JP4318833B2 - CARBON FIBER PACKAGE AND METHOD FOR PRODUCING CARBON FIBER PACKAGE - Google Patents

CARBON FIBER PACKAGE AND METHOD FOR PRODUCING CARBON FIBER PACKAGE Download PDF

Info

Publication number
JP4318833B2
JP4318833B2 JP2000090832A JP2000090832A JP4318833B2 JP 4318833 B2 JP4318833 B2 JP 4318833B2 JP 2000090832 A JP2000090832 A JP 2000090832A JP 2000090832 A JP2000090832 A JP 2000090832A JP 4318833 B2 JP4318833 B2 JP 4318833B2
Authority
JP
Japan
Prior art keywords
fiber
weight
carbonaceous
fibers
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000090832A
Other languages
Japanese (ja)
Other versions
JP2001278353A (en
Inventor
浩 恒川
賢司 島崎
俊充 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2000090832A priority Critical patent/JP4318833B2/en
Publication of JP2001278353A publication Critical patent/JP2001278353A/en
Application granted granted Critical
Publication of JP4318833B2 publication Critical patent/JP4318833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭素質繊維の蓄熱による自然発火を防止した炭素質繊維梱包体に関するものである。更に詳しくは、炭素含有率65〜85重量%からなり、他に水素、酸素を含む炭素質繊維の蓄熱による自然発火を防止した炭素質繊維梱包体に関するものである。
【0002】
【従来の技術】
従来、炭素繊維は、高強度且つ高弾性を有する補強材用繊維として優れた素材であり、合成樹脂との複合材料として広く使用されている。この炭素繊維は、アクリロニトリル系繊維、ピッチ系繊維等の有機繊維より誘導されて製造されているが、特にアクリロニトリル系繊維を原料として誘導された、所謂アクリル系炭素繊維は、高強度且つ高弾性の繊維として有用されている。
【0003】
アクリル系炭素繊維の製造は、アクリロニトリル系繊維を200〜400℃の酸化性雰囲気で酸化処理(耐炎化処理)して所謂耐炎繊維とし、更に炭素の昇華温度までの不活性雰囲気中にて焼成することによって、狭義の意味での炭素繊維及び黒鉛繊維としている。
【0004】
このような不活性雰囲気中での焼成は、目的とする炭素繊維の性能に応じ条件設定がされ、この焼成過程において、繊維中の炭素含有率は、アクリロニトリル系繊維段階で55重量%程度であったものが次第に高くなり、最終的には殆ど炭素のみの繊維となる。通常、汎用されている炭素繊維の炭素含有率は、90重量%以上であり、その焼成温度は1000℃以上で、一般的には1200℃以上のものが普通である。
【0005】
このような炭素繊維に対して、アクリロニトリル系繊維を200〜400℃の酸化性雰囲気で酸化処理した繊維(耐炎繊維)を焼成温度が500〜1000℃、特に一般的には600〜800℃の炭素繊維の場合に比べて、低い焼成温度で不活性雰囲気中で焼成した繊維は炭素質繊維と呼ばれ、炭素含有率は65〜85重量%程度である。炭素質繊維は、炭素繊維に比べて親水性、電気抵抗が高く、一般的に樹脂との親和性も高いという特性を有する。また炭素繊維とは異なる摺動特性を有する。
【0006】
このような性質を持つ炭素質繊維は、例えば、摩擦材の補強繊維や、建築材等の補強繊維に使用される。炭素質繊維は炭素繊維に比較して安価であり、特に摩擦材に使用された場合には、安定した高摩擦係数を与えることが知られている(例えば、特公平6−84772号公報)。
【0007】
このような摩擦材、建築材等に使用される炭素質繊維は、所定長に切断されて保管、輸送され、使用される。炭素質繊維の切断は、湿潤状態で行われることが多い。これは、乾燥状態で切断すると、収束性が悪く、毛羽立ちが生じ、その後の取り扱い性が著しく困難となるからである。したがって、水分率10〜50%程度の高水分状態で保管、輸送されることが多かった。しかしながら、このような高水分状態の炭素質繊維を、乾燥状態で使用する場合には、一旦乾燥する必要があるが、高水分状態から徐々に乾燥すると、炭素質繊維に付着されているサイズ剤、油脂等の移動、付着ムラが生じ、マイグレーションの原因となる。
【0008】
【発明が解決しようとする課題】
乾燥状態の炭素質繊維を使用する場合には、乾燥状態で保管された炭素質繊維がそのままの乾燥状態で使用できるので便利である。しかしながら、本発明者らの知見によると、炭素含有率の低い炭素質繊維の一つの問題点として、乾燥状態で100℃程度の温度条件下で保管すると、酸化が徐々に進行して内部に蓄熱し、最終的に自然発火するという問題があることを見いだしている。このような現象は、炭素繊維及び耐炎繊維には見られない、炭素質繊維固有の現象である。
【0009】
炭素質繊維を保管する場合、保管スペースの関係から、或いはストランド、不織布、織物といった長尺物の場合巻かれた状態や積み重ねられた状態で保管される。このように、ある程度の充填密度でこのような蓄熱による自然発火を防止するために、保管温度を厳密に管理し、80℃を超えない温度に維持し、或いは積み重ねた炭素質繊維の間に温度センサを挿入し内部温度を常時チェックするという方法が必要とされていた。
【0010】
しかしながら、不慮の温度管理状態において自然発火することは避けなければならない。
【0011】
したがって、本発明の目的は、炭素質繊維の保管中における蓄熱による自然発火を防止し、安全に保管するとともに、次工程で使用する場合にも使用勝手がよく、マイグレーションの発生が無い炭素質繊維の梱包体を提供することにある。
【0012】
【課題を解決するための手段】
前記した目的を達成するための本発明の炭素質繊維梱包体は、炭素含有率65〜85重量%、平均繊維長0.1〜150mmのポリアクリロニトリル系炭素質繊維が、不透湿フィルムにより、充填密度0.1〜0.5g/cm3 、好ましくは0.15〜0.3g/cm3 で、水分率3〜8重量%を維持した状態で密閉されていることを特徴とする。
【0013】
本発明の炭素質繊維梱包体はこのような状態で密閉されることにより、保管中における蓄熱による自然発火を防止し、安全に保管するとともに、次工程で使用する場合にも、使用勝手のよいものとなる。
【0014】
本発明は、炭素含有率65〜85重量%、平均繊維長が0.1〜150mmの炭素質繊維を梱包の対象としている。炭素有量が65重量%未満であると、耐熱性が低くなり、耐熱用途に適さなくなる。また炭素含有量が85重量%を超えると炭素繊維に近似乃至炭素繊維となるが、製造コストが高くなり、しかも摩擦係数が低下してくるので、摩擦材用途には適さなくなる。平均繊維長が0.1mm未満であると、摩擦材や建築材の補強等における補強効果が少なくなり、150mmを超えると補強繊維として混合し分散させて使用する時に分散が困難となる。
【0015】
本発明の炭素質繊維梱包体は、不透湿フィルム内に上記の水分範囲を維持した状態で密閉されていることが必要である。水分率が3重量%未満であれば、炭素質繊維の収束性が低下し、ばらけ易くなり炭素質繊維の使用時の混合工程における分散性が悪く作業性が悪くなると共に、高温保管時に発火の恐れが生じる。水分率が8重量%を超えれば、そのままの状態では水分が多すぎて使用できず乾燥を必要とし、さらに水分率が多すぎると乾燥時にマイグレーションの発生が起こりやすくなる。また、不慮の温度管理状態、或いは、赤道直下の船積みで100℃を超えるような状態となった場合には、通常の包装形態では、水分率3〜8重量%を維持することは困難で、高温のため水分率が低下して絶乾状態となり、発火に至るようになる。したがって、不透湿フィルムにより密閉して水分率を上記範囲に保つことは発火防止のため、且つ良好な作業性を得るために必要である。
【0016】
本発明で使用する不透湿フィルムには、水蒸気透過量が50g/m2 ・24hr以下(JIS K7129による、40℃、90RHの条件下)であることが望ましい。不透湿フィルムの材質には、水分が透過しないものであれば何でもよいが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ナイロン、ポリエステル、ポリ塩化ビニリデン等或いはこれらの材質と他の材質を組み合わせたもの、例えば、不透湿加工した布帛、積層フィルム等が使用できる。不透湿フィルム厚みは好ましくは30〜200μm、さらに好ましくは50〜100μmである。不透湿フィルムが薄いと破損の危険があり、水蒸気透過量が多くなり、一方、厚いと堅くなり、取り扱い性が悪く、コスト高となる。梱包体の形態はどのようなものでもよく、開孔部をシールして密閉とする。
【0017】
本発明の炭素質繊維梱包体における、炭素質繊維の充填密度は0.1〜0.5g/cm3 とする。充填密度が0.1g/cm3 未満であると輸送コストが高くなり、輸送時に片寄り等が生じ不安定となる。一方、0.5g/cm3 を超えると解舒困難となり、例えば、繊維の絡みが生じるため混合工程で均一分散が困難となり、さらに、蓄熱性が高まることから発火の危険が高まるので好ましくない。
【0018】
特公昭48−34538号公報には、アクリル系重合体よりなる繊維を10〜50%の水分を含有した状態で採取する炭素繊維用アクリル系連続繊維束の製造方法について示されているが、これは無撚り、無捲、油剤無しの繊維束の収束性向上を目的としたものであり、本発明のような炭素質繊維が特定の条件で密閉された梱包体の保管中における蓄熱による自然発火を防止し、安全に保管するとともに、次工程で使用する場合にも使用勝手がよく、マイグレーションの発生が無い炭素質繊維の梱包体とは無縁のものである。
【0019】
特開平1−272864号公報には、サイジング剤無しの炭素繊維を0.1重量%以上の水を付着した状態で巻き取ることが示されているが、これは炭素繊維の収束性の向上、毛羽発生のトラブルを防止するものであり、上記と同様に本発明の炭素質繊維梱包体とは目的、構成、効果の異なるものである。
【0020】
本発明の炭素質繊維梱包体における炭素質繊維の燐含有量は、50〜300ppmであることが望ましい。燐含有量が50ppm未満であると耐酸化性が悪くなり、300ppmを超えると繊維強度が劣化する。また、ナトリウム含有量は200ppm以下が好ましく、さらに好ましくは100ppm以下であり、ナトリウム含有量が多いと酸化性が悪くなる。
【0021】
炭素質繊維のうち、ポリアクリロニトリル系炭素質繊維は、他の材料を起源とする炭素質繊維よりも強度が高く、補強繊維として優れている。
【0022】
【実施例】
〔実施例1〕
アクリロニトリル96重量%、アクリル酸メチル4重量%からなる共重合体塩化亜鉛水溶液(塩化亜鉛濃度45重量%)を紡糸し、1.9dtexで12,000フィラメントのアクリル系糸条を得た。次に該糸条をポリエチレングリコール0.2重量%の水溶液に含浸した後、空気中245℃で1時間、さらに255℃で1時間酸化処理して繊維密度1.4g/cm3 の耐炎化糸を得た。
【0023】
該耐炎化糸を窒素ガス中800℃で加熱し、繊維密度1.7g/cm3 、炭素含有率74重量%、酸素含有率6重量%の炭素質繊維を得た。
【0024】
該炭素質繊維を加湿条件下、ギロチンカッターにて平均繊維長3mmにるようにカットし、低密度ポリエチレン、厚さ80μmの不透湿袋(水蒸気透過量15g/m2 /24時間)に入れ、充填密度0.2g/cm3 、水分率5重量%になるように密封し70℃で保管したところ、蓄熱による梱包体の温度上昇はなく、6ヶ月安定に保管できた。
本実施例1の炭素質繊維梱包体の製造条件、保管条件及びその結果を下記の表1に示す。
【0025】
〔実施例2〕
アクリロニトリル96重量%、アクリル酸メチル4重量%からなる共重合体塩化亜鉛水溶液(塩化亜鉛濃度45重量%)を紡糸し、12,000フィラメントのプリカーサー(1.9dtex)とした。このプリカーサーをポリエチレングリコールを0.2重量%含む水溶液からなる油剤処理浴で処理した。次にこの処理済プリカーサーを、245℃で1時間、次いで255℃で1時間空気中で酸化処理し、密度1.4g/cm3 の耐炎化糸を得た。これを窒素ガス中900℃で炭素質化処理することにより、密度1.8g/cm3 の炭素質繊維を得た。この炭素質繊維は、炭素含有率が80重量%、酸素含有率が4重量%であった。
【0026】
この炭素質繊維を加湿条件下、ギロチンカッターにて平均繊維長3mmになるようにカットし、嵩密度が0.2g/cm3 のチョップドフィバーを得た。このチョップドフィバー15kgをポリエチレン製不透湿袋に入れ、充填密度0.2g/cm3 、水分率5重量%になるように密封し70℃で保管したところ、蓄熱による梱包体の温度上昇はなく、6ヶ月安定に保管できた。
本実施例2の炭素質繊維梱包体の製造条件、保管条件及びその結果を下記の表1に示す。
【0027】
〔実施例3〕
アクリロニトリル96重量%、アクリル酸メチル4重量%からなる共重合体塩化亜鉛水溶液(塩化亜鉛濃度45重量%)を紡糸し、12,000フィラメントのプリカーサー(1.9dtex)とした。このプリカーサーをポリエチレングリコールを0.2重量%の水溶液に含浸した後、空気中245℃で1時間処理した。この炭素繊維は繊維密度1.7g/cm3 、炭素含有率が74重量%、酸素含有率が6重量%であった。この炭素質繊維を水添化条件下、ギロチンカッターにて平均繊維長6mmになるようにカットし、嵩密度が0.6g/cm3 のチョップドフィバーを得た。この時の水分率は20重量%であった。このチョップドフィバーを減圧下70℃で乾燥し、40℃まで降温した後、常圧に戻してポリエチレン製不透湿袋で20kgを密封し、充填密度0.5g/cm3 、水分率4重量%になるよう密封し70℃で保管したところ、蓄熱による梱包体の温度上昇はなく、6ヶ月安定に保管できた。
本実施例3の炭素質繊維梱包体の製造条件、保管条件及びその結果を下記の表1に示す。
【0028】
〔実施例4〕
アクリロニトリル96重量%、アクリル酸メチル4重量%からなる共重合体塩化亜鉛水溶液(塩化亜鉛濃度45重量%)を紡糸し、12,000フィラメントのプリカーサー(1.9dtex)とした。このプリカーサーをポリエチレングリコールを0.2重量%含む水溶液からなる油剤処理浴で処理した。
【0029】
この処理済プリカーサーを、245℃で1時間、次いで255℃で1時間空気中で酸化処理し、密度1.4g/cm3 の耐炎糸を得た。これを窒素ガス中600℃で炭素質化処理することにより、密度1.6g/cm3 の炭素質繊維を得た。この炭素質繊維は、炭素含有率が79重量%、酸素含有率が7重量%であった。
【0030】
この炭素質繊維を加湿条件下、ギロチンカッターにて平均繊維長10mmになるようカットし、嵩密度が0.3g/cm3 のチョップドファイバーを得た。このチョップドファイバー20kgをポリエチレン製不透湿袋で、充填密度0.3g/cm3 、水分率が5重量%となるように密封し、70℃で保管したが、蓄熱による梱包体の温度上昇はなく、6ヶ月安定に保管できた。
本実施例4の炭素質繊維梱包体の製造条件、保管条件及びその結果を下記の表1に示す。
【0031】
【表1】

Figure 0004318833
〔比較例1〕
アクリロニトリル96重量%、アクリル酸メチル4重量%からなる共重合体塩化亜鉛水溶液(塩化亜鉛濃度45重量%)を紡糸し、12,000フィラメントのプリカーサー(1.9dtex)とした。このプリカーサーをポリエチレングリコールを0.2重量%含む水溶液からなる油剤処理浴で処理した。
【0032】
この処理済プリカーサーを、245℃で1時間、次いで255℃で1時間空気中で酸化処理し、密度1.4g/cm3 の耐炎糸を得た。これを窒素ガス中800℃で炭素質化処理することにより、密度1.7g/cm3 の炭素質繊維を得た。この炭素質繊維は、炭素含有率が74重量%、酸素含有率が6重量%であった。
【0033】
この炭素質繊維を乾燥条件下、ギロチンカッターにて平均繊維長3mmになるようカットし、嵩密度が0.2g/cm3 のチョップドファイバーを得た。このチョップドファイバー15kgをポリエチレン製不透湿袋で、充填密度0.2g/cm3 、水分率が1重量%となるように密封し、70℃で保管したところ、3日後の測定で蓄熱により梱包体の温度上昇(80℃)が見られた。
比較例1の炭素質繊維梱包体の製造条件、保管条件及びその結果を下記の表2に示す。
【0034】
〔比較例2〕
コモノマー6重量%を含むPAN系プリカーサーを200〜300℃で耐炎化処理し、密度1.4g/cm3 の耐炎糸を得た。これを窒素ガス雰囲気下600℃で処理する事により、密度1.6g/cm3 の炭素質繊維を得た。この炭素質繊維は、炭素含有率が79重量%、酸素含有率が7重量%であった。
【0035】
この炭素質繊維を水添条件下、ギロチンカッターにて平均繊維長6mmになるようカットし、嵩密度が0.6g/cm3 のチョップドファイバーを得た。この時の水分率は20重量%であった。このチョップドファイバーを70℃で真空水分率1重量%以下まで乾燥し、降温せず、ポリエチレン製不透湿袋で充填密度が0.2g/cm3 となるように該チョップドファイバー20kgを密封し、60℃で保管したところ、蓄熱により1日後に、密封体内の温度が360℃まで上昇し発煙が見られた。
比較例2の炭素質繊維梱包体の製造条件、保管条件及びその結果を下記の表2に示す。
【0036】
〔比較例3〕
コモノマー4重量%を含むPAN系プリカーサーを200〜300℃で耐炎化処理し、密度1.4g/cm3 の耐炎糸を得た。これを窒素ガス雰囲気下800℃で処理する事により、密度1.7g/cm3 の炭素質繊維を得た。この炭素質繊維は、炭素含有率が74重量%、酸素含有率が6重量%であった。
【0037】
この炭素質繊維を加湿条件下、ギロチンカッターにて平均繊維長6mmになるようカットし、嵩密度が0.4g/cm3 のチョップドファイバーを得た。このチョップドファイバー30kgをポリエチレン製不透湿袋で、充填密度0.5g/cm3 、水分率が10重量%となるように密封し、70℃で保管したところ、蓄熱による梱包体の温度上昇はなかったが、6ヶ月後では水分斑を生じ、後工程の分散処理時に分散斑(水分ムラ)を生じた。
比較例3の炭素質繊維梱包体の製造条件、保管条件及びその結果を下記の表2に示す。
【0038】
〔比較例4〕
アクリロニトリル96重量%、アクリル酸メチル4重量%からなる共重合体塩化亜鉛水溶液(塩化亜鉛濃度45重量%)を紡糸し、12,000フィラメントのプリカーサー(1.9dtex)とした。このプリカーサーをポリエチレングリコールを0.2重量%含む水溶液からなる油剤処理浴で処理した。
【0039】
この処理済プリカーサーを、245℃で1時間、次いで255℃で1時間空気中で酸化処理し、密度1.4g/cm3 の耐炎糸を得た。これを窒素ガス中800℃で炭素質化処理することにより、密度1.7g/cm3 の炭素質繊維を得た。この炭素質繊維は、炭素含有率が74重量%、酸素含有率が6重量%であった。
【0040】
この炭素質繊維を加湿条件下、ギロチンカッターにて平均繊維長3mmになるようカットし、嵩密度が0.2g/cm3 のチョップドファイバーを得た。このチョップドファイバー15kgをポリエチレン製不透湿袋に入れ、充填密度0.3g/cm3 、水分率が5重量%となるようにし、袋を解放して70℃で保管したところ、蓄熱により10日後温度上昇(90℃)が見られた。この時の水分率は1%未満であった。
比較例4の炭素質繊維梱包体の製造条件、保管条件及びその結果を下記の表2に示す。
【0041】
【表2】
Figure 0004318833
【0042】
【発明の効果】
本発明の炭素質繊維梱包体によれば、保管中における蓄熱による自然発火を防止し、安全に保管できる。本発明の炭素質繊維梱包体は、水分率3〜8重量%が維持されているため、使用勝手がよい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon fiber package that prevents spontaneous ignition due to heat storage of carbon fiber. More specifically, the present invention relates to a carbonaceous fiber package which has a carbon content of 65 to 85% by weight and prevents spontaneous ignition due to heat accumulation of carbonaceous fibers containing hydrogen and oxygen.
[0002]
[Prior art]
Conventionally, carbon fiber is a material excellent as a fiber for reinforcing material having high strength and high elasticity, and is widely used as a composite material with a synthetic resin. This carbon fiber is produced by being derived from an organic fiber such as acrylonitrile fiber or pitch fiber, but the so-called acrylic carbon fiber derived from acrylonitrile fiber, in particular, has high strength and high elasticity. It is useful as a fiber.
[0003]
Acrylic carbon fiber is produced by oxidizing acrylonitrile fiber in an oxidizing atmosphere at 200 to 400 ° C. (flame-resistant treatment) to form a so-called flame resistant fiber, and further firing in an inert atmosphere up to the sublimation temperature of carbon. Thus, carbon fibers and graphite fibers are defined in a narrow sense.
[0004]
Firing in such an inert atmosphere is set according to the performance of the target carbon fiber, and in this firing process, the carbon content in the fiber is about 55% by weight at the acrylonitrile fiber stage. It becomes increasingly expensive and eventually becomes almost carbon-only fiber. Usually, the carbon content of commonly used carbon fibers is 90% by weight or more, and the firing temperature is 1000 ° C. or higher, and generally 1200 ° C. or higher.
[0005]
A carbon (flame resistant fiber) obtained by oxidizing acrylonitrile fiber in an oxidizing atmosphere of 200 to 400 ° C. with respect to such a carbon fiber is a carbon having a firing temperature of 500 to 1000 ° C., particularly generally 600 to 800 ° C. Compared with the case of fiber, the fiber baked in the inert atmosphere at the low calcination temperature is called carbonaceous fiber, and the carbon content is about 65 to 85% by weight. Carbonaceous fibers have properties such as higher hydrophilicity and electrical resistance than carbon fibers, and generally high affinity with resins. Moreover, it has a sliding characteristic different from carbon fiber.
[0006]
Carbonaceous fibers having such properties are used, for example, for reinforcing fibers for friction materials and reinforcing fibers for building materials. It is known that carbonaceous fibers are cheaper than carbon fibers and give a stable high friction coefficient, particularly when used as a friction material (for example, Japanese Patent Publication No. 6-84772).
[0007]
Carbonaceous fibers used for such friction materials and building materials are cut into a predetermined length, stored, transported and used. The cutting of carbonaceous fibers is often performed in a wet state. This is because, when cut in a dry state, convergence is poor, fluffing occurs, and subsequent handling becomes extremely difficult. Therefore, it was often stored and transported in a high moisture state with a moisture content of about 10 to 50%. However, in the case of using such a high moisture state carbonaceous fiber in a dry state, it is necessary to dry it once, but when it is gradually dried from the high moisture state, the sizing agent attached to the carbonaceous fiber. , Movement of oil and fat, and uneven adhesion occur, causing migration.
[0008]
[Problems to be solved by the invention]
When using carbonaceous fibers in a dry state, it is convenient because carbonaceous fibers stored in a dry state can be used in the dry state as they are. However, according to the knowledge of the present inventors, one problem with carbonaceous fibers having a low carbon content is that when stored in a dry state under a temperature condition of about 100 ° C., oxidation gradually proceeds to store heat inside. And finally finds the problem of spontaneous ignition. Such a phenomenon is a phenomenon peculiar to carbonaceous fibers that is not observed in carbon fibers and flame resistant fibers.
[0009]
When storing the carbonaceous fiber, it is stored in a wound state or a stacked state in the case of a long object such as a strand, a non-woven fabric, or a woven fabric because of the storage space. Thus, in order to prevent spontaneous ignition due to such heat storage at a certain packing density, the storage temperature is strictly controlled and maintained at a temperature not exceeding 80 ° C., or the temperature between stacked carbonaceous fibers A method of inserting a sensor and constantly checking the internal temperature was required.
[0010]
However, spontaneous ignition should be avoided in unforeseen temperature controlled conditions.
[0011]
Therefore, the object of the present invention is to prevent spontaneous ignition due to heat storage during storage of carbonaceous fibers, and to store them safely, and also to be used easily in the next process, and there is no occurrence of migration. It is to provide a packaging body.
[0012]
[Means for Solving the Problems]
The carbonaceous fiber package of the present invention for achieving the above-mentioned object is a polyacrylonitrile-based carbonaceous fiber having a carbon content of 65 to 85% by weight and an average fiber length of 0.1 to 150 mm by an impermeable film. It is characterized by being sealed with a packing density of 0.1 to 0.5 g / cm 3 , preferably 0.15 to 0.3 g / cm 3 and a moisture content of 3 to 8% by weight.
[0013]
The carbonaceous fiber package of the present invention is sealed in such a state, thereby preventing spontaneous ignition due to heat storage during storage, storing it safely, and also being easy to use when used in the next process. It will be a thing.
[0014]
In the present invention, carbonaceous fibers having a carbon content of 65 to 85% by weight and an average fiber length of 0.1 to 150 mm are targeted for packaging. If the carbon content is less than 65% by weight, the heat resistance will be low and it will not be suitable for heat-resistant applications. Further, if the carbon content exceeds 85% by weight, the carbon fiber is close to carbon fiber, but the production cost is increased and the friction coefficient is lowered, so that it is not suitable for use as a friction material. When the average fiber length is less than 0.1 mm, the reinforcing effect in reinforcing friction materials and building materials is reduced, and when it exceeds 150 mm, dispersion becomes difficult when mixed and dispersed as reinforcing fibers.
[0015]
The carbonaceous fiber package of the present invention needs to be sealed in a moisture-impermeable film while maintaining the above moisture range. If the moisture content is less than 3% by weight, the convergence property of the carbonaceous fiber is lowered, it becomes easy to disperse, the dispersibility in the mixing process at the time of use of the carbonaceous fiber is deteriorated, and the workability is deteriorated. Cause fear. If the water content exceeds 8% by weight, the water is too much to be used as it is and cannot be used, and drying is necessary. If the water content is too high, migration tends to occur during drying. In addition, in the case of an unexpected temperature control state or a state where the temperature exceeds 100 ° C. due to shipping directly under the equator, it is difficult to maintain a moisture content of 3 to 8% by weight in a normal packaging form, Due to the high temperature, the moisture content decreases and becomes completely dry, leading to ignition. Therefore, it is necessary to seal with a moisture-impermeable film and keep the moisture content within the above range in order to prevent ignition and to obtain good workability.
[0016]
The moisture-impermeable film used in the present invention desirably has a water vapor transmission rate of 50 g / m 2 · 24 hr or less (under conditions of 40 ° C. and 90 RH according to JIS K7129). Any material can be used for the moisture-impermeable film as long as it does not transmit moisture. For example, polyolefins such as polyethylene and polypropylene, nylon, polyester, polyvinylidene chloride, etc., or a combination of these and other materials. For example, a cloth impermeable to moisture and a laminated film can be used. The moisture-impermeable film thickness is preferably 30 to 200 μm, more preferably 50 to 100 μm. If the moisture-impermeable film is thin, there is a risk of breakage, and the amount of water vapor permeation increases. On the other hand, if the moisture-impermeable film is thick, the film becomes stiff, the handling property is poor, and the cost is high. The package may have any form, and the opening is sealed and sealed.
[0017]
The packing density of carbonaceous fibers in the carbonaceous fiber package of the present invention is 0.1 to 0.5 g / cm 3 . When the packing density is less than 0.1 g / cm 3 , the transportation cost becomes high, and a deviation or the like occurs during transportation, resulting in instability. On the other hand, if it exceeds 0.5 g / cm 3 , unraveling becomes difficult. For example, entanglement of fibers occurs, so that uniform dispersion becomes difficult in the mixing step.
[0018]
Japanese Patent Publication No. 48-34538 discloses a method for producing an acrylic continuous fiber bundle for carbon fibers, in which fibers made of an acrylic polymer are collected in a state containing 10 to 50% of water. Is intended to improve the convergence of fiber bundles with no twist, no wrinkles, and no oil, and spontaneous ignition due to heat accumulation during storage of a package in which carbonaceous fibers such as the present invention are sealed under specific conditions In addition, it is safe to store and is easy to use when used in the next process, and is unrelated to a carbonaceous fiber package that does not cause migration.
[0019]
JP-A-1-272864 discloses that a carbon fiber without a sizing agent is wound in a state where 0.1% by weight or more of water is attached, which improves the convergence of the carbon fiber, It prevents fluffing troubles, and has the same purpose, configuration, and effect as the carbonaceous fiber package of the present invention as described above.
[0020]
The phosphorus content of the carbonaceous fiber in the carbonaceous fiber package of the present invention is preferably 50 to 300 ppm. When the phosphorus content is less than 50 ppm, the oxidation resistance is deteriorated, and when it exceeds 300 ppm, the fiber strength is deteriorated. Further, the sodium content is preferably 200 ppm or less, more preferably 100 ppm or less. When the sodium content is large, the oxidizability deteriorates.
[0021]
Among the carbonaceous fibers, polyacrylonitrile-based carbonaceous fibers have higher strength than carbonaceous fibers originating from other materials and are excellent as reinforcing fibers.
[0022]
【Example】
[Example 1]
A copolymer zinc chloride aqueous solution consisting of 96% by weight of acrylonitrile and 4% by weight of methyl acrylate (zinc chloride concentration: 45% by weight) was spun to obtain an acrylic yarn of 12,000 filaments at 1.9 dtex. Next, the yarn was impregnated with an aqueous solution of 0.2% by weight of polyethylene glycol, and then oxidized in air at 245 ° C. for 1 hour and further at 255 ° C. for 1 hour, and a flame resistant yarn having a fiber density of 1.4 g / cm 3 . Got.
[0023]
The flameproof yarn was heated in nitrogen gas at 800 ° C. to obtain a carbonaceous fiber having a fiber density of 1.7 g / cm 3 , a carbon content of 74% by weight, and an oxygen content of 6% by weight.
[0024]
Humidifying the carbonaceous fibers conditions, cut to resemble average fiber length 3mm at guillotine cutter, placed in a low-density polyethylene, having a thickness of 80μm impermeable Shimefukuro (water vapor permeability of 15g / m 2/24 hours) When sealed and stored at 70 ° C. so as to have a packing density of 0.2 g / cm 3 and a moisture content of 5% by weight, there was no increase in the temperature of the package due to heat storage, and it could be stored stably for 6 months.
Table 1 below shows the production conditions, storage conditions, and results of the carbonaceous fiber package of Example 1.
[0025]
[Example 2]
An aqueous copolymer zinc chloride solution (96% by weight of acrylonitrile and 4% by weight of methyl acrylate) was spun into a 12,000 filament precursor (1.9 dtex). This precursor was treated in an oil agent treatment bath comprising an aqueous solution containing 0.2% by weight of polyethylene glycol. Next, this treated precursor was oxidized in air at 245 ° C. for 1 hour and then at 255 ° C. for 1 hour to obtain a flame resistant yarn having a density of 1.4 g / cm 3 . This was carbonized at 900 ° C. in nitrogen gas to obtain carbonaceous fibers having a density of 1.8 g / cm 3 . This carbonaceous fiber had a carbon content of 80% by weight and an oxygen content of 4% by weight.
[0026]
This carbonaceous fiber was cut with a guillotine cutter so as to have an average fiber length of 3 mm under humidified conditions to obtain a chopped fiber with a bulk density of 0.2 g / cm 3 . When 15 kg of this chopped fiber is placed in a polyethylene impermeable bag, sealed to a packing density of 0.2 g / cm 3 and a moisture content of 5% by weight, and stored at 70 ° C., there is no temperature rise of the package due to heat storage. , Stable storage for 6 months.
The production conditions, storage conditions and results of the carbonaceous fiber package of Example 2 are shown in Table 1 below.
[0027]
Example 3
An aqueous copolymer zinc chloride solution (96% by weight of acrylonitrile and 4% by weight of methyl acrylate) was spun into a 12,000 filament precursor (1.9 dtex). This precursor was impregnated with a 0.2% by weight aqueous solution of polyethylene glycol and then treated in air at 245 ° C. for 1 hour. This carbon fiber had a fiber density of 1.7 g / cm 3 , a carbon content of 74% by weight, and an oxygen content of 6% by weight. This carbonaceous fiber was cut with a guillotine cutter under hydrogenation conditions so as to have an average fiber length of 6 mm to obtain a chopped fiber with a bulk density of 0.6 g / cm 3 . The moisture content at this time was 20% by weight. The chopped fiber was dried at 70 ° C. under reduced pressure, cooled to 40 ° C., then returned to normal pressure, sealed with 20 kg of polyethylene impermeable bag, filled density 0.5 g / cm 3 , moisture content 4% by weight. When sealed and stored at 70 ° C., there was no temperature rise of the package due to heat storage, and the package could be stably stored for 6 months.
The manufacturing conditions, storage conditions, and results of the carbonaceous fiber package of Example 3 are shown in Table 1 below.
[0028]
Example 4
An aqueous copolymer zinc chloride solution (96% by weight of acrylonitrile and 4% by weight of methyl acrylate) was spun into a 12,000 filament precursor (1.9 dtex). This precursor was treated in an oil agent treatment bath comprising an aqueous solution containing 0.2% by weight of polyethylene glycol.
[0029]
This treated precursor was oxidized in air at 245 ° C. for 1 hour and then at 255 ° C. for 1 hour to obtain a flame resistant yarn having a density of 1.4 g / cm 3 . This was carbonized at 600 ° C. in nitrogen gas to obtain carbonaceous fibers having a density of 1.6 g / cm 3 . This carbonaceous fiber had a carbon content of 79% by weight and an oxygen content of 7% by weight.
[0030]
This carbonaceous fiber was cut with a guillotine cutter under humidified conditions to an average fiber length of 10 mm to obtain a chopped fiber having a bulk density of 0.3 g / cm 3 . 20 kg of this chopped fiber was sealed with a polyethylene impermeable bag so as to have a filling density of 0.3 g / cm 3 and a moisture content of 5% by weight and stored at 70 ° C. There was no stable storage for 6 months.
The production conditions, storage conditions, and results of the carbonaceous fiber package of Example 4 are shown in Table 1 below.
[0031]
[Table 1]
Figure 0004318833
[Comparative Example 1]
An aqueous copolymer zinc chloride solution (96% by weight of acrylonitrile and 4% by weight of methyl acrylate) was spun into a 12,000 filament precursor (1.9 dtex). This precursor was treated in an oil agent treatment bath comprising an aqueous solution containing 0.2% by weight of polyethylene glycol.
[0032]
This treated precursor was oxidized in air at 245 ° C. for 1 hour and then at 255 ° C. for 1 hour to obtain a flame resistant yarn having a density of 1.4 g / cm 3 . This was carbonized at 800 ° C. in nitrogen gas to obtain carbonaceous fibers having a density of 1.7 g / cm 3 . This carbonaceous fiber had a carbon content of 74% by weight and an oxygen content of 6% by weight.
[0033]
This carbonaceous fiber was cut with a guillotine cutter under dry conditions to an average fiber length of 3 mm to obtain a chopped fiber having a bulk density of 0.2 g / cm 3 . 15kg of this chopped fiber is sealed with polyethylene impervious bag so that the packing density is 0.2g / cm 3 and the moisture content is 1% by weight, and is stored at 70 ° C. An increase in body temperature (80 ° C.) was observed.
The production conditions, storage conditions, and results of the carbonaceous fiber package of Comparative Example 1 are shown in Table 2 below.
[0034]
[Comparative Example 2]
A PAN-based precursor containing 6% by weight of a comonomer was flameproofed at 200 to 300 ° C. to obtain a flameproof yarn having a density of 1.4 g / cm 3 . By treating this at 600 ° C. in a nitrogen gas atmosphere, carbonaceous fibers having a density of 1.6 g / cm 3 were obtained. This carbonaceous fiber had a carbon content of 79% by weight and an oxygen content of 7% by weight.
[0035]
This carbonaceous fiber was cut with a guillotine cutter under hydrogenation conditions to an average fiber length of 6 mm to obtain a chopped fiber having a bulk density of 0.6 g / cm 3 . The moisture content at this time was 20% by weight. The chopped fiber was dried at 70 ° C. to a moisture content of 1% by weight or less, and the temperature was not lowered, and 20 kg of the chopped fiber was sealed with a polyethylene impermeable bag so that the filling density was 0.2 g / cm 3 . When stored at 60 ° C., the temperature in the sealed body rose to 360 ° C. after one day due to heat accumulation, and smoke was seen.
The production conditions, storage conditions and results of the carbonaceous fiber package of Comparative Example 2 are shown in Table 2 below.
[0036]
[Comparative Example 3]
A PAN-based precursor containing 4% by weight of a comonomer was flameproofed at 200 to 300 ° C. to obtain a flameproof yarn having a density of 1.4 g / cm 3 . By treating this at 800 ° C. in a nitrogen gas atmosphere, a carbonaceous fiber having a density of 1.7 g / cm 3 was obtained. This carbonaceous fiber had a carbon content of 74% by weight and an oxygen content of 6% by weight.
[0037]
This carbonaceous fiber was cut with a guillotine cutter under humidified conditions to an average fiber length of 6 mm to obtain a chopped fiber having a bulk density of 0.4 g / cm 3 . When 30 kg of this chopped fiber was sealed with a polyethylene impermeable bag so that the filling density was 0.5 g / cm 3 and the moisture content was 10% by weight and stored at 70 ° C., the temperature rise of the package due to heat storage was However, after 6 months, water spots were generated, and during the post-dispersion treatment, water spots (moisture unevenness) were generated.
The production conditions, storage conditions, and results of the carbonaceous fiber package of Comparative Example 3 are shown in Table 2 below.
[0038]
[Comparative Example 4]
An aqueous copolymer zinc chloride solution (96% by weight of acrylonitrile and 4% by weight of methyl acrylate) was spun into a 12,000 filament precursor (1.9 dtex). This precursor was treated in an oil agent treatment bath comprising an aqueous solution containing 0.2% by weight of polyethylene glycol.
[0039]
This treated precursor was oxidized in air at 245 ° C. for 1 hour and then at 255 ° C. for 1 hour to obtain a flame resistant yarn having a density of 1.4 g / cm 3 . This was carbonized at 800 ° C. in nitrogen gas to obtain carbonaceous fibers having a density of 1.7 g / cm 3 . This carbonaceous fiber had a carbon content of 74% by weight and an oxygen content of 6% by weight.
[0040]
This carbonaceous fiber was cut with a guillotine cutter under humidified conditions so as to have an average fiber length of 3 mm to obtain a chopped fiber having a bulk density of 0.2 g / cm 3 . 15 kg of this chopped fiber was put in a polyethylene impermeable bag, the filling density was 0.3 g / cm 3 , the moisture content was 5% by weight, the bag was released and stored at 70 ° C. After 10 days due to heat storage An increase in temperature (90 ° C.) was observed. The moisture content at this time was less than 1%.
The production conditions, storage conditions, and results of the carbonaceous fiber package of Comparative Example 4 are shown in Table 2 below.
[0041]
[Table 2]
Figure 0004318833
[0042]
【The invention's effect】
According to the carbonaceous fiber package of the present invention, spontaneous ignition due to heat storage during storage can be prevented and safe storage can be achieved. Since the carbonaceous fiber package of the present invention maintains a moisture content of 3 to 8% by weight, it is easy to use.

Claims (2)

炭素含有率65〜85重量%、平均繊維長0.1〜150mmのポリアクリロニトリル系炭素質繊維が、不透湿フィルムにより、充填密度0.1〜0.5g/cm3 で、水分率3〜8重量%を維持した状態で密閉されている炭素質繊維梱包体。 A polyacrylonitrile-based carbonaceous fiber having a carbon content of 65 to 85% by weight and an average fiber length of 0.1 to 150 mm is filled with a moisture-impermeable film at a filling density of 0.1 to 0.5 g / cm 3 and a moisture content of 3 A carbonaceous fiber package that is hermetically sealed while maintaining 8% by weight. 炭素含有率65〜85重量%、平均繊維長0.1〜150mmのポリアクリロニトリル系炭素質繊維を、充填密度0.1〜0.5g/cmA polyacrylonitrile-based carbonaceous fiber having a carbon content of 65 to 85% by weight and an average fiber length of 0.1 to 150 mm has a packing density of 0.1 to 0.5 g / cm. 3 Three で、水分率3〜8重量%を維持した状態で不透湿フィルムで密閉することを特徴とする炭素質繊維梱包体の製造方法。And the manufacturing method of the carbonaceous fiber package characterized by sealing with a moisture-impermeable film in the state which maintained the moisture content 3-8 weight%.
JP2000090832A 2000-03-29 2000-03-29 CARBON FIBER PACKAGE AND METHOD FOR PRODUCING CARBON FIBER PACKAGE Expired - Fee Related JP4318833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090832A JP4318833B2 (en) 2000-03-29 2000-03-29 CARBON FIBER PACKAGE AND METHOD FOR PRODUCING CARBON FIBER PACKAGE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090832A JP4318833B2 (en) 2000-03-29 2000-03-29 CARBON FIBER PACKAGE AND METHOD FOR PRODUCING CARBON FIBER PACKAGE

Publications (2)

Publication Number Publication Date
JP2001278353A JP2001278353A (en) 2001-10-10
JP4318833B2 true JP4318833B2 (en) 2009-08-26

Family

ID=18606380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090832A Expired - Fee Related JP4318833B2 (en) 2000-03-29 2000-03-29 CARBON FIBER PACKAGE AND METHOD FOR PRODUCING CARBON FIBER PACKAGE

Country Status (1)

Country Link
JP (1) JP4318833B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216262B2 (en) * 2007-07-13 2013-06-19 電気化学工業株式会社 Method for packing artificial hair fibers
JP2014005014A (en) * 2012-06-22 2014-01-16 Toray Ind Inc Package and manufacturing method of the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119717A (en) * 1984-11-14 1986-06-06 Toho Rayon Co Ltd Bundle of water-absorbing carbon fiber of high performance
JPH0684772B2 (en) * 1987-05-29 1994-10-26 東邦レーヨン株式会社 Friction material
US4844974A (en) * 1987-11-18 1989-07-04 The Dow Chemical Company Antistatic, antislosh, flame arresting structure for use in containers holding flammable fluids
JPH0543320A (en) * 1991-08-01 1993-02-23 Osaka Gas Co Ltd Production of carbonaceous form
JP3077368B2 (en) * 1992-04-09 2000-08-14 凸版印刷株式会社 Gazette package
JPH10121325A (en) * 1996-10-14 1998-05-12 Toray Ind Inc Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
JPH10167564A (en) * 1996-12-05 1998-06-23 Toray Ind Inc Carbon fiber package and carbon fiber packaged body

Also Published As

Publication number Publication date
JP2001278353A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US5776607A (en) Flexible biregional carbonaceous fiber, articles made from biregional carbonaceous fibers, and method of manufacture
US3385915A (en) Process for producing metal oxide fibers, textiles and shapes
WO2018003545A1 (en) Insulating material and equipment using insulating material
KR20110109697A (en) A method for coating oxidation protective layer for carbon/carbon composite, a carbon heater, and cooker
JP4318833B2 (en) CARBON FIBER PACKAGE AND METHOD FOR PRODUCING CARBON FIBER PACKAGE
KR20150050419A (en) Activated Carbon Fiber and Method for Preparing the Same
JPH01270575A (en) Carbonaceous fiber structure having inorganic substance film
KR102679400B1 (en) Flame retardant paper for preventing thermal runaway and reinforcing incombustibility containing nanocluster type composite oxide and manufacturing method thereof
US3723150A (en) Surface modification of carbon fibers
JP2000144534A (en) Acrylic fiber yarn for producing carbon fiber and its production
CN211294714U (en) Flame-retardant polypropylene netted environment-friendly filling rope
CA1181555A (en) Pan based carbon fiber and process for producing the same
KR101134664B1 (en) High performance heat insulator and method for manufacturing the same
JP2008169491A (en) Method for producing carbonized fabric and carbonized fabric obtained by the method
US20220282405A1 (en) Flexible ignition resistant non-electrically conductive biregional fibers, articles made from non- non-electrically conductive biregional fibers, and methods of manufacture
CN219903664U (en) Flame-retardant high-strength garment fabric and garment
JP2003286631A (en) High bulk density flame-resistant fiber spun yarn woven fabric and carbon fiber spun yarn woven fabric, and method for producing them
JPH02222422A (en) Manufacture of fiber-reinforced polymeric matrix composite and method of using it
JP7456377B2 (en) Continuous carbon fiber bundle package
JPS6411327B2 (en)
KR102699087B1 (en) A packing having heat-resistance composite fiber
JPS607746B2 (en) heat shrinkable string
MXPA96006745A (en) Fiber birregional flexible resistant to ignition, articles made from birthage fibers and method of fabricac
JPS6250574B2 (en)
KR20230159727A (en) Lagging for agriculture with flame-retardant and deodorant properties using ceramic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140605

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees