JP4318629B2 - Cooling water transfer system to refrigerator and cooling water transfer method to refrigerator - Google Patents

Cooling water transfer system to refrigerator and cooling water transfer method to refrigerator Download PDF

Info

Publication number
JP4318629B2
JP4318629B2 JP2004335741A JP2004335741A JP4318629B2 JP 4318629 B2 JP4318629 B2 JP 4318629B2 JP 2004335741 A JP2004335741 A JP 2004335741A JP 2004335741 A JP2004335741 A JP 2004335741A JP 4318629 B2 JP4318629 B2 JP 4318629B2
Authority
JP
Japan
Prior art keywords
cooling water
absorber
refrigerant vapor
condenser
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004335741A
Other languages
Japanese (ja)
Other versions
JP2006145112A (en
Inventor
利雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2004335741A priority Critical patent/JP4318629B2/en
Publication of JP2006145112A publication Critical patent/JP2006145112A/en
Application granted granted Critical
Publication of JP4318629B2 publication Critical patent/JP4318629B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

本発明は冷凍機の成績係数の向上技術、より詳しくは吸収冷凍機への冷却水供給技術に関する。   The present invention relates to a technique for improving the coefficient of performance of a refrigerator, and more particularly to a technique for supplying cooling water to an absorption refrigerator.

工場、大型建造物、大規模ビルなどの建造物に使用される冷房用又は、製品の生産若しくは原料製品の保管用等の冷水を作る装置として冷凍機がある。   There is a refrigerator as an apparatus for producing cold water for cooling used for buildings such as factories, large buildings, and large buildings, or for producing products or storing raw material products.

冷凍機にはいくつかの種類がある。このうち吸収冷凍機と称される冷凍機は、周知の如く冷媒液を蒸発させて熱負荷に供給される冷水を製造する蒸発器と、この蒸発器で発生した冷媒蒸気が送られ、当該冷媒蒸気を吸収液に吸収させる吸収器と、この吸収器において前記冷媒蒸気を吸収することで希溶液となった吸収液を加熱して当該吸収液から前記冷媒液を冷媒蒸気として放出させて吸収液を濃溶液とすることで冷媒蒸気を吸収する力を復元させる発生器と、発生器において吸収液から放出された冷媒蒸気を冷却により凝縮して冷媒液を生成する凝縮器と、これら部材を連結するパイプとを有しており、当該パイプを介して、前記冷媒液,冷媒蒸気、吸収液のいずれか又は冷媒液を含む吸収液を前記各部材間で搬送するようになっている。   There are several types of refrigerators. Among these, a refrigerator called an absorption refrigerator is an evaporator that evaporates a refrigerant liquid to produce cold water to be supplied to a heat load, and a refrigerant vapor generated by the evaporator is sent to the refrigerant. An absorber that absorbs the vapor into the absorbing liquid, and the absorbing liquid that has become a dilute solution by absorbing the refrigerant vapor in the absorber and releases the refrigerant liquid as the refrigerant vapor from the absorbing liquid, thereby absorbing the liquid These components are connected to a generator that restores the power to absorb refrigerant vapor by making the solution into a concentrated solution, a condenser that condenses the refrigerant vapor released from the absorbing liquid in the generator by cooling, and generates refrigerant liquid. A pipe that performs the above-described operation, and the refrigerant liquid, the refrigerant vapor, the absorption liquid, or the absorption liquid containing the refrigerant liquid is conveyed between the members through the pipe.

また吸収冷凍機は、前記吸収器および前記凝縮器に冷却水を搬送する冷却塔とつながっている。   The absorption refrigerator is connected to a cooling tower that conveys cooling water to the absorber and the condenser.

蒸発器内には、冷凍機による前記冷水を生成するための管である冷水生成管としての水流管が、コイル状に配管され、また蒸発器は十分に断熱されている。よって当該水流管に水を流すと、蒸発器では水流管からしか冷媒液は熱を奪えないので、コイル状に配管された水流管内の水は冷却される。そして、当該冷却された冷水を、既述のごとく冷房用又は、製品の生産若しくは原料製品の保管用冷却等の媒体として搬送する。   In the evaporator, a water flow pipe as a cold water generation pipe, which is a pipe for generating the cold water by a refrigerator, is provided in a coil shape, and the evaporator is sufficiently insulated. Therefore, when water is caused to flow through the water flow pipe, the refrigerant liquid can only take heat from the water flow pipe in the evaporator, so that the water in the water flow pipe arranged in a coil shape is cooled. Then, as described above, the cooled cold water is conveyed as a medium for cooling or cooling for production of products or storage of raw material products.

吸収冷凍機は、冷凍機を運転するためのエネルギーを電気ではなく、灯油やガスを燃焼させ、それで得た熱をそのまま利用し、最終的には熱をエネルギーのかたちで冷凍機の運転に使用しており、モータを必要としない。   Absorption chillers use kerosene and gas to burn energy instead of electricity, use the heat that is obtained as it is, and finally use the heat in the form of energy to operate the refrigerator. And does not require a motor.

したがって、その運転は静かで騒音や振動もほとんどないこと、冷媒に水を用いるのでオゾン層を破壊しないノンフロン型であること、主要エネルギーが非電力であり、省電力であること等の理由から普及している。   Therefore, the operation is quiet and there is almost no noise and vibration, it is a non-fluorocarbon type that does not destroy the ozone layer because water is used as the refrigerant, and the main energy is non-electricity, and it is popular for power saving. is doing.

吸収冷凍機のうち、吸収冷凍機の効率を表す指標である成績係数(Coeficent
Of Performance:COP)を高めた二重効用式吸収冷凍機が提案されている。
Coefficient of performance (Coefficient) which is an index representing the efficiency of absorption refrigerators among absorption refrigerators
A double-effect absorption refrigerator having an enhanced performance (COP) has been proposed.

二重効用式吸収冷凍機は、周知のごとく発生器が第1発生器と第2発生器の2つあり、蒸発器で発生した冷媒蒸気を吸収器において吸収することで希溶液となった吸収液を第1発生器で加熱後、さらに第1発生器で発生した冷媒蒸気を熱源として第2発生器においても加熱することにより、吸収液の冷媒蒸気を発生させ、もって成績係数を高めるようにした吸収冷凍機である。   The double-effect absorption refrigerator has two generators, a first generator and a second generator, as is well known, and absorbs refrigerant vapor generated in the evaporator into the diluted solution by absorbing in the absorber. After the liquid is heated in the first generator, the refrigerant vapor generated in the first generator is also used in the second generator as a heat source to generate refrigerant vapor in the absorbing liquid, thereby increasing the coefficient of performance. Absorption refrigerator.

図3は、このような二重効用式吸収冷凍機に冷却水を搬送する冷却水搬送システムの概念図である。   FIG. 3 is a conceptual diagram of a cooling water transport system that transports cooling water to such a double-effect absorption refrigerator.

図中符号830は吸収器、834は第1発生器、835は第2発生器、836は凝縮器、837は蒸発器、840は冷却塔を示唆する。またこれらを結ぶ線は、パイプである。   In the figure, reference numeral 830 indicates an absorber, 834 indicates a first generator, 835 indicates a second generator, 836 indicates a condenser, 837 indicates an evaporator, and 840 indicates a cooling tower. The line connecting them is a pipe.

従来の冷却水搬送システムにあっては、冷却塔840からの冷却水は先に吸収器830を通り、次に凝縮器836を経て冷却塔840へ戻る。   In the conventional cooling water transfer system, the cooling water from the cooling tower 840 first passes through the absorber 830 and then returns to the cooling tower 840 via the condenser 836.

冷却水は、吸収器830を経由する際に、蒸発器837から吸収器830に流入してくる冷媒蒸気の熱と、凝縮器836を経由する際に第2発生器835から凝縮器836に流入してくる冷媒蒸気の熱とを奪う。   The cooling water flows from the second generator 835 to the condenser 836 from the second generator 835 when it passes through the condenser 836 and the heat of the refrigerant vapor flowing into the absorber 830 from the evaporator 837 when passing through the absorber 830. Takes away the heat of the incoming refrigerant vapor.

当該吸熱した冷却水は、その後、冷却塔840で冷却され、再び吸収器830に流れ、これを繰り返す。   The cooling water that has absorbed heat is then cooled in the cooling tower 840 and flows again into the absorber 830, and this is repeated.

なお、二重効用式吸収冷凍機への冷却水搬送システムについての文献として、例えば特許文献1,2を挙げられる。
特開平11−211262号公報 特許第3013585号公報
In addition, patent documents 1 and 2 are mentioned as a literature about the cooling water conveyance system to a double effect type absorption refrigerator, for example.
JP 11-2111262 A Japanese Patent No. 3013585

既述のように、二重効用式吸収冷凍機は、蒸発器で発生した冷媒蒸気を吸収器において吸収することで希溶液となった吸収液を第1発生器で加熱後、さらに第1発生器で生じた冷媒蒸気を熱源として第2発生器においても加熱し、冷媒蒸気を発生させるので成績係数が高まり、省エネルギーに貢献する。   As described above, the double-effect absorption refrigerator is a first generator after the absorption liquid that has been diluted by absorbing the refrigerant vapor generated in the evaporator in the absorber is heated in the first generator. The refrigerant vapor generated in the vessel is also heated in the second generator as a heat source to generate the refrigerant vapor, thus increasing the coefficient of performance and contributing to energy saving.

しかしながら、これまでの冷凍機への冷却水搬送システムにあっては、既述のように、冷却水は、先に吸収器を通り、次に凝縮器を経て冷却塔に戻るため、凝縮器には、吸収器で先に吸熱した高温の冷却水が供給されていた。   However, in the conventional cooling water transfer system to the refrigerator, as described above, the cooling water first passes through the absorber and then returns to the cooling tower through the condenser. Was supplied with high-temperature cooling water that had previously absorbed heat at the absorber.

さらに、二重効用式吸収冷凍機では、吸収器内での吸収液の結晶化を防止するため、冷却水温度の下限値は例えば約25℃に制限されている。そのため、凝縮器に供給されて来る冷却水は、常に結晶化を招かない程度、例えば25℃以上に制御されている。したがって、成績係数の向上化の制約となっていた。   Further, in the double effect absorption refrigerator, the lower limit value of the cooling water temperature is limited to about 25 ° C., for example, in order to prevent crystallization of the absorbing liquid in the absorber. Therefore, the cooling water supplied to the condenser is controlled to a degree that does not always cause crystallization, for example, 25 ° C. or higher. Therefore, it has been a constraint for improving the coefficient of performance.

本発明はこのような実情に鑑みて為されたものであり、その解決しようとする課題は、二重効用式吸収冷凍機の凝縮器に搬送されて来る冷却水の低温化を図ることにより、成績係数をこれまでよりも向上させ、もって二重効用式吸収冷凍機の運転エネルギーとなる灯油やガスの消費量を低減し、省エネルギー化を一層促進させることにある。   The present invention has been made in view of such circumstances, and the problem to be solved is to lower the temperature of the cooling water conveyed to the condenser of the double-effect absorption refrigerator, The purpose is to improve the coefficient of performance more than ever, thereby reducing the consumption of kerosene and gas, which are the operating energy of the double-effect absorption refrigerator, and further promoting energy saving.

そこで、本発明では次の手段を採用した。   Therefore, the present invention employs the following means.

すなわち、本発明の冷凍機への冷却水搬送システムは、冷媒液を蒸発させて冷媒蒸気を生じさせる蒸発器と、この蒸発器で発生した冷媒蒸気が送られ、当該冷媒蒸気を吸収液に吸収させて吸収液を冷媒蒸気吸収力が低い希溶液とする吸収器と、この希溶液が吸収器から搬送され、当該希溶液を加熱して、当該希溶液から前記冷媒液を常圧冷媒蒸気として放出させることで、希溶液を冷媒蒸気吸収力が希溶液よりも高い中間濃度溶液とする第1発生器と、前記中間濃度溶液がこの第1発生器から搬送され、前記中間濃度溶液からさらに前記冷媒液を低圧冷媒蒸気として放出させることで、当該中間濃度溶液を濃溶液にし、も
って吸収液の冷媒蒸気吸収力を復元させる第2発生器と、この第2発生器と圧力的に同じ領域内に設けられ、第2発生器において前記中間濃度溶液から放出された低圧冷媒蒸気を冷却により凝縮して前記冷媒液に戻す凝縮器と、これら部材を連結するパイプとを有し、当該パイプを介して、前記冷媒液,冷媒蒸気,常圧冷媒蒸気,低圧冷媒蒸気,希溶液,中間濃度溶液又は濃溶液のいずれかを前記各部材間で搬送する二重効用式吸収冷凍機に対し、冷却塔から流路を介して冷却水を搬送する冷凍機への冷却水搬送システムにおいて、前記流路のうち前記冷却塔と前記凝縮器との間には、冷却塔から凝縮器に冷却水を直接搬送する冷却水直接搬送路が形成されていることを特徴とする。
That is, the cooling water transfer system to the refrigerator according to the present invention includes an evaporator that evaporates the refrigerant liquid to generate refrigerant vapor, and the refrigerant vapor generated in the evaporator is sent, and the refrigerant vapor is absorbed by the absorption liquid. And an absorber in which the absorbing liquid is a dilute solution having a low refrigerant vapor absorption capacity, and the dilute solution is transported from the absorber, and the dilute solution is heated to convert the refrigerant liquid from the dilute solution into atmospheric pressure refrigerant vapor. By releasing, the first generator that makes the dilute solution an intermediate concentration solution whose refrigerant vapor absorption capacity is higher than that of the dilute solution, and the intermediate concentration solution is transported from the first generator, and further from the intermediate concentration solution, the By releasing the refrigerant liquid as low-pressure refrigerant vapor, the intermediate concentration solution is made a concentrated solution, thereby restoring the refrigerant vapor absorption capacity of the absorption liquid, and in the same pressure region as the second generator A second generator A condenser for condensing the low-pressure refrigerant vapor released from the intermediate-concentration solution by cooling and returning the refrigerant liquid to the refrigerant liquid, and a pipe for connecting these members. Cooling from a cooling tower through a flow path to a double-effect absorption refrigerator that conveys steam, normal-pressure refrigerant vapor, low-pressure refrigerant vapor, dilute solution, intermediate concentration solution, or concentrated solution between the members In the cooling water conveyance system to the refrigerator that conveys water, a cooling water direct conveyance path that conveys the cooling water directly from the cooling tower to the condenser is provided between the cooling tower and the condenser in the flow path. It is formed.

なお、直接とは、吸収器を経由しないでという意味である。   The term “directly” means not going through the absorber.

よって本発明の冷凍機への冷却水搬送システムによれば、凝縮器には冷却塔から低温の冷却水が直接供給される、換言すれば、凝縮器に搬送される冷却水は吸収器を経由しないので、それだけ凝縮器に搬送される冷却水の温度の低温化を図ることができる。よって、凝縮器は低温まで冷却され、圧力は低下する。   Therefore, according to the cooling water conveyance system to the refrigerator of the present invention, low-temperature cooling water is directly supplied to the condenser from the cooling tower, in other words, the cooling water conveyed to the condenser passes through the absorber. Therefore, the temperature of the cooling water conveyed to the condenser can be lowered accordingly. Thus, the condenser is cooled to a low temperature and the pressure is reduced.

そして第2発生器と凝縮器とは、圧力的に同じ領域内に設けられているため、凝縮器での圧力低下は第2発生器にも及ぶ。   Since the second generator and the condenser are provided in the same region in terms of pressure, the pressure drop in the condenser reaches the second generator.

このため、第2発生器では中間濃度溶液から冷媒液が低圧冷媒蒸気として放出され易くなる。第2発生器で放出される低圧冷媒蒸気の量が増大すれば、凝縮器で生成される冷媒液の量も増大する。   For this reason, in the second generator, the refrigerant liquid is easily released from the intermediate concentration solution as low-pressure refrigerant vapor. If the amount of low-pressure refrigerant vapor discharged from the second generator increases, the amount of refrigerant liquid generated by the condenser also increases.

よって、第1発生器における吸収液の加熱量に対する冷媒生成量の割合が増加するといえる。   Therefore, it can be said that the ratio of the refrigerant generation amount to the heating amount of the absorbent in the first generator increases.

したがって本発明の冷凍機への冷却水搬送システムによれば、二重効用式吸収冷凍機の成績係数を高め、灯油やガスの消費量を低減することができる。   Therefore, according to the cooling water conveyance system to the refrigerator of the present invention, the coefficient of performance of the double effect absorption refrigerator can be increased, and the consumption of kerosene and gas can be reduced.

この結果、省エネルギー化を促進させることができる。   As a result, energy saving can be promoted.

以下、本発明の実施の形態(以下、実施の形態)を添付した図面を参照して説明する。(第1の実施の形態)   Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the accompanying drawings. (First embodiment)

図1を参照して本発明に係る冷凍機への冷却水搬送システムの第1の実施の形態を説明する。   A first embodiment of a cooling water transfer system to a refrigerator according to the present invention will be described with reference to FIG.

図1に示す第1の実施の形態に係る冷凍機への冷却水搬送システムIは、二重効用式吸収冷凍機1と冷却塔11とを流路16により連結し、この流路16を介して、冷却塔11から二重効用式吸収冷凍機1に冷却水を供給し、二重効用式吸収冷凍機1と冷却塔11との間で冷却水を循環させ、もって二重効用式吸収冷凍機1から冷房用又は、製品の生産若しくは原料製品の保管用等の冷水(媒体)を作るというシステムである。   The cooling water transfer system I to the refrigerator according to the first embodiment shown in FIG. 1 connects the double-effect absorption refrigerator 1 and the cooling tower 11 by a flow channel 16, and passes through this flow channel 16. Then, cooling water is supplied from the cooling tower 11 to the double-effect absorption refrigerator 1, and the cooling water is circulated between the double-effect absorption refrigerator 1 and the cooling tower 11, thereby having the double-effect absorption refrigeration. This is a system for producing cold water (medium) from the machine 1 for cooling or for production of products or storage of raw material products.

二重効用式吸収冷凍機1は、冷媒液31を蒸発させて冷媒蒸気を生じさせる蒸発器3と、この冷媒蒸気が送られ、送られた冷媒蒸気を吸収液(例えば臭化リチウム液)に吸収させる吸収器5と、冷媒蒸気を吸収した吸収液を加熱し当該吸収液から前記冷媒液31を冷媒蒸気として放出することで吸収液の冷媒蒸気吸収力を高めて再び冷媒蒸気を吸収できるようにする発生器7と、吸収液から放出された冷媒蒸気を冷却により凝縮して冷媒液31
にする凝縮器9と、これら部材3・5・7・9を連結する各種パイプとを有する。
The double-effect absorption refrigerator 1 has an evaporator 3 that evaporates the refrigerant liquid 31 to generate refrigerant vapor, and the refrigerant vapor is sent to the absorbed refrigerant (for example, lithium bromide liquid). The absorber 5 to be absorbed and the absorbing liquid that has absorbed the refrigerant vapor are heated, and the refrigerant liquid 31 is discharged from the absorbing liquid as refrigerant vapor so that the refrigerant vapor absorption capacity of the absorbing liquid can be enhanced and the refrigerant vapor can be absorbed again. And the refrigerant liquid 31 which is condensed by cooling the refrigerant vapor released from the absorbing liquid.
And a condenser 9 for connecting the members 3, 5, 7, 9.

冷却塔11から二重効用式吸収冷凍機1に搬送される冷却水は、前記吸収器5および凝縮器9に対して送られる。   Cooling water conveyed from the cooling tower 11 to the double effect absorption refrigerator 1 is sent to the absorber 5 and the condenser 9.

発生器7は、第1発生器71および第2発生器72の2つあり、第1発生器71で発生した冷媒蒸気を第2発生器72での加熱に使用する。   There are two generators 7, a first generator 71 and a second generator 72, and the refrigerant vapor generated in the first generator 71 is used for heating in the second generator 72.

蒸発器3−吸収器5−第1発生器71−第2発生器72−凝縮器9−蒸発器3の間では、前記各種パイプを介して、冷媒液31,冷媒蒸気,又は冷媒液を含む吸収液が流れる(流れ方向を各パイプの側部に矢印で示す)。ただし、吸収液は第2発生器72,凝縮器9及び蒸発器3の間では流れない。   Between the evaporator 3 -the absorber 5 -the first generator 71 -the second generator 72 -the condenser 9 -the evaporator 3, the refrigerant liquid 31, the refrigerant vapor, or the refrigerant liquid is included through the various pipes. Absorbent liquid flows (the direction of flow is indicated by an arrow on the side of each pipe). However, the absorbing liquid does not flow between the second generator 72, the condenser 9 and the evaporator 3.

第2発生器72は、蒸発器3,吸収器5及び凝縮器9と共に同一の円筒容器100内に設けられているが、第1発生器71は、後述する熱交換器、ポンプその他の構成機器と共に、円筒容器100とは分離して設けられている。   Although the 2nd generator 72 is provided in the same cylindrical container 100 with the evaporator 3, the absorber 5, and the condenser 9, the 1st generator 71 is the heat exchanger, pump, and other components which are mentioned later At the same time, it is provided separately from the cylindrical container 100.

蒸発器3,吸収器5,凝縮器9及び第2発生器72は円筒容器100内で画成されているが、蒸発器3と吸収器5との間および第2発生器72と凝縮器9との間では、それぞれ圧力的に同じ領域内とされ、また冷媒蒸気が流通できるようになっている。   The evaporator 3, the absorber 5, the condenser 9 and the second generator 72 are defined in the cylindrical container 100, but between the evaporator 3 and the absorber 5 and between the second generator 72 and the condenser 9. Between the two, the pressure is within the same region, and the refrigerant vapor can flow.

次にこれらの各部材について説明する。   Next, each of these members will be described.

蒸発器3は、冷媒液31が貯留されるようになっている(図中の細かい○部分参照)。そして、蒸発器3には、当該冷媒液31を蒸発器ポンプ32により吸い上げて蒸発器3内に噴霧できるように冷媒液噴霧用パイプ34が配管されている。   The evaporator 3 is configured such that the refrigerant liquid 31 is stored (see the fine circles in the figure). The evaporator 3 is provided with a refrigerant liquid spray pipe 34 so that the refrigerant liquid 31 can be sucked up by the evaporator pump 32 and sprayed into the evaporator 3.

さらに、蒸発器3内には、冷水生成管としての水流管36が、コイル状に配管されている。また蒸発器3は十分に断熱されている。   Further, a water flow pipe 36 as a cold water generation pipe is piped in the evaporator 3 in a coil shape. The evaporator 3 is sufficiently insulated.

よって、水流管36に水を流すと蒸発器3では水流管36からしか冷媒液31は熱を奪うことができないため、水流管36内の水は冷却され、当該冷却された水は、既述のように、冷房用又は、製品の生産若しくは原料製品の保管用等の冷水(媒体)として外部に送られる。   Therefore, when water is caused to flow through the water flow pipe 36, the evaporator 3 can only take heat from the water flow pipe 36 in the evaporator 3, so the water in the water flow pipe 36 is cooled, and the cooled water is described above. As described above, it is sent to the outside as cooling water (medium) for cooling or for production of products or storage of raw material products.

当該外部に送られた冷水は、外部での使用後、水流管36に戻り水として戻される。   The cold water sent to the outside is returned to the water flow pipe 36 as water after being used outside.

冷媒液噴霧用パイプ34から噴霧された冷媒液31は、この戻り水から受熱して蒸発する。   The refrigerant liquid 31 sprayed from the refrigerant liquid spraying pipe 34 receives heat from the return water and evaporates.

水流管36からの受熱により冷媒液31は冷媒蒸気311cとなり、吸収器5に送られる。なお、冷媒蒸気はこの冷媒蒸気311c以外に後述する符号311aおよび311bで示すものがある(冷媒蒸気についてはいずれも図の短い棒線部分参照)。   The refrigerant liquid 31 becomes refrigerant vapor 311 c by heat received from the water flow pipe 36 and is sent to the absorber 5. In addition to the refrigerant vapor 311c, there are refrigerant vapors indicated by reference numerals 311a and 311b described later (refer to the short bar portion in the figure for the refrigerant vapor).

吸収器5は、蒸発器3と圧力的に繋がっており、また吸収液が貯留されている。そして当該貯留された吸収液は、吸収器ポンプ52により吸い上げられ、吸収液噴霧用パイプ54経由で吸収器5内に噴霧される。吸収器5内の吸収液の影響により、前記蒸発器3を極低圧に維持する。吸収液についてはその性状変化を後で詳述する。   The absorber 5 is connected in pressure to the evaporator 3 and stores an absorbing liquid. Then, the stored absorption liquid is sucked up by the absorber pump 52 and sprayed into the absorber 5 via the absorption liquid spray pipe 54. The evaporator 3 is maintained at an extremely low pressure due to the influence of the absorbing liquid in the absorber 5. The property change of the absorbing liquid will be described in detail later.

吸収器5内には、蒸発器3から流入してくる冷媒蒸気311cを冷媒液31に液化し、
当該冷媒液31を吸収液に吸収し易くするために、前記冷却塔11からの冷却水(図示せず)を通す水流管56Aが、コイル状に配管されている。
In the absorber 5, the refrigerant vapor 311c flowing from the evaporator 3 is liquefied into the refrigerant liquid 31,
In order to make the refrigerant liquid 31 easily absorbed by the absorbing liquid, a water flow pipe 56A through which cooling water (not shown) from the cooling tower 11 passes is provided in a coil shape.

水流管56Aは、当該水流管56Aに冷却水を流すことで当該冷却水と冷媒蒸気311cとの間で熱交換を行うので冷却水熱交換器といえる。   The water flow pipe 56A can be said to be a cooling water heat exchanger because heat is exchanged between the cooling water and the refrigerant vapor 311c by flowing cooling water through the water flow pipe 56A.

さらに吸収器5には、周知の抽気装置57が装備されている。   Further, the absorber 5 is equipped with a known bleed device 57.

加えて吸収器5は、そこに貯留されている吸収液を第1発生器71に搬送する発生器ポンプ712が設けられている。なお、吸収液は、これが吸収器5−第1発生器71−第2発生器72−吸収器5の順で循環するが、どこを流れているかでその性状が異なる。   In addition, the absorber 5 is provided with a generator pump 712 that conveys the absorption liquid stored therein to the first generator 71. The absorption liquid circulates in the order of absorber 5 -first generator 71 -second generator 72 -absorber 5, but the property differs depending on where it flows.

吸収液が吸収器5から第1発生器71に至るまでの吸収液は、吸収器5において冷媒蒸気311cを吸収液に吸収させた希溶液であり符号51aで示す(図の梨字部分参照)。   The absorbing liquid from the absorber 5 to the first generator 71 is a dilute solution in which the refrigerant vapor 311c is absorbed by the absorbing liquid in the absorber 5, and is denoted by reference numeral 51a (see the pear-shaped portion in the figure). .

また、第1発生器71から第2発生器72に至るまでの吸収液は、希溶液51aを加熱して、希溶液51aから冷媒液31を常圧冷媒蒸気311aとして放出させることで、冷媒蒸気吸収力が希溶液51aよりも高い中間濃度溶液であり符号51bで示す(図の破線部分参照)。   Further, the absorbing liquid from the first generator 71 to the second generator 72 heats the diluted solution 51a and releases the refrigerant liquid 31 from the diluted solution 51a as the atmospheric pressure refrigerant vapor 311a. This is an intermediate concentration solution having a higher absorption capacity than that of the dilute solution 51a, and is denoted by reference numeral 51b (see the broken line in the figure).

そして第2発生器72から吸収器5に至るまでの吸収液は、中間濃度溶液51bから冷媒液31を低圧冷媒蒸気311bとして放出させることで、冷媒蒸気吸収力を中間濃度溶液51bよりも高められた濃溶液であり符号51cで示す(図の斜線部分参照)。   And the absorption liquid from the 2nd generator 72 to the absorber 5 makes the refrigerant | coolant vapor | steam absorption power higher than the intermediate | middle concentration solution 51b by releasing the refrigerant | coolant liquid 31 from the intermediate concentration solution 51b as the low pressure refrigerant | coolant vapor | steam 311b. This is a concentrated solution and is indicated by reference numeral 51c (see the hatched portion in the figure).

吸収器5に設けられた前記発生器ポンプ712により流動される希溶液51aは、吸収液搬送用のパイプ571を通って第1発生器71に送られる。なおこのパイプ571を第1再生化用吸収液搬送パイプということにする。   The dilute solution 51a that is flowed by the generator pump 712 provided in the absorber 5 is sent to the first generator 71 through the pipe 571 for carrying the absorbent. This pipe 571 is referred to as a first regenerating absorbent transport pipe.

第1再生化用吸収液搬送パイプ571には、上流側から第2熱交換器132、溶液調整弁15、第1熱交換器131が取り付けられている。   A second heat exchanger 132, a solution adjustment valve 15, and a first heat exchanger 131 are attached to the first regeneration absorbent transport pipe 571 from the upstream side.

第1発生器71には、吸収器5から流入して来る希溶液51aを高圧蒸気で加熱する高圧蒸気送流管(加熱器)711が、コイル状に配管されている。高圧蒸気送流管711による加熱により、希溶液51aからは冷媒液31が常圧冷媒蒸気311aとして放出される。   In the first generator 71, a high-pressure steam flow pipe (heater) 711 for heating the dilute solution 51a flowing in from the absorber 5 with high-pressure steam is piped in a coil shape. By the heating by the high-pressure steam flow pipe 711, the refrigerant liquid 31 is released from the dilute solution 51a as the normal pressure refrigerant vapor 311a.

このようにすることで、希溶液51aは、その再生化が図られて、希溶液51aよりも冷媒蒸気吸収能力が高い中間濃度溶液51bとなり、第1発生器71に貯留される。   By doing so, the dilute solution 51a is regenerated, becomes an intermediate concentration solution 51b having a higher refrigerant vapor absorption capacity than the dilute solution 51a, and is stored in the first generator 71.

また、第1発生器71には、希溶液51aから発生した常圧冷媒蒸気311aを第2発生器72に搬送する冷媒蒸気送流管722が設けられている。   Further, the first generator 71 is provided with a refrigerant vapor flow pipe 722 that conveys the normal pressure refrigerant vapor 311 a generated from the dilute solution 51 a to the second generator 72.

冷媒蒸気送流管722は、その内の第2発生器72に配管されている部分についてはコイル状にされており、第2発生器72を経由して凝縮器9と連結されている。冷媒蒸気送流管722のうち、第2発生器72と凝縮器9との間にはトラップが設けられている。   The portion of the refrigerant vapor feed pipe 722 that is piped to the second generator 72 is coiled and connected to the condenser 9 via the second generator 72. A trap is provided between the second generator 72 and the condenser 9 in the refrigerant vapor flow pipe 722.

さらに第1発生器71には、希溶液51aよりも冷媒蒸気吸収能力が高められた中間濃度溶液51bを第2発生器72に搬送するパイプ724が設けられている。このパイプ724を第2再生化用吸収液搬送パイプということにする。   Further, the first generator 71 is provided with a pipe 724 that conveys the intermediate concentration solution 51b having a higher refrigerant vapor absorption capability than the dilute solution 51a to the second generator 72. This pipe 724 is referred to as a second regeneration absorbent transport pipe.

第2再生化用吸収液搬送パイプ724には、第1熱交換器131とドレーン熱交換器726とが上流側から順次配置されている。第1熱交換器131には、既述のように、第1再生化用吸収液搬送パイプ571も通っているので、第1熱交換器131においては、第1再生化用吸収液搬送パイプ571を搬送される希溶液51aと第2再生化用吸収液搬送パイプを搬送される中間濃度溶液51bとの間で熱交換が行われる。   A first heat exchanger 131 and a drain heat exchanger 726 are sequentially arranged from the upstream side in the second regeneration absorbent transport pipe 724. As described above, since the first regeneration absorbent transport pipe 571 also passes through the first heat exchanger 131, the first regeneration absorbent transport pipe 571 is used in the first heat exchanger 131. Is exchanged between the dilute solution 51a conveyed to the intermediate concentration solution 51b conveyed through the second regeneration absorbent conveying pipe.

ドレーン熱交換器726には、高圧蒸気送流管711が通されており、高圧蒸気はこのドレーン熱交換器726を経由して蒸気ドレーンとなって処理される。   A high pressure steam flow pipe 711 is passed through the drain heat exchanger 726, and the high pressure steam is processed as a steam drain via the drain heat exchanger 726.

第2発生器72では、第1発生器71から導入された中間濃度溶液51bは、自己の保有熱と、冷媒蒸気送流管722経由で第1発生器71から送られて来る常圧冷媒蒸気311aの熱とによりさらに再生化が図られて、濃溶液51cとなる。濃溶液51cの冷媒蒸気吸収能力は中間濃度溶液51bよりも高められている。   In the second generator 72, the intermediate-concentration solution 51b introduced from the first generator 71 is the normal pressure refrigerant vapor sent from the first generator 71 via its own retained heat and the refrigerant vapor feed pipe 722. Further regeneration is achieved by the heat of 311a, and a concentrated solution 51c is obtained. The refrigerant vapor absorption capacity of the concentrated solution 51c is higher than that of the intermediate concentration solution 51b.

当該濃溶液51cを吸収器5に搬送するパイプ511が、第2熱交換器132を経由して、吸収器5の吸収器ポンプ52に接続されている。このパイプ511を再生後吸収液搬送パイプと呼称する。第2熱交換器132は、既述のように第1再生化用吸収液搬送パイプ571も通っているので、再生後吸収液搬送パイプ511を搬送される濃溶液51cと第1再生化用吸収液搬送パイプ571を搬送される希溶液51aとの間で熱交換が行われる。   A pipe 511 that conveys the concentrated solution 51 c to the absorber 5 is connected to the absorber pump 52 of the absorber 5 via the second heat exchanger 132. This pipe 511 is referred to as a post-regeneration absorbent transport pipe. Since the second heat exchanger 132 also passes through the first regeneration absorbent transport pipe 571 as described above, the concentrated solution 51c transported through the post-regeneration absorbent transport pipe 511 and the first regeneration absorption. Heat exchange is performed with the dilute solution 51a transported through the liquid transport pipe 571.

そして、当該再生化された濃溶液51cは、既述のように吸収器ポンプ52により吸収器5に送られそこで噴霧される。噴霧された溶液51bは、既述のように冷媒蒸気311cを吸収し、その結果希溶液51aとなる吸収液として供給される。   Then, the regenerated concentrated solution 51c is sent to the absorber 5 by the absorber pump 52 and sprayed there as described above. The sprayed solution 51b absorbs the refrigerant vapor 311c as described above, and as a result, is supplied as an absorbing liquid that becomes the dilute solution 51a.

凝縮器9には、冷却塔11から冷却水が供給されるように水流管56Bが装備されている。   The condenser 9 is equipped with a water flow pipe 56 </ b> B so that cooling water is supplied from the cooling tower 11.

水流管56Bは、凝縮器9に冷却塔11から冷却水を直接供給できるようにされている。直接とは、吸収器を経由しないでという意味である。凝縮器9の水流管56Bから出た冷却水は、吸収器5の水流管56Aに流れる分と後述するバイパス路172を経由して、冷却塔11に戻る分とがある。   The water flow pipe 56 </ b> B is configured so that cooling water can be directly supplied to the condenser 9 from the cooling tower 11. Direct means not going through the absorber. The cooling water that has flowed out of the water flow pipe 56B of the condenser 9 has a part that flows to the water flow pipe 56A of the absorber 5 and a part that returns to the cooling tower 11 via a bypass passage 172 described later.

詳しくは、冷却塔11と凝縮器9とには、両者間で冷却塔11から凝縮器9に冷却水を直接搬送しかつ両者間で冷却水を循環する冷却水直接搬送路としての対凝縮器循環路17が形成されており、その一部が水流管56Bになっている。なお、対凝縮器循環路17は、本実施の形態では、後述する対吸収器循環路19の源流管路でもある。   Specifically, the cooling tower 11 and the condenser 9 are connected to the condenser 9 as a cooling water direct conveyance path for directly conveying the cooling water from the cooling tower 11 to the condenser 9 and circulating the cooling water between the two. A circulation path 17 is formed, and a part thereof is a water flow pipe 56B. In the present embodiment, the anti-condenser circuit 17 is also a source flow line for an anti-absorber circuit 19 described later.

水流管56Bは、当該水流管56Bに冷却水を流すことで当該冷却水と冷媒蒸気311bとの間で熱交換を行うので冷却水熱交換器といえる。当該熱交換によって冷却塔11から凝縮器9に供給された冷却水は、凝縮器9を冷却し、幾分昇温する。   The water flow pipe 56B is a cooling water heat exchanger because heat is exchanged between the cooling water and the refrigerant vapor 311b by flowing cooling water through the water flow pipe 56B. The cooling water supplied from the cooling tower 11 to the condenser 9 by the heat exchange cools the condenser 9 and raises the temperature somewhat.

水流管56Bの上流には、冷却水ポンプ171が取り付けられている。   A cooling water pump 171 is attached upstream of the water flow pipe 56B.

冷却水ポンプ171は、流路16において冷却水を循環するためのものである。   The cooling water pump 171 is for circulating the cooling water in the flow path 16.

また対凝縮器循環路17は、凝縮器9を経由した後の冷却水を吸収器5に搬送するための連絡路175とつながっている。   The anti-condenser circulation path 17 is connected to a communication path 175 for transporting the cooling water after passing through the condenser 9 to the absorber 5.

そして対凝縮器循環路17には、凝縮器9を経由した後の冷却水を吸収器5との間で循
環する別の循環路である対吸収器循環路19が連結されている。また対吸収器循環路19の一部が前記水流管56Aとなっている。
The anti-condenser circulation path 17 is connected to an anti-absorber circulation path 19, which is another circulation path for circulating the cooling water after passing through the condenser 9 between the condenser 5. A part of the anti-absorber circulation path 19 is the water flow pipe 56A.

対吸収器循環路19には、凝縮器9を経由した冷却水が入る導入口19iと、冷却塔11に向けて冷却水を排出する排出口19oとが設けられ、導入口19iに前記凝縮器9を経由した後の冷却水を吸収器5に搬送する連絡路175が、排出口19oに対吸収器循環路19内の冷却水を対凝縮器循環路17経由で冷却塔11に対して搬送する冷却水送路177が接続されている。   The absorber circulation path 19 is provided with an inlet 19i for receiving cooling water via the condenser 9 and an outlet 19o for discharging the cooling water toward the cooling tower 11, and the condenser 19 is provided at the inlet 19i. The communication path 175 for transporting the cooling water after passing through 9 to the absorber 5 transports the cooling water in the absorber circulation path 19 to the discharge port 19 o to the cooling tower 11 via the condenser circulation path 17. A cooling water feed path 177 is connected.

以上を冷却水の流れから見れば、冷却塔11で冷却された冷却水は、対凝縮器循環路17の往路−対吸収器循環路19の往路−対吸収器循環路19の復路−対凝縮器循環路17の復路−冷却塔11からなる流路16を順に流れる。   If the above is seen from the flow of the cooling water, the cooling water cooled by the cooling tower 11 is the forward path of the condenser circulation path 17-the forward path of the absorber circulation path 19-the backward path of the absorber circulation path 19-the condensation. It flows in the flow path 16 which consists of the return path-cooling tower 11 of the vessel circulation path 17 in order.

連絡路175と冷却水送路177との間には、両者を結び対凝縮器循環路17の一部を形成するバイパス路172を有する。バイパス路172には、バイパス弁2が設けられている。   Between the communication path 175 and the cooling water feed path 177, there is a bypass path 172 that connects the two and forms a part of the condenser circulation path 17. A bypass valve 2 is provided in the bypass passage 172.

また、対吸収器循環路19のうち、対凝縮器循環路17からの冷却水を導入する導入口19iと対凝縮器循環路17に冷却水を排出する排出口19oとを結ぶ部分には、対吸収器循環路19内で冷却水を循環するための吸収器冷却水循環ポンプ191が設けられている。   Further, in the portion of the anti-absorber circuit 19, the portion connecting the inlet 19 i for introducing the cooling water from the anti-condenser circuit 17 and the discharge port 19 o for discharging the cooling water to the anti-condenser circuit 17, An absorber cooling water circulation pump 191 is provided for circulating cooling water in the absorber circulation path 19.

吸収器冷却水循環ポンプ191の下流側近傍には逆止弁193が取り付けられている。   A check valve 193 is attached in the vicinity of the downstream side of the absorber cooling water circulation pump 191.

符号195は、吸収器5の冷却水温度の制御を行う吸収器冷却水温度制御器を示す。   Reference numeral 195 denotes an absorber cooling water temperature controller that controls the cooling water temperature of the absorber 5.

吸収器冷却水温度制御器195は、対吸収器循環路19において吸収器5内に配管されている水流管56Aの入り口温度t2を温度計T1で検出し、冷却水の目標温度が22℃〜25℃の範囲にあるように、換言すれば吸収器5へ供給される冷却水の温度が一定の範囲内に常にあるように、前記バイパス弁2や吸収器冷却水循環ポンプ191等を制御して、冷却水を吸収器5に搬送する。   The absorber cooling water temperature controller 195 detects the inlet temperature t2 of the water flow pipe 56A piped in the absorber 5 in the anti-absorber circuit 19 with the thermometer T1, and the target temperature of the cooling water is 22 ° C.- The bypass valve 2 and the absorber cooling water circulation pump 191 are controlled so that the temperature of the cooling water supplied to the absorber 5 is always within a certain range so that it is in the range of 25 ° C. Then, the cooling water is conveyed to the absorber 5.

よって、吸収器冷却水温度制御器195およびバイパス弁2や吸収器冷却水循環ポンプ191は吸収器供給冷却水温度保持手段といえる。   Therefore, the absorber cooling water temperature controller 195, the bypass valve 2 and the absorber cooling water circulation pump 191 can be said to be absorber supply cooling water temperature holding means.

このように吸収器5へ供給される冷却水の温度を前記目標温度内に一定に保つことで、低温の冷却水が吸収器5に供給されることによる吸収液の結晶化を防止することができる。   Thus, by keeping the temperature of the cooling water supplied to the absorber 5 constant within the target temperature, it is possible to prevent the absorption liquid from being crystallized by supplying the low-temperature cooling water to the absorber 5. it can.

また、吸収器冷却水温度制御器195は、上記以外にも水流管56Bの入り口温度t1を温度計T2で測定し、凝縮器9に供給される冷却水の温度を好適な温度になるように制御することも行う。   In addition to the above, the absorber cooling water temperature controller 195 measures the inlet temperature t1 of the water flow pipe 56B with the thermometer T2 so that the temperature of the cooling water supplied to the condenser 9 becomes a suitable temperature. Also control.

なお、冷却水ポンプ171および吸収器冷却水循環ポンプ191には、それぞれインバータ171aおよび191aが備えられ、ポンプ容量を制御する。   The cooling water pump 171 and the absorber cooling water circulation pump 191 are provided with inverters 171a and 191a, respectively, to control the pump capacity.

対凝縮器循環路17や対吸収器循環路19に係る矢印は、これらの循環路における冷却水の流れ方向を示す。   The arrows relating to the condenser circulation path 17 and the absorber circulation path 19 indicate the flow direction of the cooling water in these circulation paths.

対凝縮器循環路17における冷却水は、冷却塔11−冷却水ポンプ171−水流管5
6B−バイパス路172(吸収器5に供給される冷却水の温度が所定の範囲以下の場合、その程度により流量が大きくなる。所定範囲であれば流れない。)−冷却塔11の順で循環する。
The cooling water in the anti-condenser circulation path 17 is the cooling tower 11 -cooling water pump 171 -water flow pipe 5
6B-bypass 172 (if the temperature of the cooling water supplied to the absorber 5 is below a predetermined range, the flow rate increases depending on the temperature. If it is within the predetermined range, it does not flow.)-Circulates in the order of the cooling tower 11 To do.

対吸収器循環路19にあっては、水流管56Bから排出された冷却水が、連絡路175を経由した後、水流管56A−吸収器冷却水循環ポンプ191−逆止弁193−水流管56Aの順で循環する。また対吸収器循環路19を循環した冷却水の一部は排出口19oから冷却塔11に向かい、再度冷却塔11から対凝縮器循環路17を経て水流管56Bおよび連絡路175を経由した後、水流管56Aに流れる。また以上は吸収器5に供給される冷却水の温度が所定の範囲にある場合であり、この場合、吸収器5の入口温度が高い程、吸収器冷却水循環ポンプ191で戻される冷却水の水量は少なく、より多くの冷却水が直進して冷却水送路177を経由して冷却塔11に戻る。   In the anti-absorber circulation path 19, the cooling water discharged from the water flow pipe 56 </ b> B passes through the communication path 175, and then the water flow pipe 56 </ b> A-absorber cooling water circulation pump 191-check valve 193-water flow pipe 56 </ b> A. Cycle in order. Further, a part of the cooling water circulated through the counter-absorber circulation path 19 is directed from the discharge port 19o to the cooling tower 11, and again passes through the water flow pipe 56B and the communication path 175 from the cooling tower 11 through the counter-condenser circulation path 17. To the water flow pipe 56A. Further, the above is a case where the temperature of the cooling water supplied to the absorber 5 is within a predetermined range. In this case, the higher the inlet temperature of the absorber 5 is, the higher the amount of cooling water returned by the absorber cooling water circulation pump 191 is. The amount of cooling water goes straight and returns to the cooling tower 11 via the cooling water feed path 177.

なお、温度計T1は吸収器5の水流管56Aの出口側の位置に設置してもよく、バイパス弁は二方弁を図示したが三方弁でもよい。   The thermometer T1 may be installed at a position on the outlet side of the water flow pipe 56A of the absorber 5, and the bypass valve is a two-way valve, but may be a three-way valve.

さらに、凝縮器9側の水流管56Bの入口と、出口の温度差を計測し、温度差が小さい時に冷却水ポンプ171の回転数を上げるようにしてもよい。   Furthermore, the temperature difference between the inlet and outlet of the water flow pipe 56B on the condenser 9 side may be measured, and the rotational speed of the cooling water pump 171 may be increased when the temperature difference is small.

次にこのような構成の冷凍機への冷却水搬送システムIの作用効果を説明する。   Next, the effect of the cooling water conveyance system I to the refrigerator having such a configuration will be described.

凝縮器9には、対凝縮器循環路17経由で冷却塔11から低温の冷却水が直接供給される。換言すれば、冷却塔11を出た直後の冷却水の温度と実質上変わらない温度の冷却水を凝縮器9に搬送する。   Low-temperature cooling water is directly supplied to the condenser 9 from the cooling tower 11 via the condenser circulation path 17. In other words, the cooling water having a temperature substantially not different from the temperature of the cooling water immediately after leaving the cooling tower 11 is conveyed to the condenser 9.

よって、冷却水熱交換器として機能する水流管56Bは、凝縮器9内を急速に冷却する。このため、凝縮器に搬送される冷却水は、これを吸収器を経由させてから凝縮器に搬送していた場合と比べ、凝縮器9内の圧力は低下する。   Therefore, the water flow pipe 56B that functions as a cooling water heat exchanger cools the inside of the condenser 9 rapidly. For this reason, as for the cooling water conveyed to a condenser, the pressure in the condenser 9 falls compared with the case where it is conveyed to a condenser after passing this through an absorber.

そして凝縮器9と第2発生器72とは、圧力的に同じ領域内に設けられているので、凝縮器9での圧力低下は、第2発生器72にも及ぶ。   Since the condenser 9 and the second generator 72 are provided in the same area in terms of pressure, the pressure drop in the condenser 9 reaches the second generator 72 as well.

したがって、第2発生器72では、中間濃度溶液51bから冷媒液31が、低圧冷媒蒸気311bとして放出され易くなる。   Therefore, in the second generator 72, the refrigerant liquid 31 is easily released as the low-pressure refrigerant vapor 311b from the intermediate concentration solution 51b.

第2発生器72での低圧冷媒蒸気311bの放出量が増大すれば、凝縮器9内で低圧冷媒蒸気311bが水流管56Bの冷却水による冷却により凝縮されて生成される冷媒液31の量も増大する。   If the discharge amount of the low-pressure refrigerant vapor 311b in the second generator 72 increases, the amount of the refrigerant liquid 31 generated by the low-pressure refrigerant vapor 311b condensed in the condenser 9 by cooling with the cooling water in the water flow pipe 56B is also increased. Increase.

よって、第1発生器71における吸収液の加熱量に対する冷媒生成量の割合が増加するといえる。   Therefore, it can be said that the ratio of the refrigerant generation amount to the heating amount of the absorbing liquid in the first generator 71 increases.

なお、冷却塔11を出た直後の冷却水の温度と実質上変わらない冷却水の温度とは、上記効果を奏することができる温度範囲の意味である。   In addition, the temperature of the cooling water which does not change substantially from the temperature of the cooling water immediately after leaving the cooling tower 11 means a temperature range in which the above effect can be achieved.

また、吸収器5には適切に温度制御された冷却水を供給することができる。   Also, the absorber 5 can be supplied with cooling water whose temperature is appropriately controlled.

本発明者がこのような構成の冷凍機への冷却水搬送システムIを用いた場合の損失熱量・冷房能力・成績計数・最大負荷時のエネルギー消費について試算した結果では、図3のシステムと比較して92%のエネルギー消費で済むとされている。
(第2の実施の形態)
As a result of a trial calculation of the amount of heat loss, the cooling capacity, the performance count, and the energy consumption at the maximum load when the present inventor uses the cooling water transfer system I to the refrigerator having such a configuration, the results are compared with the system of FIG. Thus, it is said that 92% of the energy is consumed.
(Second Embodiment)

図2を参照して、第2の実施の形態に係る冷凍機への冷却水搬送システムIIを説明する。本システムIIが、第1の実施の形態に係る冷凍機への冷却水搬送システムIと相違する点は、二重効用式吸収冷凍機1と冷却塔11とを結ぶ流路16の形態およびこれに関連する部分のみである。よって、当該相違点のみを説明し、同一部分には同一符号を付して説明を省略する。   With reference to FIG. 2, the cooling water conveyance system II to the refrigerator which concerns on 2nd Embodiment is demonstrated. This system II is different from the cooling water transfer system I to the refrigerator according to the first embodiment in that the flow path 16 connecting the double effect absorption refrigerator 1 and the cooling tower 11 and this It is only the part related to. Therefore, only the said difference is demonstrated, the same code | symbol is attached | subjected to the same part and description is abbreviate | omitted.

この第2の実施の形態に係る流路16にあっては、冷却塔11から凝縮器9に冷却水を直接搬送する冷却水直接搬送路17以外に、冷却塔11と吸収器5との間にも、冷却塔11から吸収器5に冷却水を直接搬送する、別の冷却水直接搬送路である対吸収器循環路19Aが形成されている。すなわち対凝縮器循環路17と対吸収器循環路19Aとが並列されている。ただし、対吸収器循環路19Aの一部は、冷却塔11から凝縮器9に冷却水を直接搬送する対凝縮器循環路17の一部を共用している。   In the flow path 16 according to the second embodiment, in addition to the cooling water direct conveyance path 17 that conveys the cooling water directly from the cooling tower 11 to the condenser 9, between the cooling tower 11 and the absorber 5. In addition, an anti-absorber circulation path 19 </ b> A that is another cooling water direct conveyance path for directly conveying the cooling water from the cooling tower 11 to the absorber 5 is formed. That is, the anti-condenser circuit 17 and the anti-absorber circuit 19A are arranged in parallel. However, a part of the anti-absorber circulation path 19 </ b> A shares a part of the anti-condenser circulation path 17 that directly conveys the cooling water from the cooling tower 11 to the condenser 9.

この第2の実施の形態に係る冷凍機への冷却水搬送システムIIにあっては、冷却塔11から凝縮器9に冷却水を直接搬送する対凝縮器循環路17と、冷却塔11から対凝縮器循環路17の一部を通って吸収器5に冷却水を直接搬送する対吸収器循環路19Aとが並列に設けられているので、冷却塔11から凝縮器9と吸収器5とに送られる冷却水は二分される。つまり、第1の実施の形態が、冷却水を凝縮器9→吸収器5の順に導く直列方式であったのに対し、この第2の実施の形態では、冷却水を両者9,5に並列に導く方式といえる。両者には実質上同じ温度の冷却水がほぼ同時に供給される。   In the cooling water transfer system II to the refrigerator according to the second embodiment, the counter-condenser circulation path 17 that transfers the cooling water directly from the cooling tower 11 to the condenser 9 and the cooling tower 11 Since an anti-absorber circulation path 19 </ b> A that directly conveys cooling water to the absorber 5 through a part of the condenser circulation path 17 is provided in parallel, the cooling tower 11 connects the condenser 9 and the absorber 5. The cooling water sent is bisected. That is, the first embodiment is a series system in which the cooling water is guided in the order of the condenser 9 → the absorber 5, whereas in the second embodiment, the cooling water is parallel to both 9 and 5. It can be said that it leads to Both are supplied with cooling water at substantially the same temperature almost simultaneously.

対凝縮器循環路17と対吸収器循環路19Aとには、それぞれ独立の冷却水ポンプである凝縮器冷却水ポンプ173と吸収器冷却水ポンプ192とが設けられている。凝縮器冷却水ポンプ173は、水流管56Bにおける上流箇所に設けられ、吸収器冷却水ポンプ192は対吸収器循環路19Aのうち水流管56Aよりも上流箇所に設けられている。但し
吸収器冷却水ポンプ192の取り付け位置は、水流管56Bより下流であれば、水流管56Aの下流箇所であってもよく、その場合押し込み方式ではなく冷却水を吸収する方式となる。
A condenser cooling water pump 173 and an absorber cooling water pump 192, which are independent cooling water pumps, are provided in the anti-condenser circulation path 17 and the anti-absorption circuit 19A, respectively. The condenser cooling water pump 173 is provided at an upstream location in the water flow pipe 56B, and the absorber cooling water pump 192 is provided at a location upstream of the water flow pipe 56A in the absorber circuit 19A. However, as long as the mounting position of the absorber cooling water pump 192 is downstream from the water flow pipe 56B, it may be a downstream location of the water flow pipe 56A. In this case, the cooling water is absorbed instead of the push-in system.

対凝縮器循環路17における冷却水は、冷却塔11−凝縮器冷却水ポンプ173−水流管56B−冷却塔11の順で循環する。   The cooling water in the counter condenser circulation path 17 circulates in the order of the cooling tower 11 -the condenser cooling water pump 173 -the water flow pipe 56B -the cooling tower 11.

対吸収器循環路19Aにあっては、冷却塔11−吸収器冷却水ポンプ192−水流管56A−冷却塔11の順で循環する。   In the anti-absorber circulation path 19A, the cooling tower 11 circulates in the order of the absorber cooling water pump 192, the water flow pipe 56A, and the cooling tower 11.

なお、本実施の形態は、並列方式であるので、本管(対凝縮器循環路17と対吸収器循環路19の兼用管)から分岐して両水流管56B・56A廻りに枝管をそれぞれ設け、その枝管に各々ポンプ173,192を設けてもよい。   In addition, since this Embodiment is a parallel system, it branches from the main pipe (combined pipe | tube of the anti-condenser circulation path 17 and the anti-absorber circulation path 19), and a branch pipe is made around both water flow pipes 56B and 56A, respectively. The pumps 173 and 192 may be provided in the branch pipes.

さらに対吸収器循環路19Aには、吸収器5へ供給される冷却水の温度が一定の範囲内である前記目標温度に常におかれるように、対吸収器循環路19Aの往路と復路とが連結路19A1で連絡されており、連結路19A1には、吸収器冷却水循環ポンプ191が備えられている。吸収器冷却水循環ポンプ191の作動により、水流管56A経由の冷却水の一部は、冷却塔11に戻らずに水流管56Aとの間で循環する。   Further, the anti-absorber circulation path 19A has a forward path and a return path of the anti-absorber circulation path 19A so that the temperature of the cooling water supplied to the absorber 5 is always kept at the target temperature within a certain range. It connects with connection path 19A1, and absorber cooling water circulation pump 191 is provided in connection path 19A1. By the operation of the absorber cooling water circulation pump 191, a part of the cooling water via the water flow pipe 56A circulates between the water flow pipe 56A without returning to the cooling tower 11.

この第2の実施の形態にあっては、既述のごとく冷却塔11から凝縮器9と吸収器5とに送られる冷却水は二分される。このため、冷却水搬送システムIIの冷却塔11の容量が、冷却水搬送システムIの冷却塔11のそれと同じであると、冷却水搬送システムII
の凝縮器9で生成される低圧冷媒蒸気311bの量は、少なくとも低減するため、これを補うべく冷却塔11の容量を増大する。
In the second embodiment, the cooling water sent from the cooling tower 11 to the condenser 9 and the absorber 5 is divided into two as described above. Therefore, when the capacity of the cooling tower 11 of the cooling water transfer system II is the same as that of the cooling tower 11 of the cooling water transfer system I, the cooling water transfer system II
Since the amount of the low-pressure refrigerant vapor 311b generated in the condenser 9 is reduced at least, the capacity of the cooling tower 11 is increased to compensate for this.

したがって、冷却水搬送システムIIにあっては、イニシャルコストは冷却水搬送システムIよりも掛かるが、凝縮器9と吸収器5の両方に直接冷却塔11からの低温な冷却水を搬送することができるので、一層の高効率化を期待できる。その結果、ランニングコストの抑制ができる。   Therefore, in the cooling water transfer system II, the initial cost is higher than that of the cooling water transfer system I, but it is possible to transfer the low-temperature cooling water from the cooling tower 11 directly to both the condenser 9 and the absorber 5. As a result, higher efficiency can be expected. As a result, running costs can be reduced.

第2の実施形態の場合も第1の実施の形態と同様従来よりも二重効用式吸収冷凍機の成績係数を高め、灯油やガスの消費量を低減することができる。この結果、省エネルギー化を促進させることができる。   In the case of the second embodiment, as in the first embodiment, the coefficient of performance of the double-effect absorption refrigerator can be increased and the consumption of kerosene and gas can be reduced. As a result, energy saving can be promoted.

なお、本発明は上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種種変更を加え得ることは勿論である。   In addition, this invention is not limited only to the above-mentioned illustration example, Of course, various changes can be added within the range which does not deviate from the summary of this invention.

また、発生器で放出される冷媒蒸気の量が増大すれば、凝縮器で生成される冷媒液の量も増大するのであるから、二重効用式吸収冷凍機に限定せず、発生器が単体で凝縮器と発生器とが圧力的に同じ領域内に設けられた吸収冷凍器への適用も可能である。   In addition, if the amount of refrigerant vapor released by the generator increases, the amount of refrigerant liquid generated by the condenser also increases. Therefore, the generator is not limited to a double-effect absorption refrigerator, and the generator is a single unit. Therefore, the present invention can be applied to an absorption refrigerator in which the condenser and the generator are provided in the same pressure region.

本発明に係る二重効用式吸収冷凍機の概略説明図である。It is a schematic explanatory drawing of the double effect type absorption refrigerator which concerns on this invention. 本発明に係る二重効用式吸収冷凍機の概略説明図である。It is a schematic explanatory drawing of the double effect type absorption refrigerator which concerns on this invention. 従来技術を説明するための図である。It is a figure for demonstrating a prior art.

符号の説明Explanation of symbols

I 冷凍機への冷却水搬送システム
II 冷凍機への冷却水搬送システム
1 二重効用式吸収冷凍機
2 バイパス弁
3 蒸発器
5 吸収器
7 発生器
9 凝縮器
11 冷却塔
15 溶液調整弁
16 流路
17 対凝縮器循環路(冷却水直接搬送路・循環路)
19 対吸収器循環路(別の循環路)
19A 対吸収器循環路(別の冷却水直接搬送路)
19A1 連結路
19i 導入口
19o 排出口
31 冷媒液
32 蒸発器ポンプ
34 冷媒液噴霧用パイプ
36 水流管
51a 希溶液
51b 中間濃度溶液(吸収液)
51c 濃溶液
52 吸収器ポンプ
54 吸収液噴霧用パイプ
56A 水流管
56B 水流管
57 抽気装置
71 第1発生器
72 第2発生器
100 円筒容器
131 第1熱交換器
132 第2熱交換器
171 冷却水ポンプ
171a インバータ
172 バイパス路
173 凝縮器冷却水ポンプ
175 連絡路
177 冷却水送路
191 吸収器冷却水循環ポンプ
191a インバータ
193 逆止弁
195 吸収器冷却水温度制御器
311a 常圧冷媒蒸気
311b 低圧冷媒蒸気
311c 冷媒蒸気
511 再生後吸収液搬送パイプ
571 第1再生化用吸収液搬送パイプ
711 高圧蒸気送流管
712 発生器ポンプ
722 冷媒蒸気送流管
724 第2再生化用吸収液搬送パイプ
726 ドレーン熱交換器
T1 温度計
T2 温度計
t1 入り口温度
t2 入り口温度
I Cooling water transfer system to refrigerator II Cooling water transfer system to refrigerator 1 Double-effect absorption refrigerator 2 Bypass valve 3 Evaporator 5 Absorber 7 Generator 9 Condenser 11 Cooling tower 15 Solution adjustment valve 16 Flow Route 17 Condenser circulation path (cooling water direct conveyance path / circulation path)
19 Anti-absorber circuit (another circuit)
19A Anti-absorber circulation path (another cooling water direct conveyance path)
19A1 Connection 19i Inlet 19o Discharge 31 Refrigerant liquid 32 Evaporator pump 34 Refrigerant liquid spray pipe 36 Water flow pipe 51a Diluted solution 51b Intermediate concentration solution (absorbing liquid)
51c Concentrated solution 52 Absorber pump 54 Absorbing liquid spray pipe 56A Water flow tube 56B Water flow tube 57 Extraction device 71 First generator 72 Second generator 100 Cylindrical vessel 131 First heat exchanger 132 Second heat exchanger 171 Cooling water Pump 171a Inverter 172 Bypass path 173 Condenser cooling water pump 175 Connection path 177 Cooling water feed path 191 Absorber cooling water circulation pump 191a Inverter 193 Check valve 195 Absorber cooling water temperature controller 311a Normal pressure refrigerant vapor 311b Low pressure refrigerant vapor 311c Refrigerant vapor 511 Regenerated absorbent transport pipe 571 First regeneration absorbent transport pipe 711 High pressure steam feed pipe 712 Generator pump 722 Refrigerant vapor feed pipe 724 Second regeneration absorbent transport pipe 726 Drain heat exchanger T1 thermometer T2 thermometer t1 inlet temperature t2 inlet temperature

Claims (5)

冷媒液を蒸発させて冷媒蒸気を生じさせる蒸発器と、
この蒸発器で発生した冷媒蒸気が送られ、当該冷媒蒸気を吸収液に吸収させて吸収液を冷媒蒸気吸収力が低い希溶液とする吸収器と、
この希溶液が吸収器から搬送され、当該希溶液を加熱して、当該希溶液から前記冷媒液を常圧冷媒蒸気として放出させることで、希溶液を冷媒蒸気吸収力が希溶液よりも高い中間濃度溶液とする第1発生器と、
前記中間濃度溶液がこの第1発生器から搬送され、前記中間濃度溶液からさらに前記冷媒液を低圧冷媒蒸気として放出させることで、当該中間濃度溶液を濃溶液にし、もって吸収液の冷媒蒸気吸収力を復元させる第2発生器と、
この第2発生器と圧力的に同じ領域内に設けられ、第2発生器において前記中間濃度溶液から放出された低圧冷媒蒸気を冷却により凝縮して前記冷媒液に戻す凝縮器と、
これら部材を連結するパイプとを有し、当該パイプを介して、前記冷媒液,冷媒蒸気,常圧冷媒蒸気,低圧冷媒蒸気,希溶液,中間濃度溶液又は濃溶液のいずれかを前記各部材間で搬送する二重効用式吸収冷凍機に対し、冷却塔から流路を介して冷却水を搬送する冷凍機への冷却水搬送システムにおいて、
前記流路のうち前記冷却塔と前記凝縮器との間には、冷却塔から凝縮器に冷却水を直接搬送する冷却水直接搬送路が形成され、
前記冷却水直接搬送路は、冷却塔と凝縮器との間で冷却水が循環する循環路であって、この冷却水直接搬送路には、前記凝縮器を経由した後の冷却水を前記吸収器との間で循環する別の循環路が連結され、
前記別の循環路に対し、これらの路を通る冷却水の温度を一定に保持して、吸収器へ供給される冷却水の温度を一定に保つ吸収器供給冷却水温度保持手段を有し、
前記吸収器供給冷却水温度保持手段は、
前記凝縮器を経由した後の冷却水を前記吸収器に搬送する連絡路と、前記別の循環路内の冷却水を前記循環路経由で前記冷却塔に対して搬送する冷却水送路とを結び、前記循環路の一部を形成するバイパス路に設けられるバイパス弁と、
前記別の循環路内で冷却水を循環するための吸収器冷却水循環ポンプと、
前記吸収器へ供給される冷却水の温度が一定の範囲内にあるように、前記バイパス弁と前記吸収器冷却水循環ポンプの両方を制御して、冷却水を該吸収器に搬送する吸収器冷却水温度制御器と、を有する、
冷凍機への冷却水搬送システム。
An evaporator for evaporating the refrigerant liquid to produce refrigerant vapor;
Refrigerant vapor generated in the evaporator is sent, and the absorber vapor is absorbed into the absorption liquid, and the absorption liquid is a dilute solution having a low refrigerant vapor absorption capacity; and
The dilute solution is conveyed from the absorber, and the dilute solution is heated to release the refrigerant liquid from the dilute solution as normal pressure refrigerant vapor, so that the dilute solution has a higher refrigerant vapor absorption capacity than the dilute solution. A first generator as a concentration solution;
The intermediate concentration solution is transported from the first generator, and the refrigerant liquid is further discharged as low-pressure refrigerant vapor from the intermediate concentration solution, so that the intermediate concentration solution becomes a concentrated solution, and thus the refrigerant vapor absorbency of the absorbing liquid A second generator for restoring
A condenser that is provided in the same pressure region as the second generator, and that condenses the low-pressure refrigerant vapor released from the intermediate concentration solution in the second generator by cooling and returns the refrigerant liquid to the refrigerant liquid;
A pipe connecting these members, and through the pipe, the refrigerant liquid, the refrigerant vapor, the atmospheric pressure refrigerant vapor, the low-pressure refrigerant vapor, the dilute solution, the intermediate concentration solution or the concentrated solution is passed between the members. In the cooling water transport system to the refrigerator that transports the cooling water from the cooling tower through the flow path to the double-effect absorption refrigerator that is transported by
Between the cooling tower and the condenser in the flow path, a cooling water direct conveyance path for directly conveying the cooling water from the cooling tower to the condenser is formed,
The cooling water direct conveyance path is a circulation path through which cooling water circulates between the cooling tower and the condenser, and the cooling water direct conveyance path absorbs the cooling water after passing through the condenser. Another circulation circuit that circulates between
With respect to the another circulation path, the temperature of the cooling water passing through these paths is kept constant, and the temperature of the cooling water supplied to the absorber is kept constant.
The absorber supply cooling water temperature maintaining means is:
A communication path for transporting the cooling water after passing through the condenser to the absorber, and a cooling water feed path for transporting the cooling water in the other circulation path to the cooling tower via the circulation path. A bypass valve provided in a bypass path that forms a part of the circulation path;
An absorber cooling water circulation pump for circulating cooling water in the separate circulation path;
Absorber cooling for transporting cooling water to the absorber by controlling both the bypass valve and the absorber cooling water circulation pump so that the temperature of the cooling water supplied to the absorber is within a certain range. A water temperature controller,
Cooling water transfer system to the refrigerator.
冷媒液を蒸発させて冷媒蒸気を生じさせる蒸発器と、
この蒸発器で発生した冷媒蒸気が送られ、当該冷媒蒸気を吸収液に吸収させて吸収液を冷媒蒸気吸収力が低い希溶液とする吸収器と、
この希溶液が吸収器から搬送され、当該希溶液を加熱して、当該希溶液から前記冷媒液を常圧冷媒蒸気として放出させることで、希溶液を冷媒蒸気吸収力が希溶液よりも高い中間濃度溶液とする第1発生器と、
前記中間濃度溶液がこの第1発生器から搬送され、前記中間濃度溶液からさらに前記冷媒液を低圧冷媒蒸気として放出させることで、当該中間濃度溶液を濃溶液にし、もって吸収液の冷媒蒸気吸収力を復元させる第2発生器と、
この第2発生器と圧力的に同じ領域内に設けられ、第2発生器において前記中間濃度溶液から放出された低圧冷媒蒸気を冷却により凝縮して前記冷媒液に戻す凝縮器と、
これら部材を連結するパイプとを有し、当該パイプを介して、前記冷媒液,冷媒蒸気,常圧冷媒蒸気,低圧冷媒蒸気,希溶液,中間濃度溶液又は濃溶液のいずれかを前記各部材間で搬送する二重効用式吸収冷凍機に対し、冷却塔から流路を介して冷却水を搬送する冷凍機への冷却水搬送システムにおいて、
前記流路のうち前記冷却塔と前記凝縮器との間には、冷却塔から凝縮器に冷却水を直接搬送する冷却水直接搬送路が形成され、
前記流路のうち前記冷却塔と前記吸収器との間にも、冷却塔から吸収器に冷却水を直接搬送する別の冷却水直接搬送路が形成され、
前記別の冷却水直接搬送路に対し、これらの路を通る冷却水の温度を一定に保持して、吸収器へ供給される冷却水の温度を一定に保つ吸収器供給冷却水温度保持手段を有し、
前記吸収器供給冷却水温度保持手段は、
前記吸収器へ供給される冷却水の温度が一定の範囲内であるように、前記別の冷却水直接搬送路の往路と復路とが連絡されている連結路に、吸収器冷却水循環ポンプを有する、
冷凍機への冷却水搬送システム。
An evaporator for evaporating the refrigerant liquid to produce refrigerant vapor;
Refrigerant vapor generated in the evaporator is sent, and the absorber vapor is absorbed into the absorption liquid, and the absorption liquid is a dilute solution having a low refrigerant vapor absorption capacity; and
The dilute solution is conveyed from the absorber, and the dilute solution is heated to release the refrigerant liquid from the dilute solution as normal pressure refrigerant vapor, so that the dilute solution has a higher refrigerant vapor absorption capacity than the dilute solution. A first generator as a concentration solution;
The intermediate concentration solution is transported from the first generator, and the refrigerant liquid is further discharged as low-pressure refrigerant vapor from the intermediate concentration solution, so that the intermediate concentration solution becomes a concentrated solution, and thus the refrigerant vapor absorbency of the absorbing liquid A second generator for restoring
A condenser that is provided in the same pressure region as the second generator, and that condenses the low-pressure refrigerant vapor released from the intermediate concentration solution in the second generator by cooling and returns the refrigerant liquid to the refrigerant liquid;
A pipe connecting these members, and through the pipe, the refrigerant liquid, the refrigerant vapor, the atmospheric pressure refrigerant vapor, the low-pressure refrigerant vapor, the dilute solution, the intermediate concentration solution or the concentrated solution is passed between the members. In the cooling water transport system to the refrigerator that transports the cooling water from the cooling tower through the flow path to the double-effect absorption refrigerator that is transported by
Between the cooling tower and the condenser in the flow path, a cooling water direct conveyance path for directly conveying the cooling water from the cooling tower to the condenser is formed,
Another cooling water direct conveyance path that directly conveys cooling water from the cooling tower to the absorber is formed between the cooling tower and the absorber among the flow paths,
Absorber supply cooling water temperature holding means for keeping the temperature of the cooling water passing through these paths constant and maintaining the temperature of the cooling water supplied to the absorber constant with respect to the other cooling water direct conveyance path. Have
The absorber supply cooling water temperature maintaining means is:
In order that the temperature of the cooling water supplied to the absorber is within a certain range, an absorber cooling water circulation pump is provided in the connecting path where the forward path and the return path of the other cooling water direct conveyance path are communicated with each other. ,
Cooling water transfer system to the refrigerator.
冷媒液を蒸発させて冷媒蒸気を生じさせる蒸発器と、
この蒸発器で発生した冷媒蒸気が送られ、当該冷媒蒸気を吸収液に吸収させて吸収液を冷媒蒸気吸収力が低い希溶液とする吸収器と、
この希溶液が吸収器から送られ、当該希溶液を加熱して、当該希溶液から前記冷媒液を常圧冷媒蒸気として放出させることで、希溶液を冷媒蒸気吸収力が希溶液よりも高い中間濃度溶液とする第1発生器と、
前記中間濃度溶液がこの第1発生器から搬送され、前記中間濃度溶液からさらに前記冷媒液を低圧冷媒蒸気として放出させることで、当該中間濃度溶液を濃溶液にし、もって吸収液の冷媒蒸気吸収力を復元させる第2発生器と、
この第2発生器と圧力的に同じ領域内に設けられ、第2発生器において前記中間濃度溶液から放出された低圧冷媒蒸気を冷却により凝縮して前記冷媒液に戻す凝縮器と、
これら部材を連結するパイプと有し、当該パイプを介して、前記冷媒液,冷媒蒸気,常圧冷媒蒸気,低圧冷媒蒸気,希溶液,中間濃度溶液又は濃溶液のいずれかを前記各部材間で搬送する二重効用式吸収冷凍機に対し、冷却塔から冷却水を循環させる、冷凍機への冷却水搬送方法において、
前記冷却塔を出た直後の冷却水の温度と実質上変わらない温度の冷却水を凝縮器に直接搬送し、
冷却塔と凝縮器との間で冷却水が循環し、
前記凝縮器を経由した後の冷却水を前記吸収器との間で循環し、
前記冷却塔と凝縮器との間で循環する冷却水の流量と、前記凝縮器を経由した後の前記吸収器との間で循環する冷却水の流量とを制御して、前記吸収器との間で循環する前記凝縮器を経由した後の冷却水の温度を一定に保持して、吸収器へ供給される冷却水の温度を
一定に保つことを特徴とする冷凍機への冷却水搬送方法。
An evaporator for evaporating the refrigerant liquid to produce refrigerant vapor;
Refrigerant vapor generated in the evaporator is sent, and the absorber vapor is absorbed into the absorption liquid, and the absorption liquid is a dilute solution having a low refrigerant vapor absorption capacity; and
This dilute solution is sent from the absorber, the dilute solution is heated, and the refrigerant liquid is discharged from the dilute solution as normal pressure refrigerant vapor, so that the dilute solution has a higher refrigerant vapor absorption capacity than the dilute solution. A first generator as a concentration solution;
The intermediate concentration solution is transported from the first generator, and the refrigerant liquid is further discharged as low-pressure refrigerant vapor from the intermediate concentration solution, so that the intermediate concentration solution becomes a concentrated solution, and thus the refrigerant vapor absorbency of the absorbing liquid A second generator for restoring
A condenser that is provided in the same pressure region as the second generator, and that condenses the low-pressure refrigerant vapor released from the intermediate concentration solution in the second generator by cooling and returns the refrigerant liquid to the refrigerant liquid;
A pipe connecting these members, and the refrigerant liquid, the refrigerant vapor, the normal pressure refrigerant vapor, the low pressure refrigerant vapor, the dilute solution, the intermediate concentration solution or the concentrated solution is passed between the members via the pipe. In the cooling water transport method to the refrigerator, in which the cooling water is circulated from the cooling tower to the double-effect absorption refrigerator to be transported,
The cooling water having a temperature substantially the same as the temperature of the cooling water immediately after leaving the cooling tower is directly transferred to the condenser,
Cooling water circulates between the cooling tower and the condenser,
Circulating the cooling water after passing through the condenser between the absorber and
Controlling the flow rate of the cooling water circulating between the cooling tower and the condenser and the flow rate of the cooling water circulating between the absorber after passing through the condenser, The temperature of the cooling water after passing through the condenser circulating between them is kept constant, and the temperature of the cooling water supplied to the absorber is adjusted.
A method for conveying cooling water to a refrigerator, characterized by being kept constant .
冷媒液を蒸発させて冷媒蒸気を生じさせる蒸発器と、
この蒸発器で発生した冷媒蒸気が送られ、当該冷媒蒸気を吸収液に吸収させて吸収液を冷媒蒸気吸収力が低い希溶液とする吸収器と、
この希溶液が吸収器から送られ、当該希溶液を加熱して、当該希溶液から前記冷媒液を常圧冷媒蒸気として放出させることで、希溶液を冷媒蒸気吸収力が希溶液よりも高い中間濃度溶液とする第1発生器と、
前記中間濃度溶液がこの第1発生器から搬送され、前記中間濃度溶液からさらに前記冷媒液を低圧冷媒蒸気として放出させることで、当該中間濃度溶液を濃溶液にし、もって吸収液の冷媒蒸気吸収力を復元させる第2発生器と、
この第2発生器と圧力的に同じ領域内に設けられ、第2発生器において前記中間濃度溶液から放出された低圧冷媒蒸気を冷却により凝縮して前記冷媒液に戻す凝縮器と、
これら部材を連結するパイプと有し、当該パイプを介して、前記冷媒液,冷媒蒸気,常圧冷媒蒸気,低圧冷媒蒸気,希溶液,中間濃度溶液又は濃溶液のいずれかを前記各部材間で搬送する二重効用式吸収冷凍機に対し、冷却塔から冷却水を循環させる、冷凍機への冷却水搬送方法において、
前記冷却塔を出た直後の冷却水の温度と実質上変わらない温度の冷却水を凝縮器に直接搬送し、
冷却塔から吸収器に冷却水を直接搬送し、
前記冷却塔から吸収器に直接搬送する冷却水の往路と復路とが連結されている連結路の流路を調整し、冷却塔から吸収器に冷却水を直接搬送する路を通る冷却水の温度を一定に保持して、吸収器へ供給される冷却水の温度を一定に保つことを特徴とする冷凍機への冷却水搬送方法。
An evaporator for evaporating the refrigerant liquid to produce refrigerant vapor;
Refrigerant vapor generated in the evaporator is sent, and the absorber vapor is absorbed into the absorption liquid, and the absorption liquid is a dilute solution having a low refrigerant vapor absorption capacity; and
This dilute solution is sent from the absorber, the dilute solution is heated, and the refrigerant liquid is discharged from the dilute solution as normal pressure refrigerant vapor, so that the dilute solution has a higher refrigerant vapor absorption capacity than the dilute solution. A first generator as a concentration solution;
The intermediate concentration solution is transported from the first generator, and the refrigerant liquid is further discharged as low-pressure refrigerant vapor from the intermediate concentration solution, so that the intermediate concentration solution becomes a concentrated solution, and thus the refrigerant vapor absorbency of the absorbing liquid A second generator for restoring
A condenser that is provided in the same pressure region as the second generator, and that condenses the low-pressure refrigerant vapor released from the intermediate concentration solution in the second generator by cooling and returns the refrigerant liquid to the refrigerant liquid;
A pipe connecting these members, and the refrigerant liquid, the refrigerant vapor, the normal pressure refrigerant vapor, the low pressure refrigerant vapor, the dilute solution, the intermediate concentration solution or the concentrated solution is passed between the members via the pipe. In the cooling water transport method to the refrigerator, in which the cooling water is circulated from the cooling tower to the double-effect absorption refrigerator to be transported,
The cooling water having a temperature substantially the same as the temperature of the cooling water immediately after leaving the cooling tower is directly transferred to the condenser,
Transfer cooling water directly from the cooling tower to the absorber,
The temperature of the cooling water passing through the path for directly conveying the cooling water from the cooling tower to the absorber is adjusted by adjusting the flow path of the connecting path where the forward path and the returning path of the cooling water conveyed directly from the cooling tower to the absorber are connected. The cooling water transport method to the refrigerator is characterized in that the temperature of the cooling water supplied to the absorber is kept constant while keeping the temperature constant .
前記凝縮器に搬送され、当該凝縮器を冷却することで昇温された冷却水を前記吸収器に供給することを特徴とする請求項3又は4に記載の冷凍機への冷却水搬送方法。 The cooling water conveyance method to the refrigerator according to claim 3 or 4 , wherein the cooling water conveyed to the condenser and heated by cooling the condenser is supplied to the absorber.
JP2004335741A 2004-11-19 2004-11-19 Cooling water transfer system to refrigerator and cooling water transfer method to refrigerator Expired - Fee Related JP4318629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335741A JP4318629B2 (en) 2004-11-19 2004-11-19 Cooling water transfer system to refrigerator and cooling water transfer method to refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335741A JP4318629B2 (en) 2004-11-19 2004-11-19 Cooling water transfer system to refrigerator and cooling water transfer method to refrigerator

Publications (2)

Publication Number Publication Date
JP2006145112A JP2006145112A (en) 2006-06-08
JP4318629B2 true JP4318629B2 (en) 2009-08-26

Family

ID=36625009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335741A Expired - Fee Related JP4318629B2 (en) 2004-11-19 2004-11-19 Cooling water transfer system to refrigerator and cooling water transfer method to refrigerator

Country Status (1)

Country Link
JP (1) JP4318629B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897439B2 (en) * 2006-11-21 2012-03-14 川重冷熱工業株式会社 Energy saving control operation method and apparatus for absorption chiller / heater

Also Published As

Publication number Publication date
JP2006145112A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP2002147885A (en) Absorption refrigerating machine
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2004324977A (en) Absorption type refrigerating machine
JP4318629B2 (en) Cooling water transfer system to refrigerator and cooling water transfer method to refrigerator
JP5384072B2 (en) Absorption type water heater
KR100585352B1 (en) Absorption refrigerator
KR101690303B1 (en) Triple effect absorption chiller
JP2012202589A (en) Absorption heat pump apparatus
JP5785800B2 (en) Vapor absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP3883894B2 (en) Absorption refrigerator
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JP2004333061A (en) Absorption refrigerating machine for single/double effect
JP4308076B2 (en) Absorption refrigerator
JP5260895B2 (en) Absorption refrigerator
JP2012068019A (en) Absorption refrigerating machine
JP2003343939A (en) Absorption refrigerating machine
JP7054855B2 (en) Absorption chiller
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JP3593052B2 (en) Absorption refrigerator
JP6698297B2 (en) Absorption refrigerator
JP3858655B2 (en) Absorption refrigeration system
JP3851136B2 (en) Absorption refrigerator
JPH11211262A (en) Absorption type refrigerating machine system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140605

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees