JP4312148B2 - Relay board and three-dimensional wiring structure - Google Patents

Relay board and three-dimensional wiring structure Download PDF

Info

Publication number
JP4312148B2
JP4312148B2 JP2004359260A JP2004359260A JP4312148B2 JP 4312148 B2 JP4312148 B2 JP 4312148B2 JP 2004359260 A JP2004359260 A JP 2004359260A JP 2004359260 A JP2004359260 A JP 2004359260A JP 4312148 B2 JP4312148 B2 JP 4312148B2
Authority
JP
Japan
Prior art keywords
circuit board
relay
board
relay board
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004359260A
Other languages
Japanese (ja)
Other versions
JP2006173152A (en
Inventor
善広 戸村
能彦 八木
邦男 日比野
康司 中桐
正浩 小野
将人 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004359260A priority Critical patent/JP4312148B2/en
Publication of JP2006173152A publication Critical patent/JP2006173152A/en
Application granted granted Critical
Publication of JP4312148B2 publication Critical patent/JP4312148B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/368Assembling printed circuits with other printed circuits parallel to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2036Permanent spacer or stand-off in a printed circuit or printed circuit assembly

Description

本発明は、電子部品を実装した回路モジュール等をベース回路基板上に中継する中継基板とこれを使用した立体配線構造体に関する。   The present invention relates to a relay board that relays a circuit module or the like on which an electronic component is mounted on a base circuit board, and a three-dimensional wiring structure using the relay board.

近年、絶縁回路基板上に抵抗、コンデンサや半導体素子等を実装する電子回路装置においては、機器の軽薄短小化に伴い、実装の高密度化が強く求められている。
従来、この種の電子回路装置において、部品実装の高密度化は配線ピッチの微細化や複数枚の電子回路基板を積み重ね構成により実現していた。
In recent years, in an electronic circuit device in which a resistor, a capacitor, a semiconductor element, and the like are mounted on an insulating circuit board, as the equipment becomes lighter and thinner, there is a strong demand for higher mounting density.
Conventionally, in this type of electronic circuit device, the high density of component mounting has been realized by reducing the wiring pitch and stacking a plurality of electronic circuit boards.

例えば、下記の(特許文献1)に記載された電子回路装置は、図13に示すように、ベースプリント回路基板310にモジュール回路基板350をスペーサ360を介して積層した構造である。   For example, an electronic circuit device described in the following (Patent Document 1) has a structure in which a module circuit board 350 is stacked on a base printed circuit board 310 via a spacer 360 as shown in FIG.

スペーサ360は、上下両面にビアホール320で導通する球状半田380,390で仮止めした構造である。このスペーサ360を、ベースプリント回路基板310およびモジュール回路基板350間に仮固定した状態で一括リフロー半田付けしている。330はモジュール回路基板350に実装された表面実装部品、340はモジュール回路基板350に実装された半導体ベアチップ340である。   The spacer 360 has a structure that is temporarily fixed by spherical solders 380 and 390 that are electrically connected to the upper and lower surfaces through the via holes 320. The spacer 360 is collectively reflow soldered in a state of being temporarily fixed between the base printed circuit board 310 and the module circuit board 350. Reference numeral 330 denotes a surface mount component mounted on the module circuit board 350, and 340 denotes a semiconductor bare chip 340 mounted on the module circuit board 350.

また、下記の(特許文献2)に記載の電子回路装置は、図14に示すように、外周囲を導電性の物質でコーティングされた耐熱性弾性体400を介して電子回路基板410,430を上下に積層した構造である。前記耐熱性弾性体400を一方の電子回路基板410の接続用ランド420に半田付けし、他方の電子回路基板430の接続用ランド440にクリップやボルト470等で圧着するものである。450は表面実装部品、460は半導体ベアチップである。   In addition, as shown in FIG. 14, the electronic circuit device described in (Patent Document 2) includes electronic circuit boards 410 and 430 through a heat-resistant elastic body 400 whose outer periphery is coated with a conductive material. It is a stacked structure. The heat-resistant elastic body 400 is soldered to the connection land 420 of one electronic circuit board 410, and is crimped to the connection land 440 of the other electronic circuit board 430 with a clip, a bolt 470, or the like. 450 is a surface mount component, and 460 is a semiconductor bare chip.

また、下記の(特許文献3)に記載された電子回路装置は、図15に示すように、接続用チップ550を介してマザーボード540にモジュール用回路基板500を、機械的および電気的に接続した構造であり、510はICパッケージ510,520,530は受動部品である。   Further, in the electronic circuit device described in the following (Patent Document 3), the module circuit board 500 is mechanically and electrically connected to the mother board 540 via the connection chip 550 as shown in FIG. The IC package 510, 520, and 530 are passive components.

また、下記の(特許文献4)に記載された電子回路装置は、図16(a)(b)に示すように、立体プリント基板600に、レンズ660と光学フィルタ670と半導体撮像素子610とをレンズ660の光軸上に一体的に組み込んだ構成である。立体プリント基板600は、半導体撮像素子610およびチップ部品615を接続するための配線パターン650を有している。640は立体プリント基板600が半田付け実装されるプリント基板である。   In addition, an electronic circuit device described in the following (Patent Document 4) includes a lens 660, an optical filter 670, and a semiconductor imaging device 610 on a three-dimensional printed circuit board 600, as shown in FIGS. The lens 660 is integrated on the optical axis. The three-dimensional printed circuit board 600 has a wiring pattern 650 for connecting the semiconductor imaging device 610 and the chip component 615. Reference numeral 640 denotes a printed circuit board on which the three-dimensional printed circuit board 600 is mounted by soldering.

さらに、下記の(特許文献5)に記載された電子回路装置は、図17(a)(b)(c)に示すように、半導体撮像素子610と赤外フィルタ680とを立体プリント基板600に装着し、この立体プリント基板600を回路集積プリント基板640に実装した構造である。   Furthermore, the electronic circuit device described in the following (Patent Document 5) includes a semiconductor imaging device 610 and an infrared filter 680 on a three-dimensional printed circuit board 600 as shown in FIGS. 17 (a), (b), and (c). The three-dimensional printed circuit board 600 is mounted and mounted on the circuit integrated printed circuit board 640.

また、上記以外にも一般的な接続部品であるコネクタを用いて接合する方法等もある。
特開2001−177235号公報 特開2001−267715号公報 特開平6−260736号公報 特開2001−245186号公報 特開2000−341566号公報
In addition to the above, there is a method of joining using a connector which is a general connection component.
JP 2001-177235 A JP 2001-267715 A Japanese Patent Laid-Open No. 6-260736 JP 2001-245186 A JP 2000-341666 A

携帯端末装置の高機能化と軽薄短小化が進む中で、平面的な電子回路装置では、接続ピッチの微細化や隣接の部品間の間隔縮小などにより実装密度の向上をはかるには限界がある。そのために3次元的にモジュール回路基板を積層して高密度化がはかられている。   As mobile terminal devices become more advanced and lighter, thinner, and smaller, planar electronic circuit devices have limitations in improving mounting density by reducing the connection pitch and reducing the spacing between adjacent components. . For this purpose, module circuit boards are three-dimensionally stacked to increase the density.

(特許文献1)のスペーサ360および(特許文献3)の接続用チップ550は、回路基板の上下面に形成されたランドと対応するランド間を接続する導電性ビアまたはビアホール320を介して3次元的に接続するものである。   The spacer 360 of (Patent Document 1) and the connecting chip 550 of (Patent Document 3) are three-dimensional via conductive vias or via holes 320 that connect lands formed on the upper and lower surfaces of the circuit board and corresponding lands. Connected.

また、(特許文献2)の積層されたモジュール回路基板間の固定にクリップ470やボルト等を用いた場合、固定や接続部材の占有する面積が増加するため実装面積が減少する。また、モジュール回路基板間の接続端子数の増加により、モジュール回路基板の接続に占める接続コネクタの面積が増大している。従って、モジュール回路基板間の接続面積の増大により実装密度を上げることができないという課題がある。   Further, when a clip 470, a bolt, or the like is used for fixing between the stacked module circuit boards in (Patent Document 2), the area occupied by the fixing and connecting member increases, so that the mounting area decreases. Moreover, the area of the connection connector which occupies for the connection of a module circuit board is increasing by the increase in the number of connection terminals between module circuit boards. Therefore, there is a problem that the mounting density cannot be increased due to an increase in the connection area between the module circuit boards.

また、(特許文献4)および(特許文献5)の立体プリント基板600は、撮像素子610の立体配線構造が開示されており、半田620を介して3次元的にプリント基板640に接続するものである。しかし、基板表面に形成された立体プリント基板600のランド電極630の先端部とプリント基板640の配線650とを単に半田接続するだけでは接続の信頼性を上げることができないという課題がある。   Further, the three-dimensional printed circuit board 600 of (Patent Document 4) and (Patent Document 5) discloses a three-dimensional wiring structure of the image sensor 610 and is connected to the printed circuit board 640 in three dimensions via the solder 620. is there. However, there is a problem that connection reliability cannot be increased simply by soldering the tip of the land electrode 630 of the three-dimensional printed circuit board 600 formed on the substrate surface and the wiring 650 of the printed circuit board 640.

本発明は、上記従来の課題を解決し、高密度実装かつ接続の高信頼性を実現できる中継基板を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems and to provide a relay substrate that can realize high-density mounting and high connection reliability.

本発明の請求項1記載の中継基板は、第1の回路基板と第2の回路基板との間に介装される中継基板本体と、中継基板本体の前記第1の回路基板の側の面から前記第2の回路基板の側の面にわたって電気接続個所に対応して形成された基板接続配線とを有し、かつ前記中継基板本体は、前記基板接続配線の端部付近で前記第1の回路基板の側の面から側面部へ連なる角部と、前記基板接続配線の端部付近で前記第2の回路基板の側の面から前記側面部へ連なる角部に、それぞれ凹部を形成し、前記基板接続配線の端部を前記凹部に沿わせるとともに前記凹部に末端処理材を充填し、基板接続配線の端部を末端処理材に埋設したことを特徴とする。 The relay board according to claim 1 of the present invention includes a relay board body interposed between the first circuit board and the second circuit board, and a surface of the relay board body on the first circuit board side. To the second circuit board side surface corresponding to the electrical connection location, and the relay board body is in the vicinity of the end of the board connection wiring. Forming a recess in each of a corner continuous from the surface on the side of the circuit board to the side and a corner connected to the side of the side of the second circuit board near the end of the board connection wiring; The end portion of the substrate connection wiring extends along the recess, the end treatment material is filled in the recess, and the end portion of the substrate connection wiring is embedded in the end treatment material.

本発明の請求項2記載の中継基板は、請求項1において、前記基板接続配線の中間付近で中継基板本体の上面から側面部に連なる角部と、前記基板接続配線の中間付近で中継基板本体の下面から側面部に連なる角部との少なくとも一方に凹部を形成し、この凹部に沿って基板接続配線を形成し、凹部にコーナ部処理材を充填し、基板接続配線のコーナ部をコーナ部処理材に埋設したことを特徴とする。 The relay board according to claim 2 of the present invention is the relay board according to claim 1, wherein the relay board body in the middle of the board connection wiring is connected to a corner portion continuous from the upper surface to the side surface of the relay board body near the middle of the board connection wiring. A recess is formed in at least one of the lower surface of the substrate and a corner portion connected to the side surface portion, a substrate connection wiring is formed along the recess, the corner processing material is filled in the recess, and the corner portion of the substrate connection wiring is the corner portion. It is embedded in the processing material.

本発明の請求項3記載の中継基板は、第1の回路基板と第2の回路基板との間に介装される中継基板本体と、中継基板本体の前記第1の回路基板の側の面から前記第2の回路基板の側の面にわたって電気接続個所に対応して形成された基板接続配線とを有し、かつ前記中継基板本体は、前記第1の回路基板の側の面から側面部へ連なる角部と、前記第2の回路基板の側の面から前記側面部へ連なる角部とのうちの少なくとも一方の角部を波形曲面を備えた斜面に形成し、前記基板接続配線の端部ならびにコーナ部を前記波形曲面を備えた斜面に沿わせて貼り付けたことを特徴とする。   The relay board according to claim 3 of the present invention is a relay board main body interposed between the first circuit board and the second circuit board, and a surface of the relay board main body on the first circuit board side. To the second circuit board side surface corresponding to the electrical connection location, and the relay board body is connected to the first circuit board side surface from the side surface portion. At least one of a corner portion connected to the side surface and a corner portion continuous from the surface on the second circuit board side to the side surface portion is formed on an inclined surface having a corrugated curved surface; The part and the corner are pasted along the slope having the corrugated curved surface.

本発明の請求項4記載の立体配線構造体は、第1の回路基板と第2の回路基板との間に請求項1〜請求項3の何れかに記載の中継基板を介装して第1,第2の回路基板を3次元的に接続したことを特徴とする。   According to a fourth aspect of the present invention, there is provided a three-dimensional wiring structure including the relay board according to any one of the first to third aspects interposed between the first circuit board and the second circuit board. The first and second circuit boards are three-dimensionally connected.

本発明の請求項5記載の中継基板の製造方法は、上下垂直方向に回路基板を接続、中継
する基板形状に第1の金型を用いて第1の樹脂を射出成形し、立体成形体を形成する第1
の工程と、接続用ランド電極と側面に接続用ランド電極間を電気的に接続する基板接続配
線の形成を行う部分以外に第2の金型を用いて第4の樹脂を射出成形する第2の工程と、
前記立体成形体の上下面に前記接続用ランド電極部と側面には前記接続用ランド電極間を
電気的に接続する前記基板接続配線部にメッキ触媒を形成する第3の工程と、前記第4の
樹脂を除去し、メッキする第4の工程と、前記接続用ランド電極の末端部を第3の金型を
用いて、第2の樹脂を射出成形して埋設するように覆う第5の工程とを備えたことを特徴
とする。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a relay board, in which a circuit board is connected in the vertical direction and a first resin is injection-molded using a first mold into a board shape to be relayed, and a three-dimensional molded body is formed. Forming first
In the second step, a second resin is used to injection-mold the fourth resin in addition to the step of forming the substrate connection wiring for electrically connecting the connection land electrode and the connection land electrode to the side surface. And the process of
A third step of forming a plating catalyst on the substrate connection wiring portion that electrically connects the connection land electrode portions on the upper and lower surfaces of the three-dimensional molded body and the connection land electrodes on the side surfaces; A fourth step of removing and plating the resin, and a fifth step of covering the end portion of the connection land electrode so as to be embedded by injection molding of the second resin using a third mold. It is characterized by comprising.

本発明の請求項6記載の中継基板の製造方法は、請求項5において、前記中継基板の前
記ランド電極の末端部がS字曲線状に成形された第1の絶縁性樹脂と第2の樹脂との間に
埋設されるように成形する工程を備えたことを特徴とする。
According to a sixth aspect of the present invention, there is provided the relay substrate manufacturing method according to the fifth aspect , wherein the first insulating resin and the second resin in which the end portion of the land electrode of the relay substrate is formed in an S-curve shape. And a step of molding so as to be embedded between the two.

本発明の請求項7記載の中継基板の製造方法は、請求項5において、前記中継基板の上
下面のランド電極から側面部に連なるコーナー部の配線が樹脂中に埋設されるように2次
成形する工程を備えたことを特徴とする。
According to a seventh aspect of the present invention, there is provided a relay board manufacturing method according to the fifth aspect of the present invention, in which secondary wiring is performed so that the wiring in the corner portion connected to the side surface portion from the land electrode on the upper and lower surfaces of the relay substrate is embedded in the resin. It is characterized by comprising the step of:

本発明の中継基板は、中継基板本体に設けられた基板接続配線の末端部が末端処理材に埋設して設けられているので、冷熱衝撃や落下衝撃によっても剥がれにくく強いので、高信頼性を実現できる。   The relay board according to the present invention is provided with the terminal connection wiring provided on the relay board main body embedded in the terminal treatment material, so that the relay board is not easily peeled off even by a thermal shock or a drop impact, and thus has high reliability. realizable.

また、基板接続配線の末端部が、中継基板本体に設けられた波形曲面を備えた斜面に沿わせて貼り付けたので、冷熱衝撃や落下衝撃によっても剥がれにくく強いので、高信頼性を実現できる。   In addition, since the end part of the board connection wiring is pasted along the slope with the corrugated curved surface provided in the relay board body, it is hard to be peeled off even by thermal shock or drop impact, so high reliability can be realized .

また、基板接続配線の末端部だけでなく、基板接続配線のコーナー部に対応して中継基板本体をコーナー部処理材に埋設したり、波形曲面を備えた斜面に貼り付けても、中継基板の樹脂とランド電極末端部とコーナー部の密着力が向上し、かつ、波形曲面によりせん断応力や剥離応力を抑制することにより、高信頼性を実現できる。   Even if the relay board body is embedded in the corner processing material corresponding to the corner part of the board connection wiring as well as the end part of the board connection wiring, or is attached to a slope with a corrugated curved surface, High adhesion can be realized by improving the adhesion between the resin, the land electrode end and the corner, and suppressing the shear stress and the peeling stress by the corrugated curved surface.

また、第1の回路基板または第2の回路基板に実装した各々の電子部品間を中継基板で上下に電気的に最短距離で接続することができ、立体配線構造体の周波数特性、信号の高速化が向上する。   In addition, each electronic component mounted on the first circuit board or the second circuit board can be electrically connected up and down with a relay board in the shortest distance, and the frequency characteristics of the three-dimensional wiring structure and the high-speed signal Improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。
(第1の実施の形態)
図1と図2は、本発明の(第1の実施の形態)における中継基板を使用した立体配線構造体を示す。図1は図2のA−A’からみた断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
1 and 2 show a three-dimensional wiring structure using a relay board according to the first embodiment of the present invention. 1 is a cross-sectional view taken along line AA ′ of FIG.

図1に示す立体配線構造体は、第1の回路基板1と第2の回路基板2が、中継基板3を介して接合層4により電気的、機械的に接続された3次元接続構造(3次元モジュール)である。   The three-dimensional wiring structure shown in FIG. 1 has a three-dimensional connection structure (3 in which a first circuit board 1 and a second circuit board 2 are electrically and mechanically connected by a bonding layer 4 via a relay board 3. Dimension module).

第1の回路基板1は、電子部品16(半導体装置を含む)が両面実装されており、電子部品から外部への引き出し端子電極11が設けられているが、第1の回路基板1は他の回路基板と接続される接続配線基板もしくは機能基板の一部であってもよい。   The first circuit board 1 has electronic components 16 (including a semiconductor device) mounted on both sides and is provided with lead terminal electrodes 11 from the electronic components to the outside. It may be a part of a connection wiring board or a functional board connected to the circuit board.

第2の回路基板2は、電子部品(半導体装置を含む)が両面実装されており、電子部品から外部への引き出し端子電極12が設けられているが、このようなモジュール構造であってもよいし、いわゆるマザーボードの一部であってもよい。   The second circuit board 2 has electronic components (including a semiconductor device) mounted on both sides and is provided with lead-out terminal electrodes 12 from the electronic components to the outside, but may have such a module structure. However, it may be a part of a so-called motherboard.

前記第1,第2の回路基板1,2には、図中には示していないが導電性ビアと絶縁基材から構成される。また、各回路基板は、(半導体装置を含む)電子部品16を実装して構成される両面基板または多層配線基板である。   Although not shown in the drawing, the first and second circuit boards 1 and 2 are composed of a conductive via and an insulating base material. Each circuit board is a double-sided board or a multilayer wiring board configured by mounting electronic components 16 (including a semiconductor device).

各電子部品16は、IC、LSI等の半導体素子、半導体パッケージや抵抗、コンデンサ、インダクタ等の一般の受動部品である。ベアチップ形状の電子部品をフリップチップ実装またはワイヤボンディング接続で実装することも可能である。   Each electronic component 16 is a general passive component such as a semiconductor element such as an IC or LSI, a semiconductor package, a resistor, a capacitor, or an inductor. It is also possible to mount a bare chip-shaped electronic component by flip chip mounting or wire bonding connection.

また、第1の回路基板1と第2の回路基板2を接続するコネクタ機能を有する前記中継基板3は、その形状が図2に示したように中央に貫通孔3cが形成された環状の中継基板本体3aの必要な個所に、前記第1の回路基板1の背面側になる上面13から、前記第2の回路基板2の上面側になる下面14にわたって基板接続配線10が、所定間隔で必要数だけ形成されている。具体的には、環状の中継基板本体3aは平面形状が20mm〜30mm、その厚み:h1=1.0mm〜2.0mm,幅:w1=0.5mm〜1.0mmの大きさである。   Further, the relay board 3 having a connector function for connecting the first circuit board 1 and the second circuit board 2 is an annular relay having a through hole 3c formed in the center as shown in FIG. Substrate connection wiring 10 is required at a predetermined interval from the upper surface 13 on the back surface side of the first circuit board 1 to the lower surface 14 on the upper surface side of the second circuit board 2 at necessary portions of the substrate body 3a. The number is formed. Specifically, the annular relay substrate body 3a has a planar shape of 20 mm to 30 mm, a thickness: h1 = 1.0 mm to 2.0 mm, and a width: w1 = 0.5 mm to 1.0 mm.

なお、図2では、中継基板3の上下に位置する前記第1,第2の回路基板1,2を略して仮想線で示した。また、中継基板3において実際には図2では見えない個所に付いても理解しやすいように一部を実線で示している。具体的には、図2の手前側に並んだ基板接続配線10における前記中継基板本体3aの前記貫通孔3cの内壁面に沿った部分と下面14に沿った部分となどがその一例である。図2の奥側に並んだ基板接続配線10も手前側における基板接続配線10と同様に構成されている。   In FIG. 2, the first and second circuit boards 1 and 2 positioned above and below the relay board 3 are abbreviated and indicated by virtual lines. Further, a part of the relay board 3 is shown by a solid line so that it can be easily understood even if it is not visible in FIG. Specifically, a portion along the inner wall surface of the through hole 3c of the relay substrate body 3a and a portion along the lower surface 14 in the board connection wirings 10 arranged on the near side in FIG. The board connection wirings 10 arranged on the back side in FIG. 2 are configured in the same manner as the board connection wirings 10 on the front side.

このように構成したため、第1の回路基板1の引き出し端子電極11は、中継基板本体3aの前記上面13に位置している基板接続配線10のランド電極5aに、接合層4を介して接合され、第2の回路基板2の引き出し端子電極12は、中継基板本体3aの前記下面14に位置している基板接続配線10のランド電極5bに、接合層4を介して接合されている。   With this configuration, the lead terminal electrode 11 of the first circuit board 1 is bonded to the land electrode 5a of the board connection wiring 10 located on the upper surface 13 of the relay board body 3a via the bonding layer 4. The lead-out terminal electrode 12 of the second circuit board 2 is joined to the land electrode 5b of the board connection wiring 10 located on the lower surface 14 of the relay board body 3a via the joining layer 4.

ここで、接合層4は、半田、半田ボール、マイクロコネクタ、ヒートシールコネクタ、異方導電性フィルムや導電性接着剤等の各種接合部材の何れかを用いる。
このように、中継基板3を使用した立体配線構造体によると、第1,第2の回路基板1,2には、中継基板3の中央に形成された貫通孔3cの内側に対応するところにも電子部品16を実装できるため、第1,第2の回路基板1,2の接続面積を確保しながら、より多くの回路部品を取り込むことができるため、高密度実装化を実現できる。
Here, the bonding layer 4 uses any of various bonding members such as solder, solder balls, microconnectors, heat seal connectors, anisotropic conductive films, and conductive adhesives.
Thus, according to the three-dimensional wiring structure using the relay board 3, the first and second circuit boards 1 and 2 correspond to the inside of the through hole 3c formed at the center of the relay board 3. In addition, since the electronic component 16 can be mounted, more circuit components can be taken in while securing the connection area between the first and second circuit boards 1 and 2, so that high-density mounting can be realized.

また、第1の回路基板1または第2の回路基板2に実装した電子部品15とを中継基板3を介して最短距離で接続することにより、立体配線構造体の周波数特性が向上し、信号の高速化が可能となり、電子機器の高速動作が実現できる。   Further, by connecting the electronic component 15 mounted on the first circuit board 1 or the second circuit board 2 through the relay board 3 at the shortest distance, the frequency characteristics of the three-dimensional wiring structure can be improved, and the signal Speeding up is possible, and high-speed operation of electronic devices can be realized.

さらに、前記中継基板3の基板接続配線10の端部に対応する位置には、中継基板本体3aに凹部3bが形成されており、基板接続配線10の端部はこの凹部3bの内側に沿って形成されており、各凹部3bには絶縁性の樹脂の末端処理材9が充填されている。   Further, a recess 3b is formed in the relay board body 3a at a position corresponding to the end of the board connection wiring 10 of the relay board 3, and the end of the board connection wiring 10 extends along the inside of the recess 3b. Each recess 3b is filled with an insulating resin end treatment material 9.

このように基板接続配線10の端部を末端処理材9中に埋設したので、冷熱衝撃や落下衝撃によって上下基板とランド電極間に働く剥離応力、せん断応力による剥離、クラックのきっかけを抑制または緩衝させることができ、高信頼性を実現できる。   Since the end portion of the substrate connection wiring 10 is embedded in the end treatment material 9 in this way, the peeling stress acting between the upper and lower substrates and the land electrode due to the thermal shock or the drop impact, the peeling due to the shear stress, and the crack initiation are suppressed or buffered. And high reliability can be realized.

なお、第1,第2の回路基板1,2には、一般の樹脂基板や無機基板、コンポジット基板を用いることができる。特に、ガラスエポキシ基板やアラミド基材を用いた基板やビルドアップ基板、ガラスセラミック基板、アルミナ基板等が好ましい。   The first and second circuit boards 1 and 2 can be general resin boards, inorganic boards, or composite boards. In particular, a glass epoxy substrate, a substrate using an aramid base material, a build-up substrate, a glass ceramic substrate, an alumina substrate, or the like is preferable.

中継基板3の中継基板本体3aには一般の熱可塑性樹脂や熱硬化性樹脂等を用いる。熱可塑性樹脂の場合、射出成形や切削加工、レーザー加工、ケミカル加工によって所望の形状に成形することが可能である。また、熱硬化性樹脂の場合、硬化物を切削加工することで所望の形状にすることができる。熱可塑性樹脂としてはPPA(ポリフタルアミド)、LCP(液晶ポリマー)、TPX(ポリメチルベンテン)、PEI(ポリアミドイミド)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルフォン)、PSF(ポリサルファオン)、PBT(ポリブチレンテレフタレート)、PA(ポリアミド)系、エステル系樹脂、SPS、PPO、PPE、熱硬化性樹脂としては通常のエポキシ樹脂等を用いることが好ましい。中継基板3にヤング率の小さい樹脂材料を用いることにより、第1,第2の回路基板1,2の間の熱膨張係数の差によって生じるせん断応力や剥離応力を緩和することができる。   For the relay substrate body 3a of the relay substrate 3, a general thermoplastic resin, thermosetting resin, or the like is used. In the case of a thermoplastic resin, it can be formed into a desired shape by injection molding, cutting, laser processing, or chemical processing. Moreover, in the case of a thermosetting resin, it can be made into a desired shape by cutting the cured product. As thermoplastic resins, PPA (polyphthalamide), LCP (liquid crystal polymer), TPX (polymethylbenten), PEI (polyamideimide), PPS (polyphenylene sulfide), PES (polyethersulfone), PSF (polysulfone) ), PBT (polybutylene terephthalate), PA (polyamide) -based, ester-based resin, SPS, PPO, PPE, and thermosetting resin, it is preferable to use a normal epoxy resin or the like. By using a resin material having a low Young's modulus for the relay substrate 3, it is possible to relieve shear stress and peeling stress caused by the difference in thermal expansion coefficient between the first and second circuit substrates 1 and 2.

また、中継基板3の基板接続配線10は、導電性ペーストを用いた印刷法や基板面に貼り付けられた金属箔または基板面に析出させたメッキ層をレーザー加工する等の方法で作製される。立体配線材料としてはAg、Sn、Zn、Pd、Bi、Ni、Au、Cu、C、Pt、Fe、Ti、Pbの金属が用いられる。   Further, the substrate connection wiring 10 of the relay substrate 3 is manufactured by a printing method using a conductive paste, a metal foil attached to the substrate surface, or a method of laser processing a plating layer deposited on the substrate surface. . As the three-dimensional wiring material, metals such as Ag, Sn, Zn, Pd, Bi, Ni, Au, Cu, C, Pt, Fe, Ti, and Pb are used.

末端処理材9は中継基板本体3aと同じ材質または中継基板本体3aとの接着性が良好な材質が選定されている。
なお、図1の中継基板3は、内部を詳細に示すために誇張して示しているが、基本的に図2の中継基板3と異なるものではない。また、以下の各実施の形態においても同様である。
The end treatment material 9 is selected from the same material as the relay substrate body 3a or a material having good adhesion to the relay substrate body 3a.
The relay board 3 in FIG. 1 is exaggerated to show the inside in detail, but is basically not different from the relay board 3 in FIG. The same applies to the following embodiments.

なお、図1,図2では、基板接続配線10の端部で中継基板本体3aの上側13に位置する端部と、中継基板本体3aの下側14に位置する端部とは、中継基板本体3aに形成された別々の凹部3bに充填された末端処理材9に埋設したが、これは図3に示すように基板接続配線10の端部で中継基板本体3aの上側13に位置する端部と、中継基板本体3aの下側14に位置する端部とを、中継基板本体3aに形成された共通の凹部3dに充填された末端処理材9に埋設するように構成しても同様の効果を期待できる。特に、図3の場合には、図1,図2のように中継基板本体3aの上側13の凹部10に充填した末端処理材9と中継基板本体3aの下側14の凹部10に充填した末端処理材9とに分けるために必要となる樹脂成形精度を上げる必要もないので、低コスト化が実現できる。   In FIG. 1 and FIG. 2, the end located on the upper side 13 of the relay board body 3a at the end of the board connection wiring 10 and the end located on the lower side 14 of the relay board body 3a are defined as the relay board body. Although it embedded in the terminal treatment material 9 with which the separate recessed part 3b formed in 3a was filled, this is an edge part located in the upper side 13 of the relay substrate main body 3a in the edge part of the board | substrate connection wiring 10 as shown in FIG. And the end located on the lower side 14 of the relay board body 3a may be embedded in the end treatment material 9 filled in the common recess 3d formed in the relay board body 3a. Can be expected. In particular, in the case of FIG. 3, as shown in FIGS. 1 and 2, the end treatment material 9 filled in the recess 10 on the upper side 13 of the relay board body 3a and the end filled in the recess 10 on the lower side 14 of the relay board body 3a. Since it is not necessary to increase the resin molding accuracy required for separating the treatment material 9, it is possible to reduce the cost.

なお、上記の各実施の形態において基板配線電極10は中継基板3の内側でも外側であっても回路設計や電気特性が考慮されていればかまわない。
また、上記の各実施の形態において前記基板接続配線10の前記第1の回路基板1の側の端部と前記第2の回路基板2の側の端部との両方を、末端処理材9に埋設したが、前記第1の回路基板1の側の端部と前記第2の回路基板2の側の端部との少なくとも一方を末端処理材9に埋設することによっても幾らかの効果を期待できる。
In each of the above embodiments, the circuit wiring and the electrical characteristics may be taken into consideration regardless of whether the substrate wiring electrode 10 is inside or outside the relay substrate 3.
Further, in each of the above-described embodiments, both the end portion on the first circuit board 1 side and the end portion on the second circuit board 2 side of the substrate connection wiring 10 are used as the end treatment material 9. Although embedded, at least one of the end part on the first circuit board 1 side and the end part on the second circuit board 2 side is expected to have some effect. it can.

(第2の実施の形態)
図4と図5は、本発明の(第2の実施の形態)における中継基板を使用した立体配線構造体を示す。図4は図5のA−A’からみた断面図である。
(Second Embodiment)
FIG. 4 and FIG. 5 show a three-dimensional wiring structure using a relay board in (second embodiment) of the present invention. 4 is a cross-sectional view taken along line AA ′ of FIG.

中継基板3の形状が(第1の実施の形態)とは異なっている。その他は同じである。具体的には、図1では各基板接続配線10の端部だけが末端処理材9に埋設されていたが、この図4では、中継基板本体3aの上面13から貫通孔3cの側面部に連なる角部と、中継基板本体3aの下面14から貫通孔3cの側面部に連なる角部とに、それぞれ第2の凹部3eを形成し、この第2の凹部3eに沿って基板接続配線10を形成し、第2の凹部3eにコーナ部処理材8としての樹脂を充填し、基板接続配線10のコーナ部7をコーナ部処理材8に埋設している。コーナ部処理材8と末端処理材9は同じものまたは部位に応じた異なる樹脂などを使用する。   The shape of the relay substrate 3 is different from that of the first embodiment. Others are the same. Specifically, in FIG. 1, only the end portions of the respective board connection wirings 10 are embedded in the end treatment material 9, but in FIG. 4, the connection from the upper surface 13 of the relay substrate body 3a to the side surface portion of the through hole 3c is continued. Second recesses 3e are respectively formed at the corners and corners continuous from the lower surface 14 of the relay substrate body 3a to the side surfaces of the through holes 3c, and the substrate connection wirings 10 are formed along the second recesses 3e. The second recess 3 e is filled with a resin as the corner portion treatment material 8, and the corner portion 7 of the substrate connection wiring 10 is embedded in the corner portion treatment material 8. The corner treatment material 8 and the end treatment material 9 are the same or different resins depending on the part.

この構成によると、さらに冷熱衝撃や落下衝撃に強い、高信頼性を実現できる。
なお、この実施の形態では中継基板3の前記第1の回路基板1の側のコーナ部7と中継基板3の前記第2の回路基板2の側のコーナ部7との両方に第2の凹部3eを形成し、両方の第2の凹部3eにコーナ部処理材8を充填したが、中継基板3の前記第1の回路基板1の側のコーナ部7と中継基板3の前記第2の回路基板2の側のコーナ部7との少なくとも一方に第2の凹部3eを形成し、この第2の凹部3eにコーナ部処理材8を充填して基板接続配線10のコーナ部7をコーナ部処理材8に埋設することによっても幾らかの効果を期待できる。
According to this configuration, it is possible to realize high reliability that is more resistant to thermal shock and drop impact.
In this embodiment, the second recess is formed in both the corner portion 7 of the relay board 3 on the first circuit board 1 side and the corner portion 7 of the relay board 3 on the second circuit board 2 side. 3e is formed, and both of the second recesses 3e are filled with the corner treatment material 8, but the corner portion 7 on the side of the first circuit board 1 of the relay board 3 and the second circuit of the relay board 3 are formed. A second concave portion 3e is formed in at least one of the corner portion 7 on the substrate 2 side, and the corner portion 7 of the substrate connection wiring 10 is processed by the corner portion treatment by filling the second concave portion 3e with a corner portion treatment material 8. Some effects can be expected by embedding in the material 8.

なお、図4,図5では、基板接続配線10の端部で中継基板本体3aの上側13に位置する端部と、中継基板本体3aの下側14に位置する端部とは、中継基板本体3aに形成された別々の凹部3bに充填された末端処理材9に埋設したが、これは図6に示すように基板接続配線10の端部で中継基板本体3aの上側13に位置する端部と、中継基板本体3aの下側14に位置する端部とを、中継基板本体3aに形成された共通の凹部3dに充填された末端処理材9に埋設するように構成しても同様の効果を期待できる。特に、図6の場合には、図4,図5のように中継基板本体3aの上側13の凹部10に充填した末端処理材9と中継基板本体3aの下側14の凹部10に充填した末端処理材9とに分けるために必要となる樹脂成形精度を上げる必要もないので、低コスト化が実現できる。   4 and 5, the end portion of the board connection wiring 10 that is located on the upper side 13 of the relay board body 3a and the end portion that is located on the lower side 14 of the relay board body 3a are the relay board body. Although it embedded in the terminal treatment material 9 with which the separate recessed part 3b formed in 3a was filled, this is an edge part located in the upper side 13 of the relay substrate main body 3a in the edge part of the board | substrate connection wiring 10 as shown in FIG. And the end located on the lower side 14 of the relay board body 3a may be embedded in the end treatment material 9 filled in the common recess 3d formed in the relay board body 3a. Can be expected. In particular, in the case of FIG. 6, as shown in FIGS. 4 and 5, the end treatment material 9 filled in the recess 10 on the upper side 13 of the relay board body 3a and the end filled in the recess 10 on the lower side 14 of the relay board body 3a. Since it is not necessary to increase the resin molding accuracy required for separating the treatment material 9, it is possible to reduce the cost.

(第3の実施の形態)
図7は本発明の(第3の実施の形態)における中継基板を使用した立体配線構造体の概略断面図である。図1と同じ構成要素については同一の符号をつけて、説明は省略する。
(Third embodiment)
FIG. 7 is a schematic cross-sectional view of a three-dimensional wiring structure using a relay board according to the (third embodiment) of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.

図1に示した(第1の実施の形態)では、基板接続配線10の前記第1の回路基板1の側の端部と前記第2の回路基板2の側の端部を、末端処理材9に埋設するのに、中継基板本体3aに成された凹部3bには末端処理材9を充填したが、図7では、中継基板本体3aに凹部3bを形成せずに、弾性を有するボンディング材17を中継基板本体3aの表面にボンディングして、基板接続配線10の前記第1,第2の回路基板1,2の側の端部を、末端処理材としてのボンディング材17に埋設している。なお、図7ではボンディング材17をボンディングし易いように、中継基板本体3aの断面形状が八角形に形成されている。   In the first embodiment shown in FIG. 1, the end of the substrate connection wiring 10 on the first circuit board 1 side and the end on the second circuit board 2 side are connected to the end treatment material. In order to embed it in the recess 9, the recess 3b formed in the relay substrate body 3a is filled with the end treatment material 9, but in FIG. 7, the recess 3b is not formed in the relay substrate body 3a, and an elastic bonding material is provided. 17 is bonded to the surface of the relay substrate body 3a, and the end portions of the board connection wiring 10 on the first and second circuit boards 1 and 2 side are embedded in a bonding material 17 as a terminal treatment material. . In FIG. 7, the cross-sectional shape of the relay substrate body 3a is formed in an octagon so that the bonding material 17 can be easily bonded.

なお、ボンディング材17は、中継基板本体3aや末端処理材9に比べて低ヤング率の樹脂であってもよい。たとえば、常温加硫(RTV)等のシリコーン樹脂等を用いる。その他は(第1の実施の形態)と同じである。さらに詳しくは、中継基板本体3aや末端処理材9としては(液晶ポリマーLCP、PPA):13.8〜17.0GPaを使用し、ボンディング材17としてRTVシリコーン:0.5〜5Paもしくは低弾性エポキシ:10〜100MPaを使用する。   Note that the bonding material 17 may be a resin having a lower Young's modulus than the relay substrate body 3 a and the end treatment material 9. For example, a silicone resin such as room temperature vulcanization (RTV) is used. Others are the same as those in the first embodiment. More specifically, (liquid crystal polymer LCP, PPA): 13.8 to 17.0 GPa is used as the relay substrate body 3a and the end treatment material 9, and RTV silicone: 0.5 to 5 Pa or a low elastic epoxy as the bonding material 17 is used. : 10-100 MPa is used.

このように基板接続配線10の端部がボンディング材17で覆って埋設したため、冷熱衝撃や落下衝撃によって第1,第2の回路基板1,2と上下のランド電極5間に働くせん断応力や剥離応力による剥離やクラックのきっかけを、抑制または緩衝させることができ、高信頼性を実現できる。   Since the end of the substrate connection wiring 10 is covered with the bonding material 17 and buried in this way, the shear stress and peeling acting between the first and second circuit boards 1 and 2 and the upper and lower land electrodes 5 due to a thermal shock or a drop impact. It is possible to suppress or buffer the occurrence of peeling or cracking due to stress, and high reliability can be realized.

(第4の実施の形態)
図8は、本発明の(第4の実施の形態)における中継基板を使用した立体配線構造体の概略断面図である。図1,図4,図7と同じ構成要素については、同一の符号をつけて説明する。
(Fourth embodiment)
FIG. 8 is a schematic cross-sectional view of a three-dimensional wiring structure using a relay board according to the (fourth embodiment) of the present invention. The same components as those in FIGS. 1, 4 and 7 will be described with the same reference numerals.

(第2の実施の形態)における図4では、中継基板本体3aに設けた凹部3bに末端処理材9を充填して埋設したが、この(第4の実施の形態)では、中継基板本体3aの断面形状を、図8に示すように基板接続配線10の端部に対応する位置では図7の場合と同じように傾斜辺3fに形成している。基板接続配線10の端部は、この傾斜辺3fの上で樹脂17をボンディングして埋設されている。さらに、中継基板本体3aの上面13から貫通孔3cの側面部に連なる角部と、中継基板本体3aの下面14から貫通孔3cの側面部に連なる角部とに、それぞれ第2の凹部3eを形成し、この第2の凹部3eに沿って基板接続配線10を形成し、第2の凹部3eにコーナ部処理材8を充填し、基板接続配線10のコーナ部7をコーナ部処理材8に埋設している点については図4と同じである。   In FIG. 4 in (second embodiment), the end treatment material 9 is filled and embedded in the recess 3b provided in the relay substrate body 3a. In this (fourth embodiment), the relay substrate body 3a is embedded. As shown in FIG. 8, the cross-sectional shape is formed on the inclined side 3f at the position corresponding to the end of the substrate connection wiring 10 as in the case of FIG. The end of the substrate connection wiring 10 is buried by bonding the resin 17 on the inclined side 3f. Furthermore, the second recesses 3e are respectively formed at the corners that are continuous from the upper surface 13 of the relay substrate body 3a to the side surface of the through hole 3c and the corners that are connected from the lower surface 14 of the relay substrate body 3a to the side surface of the through hole 3c. The substrate connection wiring 10 is formed along the second recess 3e, the corner processing material 8 is filled in the second recess 3e, and the corner portion 7 of the substrate connection wiring 10 is used as the corner processing material 8. The point of burying is the same as FIG.

このように構成したため、(第2の実施の形態)で述べた高信頼性はもちろん、低コストでかつ納期の短縮も実現できる。具体的には、後述の図12に示した第2の金型19を作って、前記末端処理材9を形成する必要がなく、低コストでかつ納期の短縮も実現できる。   With this configuration, not only the high reliability described in the (second embodiment) but also low cost and shortened delivery time can be realized. Specifically, it is not necessary to make the second metal mold 19 shown in FIG. 12 to be described later to form the end treatment material 9, and the cost can be reduced and the delivery time can be shortened.

(第5の実施の形態)
図9は、本発明の(第5の実施の形態)における中継基板を使用した立体配線構造体の概略断面図である。図7と同じ構成要素については、同一の符号をつけて説明する。
(Fifth embodiment)
FIG. 9 is a schematic cross-sectional view of a three-dimensional wiring structure using a relay board according to the (fifth embodiment) of the present invention. The same components as those in FIG. 7 will be described with the same reference numerals.

図7に示した(第3の実施の形態)では、基板接続配線10の端部が中継基板本体3aの傾斜辺3fにボンディングされたボンディング材17に埋設されていたが、この(第5の実施の形態)では図9に示すように前記傾斜辺3fが、波面状曲面20に形成されている。また、中継基板本体3aのコーナ部も波面状曲面20に形成されており、基板接続配線10の端部とコーナー部は、何れもこの波面状曲面20に沿って貼り付けられている。   In the (third embodiment) shown in FIG. 7, the end of the board connection wiring 10 is embedded in the bonding material 17 bonded to the inclined side 3f of the relay board main body 3a. In the embodiment, as shown in FIG. 9, the inclined side 3 f is formed on the wavefront curved surface 20. Further, the corner portion of the relay substrate main body 3 a is also formed on the wavefront curved surface 20, and both the end portion and the corner portion of the substrate connection wiring 10 are pasted along the wavefront curved surface 20.

この構成によると、基板接続配線10の端部とコーナー部7の密着力が向上し、かつ、波形曲面としたことにより冷熱衝撃や落下衝撃によって、ランド電極5近傍に発生するせん断応力や剥離応力を抑制することにより、高信頼性を実現できる。   According to this configuration, the adhesion between the end portion of the substrate connection wiring 10 and the corner portion 7 is improved, and the corrugated curved surface is used, so that a shear stress or a peeling stress generated in the vicinity of the land electrode 5 due to a thermal shock or a drop impact. By suppressing the above, high reliability can be realized.

なお、上記の各実施の形態において、中継基板本体3aは、前記第1の回路基板1の側の面から側面部へ連なる角部と、前記第2の回路基板2の側の面から前記側面部へ連なる角部との両方を波形曲面を備えた斜面に形成し、ここに基板接続配線10の端部を貼り付けたが、前記第1の回路基板1の側の面から側面部へ連なる角部と、前記第2の回路基板2の側の面から前記側面部へ連なる角部とのうちの少なくとも一方の角部を波形曲面を備えた斜面に形成し、基板接続配線10の端部を前記波形曲面を備えた斜面に沿わせて貼り付けることによっても幾らかの効果を期待できる。   In each of the above-described embodiments, the relay board body 3a includes the corner portion that continues from the surface on the first circuit board 1 side to the side surface portion, and the side surface from the surface on the second circuit board 2 side. Both the corners connected to the part are formed on a slope having a corrugated curved surface, and the end part of the substrate connection wiring 10 is pasted here, but it is connected from the surface on the first circuit board 1 side to the side part. At least one corner portion of the corner portion and the corner portion continuous from the surface on the second circuit board 2 side to the side surface portion is formed on an inclined surface having a corrugated curved surface, and an end portion of the substrate connection wiring 10 Some effect can be expected by pasting along the slope having the corrugated curved surface.

なお、本発明の各実施の形態では、形状が四角形の中継基板とその中継基板の上下面に第1の回路基板と第2の回路基板を配置する構成で述べたが、これに限らず、第1の回路基板と第2の回路基板が略L字形状、三角形状、円形状等の中継基板で中継する構成としてもよい。   In each embodiment of the present invention, the relay board having a quadrangular shape and the configuration in which the first circuit board and the second circuit board are disposed on the upper and lower surfaces of the relay board have been described. The first circuit board and the second circuit board may be relayed by a relay board having a substantially L shape, a triangle shape, a circular shape, or the like.

また、本発明の各実施の形態の中継基板3は、中央に貫通孔3cを有する形状であったが、貫通孔3cを持たない中継基板であってもよい。具体的には、中継基板3の中央の途中まで凹部を形成して貫通孔3cを持たない中継基板でその凹部に電子部品が実装されてもよい。   Moreover, although the relay board | substrate 3 of each embodiment of this invention was the shape which has the through-hole 3c in the center, the relay board | substrate which does not have the through-hole 3c may be sufficient. Specifically, an electronic component may be mounted in the recess by forming a recess partway in the middle of the relay substrate 3 and not having the through hole 3c.

また、本発明で述べた各実施の形態は、相互に適用できることはいうまでもなく、また、これらの実施の形態に限定されるものでもない。
(第6の実施の形態)
図10(a)〜(f)は本発明の立体配線構造体の製造方法を示している。
Further, it goes without saying that the embodiments described in the present invention can be applied to each other, and are not limited to these embodiments.
(Sixth embodiment)
10A to 10F show a method for manufacturing a three-dimensional wiring structure of the present invention.

図6の立体配線構造体は次の工程で製造される。
初めに、第1の回路基板1の電子部品16と中継基板3を実装する所望の端子電極15上に、印刷等により接合層4を形成する(図10(a))。また接合層4は、メッキ方法や印刷方法(メタル版23またはスクリーンを用いて印刷)やディスペンス方法等により形成してもよい。
The three-dimensional wiring structure of FIG. 6 is manufactured in the following process.
First, the bonding layer 4 is formed by printing or the like on the desired terminal electrode 15 on which the electronic component 16 and the relay board 3 of the first circuit board 1 are mounted (FIG. 10A). The bonding layer 4 may be formed by a plating method, a printing method (printing using the metal plate 23 or a screen), a dispensing method, or the like.

次に、接合層4が形成された第1の回路基板1上に、電子部品16と中継基板3を位置合わせした後に載置する。この時、第1の回路基板1の両面に電子部品16が実装される場合は、第1の回路基板1の上(表)側への電子部品16の載置が終了した後、反転させて、下(裏)側への電子部品16と中継基板3の載置を行う(図10(b))。   Next, the electronic component 16 and the relay substrate 3 are aligned and placed on the first circuit board 1 on which the bonding layer 4 is formed. At this time, when the electronic components 16 are mounted on both surfaces of the first circuit board 1, the electronic components 16 are placed on the upper (front) side of the first circuit board 1 and then reversed. Then, the electronic component 16 and the relay substrate 3 are placed on the lower (back) side (FIG. 10B).

次に、電子部品16と環状の中継基板3が載置された第1の回路基板1を、リフローや硬化炉等の熱工程により前記接合層4を溶融もしくは硬化させて電子部品16と中継基板3を電気的に接合させる(図10(c))。または、各表裏面に熱工程を行い結合させてもよい。   Next, the first circuit board 1 on which the electronic component 16 and the annular relay substrate 3 are placed is melted or cured by the heat process such as reflow or a curing furnace to melt the electronic component 16 and the relay substrate. 3 are electrically joined (FIG. 10C). Alternatively, the front and back surfaces may be combined by performing a thermal process.

次に、第2の回路基板2の電子部品16と中継基板3を実装する所望の端子電極15上に、印刷等により接合層4を形成する(図10(d))。
次に、接合層4が形成された第2の回路基板2上に、電子部品15と中継基板3付きの第1の回路基板1を位置合わせした後に載置する。この時、第2の回路基板2の両面に電子部品16が実装される場合は、第2の回路基板2の上(表)側への電子部品16の載置が終了した後、反転させて下(裏)側への電子部品16と中継基板3付きの第1の回路基板1の載置を行う(図10(e))。ここでも裏側を先に熱工程に通してもよい。
Next, the bonding layer 4 is formed by printing or the like on the desired terminal electrode 15 on which the electronic component 16 and the relay substrate 3 of the second circuit board 2 are mounted (FIG. 10D).
Next, the electronic component 15 and the first circuit board 1 with the relay board 3 are positioned and placed on the second circuit board 2 on which the bonding layer 4 is formed. At this time, when the electronic component 16 is mounted on both surfaces of the second circuit board 2, after the electronic component 16 is placed on the upper (front) side of the second circuit board 2, the electronic component 16 is reversed. The electronic component 16 and the first circuit board 1 with the relay board 3 are placed on the lower (back) side (FIG. 10E). Again, the back side may be passed through the heat step first.

最後に、電子部品15と中継基板3付きの第1の回路基板1が載置された第2の回路基板2をリフローや硬化炉等の熱工程により接合層4を溶融もしくは硬化させて電子部品16と中継基板3付き第1の回路基板1とを電気的に接合させる(図10(f))。   Finally, the second circuit board 2 on which the electronic circuit board 15 and the first circuit board 1 with the relay board 3 are placed is melted or hardened by a heat process such as reflow or a curing furnace so that the electronic circuit board 2 is melted or hardened. 16 and the first circuit board 1 with the relay board 3 are electrically joined (FIG. 10F).

このような製造方法とすることにより、第1の回路基板1と第2の回路基板2とをあらかじめ別々にモジュール基板化してから接続するので、各モジュール基板の特性検査を容易に行える。   By adopting such a manufacturing method, the first circuit board 1 and the second circuit board 2 are separately made into module boards and then connected, so that the characteristic inspection of each module board can be easily performed.

(第7の実施の形態)
図11(a)〜(i)は本発明の別の立体配線構造体の製造方法を示している。
図11の立体配線構造体は次の工程で製造される。
(Seventh embodiment)
11 (a) to 11 (i) show another method for manufacturing a three-dimensional wiring structure according to the present invention.
The three-dimensional wiring structure of FIG. 11 is manufactured by the following process.

初めに、第1の回路基板1の電子部品16と中継基板3を実装する所望の端子電極15上に、印刷等により接合層4を形成する(図11(a))。
次に、接合層4が形成された第1の回路基板1上に、電子部品16と中継基板3を位置合わせした後に載置する(図11(b))。
First, the bonding layer 4 is formed by printing or the like on the desired terminal electrode 15 on which the electronic component 16 and the relay substrate 3 of the first circuit board 1 are mounted (FIG. 11A).
Next, the electronic component 16 and the relay substrate 3 are aligned and placed on the first circuit board 1 on which the bonding layer 4 is formed (FIG. 11B).

次に、電子部品16と環状の中継基板3が載置された第1の回路基板1を、リフローや硬化炉等の熱工程により接合層4を溶融もしくは硬化させて電子部品16と中継基板3を電気的に接合させる(図11(c))。   Next, the first circuit board 1 on which the electronic component 16 and the annular relay substrate 3 are placed is melted or cured by a thermal process such as reflow or a curing furnace to melt or cure the electronic component 16 and the relay substrate 3. Are electrically joined (FIG. 11C).

次に、第2の回路基板2の電子部品16と中継基板3を実装する所望の端子電極15上に、印刷等により接合層4を形成する(図11(d))。
次に、接合層4が形成された第2の回路基板2上に、電子部品16を位置合わせした後に載置する(図11(e))。
Next, the bonding layer 4 is formed by printing or the like on the desired terminal electrode 15 on which the electronic component 16 and the relay substrate 3 of the second circuit board 2 are mounted (FIG. 11D).
Next, the electronic component 16 is positioned and placed on the second circuit board 2 on which the bonding layer 4 has been formed (FIG. 11E).

次に、電子部品16が載置された第2の回路基板2をリフローや硬化炉等の熱工程により接合層4を溶融もしくは硬化させて電子部品16と中継基板3とを電気的に接合させる(図11(f))。   Next, the second circuit board 2 on which the electronic component 16 is placed is melted or cured by a heat process such as reflow or a curing furnace to electrically join the electronic component 16 and the relay substrate 3. (FIG. 11 (f)).

次に、電子部品16付きの第2の回路基板2の端子電極15上に、ACF等の異方性導電フィルムシートや導電性接着剤等の導電材料21を貼付けまたは塗布する(図11(g))。   Next, a conductive material 21 such as an anisotropic conductive film sheet such as ACF or a conductive adhesive is applied or applied on the terminal electrode 15 of the second circuit board 2 with the electronic component 16 (FIG. 11 (g )).

次に、第1の回路基板1に接合された中継基板3を第2の回路基板2に位置合わせした後に載置する(図11(h))。
最後に、中継基板3付きの第1の回路基板1が載置された第2の回路基板2を加圧加熱状態で保持するか、少なくともソフトビームや硬化炉等の熱工程もしくは紫外線(UV線)による光照射工程により導電材料を硬化させて第1の回路基板1と第2の回路基板2とを中継基板3を介して電気的に接合させる(図11(i))。
Next, the relay board 3 bonded to the first circuit board 1 is placed after being aligned with the second circuit board 2 (FIG. 11 (h)).
Finally, the second circuit board 2 on which the first circuit board 1 with the relay board 3 is placed is held in a pressurized and heated state, or at least a heat process such as a soft beam or a curing furnace, or ultraviolet rays (UV rays). The first conductive circuit board 1 and the second printed circuit board 2 are electrically bonded to each other through the relay substrate 3 by curing the conductive material by the light irradiation step (FIG. 11 (i)).

このような製造方法とすることにより、第1の回路基板1と第2の回路基板2とをあらかじめ別々にモジュール基板化してから接続するので、各モジュール基板の特性検査を容易に行え、また、第1の回路基板1と第2の回路基板2との接続温度を低温化することができるので、実装される電子部品16や中継基板3への温度負荷や回路基板や中継基板3の反り、うねりによる接続不安定性を抑制し、電気的、機械的な接続信頼性の高い接続構造が実現できる。   By making such a manufacturing method, the first circuit board 1 and the second circuit board 2 are separately made into module boards and then connected, so that the characteristic inspection of each module board can be easily performed, Since the connection temperature between the first circuit board 1 and the second circuit board 2 can be lowered, the temperature load on the electronic component 16 and the relay board 3 to be mounted, the warp of the circuit board and the relay board 3, Connection instability due to undulation is suppressed, and a connection structure with high electrical and mechanical connection reliability can be realized.

(第8の実施の形態)
図12(a)〜(e)は本発明の中継基板3の製造方法を示している。
図6の立体配線構造体に使用する中継基板3は次の工程で製造される。
(Eighth embodiment)
12A to 12E show a method for manufacturing the relay substrate 3 of the present invention.
The relay substrate 3 used for the three-dimensional wiring structure of FIG. 6 is manufactured in the following process.

図12(a)〜(e)において、第1の金型は18、第2の金型は19、第4の樹脂は25、第3の金型は26である。ここではそれぞれを仮想線で図示した。
初めに、上下垂直方向に第1,第2の回路基板1,2を接続、中継する基板形状に中継基板本体3aを、第1の金型18を用いて第1の絶縁性樹脂を射出成形する(図12(a))。
12A to 12E, the first mold is 18, the second mold is 19, the fourth resin is 25, and the third mold is 26. Here, each is shown with a virtual line.
First, the first and second circuit boards 1 and 2 are connected in the vertical direction, and the relay board main body 3a is formed in the shape of the board to be relayed, and the first insulating resin is injection molded using the first mold 18. (FIG. 12A).

次に、接続用ランド電極5と側面に接続用ランド電極5間を電気的に接続する基板接続配線10の形成を行う部分以外を第2の金型19を用いて第4の樹脂25を射出成形する(図12(b))。   Next, the 4th resin 25 is inject | emitted using the 2nd metal mold | die 19 except the part which forms the board | substrate connection wiring 10 which electrically connects between the connection land electrode 5 and the connection land electrode 5 on a side surface. Molding is performed (FIG. 12B).

次に、中継基板本体3aの上下面に接続用ランド電極5の部分と側面には接続用ランド電極5間を電気的に接続する基板接続配線10の部分にメッキ触媒27を形成する(図12(c))。   Next, a plating catalyst 27 is formed on the connection land electrode 5 on the upper and lower surfaces of the relay substrate body 3a and on the side surface of the substrate connection wiring 10 that electrically connects the connection land electrodes 5 (FIG. 12). (C)).

次に、第4の樹脂25を除去し、メッキをする(図12(d))。第4の樹脂25はレジストの役目をするものであり、弱アルカリや弱酸性や加熱により溶融させることができる。例えば、生分解性ポリ乳酸樹脂(PLLA)を用いると溶解は弱アルカリ温水で行うことができる。   Next, the fourth resin 25 is removed and plating is performed (FIG. 12D). The fourth resin 25 serves as a resist and can be melted by weak alkali, weak acid, or heating. For example, when biodegradable polylactic acid resin (PLLA) is used, dissolution can be performed with weak alkaline hot water.

最後に、第3の金型26を用いて、末端処理材9を射出成形して接続用ランド電極5の末端部6を埋設するように覆う(図12(e))。
このような製造方法とすることにより、ランド電極5の近傍の末端部6を冷熱衝撃や落下衝撃によるせん断応力や剥離応力から抑制、緩和することができるので、電気的、機械的に接続信頼性の高い接続用中継基板3が実現できる。
Finally, using the third mold 26, the end treatment material 9 is injection-molded to cover the end portion 6 of the connection land electrode 5 (FIG. 12E).
By adopting such a manufacturing method, the end portion 6 in the vicinity of the land electrode 5 can be suppressed and alleviated from shear stress and peeling stress due to thermal shock and drop impact, so electrical and mechanical connection reliability can be achieved. High connection relay board 3 can be realized.

また、中継基板3のランド電極5の末端部6がS字曲線状に成形されたコーナ部処理材8上に形成されたあと、末端処理材9で埋設されるように成形する製造方法とすることにより、より冷熱衝撃や落下衝撃によるせん断応力や剥離応力から抑制、緩和することができる。   Further, after the end portion 6 of the land electrode 5 of the relay substrate 3 is formed on the corner portion processing material 8 formed in an S-curve shape, the manufacturing method is performed so as to be embedded in the end processing material 9. In this way, it is possible to suppress or alleviate the shear stress or peeling stress caused by the thermal shock or the drop impact.

また、中継基板3の上下面のランド電極5から側面部に連なるコーナー部7の配線も末端処理材9で埋設されるように2次成形する製造方法とすることにより、より冷熱衝撃や落下衝撃によるせん断応力や剥離応力から抑制、緩和することができる。   Further, by adopting a manufacturing method in which the wiring of the corner portion 7 connected to the side surface portion from the land electrodes 5 on the upper and lower surfaces of the relay substrate 3 is secondarily formed so as to be embedded in the end treatment material 9, more thermal shock and drop impact can be achieved. It can be suppressed and relaxed from shearing stress and peeling stress.

本発明の立体配線構造体は、第1の回路基板と第2の回路基板を中継基板を介して接続する3次元接続構造であり、回路基板間を接合すると共に高密度実装を実現できる。そのため、高機能、多機能でコンパクト化が要望される携帯電話機等をはじめとする各種のモバイル機器、自動車などのドアリモコンといった携帯端末装置に広く利用できる。   The three-dimensional wiring structure of the present invention is a three-dimensional connection structure in which a first circuit board and a second circuit board are connected via a relay board, and the circuit boards can be joined and high-density mounting can be realized. Therefore, the present invention can be widely used in various mobile devices such as mobile phones and the like that are highly functional, multifunctional, and compact, and mobile terminal devices such as door remote controllers for automobiles.

本発明の第1の実施の形態における立体配線構造体の概略断面図Schematic cross-sectional view of the three-dimensional wiring structure in the first embodiment of the present invention 同立体配線構造体の中継基板の概略斜視図Schematic perspective view of relay board of same three-dimensional wiring structure 本発明の第1の実施の形態の別の例における立体配線構造体の概略断面図Schematic sectional view of a three-dimensional wiring structure in another example of the first embodiment of the present invention 本発明の第2の実施の形態における立体配線構造体の概略断面図Schematic sectional view of the three-dimensional wiring structure in the second embodiment of the present invention 同立体配線構造体の中継基板の概略斜視図Schematic perspective view of relay board of same three-dimensional wiring structure 本発明の第2の実施の形態の別の例における立体配線構造体の概略断面図Schematic sectional view of a three-dimensional wiring structure in another example of the second embodiment of the present invention 本発明の第3の実施の形態における立体配線構造体の概略断面図Schematic sectional view of a three-dimensional wiring structure according to a third embodiment of the present invention 本発明の第4の実施の形態における立体配線構造体の概略断面図Schematic sectional view of a three-dimensional wiring structure according to a fourth embodiment of the present invention 本発明の第5の実施の形態における立体配線構造体の概略断面図Schematic sectional view of a three-dimensional wiring structure according to a fifth embodiment of the present invention 本発明の第6の実施の形態における立体配線構造体の製造方法の工程図Process drawing of the manufacturing method of the three-dimensional wiring structure in the 6th Embodiment of this invention 本発明の第7の実施の形態における立体配線構造体の製造方法の工程図Process drawing of the manufacturing method of the three-dimensional wiring structure in the 7th Embodiment of this invention 本発明の第8の実施の形態における中継基板の製造方法の工程図Process drawing of the manufacturing method of the relay substrate in the eighth embodiment of the present invention (特許文献1)の電子回路装置の断面図Sectional drawing of the electronic circuit device of (patent document 1) (特許文献2)の電子回路装置の断面図Sectional drawing of the electronic circuit device of (patent document 2) (特許文献3)の電子回路装置の断面図Sectional drawing of the electronic circuit device of (patent document 3) (特許文献4)の電子回路装置の断面図Sectional drawing of the electronic circuit device of (patent document 4) (特許文献5)の電子回路装置の断面図Sectional drawing of the electronic circuit device of (patent document 5)

符号の説明Explanation of symbols

1 第1の回路基板
2 第2の回路基板
3 中継基板
3a 中継基板本体
3b 凹部
3c 貫通孔
3d 凹部
3e 凹部
3f 傾斜辺
4 接合層
5 ランド電極
6 基板接続配線の末端部
7 コーナー部
8 コーナ部処理材
9 末端処理材
10 基板接続配線
11 引き出し端子電極
12 引き出し端子電極
13 上面
14 下面
15 端子電極
16 電子部品
17 ボンディング材
18 第1の金型
19 第2の金型
20 波面状曲面
23 メタル版
24 スキージ
25 第4の樹脂
26 第3の金型
DESCRIPTION OF SYMBOLS 1 1st circuit board 2 2nd circuit board 3 Relay board 3a Relay board main body 3b Recessed part 3c Through-hole 3d Recessed part 3e Recessed part 3f Inclined side 4 Bonding layer 5 Land electrode 6 End part of board connection wiring 7 Corner part 8 Corner part Treatment material 9 Terminal treatment material 10 Substrate connection wiring 11 Lead terminal electrode 12 Lead terminal electrode 13 Upper surface 14 Lower surface 15 Terminal electrode 16 Electronic component 17 Bonding material 18 First die 19 Second die 20 Wave surface 27 Curved surface Metal plate 24 Squeegee 25 Fourth resin 26 Third mold

Claims (8)

第1の回路基板と第2の回路基板との間に介装される中継基板本体と、
中継基板本体の前記第1の回路基板の側の面から前記第2の回路基板の側の面にわたって電気接続個所に対応して形成された基板接続配線と
を有し、かつ前記中継基板本体は、前記基板接続配線の端部付近で前記第1の回路基板の側の面から側面部へ連なる角部と、前記基板接続配線の端部付近で前記第2の回路基板の側の面から前記側面部へ連なる角部に、それぞれ凹部を形成し、前記基板接続配線の端部を前記凹部に沿わせるとともに前記凹部に末端処理材を充填し、基板接続配線の端部を末端処理材に埋設した
中継基板。
A relay board body interposed between the first circuit board and the second circuit board;
Board connection wiring formed corresponding to the electrical connection location from the surface on the first circuit board side of the relay board body to the surface on the second circuit board side, and the relay board body A corner portion extending from the surface on the first circuit board side to the side surface portion in the vicinity of the end portion of the substrate connection wiring, and from the surface on the second circuit board side in the vicinity of the end portion of the substrate connection wiring. Concave portions are formed in the corners connected to the side surface portions, the end portions of the substrate connection wiring are arranged along the recess portions, and the end treatment material is filled in the recess portions, and the end portions of the substrate connection wiring are embedded in the end treatment material. Relay board.
前記基板接続配線の中間付近で中継基板本体の上面から側面部に連なる角部と、前記基板接続配線の中間付近で中継基板本体の下面から側面部に連なる角部との少なくとも一方に凹部を形成し、この凹部に沿って基板接続配線を形成し、凹部にコーナ部処理材を充填し、基板接続配線のコーナ部をコーナ部処理材に埋設した
請求項1に記載の中継基板。
A recess is formed in at least one of a corner portion connected to the side surface portion from the upper surface of the relay board body near the middle of the substrate connection wiring and a corner portion connected to the side surface portion from the lower surface of the relay board body near the middle of the board connection wiring. The relay board according to claim 1, wherein the board connection wiring is formed along the recess, the corner processing material is filled in the recess, and the corner of the substrate connection wiring is embedded in the corner processing material.
第1の回路基板と第2の回路基板との間に介装される中継基板本体と、
中継基板本体の前記第1の回路基板の側の面から前記第2の回路基板の側の面にわたって電気接続個所に対応して形成された基板接続配線と
を有し、かつ前記中継基板本体は、前記第1の回路基板の側の面から側面部へ連なる角部と、前記第2の回路基板の側の面から前記側面部へ連なる角部とのうちの少なくとも一方の角部を波形曲面を備えた斜面に形成し、前記基板接続配線の端部ならびにコーナ部を前記波形曲面を備えた斜面に沿わせて貼り付けた
中継基板。
A relay board body interposed between the first circuit board and the second circuit board;
Board connection wiring formed corresponding to the electrical connection location from the surface on the first circuit board side of the relay board body to the surface on the second circuit board side, and the relay board body The corrugated curved surface has at least one of the corner portion continuous from the surface on the first circuit board side to the side surface portion and the corner portion continuous from the surface on the second circuit board side to the side surface portion. The relay substrate is formed on a slope having a curved surface, and an end portion and a corner portion of the substrate connection wiring are attached along the slope having the corrugated curved surface.
第1の回路基板と第2の回路基板との間に請求項1〜請求項3の何れかに記載の中継基板を介装して第1,第2の回路基板を3次元的に接続した
立体配線構造体。
The relay board according to any one of claims 1 to 3 is interposed between the first circuit board and the second circuit board, and the first and second circuit boards are three-dimensionally connected. Three-dimensional wiring structure.
上下垂直方向に回路基板を接続、中継する基板形状に第1の金型を用いて第1の樹脂を射出成形し、立体成形体を形成する第1の工程と、
接続用ランド電極と側面に接続用ランド電極間を電気的に接続する基板接続配線の形成を行う部分以外に第2の金型を用いて第4の樹脂を射出成形する第2の工程と、
前記立体成形体の上下面に前記接続用ランド電極部と側面には前記接続用ランド電極間を電気的に接続する前記基板接続配線部にメッキ触媒を形成する第3の工程と、
前記第4の樹脂を除去し、メッキする第4の工程と、
前記接続用ランド電極の末端部を第3の金型を用いて、第2の樹脂を射出成形して埋設するように覆う第5の工程
を備えた
中継基板の製造方法。
A first step of forming a three-dimensional molded body by injection-molding a first resin using a first mold in a substrate shape to connect and relay a circuit board in the vertical direction;
A second step of injection-molding a fourth resin by using a second mold in addition to the portion for forming the substrate connection wiring for electrically connecting the connection land electrode to the side surface of the connection land electrode;
A third step of forming a plating catalyst on the substrate connection wiring portion that electrically connects the connection land electrode portions on the upper and lower surfaces of the three-dimensional molded body and the connection land electrodes on the side surfaces;
A fourth step of removing and plating the fourth resin;
And a fifth step of covering the end portion of the connection land electrode with a third mold so as to embed the second resin by injection molding.
前記中継基板の前記ランド電極の末端部がS字曲線状に成形された第1の絶縁性樹脂と第2の樹脂との間に埋設されるように成形する工程を備えたことを特徴とする
請求項5記載の中継基板の製造方法。
And a step of forming the land electrode so that the end portion of the land electrode is embedded between the first insulating resin and the second resin formed in an S-shaped curve. The method for manufacturing a relay board according to claim 5.
前記中継基板の上下面のランド電極から側面部に連なるコーナー部の配線が樹脂中に埋設されるように2次成形する工程を備えたことを特徴とする
請求項5記載の中継基板の製造方法。
6. The method of manufacturing a relay board according to claim 5, further comprising a step of secondary molding so that the wiring at the corner portion connected to the side surface portion from the land electrodes on the upper and lower surfaces of the relay board is embedded in the resin. .
請求項4に記載の立体配線構造体によって電気回路基板が実装された携帯端末装置。   The portable terminal device by which the electric circuit board was mounted by the three-dimensional wiring structure of Claim 4.
JP2004359260A 2004-12-13 2004-12-13 Relay board and three-dimensional wiring structure Expired - Fee Related JP4312148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359260A JP4312148B2 (en) 2004-12-13 2004-12-13 Relay board and three-dimensional wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359260A JP4312148B2 (en) 2004-12-13 2004-12-13 Relay board and three-dimensional wiring structure

Publications (2)

Publication Number Publication Date
JP2006173152A JP2006173152A (en) 2006-06-29
JP4312148B2 true JP4312148B2 (en) 2009-08-12

Family

ID=36673598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359260A Expired - Fee Related JP4312148B2 (en) 2004-12-13 2004-12-13 Relay board and three-dimensional wiring structure

Country Status (1)

Country Link
JP (1) JP4312148B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404979B2 (en) 2007-05-18 2013-03-26 Nec Corporation Composite multilayer wiring board
CN102334390B (en) 2009-03-04 2014-01-22 富士通株式会社 Printed circuit board module
JP2010212609A (en) * 2009-03-12 2010-09-24 Panasonic Corp Connection structure, circuit device, and electronic apparatus
CN103081578B (en) * 2010-10-26 2016-07-06 株式会社村田制作所 The manufacture method of module substrate and module substrate
JPWO2016166811A1 (en) 2015-04-14 2018-02-15 オリンパス株式会社 Connection structure and imaging device
EP3585137A4 (en) * 2017-03-09 2020-03-25 Huawei Technologies Co., Ltd. Motherboard and terminal for use with consumer electronic products
KR102561946B1 (en) * 2018-11-13 2023-08-01 삼성전기주식회사 Package structure
EP3869924A1 (en) * 2020-02-21 2021-08-25 Harman Becker Automotive Systems GmbH Double-side pcb sip assembly
KR20220124583A (en) * 2021-03-03 2022-09-14 삼성전자주식회사 Electronic device including the interposer

Also Published As

Publication number Publication date
JP2006173152A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4772048B2 (en) Relay board and three-dimensional wiring structure using the same
JP5660263B1 (en) Electronic component, method for manufacturing electronic component, and circuit board
JP4450113B2 (en) Semiconductor device and manufacturing method thereof
JP4821849B2 (en) Composite substrate and method for manufacturing composite substrate
JP5505481B2 (en) Parts assembly
JP4393400B2 (en) Three-dimensional electronic circuit device and its relay substrate
JP4186843B2 (en) Three-dimensional electronic circuit device
WO2008001641A1 (en) Interconnect substrate and electronic circuit mounted structure
US7807510B2 (en) Method of manufacturing chip integrated substrate
JP4046088B2 (en) Three-dimensional electronic circuit device and its relay substrate and relay frame
JP2005191156A (en) Wiring plate containing electric component, and its manufacturing method
WO2005071744A1 (en) Multilayer electronic part and structure for mounting multilayer electronic part
JP4312148B2 (en) Relay board and three-dimensional wiring structure
US7928559B2 (en) Semiconductor device, electronic component module, and method for manufacturing semiconductor device
JP2006156534A (en) Connecting structure between substrates in mobile equipment, and electronic circuit device using same
JPWO2009037833A1 (en) Three-dimensional printed wiring board, method for manufacturing the same, and electronic component module
JP3320932B2 (en) Chip package mount, circuit board on which chip package is mounted, and method of forming circuit board
JP4463139B2 (en) Three-dimensional electronic circuit device
JP2017028024A (en) Component mounted board, component built-in board, manufacturing method of component mounted board and manufacturing method of component built-in board
JP5201271B2 (en) Circuit board and manufacturing method thereof
JP4788581B2 (en) Composite board
JP2004266271A (en) Electronic part mounting body and method for manufacturing the same
JP2011066122A (en) Circuit board
JP6477894B2 (en) Resin circuit board, component-mounted resin circuit board
JP2008041814A (en) Flexible printed circuit board, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees