
燃料インジェクタ30によって形成される噴霧成層混合気35について、図2、図4を参照して説明する。図2は、燃料インジェクタ30の燃料噴射口33の近傍に、デポジットが堆積されていない状態における噴霧成層混合気35を示している。直形エンジン10が新品であるか、またはメンテナンスの終了直後の状態では、デポジットが堆積しておらず、燃料インジェクタ30は、図2に示すように、ピストンに衝突していない態様の噴霧成層混合気35を形成する。燃料インジェクタ30は、6つの燃料噴射口33のそれぞれから同時に燃料を噴射することにより、合計6本の噴霧成層混合気35を同時に形成する。各噴霧成層混合気35は、それぞれ各燃料噴射口33から噴射された燃料が、粒子に分裂し、さらに蒸発し空気を取り込んで形成される。図2において、各噴霧成層混合気35の噴霧角をαとする。
各噴霧成層混合気35は、それぞれ液相優勢領域36と、気相優勢領域37を含む。液相優勢領域36は、燃料噴射口33から噴射された燃料が粒子に分裂したものの、まだ蒸発が不充分で液相噴霧を多く含む領域である。気相優勢領域37は、燃料噴射口33から噴射された燃料が粒子に分裂し、さらに蒸発が進み、燃料粒子が気化した気相燃料を多く含む領域である。気相優勢領域37は、各液相優勢領域36の外周を取り囲むように形成される。6本の噴霧混合気35について、それぞれの気相優勢領域37は、隣接する各噴霧混合気35の間で互いに繋がるように形成され、その結果、軸線L−Lの周りで連続する筒形状の噴霧混合気35が形成される。
6つの燃料噴射口33中の1つの燃料噴射口33aは、点火プラグ40の近傍に向けて燃料を噴射し、この燃料噴射口33aから噴出された燃料が、点火プラグ40の近傍に噴霧成層混合気35aを形成する。燃料噴射弁30の燃料噴射口33の近傍にデポジットが堆積していない状態では、図2に示すように、噴霧成層混合気35aの気相優勢領域37が点火プラグ40の放電ギャップ42を覆うように、噴霧成層混合気35aが形成される。
さて、スプレーガイド燃焼モードC1は、各気筒21の圧縮行程で燃料を噴射して、ピストン25に衝突していない態様の噴霧成層混合気35を形成し、この噴霧成層混合気35が余り周囲に拡散しない状態で、言い換えれば、噴霧成層混合気35の拡散度合が小さい成層混合気に点火プラグ40で点火する。
図4(a)は、スプレーガイド燃焼モードC1のタイムシーケンスを示す。図4の横軸は、クランク軸50の回転角度であり、この横軸に沿って、各気筒21の吸気行程とそれ続く圧縮行程が示される。クランク軸50の回転角度が0度であるとき、ピストン25は吸気上死点にあり、クランク軸50の回転角度が180度であるとき、ピストン25は下死点にあり、またクランク軸50の回転角度が360度であるとき、ピストン25は圧縮上死点にある。吸気行程は、クランク軸50の回転角度が0〜180度の範囲であり、圧縮行程は、クランク軸50の回転角度が180〜360度の範囲である。
スプレーガイド燃焼モードC1では、図4(a)に示すように、燃料噴射開始タイミングがta1、燃料噴射終了タイミングがtb1、点火タイミングがti1とされる。燃料噴射開始タイミングta1は、圧縮行程の中に設定される。スプレーガイド燃焼モードC1では、燃料インジェクタ30は、圧縮行程において、燃料噴射開始タイミングta1と燃料噴射終了タイミングtb1の間の燃料噴射時間tc1で燃料を噴射し、点火プラグ40の近傍に噴霧成層混合気35を形成する。噴霧成層混合気35が形成された直後に、点火タイミングti1となり、点火プラグ40が、噴射成層混合気35に点火する。燃料噴射終了タイミングtb1と点火タイミングti1の間の拡散時間td1で、噴霧成層混合気35は周りに拡散するが、スプレーガイド燃焼モードC1では、拡散時間td1は短く、したがって、噴霧成層混合気35は、その拡散度合が小さい状態で、点火プラグ40により、点火される。
このスプレーガイド燃焼モードC1では、とくに、噴霧成層混合気35の気相優勢領域37は、点火の容易な燃料濃度を有しており、この気相優勢領域37が点火プラグ40の放電ギャップ42を覆う状態で、点火することが重要である。気相優勢領域37が点火プラグ40の放電ギャップ42を覆う状態で点火することにより、失火を起こすことなく、噴霧成層混合気35を確実に、しかも排気ガスEXGの有害ガス成分を少なくして、直形エンジン10を運転することができる。もし、液相優勢領域36が、点火プラグ40の放電ギャップ42を覆う状態になれば、点火プラグ40の周りの混合気はオーバーリッチ状態となり、点火プラグ40のベース電極41および対向電極43が燃料で濡らされ、点火放電が阻害されて、失火が起こり、この失火により燃焼状態が変動し、また点火しても液相燃料の燃焼により、未燃焼成分HCおよび不完全燃焼成分COの排出濃度が増加し、燃焼状態の変動が増加する。逆に気相優勢領域37が、点火プラグ40から離れると、点火プラグ40の周りの混合気がオーバーリーン状態となり、失火が起こり、失火により燃焼状態が変動し、また未燃焼ガスによる排気ガスの有害成分も増加する。
しかし、スプレーガイド燃焼モードC1で直形エンジン10を運転し、その運転時間が増大すると、燃料インジェクタ30の燃料噴射口33の近傍にデポジットが堆積し、燃料インジェクタ30の燃料噴霧特性が変化し、噴霧成層混合気35の形状が変化する。図
5は、燃料インジェクタ30の燃料噴射口33の近傍に、デポジット38が堆積した状態を示す。図5では、デポジット38が、燃料インジェクタ30の先端部分の外面、具体的には、取付孔31と燃料噴射板32の外面との間に堆積した状態を示す。
燃料インジェクタ30から噴射される燃料は、燃料インジェクタ30の先端部分または燃料噴射口33の内部に液体として付着し、液膜を形成する。そのとき、燃料が付着した部分の温度が、燃料の90%蒸発温度より高ければ、燃料中の高沸点成分が蒸発せずに残渣として残る。この残渣の中に、デポジット38を形成する前駆体が存在し、直形エンジン10の運転時間の増大に伴ない、すす、またはコールタール状のカーボンデポジット38が形成される。図5では、デポジット38が、燃料インジェクタ30の先端部に堆積したものだけを示しているが、デポジット38は、上記メカニズムにより、燃料噴射口33の内壁および燃料噴射板32の内面にも生成する。
このデポジット38の堆積に伴ない、燃料インジェクタ30の燃料噴霧特性が変化し、噴霧成層混合気35の形状が変化する。図5では、デポジット38により、噴霧成層混合気35の形状が、噴霧角を小さくするように変化した状態を示している。図5において、各噴霧成層混合気35の噴射角をβとする。β<αである。図5に示すように、噴霧角が小さくなるように噴霧成層混合気35の形状が変化すると、気相優勢領域37は点火プラグ40の放電ギャップ42から離れてしまう。このような状態では、点火プラグ40の周りの混合気はオーバーリーンとなり、失火による燃焼状態の変動、さらに未燃ガスによる排気ガス濃度の悪化が起こり、点火性能および燃焼安定性が大きく悪化する。また、デポジットの付着位置が異なると、噴霧成層混合気35の形状が、噴霧角が大きくなるように変化し、点火プラグ40の周りの混合気がオーバーリッチになる場合もある。
もし、液相優勢領域36が、点火プラグ40のベース電極41、対向電極43を覆う場合には、点火プラグ40の周りの混合気はオーバーリッチ状態となり、点火プラグ7の電極41、43が燃料によって濡らされ火花放電が阻害され失火するか、点火しても液相燃料の燃焼により、未燃焼成分HCや不完全燃焼成分COの排出濃度が増加し、また燃焼状態の変動が増加する。
噴霧成層混合気35の形状の変化は、デポジットの堆積だけに原因するものではなく、燃料インジェクタ30の性能の経時変化によっても起こる。例えば、燃料インジェクタ30の内部の電気回路の劣化、磁気回路の磁気抵抗の変化などでも、燃料噴霧特性が変化し、噴霧成層混合気35の形状が変化する。
制御ユニット81の燃焼状態検出手段85は、例えばエンジン回転信号RSに基づき、燃焼状態の変化に対応して燃焼安定度SCを表わす燃焼安定度信号SCSを発生する。この燃焼安定度SCは、噴霧成層混合気35の形状の変化に基づいて起こる燃焼状態の変化に対応して変化し、この燃焼安定度SCに応じて燃焼安定度信号SCSの大きさが変化する。
図6は、エンジン回転センサ55から制御ユニット81に入力されるエンジン回転信号RSに基づいて得られる直形エンジン10の回転変動の変化を示すを示す特性図である。図6の横軸は、直形エンジン10のすべての気筒21の燃焼サイクルを示し、その縦軸は、直形エンジン10の回転数である。
図6の横軸に沿って、複数の期間#11、#31、#41、#21、#12、#32が連続して示される。期間#11、#12は、直形エンジン10の4つの気筒21の中の第1気筒の燃焼(爆発)行程、#31、#32はその第3気筒の燃焼(爆発)行程、#41はその第4気筒の燃焼(爆発)行程、#21はその第2気筒の燃焼(爆発)行程を示す
。各期間#11、#31、#41、#21、#12、#32は、それぞれクランク軸50の1/2回転に相当するので、例えば2つの連続する期間#11、#31がクランク軸50の1回転に相当し、4つの連続する期間#11、#31、#41、#21がクランク軸50の2回転に相当する。
図6の信号RS11、RS31、RS41、RS21、RS12、RS32は、それぞれ各期間#11、#31、#41、#21、#12、#32に対応する直形エンジン10の回転数の変動を示す。ΔN11は、信号RS11の所定回転数Neからのピーク値であり、同様に、ΔN31、ΔN41、ΔN21、ΔN12、ΔN32は、それぞれ信号RS31、RS41、RS21、RS12、RS32の所定回転数Neからのピーク値である。
信号RS11、RS31、RS41、RS21、RS12、RS32に示すように、各気筒21の燃焼(爆発)行程の中で、回転数は変動し、ピーク値ΔN11、ΔN31、ΔN41、ΔN21、ΔN12、ΔN32も順次変化している。これらのピーク値ΔN11、ΔN31、ΔN41、ΔN21、ΔN12、ΔN32の標準偏差ΔNを求めることにより、直形エンジン10の燃焼安定度SCを表わす燃焼安定度信号SCS=(1−ΔN)を得ることができる。噴霧成層混合気35の形状が安定し、その気相優勢領域37が点火プラグ40の放電ギャップ42を覆うように形成されれば、標準偏差ΔNは小さい値となり、燃焼安定度信号SCSは大きくなる。しかし、デポジット38の堆積などにより、噴霧成層混合気35の形状が変化すれば、それに伴なって標準偏差ΔNが大きくなり、燃焼安定度信号SCSが低下する。
同一気筒、例えば第1気筒の信号RS11、RS12、・・・、RS1nのピーク値ΔN11、ΔN12、・・・、ΔN1nの標準偏差ΔN1を求めることもできる。この場合の燃焼安定度信号SCSは、(1−ΔN1)である。噴霧成層混合気35の形状が安定し、その気相優勢領域37が点火プラグ40の放電ギャップ42を覆うように形成されれば、標準偏差ΔNは小さい値となり、燃焼安定度信号SCSは大きくなる。しかし、デポジット38の堆積などにより、噴霧成層混合気35の形状が変化すれば、それに伴なって標準偏差ΔN1が大きくなり、燃焼安定度信号SCSが低下する。
なお、標準偏差ΔN1は、次の式により求めることができる。標準偏差ΔNも同様な式で求めることができる。
Figure 0004320345
制御ユニット81の燃焼状態検出手段85は、エンジン回転信号RSに代わって、イオン電流信号IOに基づき、燃焼状態の変化に対応して燃焼安定度SCを表わす燃焼安定度信号SCSを発生することもできる。図7は、点火プラグ40から制御ユニット81に入力されるイオン電流信号IOの変化を示すを示す特性図である。図7の横軸は、直形エンジン10のすべての気筒21の燃焼サイクルを示し、その縦軸は、直形エンジン10の各気筒21のイオン電流である。図7の横軸に沿って、複数の期間#11、#31、#41、#21、#12、#32が連続して示される。これらの期間#11、#31、#41、#21、#12、#32は、図6と同じである。
図7の信号IO11、IO31、IO41、IO21、IO12、IO32は、それぞれ各期間#11、#31、#41、#21、#12、#32に対応する各気筒21のイオン電流を示す。ΔI11は、信号IO11の主燃焼火炎のピーク値であり、同様に、ΔI31、ΔI41、ΔI21、ΔI12、ΔI32は、それぞれ信号IO31、IO41、IO21、IO12、IO32の主燃焼火炎のピーク値である。A11は、信号IO11の全体の面積(積分値)であり、同様に、A41、A31、A21、A12、A32は、それぞれ信号IO11、IO31、IO41、IO21、IO12、IO32の全体の面積(積分値)である。
信号IO11、IO31、IO41、IO21、IO12、IO32に示すように、各気筒21の燃焼(爆発)行程の中で、イオン電流IOは変動し、それぞれの主燃焼火炎のピーク値ΔI11、ΔI31、ΔI41、ΔI21、ΔI12、ΔI32も順次変化している。これらのピーク値ΔI11、ΔI31、ΔI41、ΔI12、ΔI32の標準偏差ΔIを求めることにより、直形エンジン10の燃焼安定度SCを表わす燃焼安定度信号SCSを得ることができる。この場合の燃焼安定度信号SCSは、(1−ΔI)となる。また、同一気筒、例えば第1気筒の信号IO11、IO12、・・・、IO1nの主燃焼火炎のピーク値ΔI11、ΔI12、・・・、ΔI1nの標準偏差ΔI1から、燃焼安定度信号を得ることもできる。この場合の燃焼安定度SCSは、(1−ΔI1)となる。標準偏差ΔI、ΔI1は、前記式と同様な式から求められる。
また、信号IO11、IO31、IO41、IO21、IO12、IO32のそれぞれ面積A11、A31、A41、A21、A12、A32も、順次変化している。これらの面積A11、A31、A41、A12、A32の標準偏差ΔAを求めることにより、直形エンジン10の燃焼安定度SCを表わす燃焼安定度信号SCSを得ることができる。この場合の燃焼安定度信号SCSは、(1−ΔA)となる。また、同一気筒、例えば第1気筒の信号IO11、IO12、・・・、IO1nの面積A11、A12、・・・、A1nの標準偏差ΔA1を求めることにより、燃焼安定度信号SCSを得ることもできる。この場合の燃焼安定度信号SCSは、(1−ΔA1)となる。標準偏差ΔA、ΔA1は、前記式と同様な式から求められる。
燃焼状態選択手段86は、スプレーガイド燃焼モードC1では、燃焼状態検出手段85からの燃焼安定度信号SCSを第1閾値SCaと比較し、燃焼状態選択信号SSCを発生する。燃焼安定度信号SCSが第1閾値SCa以上であれば、燃焼状態選択信号SSCは、スプレーガイド燃焼モードC1を維持する信号となり、燃焼モード切替手段87は、スプレーガイド燃焼モードC1を維持するように、燃料噴射制御信号FCにより、燃料インジェクタ30の燃料噴射開始タイミングta1および燃料噴射終了タイミングtb1を制御し、また点火制御信号IGにより、点火プラグ40の点火タイミングti1を制御する。なお、この場合、制御ユニット81は、スプレーガイド燃焼モードC1を維持する範囲内で、エンジン回転信号RSおよびアクセルポジション信号APに対応して、燃料噴射開始タイミングta1、燃料噴射終了タイミングtb1、および点火タイミングti1を調整する。
スプレーガイド燃焼モードC1において、運転時間が増大し、デポジット38の堆積などの原因で、燃料インジェクタ30の燃料噴霧特性が変化し、噴霧成層混合気35の形状が図5に示すように変化して、燃焼安定度信号SCSが第1閾値SCaより小さくなれば、燃焼状態選択手段86の燃焼状態選択信号SSCは、スプレーガイド燃焼モードC1から拡散成層燃焼モードC2に切替える信号となり、燃焼モード切替手段87が、直形エンジン10の燃焼モードを拡散成層燃焼モードC2に切替える。
この拡散成層燃焼モードC2について説明する。図4(b)は拡散成層燃焼モードC2のタイムシーケンスを示す。この拡散成層燃焼モードC2では、燃料噴射開始タイミングがta2、燃料噴射終了タイミングがtb2、点火タイミングがti3とされる。拡散成層燃焼モードC2における燃料噴射開始タイミングta1は、直形エンジン10の圧縮行程の中で、スプレーガイド燃焼モードC1の燃料噴射開始タイミングta1よりも早いタイミングに設定される。この拡散成層燃焼モードC2では、燃料インジェクタ30は、圧縮行程において、燃料噴射開始タイミングta2と燃料噴射終了タイミングtb2の間の燃料噴射時間tc2で燃料を噴射し、点火プラグ40の近傍に、図5に示すようなピストン25に衝突していない態様の噴霧成層混合気35を形成する。この噴霧成層混合気35は、燃料噴射終了タイミングtb2と点火タイミングti2の間の拡散時間tc2で周りに拡散し、この拡散した噴霧成層混合気35に、点火タイミングti2で点火される。拡散成層燃焼モードC2の燃料噴射開始タイミングta2は、スプレーガイド燃焼モードC1における燃料噴射開始タイミングta1よりも早いので、拡散成層燃焼モードC2における拡散時間td2は、スプレーガイド燃焼モードC1の拡散時間td1よりも長く、td2>td1となる。したがって、拡散成層燃焼モードC2では、噴霧成層混合気35の拡散度合は、スプレーガイド燃焼モードC2よりも大きくなり、この大きな拡散度合で拡散した状態で、点火タイミングti2となり、点火プラグ40により点火される。
この拡散成層燃焼モードC2では、噴霧成層混合気35の拡散度合が大きく、結果として、図5に示すピストン25に衝突していない態様の噴霧成層混合気35が周りに拡散し、その気相優勢領域37が点火プラグ40の放電ギャップ42を覆う状態で、点火プラグ40により点火が行なわれる。このため、各気筒21の燃焼室22における燃焼状態は再び安定し、燃焼安定度信号SCSが増大する。
拡散成層燃焼モードC2においても、燃焼状態検出手段75は、スプレーガイド燃焼モードC1における動作と同じ動作で、各気筒21の燃焼室22の各燃焼(爆発)行程における燃焼安定度SCを表わす燃焼安定度信号SCSを発生する。燃焼状態選択手段86は、拡散成層燃焼モードC2では、燃焼状態検出手段85からの燃焼安定度信号SCSを第2閾値SCb(SCb<SCa)と比較し、燃焼状態選択信号SSCを発生する。燃焼安定度信号SCSが第2閾値SCb以上の大きさであれば、燃焼状態選択信号SSCは、拡散成層燃焼モードC2を維持する信号となり、燃焼モード切替手段87は、拡散成層燃焼モードC2を維持するように、燃料噴射制御信号FCにより、燃料インジェクタ30の燃料噴射開始タイミングta2および燃料噴射終了タイミングtb2を制御し、また点火制御信号IGにより、点火プラグ40の点火タイミングti2を制御する。この場合にも、制御ユニット81は、拡散成層燃焼モードC2を維持する範囲内で、エンジン回転信号RSおよびアクセルポジション信号APに対応して、燃料噴射開始タイミングta2、燃料噴射終了タイミングtb2、および点火タイミングti2を調整する。
拡散成層燃焼モードC2において、運転時間が増大し、デポジット38の堆積などの原因で、燃料インジェクタ30の燃料噴霧特性が変化し、噴霧成層混合気35の形状が、図5に示す噴霧成層混合気35よりも、さらに噴射角が小さくなるように変化して、燃焼安定度信号SCSが第2閾値SCbよりも小さくなれば、燃焼状態選択手段86の燃焼状態選択信号SSCは、拡散成層燃焼モードC2から吸気行程均質燃焼モードC3に切替える信号となり、燃焼モード切替手段87が、直形エンジン10の燃焼モードを吸気行程均質燃焼モードC3に切替える。
この吸気行程均質燃焼モードC3について説明する。図4(c)は吸気行程均質燃焼モードC3のタイムシーケンスを示す。この吸気行程均質燃焼モードC3では、燃料噴射開始タイミングがta3、燃料噴射終了タイミングがtb3、点火タイミングがti3とされる。吸気行程均質燃焼モードC3における燃料噴射開始タイミングta3は、直形エ
ンジン10の吸気行程の中に設定され、拡散成層燃焼モードC2の燃料噴射開始タイミングta2よりも早いタイミングに設定される。この吸気行程均質燃焼モードC3では、燃料インジェクタ30は、吸気行程において、燃料噴射開始タイミングta3と燃料噴射終了タイミングtb3の間の燃料噴射時間tc3で燃料を噴射し、点火プラグ40の近傍に、図5に示す噴霧成層混合気35よりもさらに噴射角の小さい噴霧成層混合気35を形成する。この噴霧成層混合気35は、燃料噴射終了タイミングtb3と点火タイミングti3の間の長い拡散時間td3で周りに拡散し、燃焼室22内の全体に均一に拡散する。点火タイミングti3は、噴霧成層混合気35が、燃焼室22の全体に均一に拡散した状態に設定され、点火プラグ40は、この点火タイミングti3で、均一に拡散した混合気に点火する。吸気行程均質燃焼モードC3の燃料噴射開始タイミングta3は、拡散成層燃焼モードC2における燃料噴射開始タイミングta2よりも充分に早いので、吸気行程均質燃焼モードC3における拡散時間td3は、拡散成層燃焼モードC2の拡散時間td2よりも充分に長く、td3>td2となる。
この吸気行程均質燃焼モードC3では、噴霧成層混合気35が燃焼室22の全体にほぼ均一に拡散するので、その均一に拡散した混合気が点火プラグ40の放電ギャップ42を覆う状態で、点火プラグ40により点火が行なわれる。このため、各気筒21の燃焼室22における燃焼状態は再び安定し、燃焼安定度信号SCSが増大する。この吸気行程均質燃焼モードC3に移行した後では、燃焼状態検出手段85および燃焼状態選択手段86は動作を停止する。
図8は、燃焼モードの制御パラメータである燃料噴射終了タイミングtbおよび点火タイミングtiと燃焼状態との関係を示す。原点Oは圧縮上死点を示し、横軸は燃料噴射終了タイミングtb、縦軸は点火タイミングtiである。燃料噴射終了タイミングtbに対応する燃料噴射開始タイミングtaを、横軸の下に示している。図中、曲線aと曲線bで囲まれた領域92が安定燃焼の可能な領域である。傾斜した一点鎖線の特性91は、燃料噴射終了タイミングtbと点火タイミングtiとの間の拡散時間tdが短く、かつ一定となる特性を示している。安定燃焼の可能な領域92の中で、特性91の近傍の曲線aと曲線cで囲まれた領域93は、燃料噴射の直後に点火するスプレーガイド燃焼モードC1が成立する領域である。安定燃焼の可能な領域92のうち、曲線bと曲線cで囲まれた領域93以外の領域94は、燃料噴射直後の点火ではなく、混合気拡散のための拡散時間tdがスプレーガイド燃焼モードC1以上に大きい領域である。この領域94は、燃焼室22内の空気流動の影響を受けるため、領域93に比べて燃焼安定度SCは若干低下するけれども、成層燃焼が可能な領域であって、拡散成層燃焼モードC2が成立する領域である。同じ点火タイミングに相当する直線95上で、領域93内のポイントP1と、領域94内のポイントP2を比較すれば、それらの燃料噴射終了タイミングtb1、tb2の差が明らかであり、ポイントP2ではポイントP1に比べて、拡散時間tdが長くなる。
スプレーガイド燃焼モードC1において、噴霧成層混合気35の形状が図5に示すように変化すれば、燃焼状態が不安定になり、スプレーガイド燃焼モードC1を継続することができない。そのとき、直形エンジン10の運転を継続させるためには、図8の領域93から領域94に移行し、点火タイミングtiを遅らせるか、または燃料噴射終了タイミングtbを早期化し、燃料噴射終了タイミングtbと点火タイミングtiとの間の拡散時間tdを長くして、拡散成層燃焼モードC2が成立する領域94で燃焼させることが必要である。
図9は、実施の形態1について、燃焼モードの切替えを行うフローチャートを示す。このフローチャートは、スタートとエンドの間に、ステップS101からステップS114の14のステップを含む。最初のステップでは、燃焼モードフラグCFをCPU82に読み込む。この燃焼モードフラグCFは、メモリ83に記憶されている。この燃焼モードフ
ラグCFは、直形エンジン10が新品であるか、またはメンテナンスが終了した直後であれば、スプレーガイド燃焼モードC1にセットされている。次のステップS102では、燃焼モードフラグCFが、スプレーガイド燃焼モードC1であるかどうかを判定する。ステップS102の判定結果がYESならばステップS103に進み、その判定結果がNOならば、ステップS108に進む。
ステップS103では、スプレーガイド燃焼モードC1用の燃料噴射タイミングta1、tb1を燃料噴射制御信号FCに設定し、これにより燃料インジェクタ30を制御する。またスプレーガイド燃焼モードC1用の点火タイミングti1を点火制御信号IGに設定し、これにより、点火回路45を通じて点火プラグ40を制御する。次のステップS104では、エンジン回転信号RSまたはイオン電流信号IOに基づき、燃焼安定度SCを検出する。次のステップS105では、燃焼安定度SCが第1閾値SCa以上かどうかを判定する。ステップS105の判定結果がYESならば、そのままエンドに進む。ステップS105の判定結果がNOならば、ステップS106に進む。
ステップS106では、燃焼モードフラグCFを拡散成層燃焼モードC2にセットする。次のステップS107では、報知手段89により、燃焼モードが拡散成層燃焼モードC2へ移行することをアラームとして運転者に報知する。燃焼モードフラグCFが拡散成層燃焼モードC2にセットされると、ステップS102の判定結果はNOとなり、ステップS108に進む。
ステップS108では、燃焼モードフラグCFが拡散成層燃焼モードC2であるかどうかが判定される。ステップS108の判定結果がYESならば、ステップS109に進み、またステップS108の判定結果がNOならば、ステップS114に進む。
ステップS109では、拡散成層燃焼モードC2用の燃料噴射タイミングta2、tb2を燃料噴射制御信号FCに設定し、これにより燃料インジェクタ30を制御する。また拡散成層燃焼モードC2用の点火タイミングti2を点火制御信号IGに設定し、これにより、点火回路45を通じて点火プラグ40を制御する。次のステップS110では、エンジン回転信号RSまたはイオン電流信号IOに基づき、燃焼安定度SCを検出する。次のステップS111では、燃焼安定度SCが第2閾値SCb以上かどうかを判定する。ステップS111の判定結果がYESならば、そのままエンドに進む。ステップS111の判定結果がNOならば、ステップS112に進む。
ステップS112では、燃焼モードフラグCFを吸気行程均質燃焼モードC3にセットする。次のステップS113では、報知手段89により、燃焼モードが吸気行程均質燃焼モードC3へ移行することをアラームとして運転者に報知する。燃焼モードフラグCFが吸気行程均質燃焼モードC3にセットされると、ステップS108の判定結果はNOとなり、ステップS114に進む。
ステップS114では、吸気行程均質燃焼モードC3用の燃料噴射タイミングta3、tb3を燃料噴射制御信号FCに設定し、これにより燃料インジェクタ30を制御する。また吸気行程均質燃焼モードC3用の点火タイミングti3を点火制御信号IGに設定し、これにより、点火回路45を通じて点火プラグ40を制御する。
図9のステップS104、S110は、燃焼状態検出手段85により実行される。ステップS104、S110の出力が燃焼安定度信号SCSである。図9のステップS105、S111は、燃焼状態選択手段86により実行される。ステップS105、S111の出力が、燃焼状態選択信号SSCである。図9のステップS103、S109、S114は、燃焼モード切替手段87により実行される。
図10は、実施の形態1における燃焼安定度SCの変化を示す。図10の横軸は、直形エンジン10の運転時間であり、縦軸は燃焼安定度SCである。横軸に沿って、原点Oと運転時間T1との間がスプレーガイド燃焼モードC1での運転期間であり、また運転時間T1とT2の間が拡散成層燃焼モードC2での運転期間であり、さらに運転時間T2以降が吸気行程均質燃焼モードC3での運転期間である。
スプレーガイド燃焼モードC1では、燃焼安定度SCは特性SC1に沿って変化し、運転時間の増大に伴い、燃焼安定度SCが低下する。運転時間T1において、燃焼安定度SCが第1閾値SCaより小さくなり、拡散成層燃焼モードC2に切替えられ、燃焼安定度SCが上昇する。拡散成層燃焼モードC2では、燃焼安定度SCは特性SC2に沿って変化し、運転時間の増大に伴い、燃焼安定度SCが低下する。運転時間T2において、燃焼安定度SCが第2閾値SCbより小さくなり、吸気行程均質燃焼モードC3に切替えられ、燃焼安定度SCが再び上昇する。
この発明の各種の変更および変形は、この発明の観点と精神とを逸脱しない範囲で、関連技術者にとって明確なところであり、また図示された実施の形態には制限されないものと理解されるべきである。
この発明による直形エンジンの制御装置は、各種自動車などに搭載される直形エンジンの制御装置として利用可能である。
この発明による直形エンジンの制御装置の実施の形態1を示す構成図。 実施の形態1における燃焼室を拡大し、デポジットが堆積しない状態における噴霧成層混合気の形状を示す断面図。 実施の形態1における燃料インジェクタの先端部分の拡大斜視図。 実施の形態1における各燃焼モードのタイムシーケンス図。 実施の形態1における燃焼室を拡大し、デポジットが堆積した状態における噴霧成層混合気の形状を示す断面図。 実施の形態1におけるエンジン回転数の変化を示す特性図。 実施の形態1におけるイオン電流の変化を示す特性図。 実施の形態1において、燃料噴射タイミングおよび点火タイミングと燃焼状態との関係を示す説明図。 実施の形態1における燃焼モード制御フローチャート。 実施の形態1における燃焼安定度の変化を示す説明図。
22:燃焼室、30:燃料インジェクタ、35、35a:噴霧成層混合気、
40:点火プラグ、80:制御装置、85:燃焼状態検出手段、
87:燃焼モード切替手段、89:報知手段。

Claims (7)

  1. 燃焼室に配置された燃料インジェクタと点火プラグを備え、前記燃料インジェクタから前記燃焼室に直接燃料を噴射し、この燃料と空気との混合気を、少なくともスプレーガイド燃焼モードと、拡散成層燃焼モードとのいずれかの燃焼モードで燃焼して運転できるように構成された直形エンジンの制御装置であって、
    前記直形エンジンは、前記スプレーガイド燃焼モードでは、前記直形エンジンの圧縮行程で、前記燃料インジェクタから燃料を噴射することにより、前記点火プラグの近傍にピストンに衝突していない態様の噴霧成層混合気を形成し、この噴霧成層混合気に前記点火プラグにより点火して、それを燃焼させるように制御され、また、前記スプレーガイド燃焼モードによる運転時間の増大に応じて、前記噴霧成層混合気の形状が変化し、その結果、前記燃焼室での燃焼状態が変化するものとなっており、
    また、前記拡散成層燃焼モードでは、前記直噴形エンジンの圧縮工程で、前記スプレーガイド燃焼モードより早い燃料噴射タイミングで前記燃料インジェクタから燃料を噴射し、前記ピストンに衝突していない態様の噴霧成層混合気を前記スプレーガイド燃焼モードよりも長い拡散時間で拡散させ、この拡散した噴霧成層混合気に前記圧縮工程の終期で、前記点火プラグにより点火し、それを燃焼させるように制御され、
    前記制御装置は、前記燃焼状態の変化に対応して燃焼安定度を表わす燃焼安定度信号を出力する燃焼状態検出手段と、前記燃焼安定度信号に基づき燃焼モードを切替える燃焼モード切替手段を有し、
    前記燃焼モード切替手段は、前記燃焼安定度信号に応じて、前記スプレーガイド燃焼モードを、前記拡散成層燃焼モードに切替えることを特徴とする直形エンジンの制御装置。
  2. 請求項1記載の直形エンジンの制御装置であって、前記燃焼モード切替手段は、前記直形エンジンが前記スプレーガイド燃焼モードで運転されている場合に、前記燃焼安定度が悪化した時点で、前記スプレーガイド燃焼モードを、前記拡散成層燃焼モードに切替えることにより、前記燃焼安定度を向上させることを特徴とする直形エンジンの制御装置。
  3. 請求項記載の直形エンジンの制御装置であって、前記燃焼モード切替手段は、さらに、前記直形エンジンが前記拡散成層燃焼モードで運転されている場合に、前記燃焼安
    定度が悪化した時点で、前記拡散成層燃焼モードを、さらに吸気行程均質燃焼モードに切替えるように構成され、
    前記吸気行程均質燃焼モードでは、前記直形エンジンの吸気行程で、前記燃料インジェクタから燃料を噴射し、前記圧縮行程の終期で、前記噴霧成層混合気が拡散して燃料と空気がほぼ均一に混合した混合気に点火することを特徴とする直形エンジンの制御装置。
  4. 請求項1記載の直形エンジンの制御装置であって、前記燃焼状態検出手段は、前記直形エンジンのサイクル毎の回転数変動に基づき、前記燃焼安定度信号を出力することを特徴とする直形エンジンの制御装置。
  5. 請求項1記載の直形エンジンの制御装置であって、前記燃焼状態検出手段は、前記燃焼室内のイオン電流のサイクル毎の変動に基づき、前記燃焼安定度信号を出力することを特徴とする直形エンジンの制御装置。
  6. 請求項1記載の直形エンジンの制御装置であって、前記燃焼モード切替手段は、前記スプレーガイド燃焼モードを前記拡散成層燃焼モードに切替えたときに、この切替えに応じて、前記燃料インジェクタの燃料噴射タイミングとともに、前記点火プラグの点火タイミングをも制御することを特徴とする直形エンジンの制御装置。
  7. 請求項1記載の直形エンジンの制御装置であって、さらに報知手段を備え、前記報知手段は、前記スプレーガイド燃焼モードが前記拡散成層燃焼モードに切替えられたことを運転者に報知することを特徴とする直形エンジンの制御装置。
JP2007008259A 2007-01-17 2007-01-17 直噴形エンジンの制御装置 Expired - Fee Related JP4320345B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007008259A JP4320345B2 (ja) 2007-01-17 2007-01-17 直噴形エンジンの制御装置
DE200710031523 DE102007031523B4 (de) 2007-01-17 2007-07-06 Steuervorrichtung für einen Direkteinspritzmotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008259A JP4320345B2 (ja) 2007-01-17 2007-01-17 直噴形エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2008175112A JP2008175112A (ja) 2008-07-31
JP4320345B2 true JP4320345B2 (ja) 2009-08-26

Family

ID=39564045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008259A Expired - Fee Related JP4320345B2 (ja) 2007-01-17 2007-01-17 直噴形エンジンの制御装置

Country Status (2)

Country Link
JP (1) JP4320345B2 (ja)
DE (1) DE102007031523B4 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420461B2 (en) 2001-10-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3295975B2 (ja) 1992-09-02 2002-06-24 日産自動車株式会社 ガソリンエンジン
US5720260A (en) * 1996-12-13 1998-02-24 Ford Global Technologies, Inc. Method and system for controlling combustion stability for lean-burn engines
JP2004137989A (ja) * 2002-10-18 2004-05-13 Toyota Motor Corp 内燃機関の燃焼制御装置
JP2004360539A (ja) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd 筒内直接噴射式内燃機関
DE102004017989B4 (de) * 2004-04-14 2019-03-28 Daimler Ag Verfahren zum Betrieb einer Brennkraftmaschine mit Kraftstoffdirekteinspritzung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420461B2 (en) 2001-10-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for field-effect transistor

Also Published As

Publication number Publication date
DE102007031523B4 (de) 2014-02-13
JP2008175112A (ja) 2008-07-31
DE102007031523A1 (de) 2008-07-31

Similar Documents

Publication Publication Date Title
US5207058A (en) Internal combustion engine
US10400706B2 (en) Control apparatus for internal combustion engine
US7204228B2 (en) Method of operating an internal combustion engine with direct fuel injection
US7073480B2 (en) Exhaust emission control apparatus and method for internal combustion engine
JP2004239208A (ja) エンジンの燃焼制御装置
JP6206364B2 (ja) 内燃機関
JP2002206446A5 (ja)
JP6376289B2 (ja) 内燃機関制御装置及び内燃機関制御方法
JP6056775B2 (ja) 内燃機関の制御装置
WO2006072983A1 (ja) 筒内噴射型火花点火式内燃機関
JP4500790B2 (ja) 直噴エンジン
JP2002070558A (ja) 圧縮自己着火式ガソリン内燃機関
JP2008157197A (ja) 筒内噴射式火花点火内燃機関
JP2000073768A (ja) エンジンおよびエンジンの着火方法
JP4320345B2 (ja) 直噴形エンジンの制御装置
JP2003049650A (ja) 圧縮自己着火式内燃機関
JP2001355449A (ja) 圧縮自己着火式内燃機関
JP3627546B2 (ja) 直接筒内噴射式火花点火機関
JP4432667B2 (ja) 筒内直接噴射式内燃機関
JP3890449B2 (ja) 直噴火花点火式内燃機関
JP2020037895A (ja) 予混合圧縮着火式エンジン
JP4384677B2 (ja) 直噴形エンジンの制御装置
JP2022521580A (ja) 内燃機関のプレイグニッションを低減する方法
JP2006046276A (ja) 直噴火花点火式内燃機関の点火制御装置
CN100441839C (zh) 直喷式火花点火内燃机

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4320345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees