JP4312104B2 - Magnetic body internal structure measuring method and apparatus - Google Patents

Magnetic body internal structure measuring method and apparatus Download PDF

Info

Publication number
JP4312104B2
JP4312104B2 JP2004165673A JP2004165673A JP4312104B2 JP 4312104 B2 JP4312104 B2 JP 4312104B2 JP 2004165673 A JP2004165673 A JP 2004165673A JP 2004165673 A JP2004165673 A JP 2004165673A JP 4312104 B2 JP4312104 B2 JP 4312104B2
Authority
JP
Japan
Prior art keywords
change
magnetic flux
measuring
magnetic field
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004165673A
Other languages
Japanese (ja)
Other versions
JP2005345282A (en
Inventor
康信 宮崎
初彦 及川
忠 石川
祥介 佐々木
孝 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Magnegraph Co Ltd
Original Assignee
Nippon Steel Corp
Magnegraph Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Magnegraph Co Ltd filed Critical Nippon Steel Corp
Priority to JP2004165673A priority Critical patent/JP4312104B2/en
Publication of JP2005345282A publication Critical patent/JP2005345282A/en
Application granted granted Critical
Publication of JP4312104B2 publication Critical patent/JP4312104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁性体を測定する方法及び装置に関し、具体的には、鉄鋼板等の磁性体の溶接状態、内部欠陥、又はひずみや応力の分布等の内部構造を非破壊で測定する方法および装置に関する。   The present invention relates to a method and an apparatus for measuring a magnetic material, and specifically, a method for nondestructively measuring the internal structure of a magnetic material such as a steel plate, a welded state, an internal defect, or a strain or stress distribution, and the like. Relates to the device.

従来から、磁性体鋼板の内部状態を非破壊で測定・検査することが行なわれている。その一例として、鋼板の溶接部の検査がある。自動車産業はじめ各種薄板金属製品の組立には、スポット溶接が一般的に用いられている。スポット溶接は、重ね合わせた金属の母材を、先端を適当に成形した電極の先端ではさみ、比較的小さい部分に電流を集中して局部的に加熱し、同時に電極で加圧して行う抵抗溶接である。   Conventionally, the internal state of a magnetic steel sheet has been measured and inspected in a nondestructive manner. One example is the inspection of welds on steel plates. Spot welding is generally used for assembling various sheet metal products including the automobile industry. Spot welding is a resistance welding process in which stacked metal base materials are sandwiched between the tips of electrodes that have been appropriately shaped at the tip, and current is concentrated and heated locally in a relatively small part, while simultaneously pressing with the electrode. It is.

通常スポット溶接部は図13に示す断面構造となる。溶接部の表面は、加圧によって溶接部外に比べ凹んでおり(インデテーション部)、凹みの寸法をインデテーション径という。溶接部の内部は、溶接部の中心であるナゲット部(溶着部)とその周辺の圧着部とで形成される。ナゲット部は、金属が一旦溶融して固化した部分である。一方、圧着部は、金属の表面同士で圧着された部分である。ナゲット部の寸法をナゲット径といい、ナゲット部と圧着部との和(実際に接合している部分)の寸法を接合径という。スポット溶接では、重ね合わせた金属の母材を点で溶接するが、不要な溶接点数を増やさないため溶接強度が十分であるか否かを検査する場合が多い。   Usually, the spot welded portion has a cross-sectional structure shown in FIG. The surface of the welded portion is recessed as compared with the outside of the welded portion due to pressurization (indentation portion), and the size of the recess is referred to as an indentation diameter. The inside of the welded portion is formed by a nugget portion (welded portion) that is the center of the welded portion and a peripheral crimp portion. The nugget portion is a portion where the metal has once melted and solidified. On the other hand, a crimping | compression-bonding part is a part crimped | bonded by metal surfaces. The dimension of the nugget part is called the nugget diameter, and the sum of the nugget part and the crimping part (the part that is actually joined) is called the joint diameter. In spot welding, superposed metal base materials are welded with dots, but in many cases, it is inspected whether the welding strength is sufficient in order not to increase the number of unnecessary welding points.

溶接強度の測定を非破壊的に行なう方法として、従来から、高周波電流を流したコイルにより発生した交流磁界を、スポット溶接部に印加し、その結果発生したコイルのインダクタンスの変化からスポット溶接部の良否を判定する方法が知られている。この従来の方法は、ナゲット部とナゲット部外とではそれらの透磁率が変化する性質を利用して、透磁率の変化をインダクタンスの変化として検出し、スポット溶接部の良否を判定するものである(特許文献1参照)。   As a method of nondestructively measuring the welding strength, conventionally, an AC magnetic field generated by a coil through which a high-frequency current is applied is applied to the spot weld, and the resulting change in the coil inductance results in a change in the spot weld. A method for determining pass / fail is known. This conventional method utilizes the property that the magnetic permeability changes between the nugget portion and the outside of the nugget portion, and detects the change in the magnetic permeability as a change in inductance, thereby determining the quality of the spot welded portion. (See Patent Document 1).

最近、静磁場を利用して、ナゲット径のみならずインデテーション部を含む磁性体の種々の内部構造を非破壊で測定する方法が提案された(特許文献2参照)。この方法は、被測定物に静磁場を印加して被測定物を磁化させ、静磁場を遮断した後に、被測定物の近傍の複数位置における局所的な磁束の時間変化を測定するものであり、交流磁界を用いる方法に伴う周波数の変動に起因する測定値のばらつきの問題等が起こらないものである。   Recently, a method for nondestructively measuring various internal structures of a magnetic body including an nugget diameter as well as a nugget diameter by using a static magnetic field has been proposed (see Patent Document 2). In this method, a static magnetic field is applied to the object to be measured to magnetize the object to be measured, and after the static magnetic field is cut off, the time variation of local magnetic flux at multiple positions near the object to be measured is measured. In addition, there is no problem of variations in measured values due to frequency fluctuations associated with the method using an alternating magnetic field.

静磁場を印加したときに生成される磁束の大きさ、および静磁場が遮断された時に磁束が時間的に減衰していく時定数は、磁束の通過する磁性体内部の磁気抵抗(あるいはインダクタンス)や磁束の戻り難さ(ヒステリシス)、磁性体の電気抵抗に影響されて変化する。更に、磁束の時間変化が、磁束の時間変化を測定する手段に対して、どの程度の信号を誘起するかは、被測定物である磁性体と測定手段の空間的配置により決まる。このため、静磁場が印加されたときに生じる局所的な磁束の強さや、局所的な時間的に減衰していく磁束が測定手段に対してどのような信号を誘起するのかは、磁性体の内部構造を反映した分布を有する。   The magnitude of the magnetic flux generated when a static magnetic field is applied and the time constant with which the magnetic flux decays with time when the static magnetic field is interrupted are the magnetic resistance (or inductance) inside the magnetic material through which the magnetic flux passes. It is affected by the difficulty of magnetic flux return (hysteresis) and the electrical resistance of the magnetic material. Further, how much signal is induced by the time change of the magnetic flux with respect to the means for measuring the time change of the magnetic flux depends on the spatial arrangement of the magnetic substance to be measured and the measurement means. For this reason, the strength of the local magnetic flux generated when a static magnetic field is applied and what kind of signal the local magnetic flux that decays in time induces the measurement means It has a distribution that reflects the internal structure.

この方法によれば、磁束の変化を、静磁場によって生起された第1の磁束の減衰に対応する変化と、第1の磁束の減衰により誘導される渦電流によって生起される第2の磁束の減衰に対応する第2の磁束の変化との合成と考え、これら2つの減衰の時定数を用いて内部構造を予測することができる。   According to this method, the change of the magnetic flux is caused by the change corresponding to the attenuation of the first magnetic flux caused by the static magnetic field and the second magnetic flux caused by the eddy current induced by the attenuation of the first magnetic flux. Considering the combination with the change in the second magnetic flux corresponding to the attenuation, the internal structure can be predicted using the time constants of these two attenuations.

特開平5−149923号公報JP-A-5-149923

特許第3098193号公報Japanese Patent No. 3098193

特許文献1に開示された方法によって、磁性体の種々の内部構造が予測できるようになったが、さらにS/N比を上げ、より正確な測定を可能とすることが課題となっている。本発明は、このような課題に鑑み、磁性体である被測定物の近傍の複数位置における局所的な磁束の時間変化を測定することにより磁性体の内部構造を測定する方法及び装置において、磁束の時間変化の発生機構を詳細に見直して、さらに正確に磁性体の内部構造を測定する方法および装置を提供する。なお、本発明で用いる「内部構造」は、機械的な構造のみではなく、磁気的性質や化学組成などを含む広い意味を含む。   Although various internal structures of the magnetic material can be predicted by the method disclosed in Patent Document 1, it is a problem to further increase the S / N ratio and enable more accurate measurement. In view of such problems, the present invention provides a method and apparatus for measuring the internal structure of a magnetic body by measuring temporal changes in local magnetic flux at a plurality of positions in the vicinity of an object to be measured that is a magnetic body. A mechanism and an apparatus for accurately measuring the internal structure of a magnetic material are provided by reexamining the generation mechanism of the time change in detail. The “internal structure” used in the present invention includes not only a mechanical structure but also a broad meaning including magnetic properties and chemical composition.

本発明の磁性体内部構造測定方法は、磁性体の非測定部に静磁場を印加する工程と、前記静磁場を遮断する工程と、前記静磁場の遮断後の前記被測定部全体に生起する磁束の変化を測定する工程と、前記静磁場の遮断後の前記被測定部近傍の複数位置に生起する局所的な磁束の変化を測定する工程と、前記被測定部全体に生起する磁束の変化の測定値を回帰し、次いで前記被測定部近傍の複数位置に生起する局所的な磁束の変化を回帰して、前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める工程と、前記回帰関数の係数と減衰定数の少なくとも1つに基づいて磁性体の内部構造に関する特性値を求める工程とを備える。   The magnetic substance internal structure measuring method of the present invention occurs in a step of applying a static magnetic field to a non-measurement part of a magnetic substance, a step of cutting off the static magnetic field, and the whole part to be measured after the static magnetic field is cut off. A step of measuring a change in magnetic flux, a step of measuring a change in local magnetic flux generated at a plurality of positions in the vicinity of the measured portion after the static magnetic field is interrupted, and a change in the magnetic flux generated in the entire measured portion. Regression representing the local magnetic flux change occurring at a plurality of positions in the vicinity of the measured part A step of obtaining a function, and a step of obtaining a characteristic value relating to the internal structure of the magnetic body based on at least one of a coefficient of the regression function and an attenuation constant.

前記被測定部全体に生起する磁束の変化の測定値を回帰する工程は、前記被測定部全体に生起する磁束の変化を、励磁電流とこれに対応する被測定部全体の渦電流に起因するとして回帰する工程を含むようにしてもよい。   The step of regressing the measurement value of the change in the magnetic flux generated in the entire measured part is caused by the excitation current and the corresponding eddy current in the entire measured part corresponding to the change in the magnetic flux generated in the entire measured part. A step of regressing may be included.

また、前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める工程は、前記静磁場の遮断により誘導された局所的な磁束の変化と、前記静磁場の遮断により被測定部全体に誘導される渦電流により生起される磁束の変化と、前記静磁場の遮断により測定位置に誘導される局所的な渦電流により生起される磁束の変化と、前記局所的な磁束の変化を測定する手段の過渡応答と、を合成して前記回帰関数を求める工程を含むようにしてもよい。   Further, the step of obtaining a regression function representing local magnetic flux changes occurring at a plurality of positions in the vicinity of the measured part includes local magnetic flux changes induced by the static magnetic field cutoff and the static magnetic field cutoff. The magnetic flux change caused by the eddy current induced in the entire measured part by the magnetic field, the magnetic flux change caused by the local eddy current induced at the measurement position by the interruption of the static magnetic field, and the local You may make it include the process of synthesize | combining the transient response of the means which measures the change of magnetic flux, and calculating | requiring the said regression function.

さらに、前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める工程は、前記静磁場の遮断により誘導された局所的な磁束の前記静磁場遮断時の大きさと遮断後の減衰定数と、前記局所的な渦電流により生起される磁束の前記静磁場遮断時の大きさと遮断後の変化の時定数と、前記局所的な磁束の変化を測定する手段の過渡応答の前記静磁場遮断時の大きさと遮断後の減衰定数との少なくとも一つを求める工程を含むようにしてもよい。   Further, the step of obtaining a regression function representing a local magnetic flux change occurring at a plurality of positions in the vicinity of the part to be measured includes the magnitude of the local magnetic flux induced by the static magnetic field cutoff at the time of the static magnetic field cutoff. The damping constant after interruption, the magnitude of the magnetic flux generated by the local eddy current at the time of interruption of the static magnetic field, the time constant of the change after interruption, and the transient response of the means for measuring the change of the local magnetic flux A step of obtaining at least one of the magnitude at the time of the static magnetic field interruption and the attenuation constant after the interruption may be included.

さらに、前記静磁場を生成する励磁電流の変化を測定する工程は、前記静磁場を励磁コイルにより生成し、前記静磁場遮断後の励磁コイル電流を直接測定する工程を含むようにしてもよい。   Further, the step of measuring the change in the excitation current that generates the static magnetic field may include the step of generating the static magnetic field by an excitation coil and directly measuring the excitation coil current after the static magnetic field is interrupted.

本発明の磁性体内部構造測定装置は、磁性体の非測定部に静磁場を印加する手段と、前記被測定部全体に生起する磁束の変化を測定する手段と、前記被測定部近傍の複数位置に生起する局所的な磁束の変化を測定する手段とを備え、前記静磁場の遮断後の前記被測定部全体に生起する磁束の測定値と前記被測定部近傍の複数位置に生起する局所的な磁束の測定値に基づいて、前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める手段と、前記回帰関数に基づいて磁性体の内部構造に関する特性値を求める手段とを備える。   The magnetic substance internal structure measuring device of the present invention includes means for applying a static magnetic field to a non-measurement part of a magnetic substance, means for measuring a change in magnetic flux generated in the whole part to be measured, and a plurality of parts near the part to be measured. Means for measuring a change in local magnetic flux generated at a position, and a measured value of magnetic flux generated in the entire measured part after the static magnetic field is interrupted and a local value generated at a plurality of positions near the measured part. Means for obtaining a regression function representing local magnetic flux changes occurring at a plurality of positions in the vicinity of the portion to be measured based on a measured value of magnetic flux, and a characteristic value relating to the internal structure of the magnetic material based on the regression function A means for obtaining.

ここで、静磁場は励磁コイルにより印加するようにしてもよい。また、励磁コイル電流を測定して、被測定部全体に生起する磁束の変化を測定するようにしてもよい。さらに、複数位置に生起する局所的な磁束の変化を測定するために、直列にインダクタを接続したコイルを用いて測定するようにもできる。   Here, the static magnetic field may be applied by an exciting coil. Further, the exciting coil current may be measured to measure a change in magnetic flux that occurs in the entire part to be measured. Furthermore, in order to measure a local magnetic flux change occurring at a plurality of positions, it can be measured using a coil in which an inductor is connected in series.

このように、非測定部全体に印加されている磁束の時間変化を求めた上で、これを反映して複数の微小部分のピックアップコイル信号の変化を求めるようにしたので、従来のものより正確なモデルが構築でき、S/N比が大きな測定信号を得ることが可能となった。   In this way, the time change of the magnetic flux applied to the entire non-measurement part is obtained, and the change in the pickup coil signal of a plurality of minute parts is obtained reflecting this, so that it is more accurate than the conventional one. It was possible to construct a simple model and obtain a measurement signal with a large S / N ratio.

以下、図を参照して、本発明の実施の形態を説明する。図1は、本実施形態の測定装置の概略構成とその動作とを示す概略図である。この測定装置は、フェライトからなる鉄心1を備える巻数nの励磁コイル4と、試料である鋼板2近傍の磁束密度変化を検出するアレーセンサ3とを備えている。アレーセンサ3は、複数の磁気センサを一列にならべてなるもので、磁束の変化を検出できるように所定の間隔で保持されている。磁気センサは、ホール素子など各種センサが使用可能であるが、本実施形態では、ピックアップコイルを使用する。図には、i番目の磁気センサに対応する抵抗r3 iを示す。励磁コイル4を駆動する励磁コイル駆動回路5は、電圧源VとスイッチSWと抵抗Rからなる。静磁場を印加する場合は、スイッチSWをオンにし、静磁場を遮断するにはスイッチSWをオフにする。静磁場遮断による被測定物近傍の磁場の変化により誘起される磁気センサの電流は、抵抗r3 iで電圧に変換して出力する。アレーセンサ3を構成する各磁気センサ出力は、図示しない切換選択回路により一出力のみが選択されて順次出力される。ピックアップコイルの負荷抵抗r3 iとして、各コイルに共通のもの1つr3を用いることもできる。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a schematic configuration and operation of a measuring apparatus according to the present embodiment. This measuring apparatus includes an exciting coil 4 having n turns including an iron core 1 made of ferrite, and an array sensor 3 that detects a change in magnetic flux density in the vicinity of a steel plate 2 that is a sample. The array sensor 3 includes a plurality of magnetic sensors arranged in a line, and is held at a predetermined interval so that a change in magnetic flux can be detected. As the magnetic sensor, various sensors such as a Hall element can be used. In this embodiment, a pickup coil is used. In the figure, a resistance r 3 i corresponding to the i-th magnetic sensor is shown. An exciting coil driving circuit 5 that drives the exciting coil 4 includes a voltage source V, a switch SW, and a resistor R. When applying a static magnetic field, the switch SW is turned on, and to interrupt the static magnetic field, the switch SW is turned off. The current of the magnetic sensor induced by the change in the magnetic field near the object to be measured due to the static magnetic field interruption is converted into a voltage by the resistor r 3 i and output. As for the outputs of the magnetic sensors constituting the array sensor 3, only one output is selected by a switching selection circuit (not shown) and sequentially output. As the load resistance r 3 i of the pickup coil, one common r 3 can be used for each coil.

本実施形態では、この装置により、鋼板2の溶接部に静磁場を印加し、その後、静磁場の遮断を行って、遮断後の磁束密度の変化をアレーセンサ3によって測定し、鋼板2の溶接部を判定するものである。本発明では、静磁場の遮断後の磁束変化を与えるモデルとして、以下に説明するモデルを仮定する。   In this embodiment, a static magnetic field is applied to the welded portion of the steel plate 2 by this apparatus, and then the static magnetic field is interrupted, and the change in magnetic flux density after the interruption is measured by the array sensor 3. The part is determined. In the present invention, a model described below is assumed as a model for giving a change in magnetic flux after the static magnetic field is interrupted.

図2は、スイッチSWをオンにして、静磁場を鋼板2に印加した状態を示す。スイッチSWをオンにすることにより電圧源Vによる電圧が励磁コイル4に印加される。励磁コイル4に流れる励磁電流I1によって生成された磁束φは、鋼板2の透磁率が高いことからそのほとんどが鋼板2内を通過し、励磁コイル4を貫流する。図には、アレーセンサ3を構成するi番目のピックアップコイル3iを示した。静磁場が遮断されると、静磁場の減衰に応答してピックアップコイル3iに電流が流れ、負荷抵抗r3 iにより電圧に変換して、ピックアップコイル3iを貫流する磁束の変化を検知することになる。 FIG. 2 shows a state in which the switch SW is turned on and a static magnetic field is applied to the steel plate 2. By turning on the switch SW, the voltage from the voltage source V is applied to the exciting coil 4. Most of the magnetic flux φ generated by the exciting current I 1 flowing through the exciting coil 4 passes through the exciting coil 4 because the magnetic permeability of the steel plate 2 is high. In the figure, the i-th pickup coil 3 i constituting the array sensor 3 is shown. When the static magnetic field is interrupted, a current flows through the pickup coil 3 i in response to the attenuation of the static magnetic field and is converted into a voltage by the load resistance r 3 i to detect a change in the magnetic flux flowing through the pickup coil 3 i. It will be.

この時、図3に示すような、その中では磁束密度が概略一様とみなせる微小領域を考える。ここでは、ピックアップコイルに囲まれた微小面積を有する磁気回路で磁束密度がほぼ一様であるとする。図には、i番目のピックアップコイル3iに囲まれた磁気回路6iを示した。図示のように、この領域で鋼板に入る磁束は途切れることなく貫流する。磁気回路6iに働く起磁力は、巻数nの励磁コイルに流れる電流I1によるものだけであるから、nI1となる。一方、この微小面積の磁気回路の磁気抵抗は、鉄心と試料(鋼板)とエアギャップの各々の磁気抵抗の和Riとして求められる。したがって、この局所的な磁気回路6iを貫流する磁束Niは、起磁力nI1を磁気抵抗Riでわって、すなわちnI1/Riとして求められる。スイッチSWがオンされることにより生成される静磁場の磁束Niは、鋼板の局所的な透磁率μ2、鋼板表面の凹みなどによって増減する局所的なエアギャップの大きさなどを反映したものになる。なお、励磁コイル全体を貫流する磁束による磁気回路は、局所的な磁気回路を並列に合成した回路とみなせるから、その磁気抵抗は、局所的な磁気回路の磁気抵抗Riの並列抵抗として求められる。 At this time, as shown in FIG. 3, a minute region in which the magnetic flux density can be regarded as substantially uniform is considered. Here, it is assumed that the magnetic flux density is almost uniform in a magnetic circuit having a minute area surrounded by the pickup coil. Figure showed i-th magnetic circuit 6 i surrounded by the pickup coil 3 i. As shown in the figure, the magnetic flux entering the steel plate in this region flows through without interruption. The magnetomotive force acting on the magnetic circuit 6 i is only due to the current I 1 flowing through the exciting coil having n turns, and thus becomes nI 1 . On the other hand, the magnetic resistance of the magnetic circuit having a small area is obtained as the sum R i of the magnetic resistances of the iron core, the sample (steel plate), and the air gap. Therefore, the magnetic flux N i flowing through the local magnetic circuit 6 i is obtained by dividing the magnetomotive force nI 1 by the magnetic resistance R i , that is, nI 1 / R i . Flux N i of the static magnetic field generated by the switch SW is turned on, those reflecting the size of the local air gap to increase or decrease depending on the indentation of the local permeability mu 2, the steel sheet surface of the steel sheet become. The magnetic circuit of the magnetic flux flowing through the entire excitation coil, because regarded as composite circuit local magnetic circuit in parallel, the magnetic resistance is determined as the parallel resistance of the magnetoresistive R i of local magnetic circuit .

図4は、スイッチSWをオフにして静磁場を遮断した状態である。励磁コイル電流I1は負荷抵抗r1によって消費されて減少してゆく。この時、起磁力も小さくなっていくので、磁路6iを貫流している磁束も小さくなり始める。すると、導電性物質である鋼板2内部には、この磁束の減少に抗して渦電流I2 iが流れる。この渦電流は鋼板2の電気抵抗r2 iで消費されて減少する。一方、ピックアップコイル3iについても、コイルに囲まれた磁束が減少し始めるので、過渡的に応答し、起電力が生じる。この起電力により抵抗r3 iで規定された電流I3 iが流れ、I3 i×r3 iを電圧として計測できる。 FIG. 4 shows a state in which the switch SW is turned off to block the static magnetic field. The exciting coil current I 1 is consumed by the load resistance r 1 and decreases. At this time, since the magnetomotive force also decreases, the magnetic flux passing through the magnetic path 6 i also starts to decrease. Then, an eddy current I 2 i flows against the decrease in the magnetic flux inside the steel plate 2 which is a conductive material. This eddy current is consumed and reduced by the electric resistance r 2 i of the steel plate 2. On the other hand, since the magnetic flux surrounded by the coil begins to decrease, the pickup coil 3 i responds transiently and generates an electromotive force. By this electromotive force, a current I 3 i defined by the resistance r 3 i flows, and I 3 i × r 3 i can be measured as a voltage.

このように、静磁場を遮断したときは、静磁場を定常的に印加している状態とは異なって、磁気回路6iに関する起磁力として、励磁コイルを流れる励磁電流I1のほかに、渦電流I2 iとピックアップコイルに流れる電流I3 iとが存在することになる。 Thus, when the static magnetic field is interrupted, unlike the state in which the static magnetic field is constantly applied, as the magnetomotive force related to the magnetic circuit 6 i , in addition to the excitation current I 1 flowing through the excitation coil, a vortex There is a current I 2 i and a current I 3 i flowing through the pickup coil.

以下、静磁場を遮断したときの磁束の変化の状態を正確に記述する式を立てる。まず、励磁コイル4を流れる電流I1による励磁回路を考えると、励磁コイル4にはほとんどすべての磁束が貫流し、全磁束Ntotの時間微分に巻数nを乗じた起電力が発生する。また、キルヒホッフの法則により閉回路の起電力の代数和は、閉回路における電圧降下の代数和に等しいから、 In the following, an equation that accurately describes the state of change in magnetic flux when the static magnetic field is interrupted is established. First, considering an excitation circuit using current I 1 flowing through the excitation coil 4, almost all magnetic flux flows through the excitation coil 4, and an electromotive force is generated by multiplying the time derivative of the total magnetic flux N tot by the number of turns n. Also, according to Kirchhoff's law, the algebraic sum of the electromotive force of the closed circuit is equal to the algebraic sum of the voltage drop in the closed circuit,

Figure 0004312104
Figure 0004312104

となる。ここで、ピックアップコイルを流れる電流については、j番目のピックアップコイルのみが閉の状態で電流I3 jのみが流れ、他のコイルは開で流れないとしている。 It becomes. Here, regarding the current flowing through the pickup coil, only the current I 3 j flows while only the j-th pickup coil is closed, and the other coils do not flow when opened.

渦電流I2 iが流れる試料の等価回路では、i番目の磁気回路を考えればよく、発生する渦電流は抵抗r2 iで消費され、 In the equivalent circuit of the sample through which the eddy current I 2 i flows, the i-th magnetic circuit may be considered, and the generated eddy current is consumed by the resistance r 2 i ,

Figure 0004312104
Figure 0004312104

となる。
ピックアップコイルに流れる電流I3 iによるピックアップ回路では、本例ではピックアップは1ターンで形成され、電流I3 iはピックアップコイルの負荷抵抗r3で消費されるので、
It becomes.
In the pickup circuit using the current I 3 i flowing through the pickup coil, the pickup is formed in one turn in this example, and the current I 3 i is consumed by the load resistance r 3 of the pickup coil.

Figure 0004312104
Figure 0004312104

となる。 It becomes.

式(1)、(3)及び(5)を、自己誘導係数L及び相互誘導係数Mを導入して変形すると、励磁回路、試料等価回路、ピックアップ回路について、以下の式(6)〜(8)が導かれる。   When the equations (1), (3), and (5) are modified by introducing the self-induction coefficient L and the mutual induction coefficient M, the following equations (6) to (8) are obtained for the excitation circuit, the sample equivalent circuit, and the pickup circuit. ) Is guided.

Figure 0004312104
Figure 0004312104

ここで、励磁回路の式(6)では、全体の電流を考えているので、渦電流(試料等価回路)との相互インダクタンスM12についても磁気回路の総和Σを考慮している。なお、ピックアップコイルを流れる電流については、先に説明したように、閉状態のi番目のピックアップコイルのみに電流I3 iが流れているとしている。 Here, in the excitation circuit equation (6), since the entire current is considered, the sum Σ of the magnetic circuit is also considered for the mutual inductance M 12 with the eddy current (sample equivalent circuit). As described above, regarding the current flowing through the pickup coil, the current I 3 i flows only in the closed i-th pickup coil.

以上のように、本発明のモデルでは、磁束の変化に影響を与える電流として、励磁コイルを流れる電流I1、渦電流I2 i及びピックアップコイルに流れる電流I3 iに着目した。渦電流I2 iは測定できないので、励磁コイルを流れる電流I1とピックアップコイルに流れる電流I3 iを測定する必要がある。 As described above, in the model of the present invention, attention is paid to the current I 1 flowing through the exciting coil, the eddy current I 2 i and the current I 3 i flowing through the pickup coil as currents affecting the change in magnetic flux. Since the eddy current I 2 i cannot be measured, it is necessary to measure the current I 1 flowing through the exciting coil and the current I 3 i flowing through the pickup coil.

図5は、本発明の一実施形態の測定回路の概念図を示す。磁気シールドSHを備えた励磁コイル4により、試料に静磁場を与える。励磁コイル4を励磁するための励磁電流を供給する励磁コイル駆動回路5が、電圧源Vと抵抗r1と半導体スイッチSWとから形成されている。半導体スイッチSWがオンのときには、電圧源V、励磁コイル4及び半導体スイッチSWの回路により励磁コイル電流が流れ、コイル4により静磁場が形成されている。半導体スイッチSWがオフになると、励磁コイル4に生起する起電力によって抵抗riに電流が流れる。そのときの磁束の変化をアレーセンサ3を構成するピックアップコイルが検出し、検出信号を出力する。図には、i番目(例えば、1≦i≦15)のピックアップコイル3iからの信号がi番目の入力切換えスイッチSiから入力されることを示す。さらに、本実施形態では、励磁コイル電流の変化も入力切換えスイッチS0から入力される。入力された信号は増幅部Ampで増幅され、信号処理回路に出力される。 FIG. 5 shows a conceptual diagram of a measurement circuit according to an embodiment of the present invention. A static magnetic field is applied to the sample by the exciting coil 4 provided with the magnetic shield SH. An exciting coil drive circuit 5 that supplies an exciting current for exciting the exciting coil 4 is formed of a voltage source V, a resistor r1, and a semiconductor switch SW. When the semiconductor switch SW is on, an exciting coil current flows through the circuit of the voltage source V, the exciting coil 4 and the semiconductor switch SW, and a static magnetic field is formed by the coil 4. When the semiconductor switch SW is turned off, a current flows through the resistor r i due to the electromotive force generated in the exciting coil 4. A change in magnetic flux at that time is detected by a pickup coil constituting the array sensor 3, and a detection signal is output. In the figure, a signal from the i-th (for example, 1 ≦ i ≦ 15) pickup coil 3 i is input from the i-th input changeover switch S i . Furthermore, in the present embodiment, the change in the exciting coil current is also input from the input selector switch S 0. The input signal is amplified by the amplifier Amp and output to the signal processing circuit.

このような回路を用いると、励磁コイルを流れる電流I1とピックアップコイルに流れる電流I3 iが検出され、切替えスイッチS0,Siにより信号として出力される。特に、静磁場全体の変化を励磁コイル電流の変化により直接信号処理回路に入力できるので、本発明を実施するのに好適である。 When such a circuit is used, the current I 1 flowing through the exciting coil and the current I 3 i flowing through the pickup coil are detected and output as signals by the changeover switches S 0 and S i . In particular, since the change of the entire static magnetic field can be directly input to the signal processing circuit by the change of the exciting coil current, it is suitable for carrying out the present invention.

連立方程式(6)〜(8)によって、i番目のピックアップコイルに流れる電流I3 iをほぼ完全に記述されると考えられる。したがって、連立方程式(6)〜(8)を解けば、静磁場遮断の後の磁束密度の変化が完全にわかることになる。しかしながら、これを解くためには、全磁路にわたって磁束密度が一様な微細領域ごと、例えば20〜30の領域ごとに連立させる必要がある。したがって、連立方程式(6)〜(8)のままでは数値計算以外にI3 iを求めることはできない。 It is considered that the current I 3 i flowing through the i-th pickup coil is almost completely described by the simultaneous equations (6) to (8). Therefore, by solving the simultaneous equations (6) to (8), the change in the magnetic flux density after the static magnetic field interruption can be completely understood. However, in order to solve this, it is necessary to make it continuous for every fine area where the magnetic flux density is uniform over the entire magnetic path, for example, every 20 to 30 areas. Therefore, if the simultaneous equations (6) to (8) remain, I 3 i cannot be obtained other than numerical calculation.

そこで、本発明では、ピックアップコイル電流I3 iを実質的に記述するような近似を採用し、必要なら補正項を挿入して解を得るようにする。以下に詳細に説明するように、式(6)、(7)から全体としての磁束の変化すなわち減衰する励磁コイル電流I1及びこれに対応する渦電流総体を適切な近似により求め、次いで求められた励磁コイル電流I1及び渦電流に基づいて、式(7)(8)から局所的な磁束の変化すなわちピックアップコイル電流I3 iを近似的に求める。 Therefore, in the present invention, an approximation that substantially describes the pickup coil current I 3 i is employed, and if necessary, a correction term is inserted to obtain a solution. As will be described in detail below, the change in the magnetic flux as a whole, that is, the exciting coil current I 1 that attenuates and the corresponding eddy current total are obtained by an appropriate approximation and then obtained from the equations (6) and (7). Based on the exciting coil current I 1 and eddy current, the local magnetic flux change, that is, the pickup coil current I 3 i is approximately obtained from the equations (7) and (8).

まず、励磁コイル電流(励磁回路)を記述する方程式(6)においては、励磁コイル電流を測定する場合は、ピックアップコイルの回路はオフとなっており、ピックアップコイルI3 iは無視できる。また、渦電流I2 iは総体として、励磁コイル電流と結合していると考えることができ、合成電流I2 effとしてとりあつかうことができる。 First, in equation (6) describing the excitation coil current (excitation circuit), when measuring the excitation coil current, the circuit of the pickup coil is off and the pickup coil I 3 i can be ignored. Further, the eddy current I 2 i can be considered to be coupled to the exciting coil current as a whole, and can be handled as the combined current I 2 eff .

一方、渦電流(試料等価回路)を記述する方程式(7)についても、微小磁気回路についての総和すなわち合成電流I2 effをとりあつかう。やはり、ピックアップコイルに流れる電流は無視でき、励磁コイル電流I1と全体としての渦電流I2 effは、以下の2つの連立方程式(9)(10)として表現される。 On the other hand, the equation (7) describing the eddy current (sample equivalent circuit) also deals with the sum of the minute magnetic circuit, that is, the combined current I 2 eff . The current flowing through the pickup coil is negligible, and the exciting coil current I 1 and the eddy current I 2 eff as a whole are expressed as the following two simultaneous equations (9) and (10).

Figure 0004312104
Figure 0004312104

この連立方程式(9)(10)は簡単に解けて、初期条件I1=0、I2 eff=0および、L1dI1/dt+M12 effdI2 eff/dt=0、L2 effdI2 eff/dt+M12 effdI1/dt=0とすると、以下のようになる。 The simultaneous equations (9) and (10) can be easily solved, and initial conditions I 1 = 0, I 2 eff = 0, L 1 dI 1 / dt + M 12 eff dI 2 eff / dt = 0, L 2 eff dI 2 If eff / dt + M 12 eff dI 1 / dt = 0, the result is as follows.

Figure 0004312104
Figure 0004312104

このように励磁コイル電流I1は、2つの指数関数の和として記述される。ここで、I2 effは、試料に発生する渦電流で直接計測できない。計測対象は、励磁電流I1のみが計測対象である。 Thus, the exciting coil current I 1 is described as the sum of two exponential functions. Here, I 2 eff cannot be directly measured by an eddy current generated in the sample. Only the excitation current I 1 is a measurement target.

ここで、この励磁電流I1を評価するために、試料がフェライトのような磁性体で電気伝導度が極めて低い場合を考える。この場合は渦電流は流れない(I2 eff=0)ので、式(9)は減衰定数α1=r1/L1による単純な減衰を表す式となり、その解は次のように、単一の指数関数で表せる。 Here, in order to evaluate the exciting current I 1 , consider a case where the sample is a magnetic material such as ferrite and the electrical conductivity is extremely low. In this case, since eddy current does not flow (I 2 eff = 0), the equation (9) becomes an equation representing simple attenuation by the attenuation constant α1 = r1 / L 1 , and the solution is a single unit as follows: Expressed with an exponential function.

Figure 0004312104
Figure 0004312104

図6は、試料として、励磁コイルの鉄心と同じフェライトを用いた場合の、励磁コイル電流の減衰の様子を示す図である。図には、測定値100を式(13)の指数関数を用いて経過時間15〜52の範囲でフィッティングした結果200を示している。回帰残差300を図の下部に示す。図からわかるように、長時間に亘ってフィットしようとすると、経過時間の小さいところでフィッティングのずれが大きくなっている。これは、励磁コイルの自己インダクタンスL1と負荷抵抗r1で決まる減衰定数λAが、比較的長時間で励磁コイル電流が減衰してゆく場合、自己インダクタンスL1が時間に依存しないで一定と考えることができないことを示している。すなわち、励磁電流が減少し磁界が減少するとともに、自己インダクタンスL1を規定する透磁率μが変化することを取り込む必要がある。このように自己インダクタンスの時間微分を考慮すると、式9は次のようになる。 FIG. 6 is a diagram showing a state of attenuation of the exciting coil current when the same ferrite as the iron core of the exciting coil is used as a sample. The figure shows a result 200 obtained by fitting the measured value 100 in the range of elapsed time 15 to 52 using the exponential function of Expression (13). The regression residual 300 is shown at the bottom of the figure. As can be seen from the figure, when trying to fit over a long period of time, the displacement of the fitting increases at a point where the elapsed time is small. This is because the attenuation constant λ A determined by the self-inductance L1 of the exciting coil and the load resistance r 1 is constant and the self-inductance L 1 is constant without depending on time when the exciting coil current decays in a relatively long time. Indicates that it cannot be done. That is, it is necessary to capture the change in the magnetic permeability μ that defines the self-inductance L 1 as the excitation current decreases and the magnetic field decreases. Considering the time derivative of self-inductance in this way, Equation 9 is as follows.

Figure 0004312104
Figure 0004312104

この式は、変数分離により積分することができるが、その解は励磁コイル電流I1を陽に表さないので、近似関数として、時間tの2乗に比例する成分を考慮した This equation can be integrated by variable separation, but since the solution does not express the exciting coil current I 1 explicitly, the component proportional to the square of time t is considered as an approximate function.

Figure 0004312104
Figure 0004312104

を考えると、励磁コイル電流I1の減少する様子をよく表現することがわかった。図7は、先ほどのフェライトの例を式15により経過時間20〜52でフィットした図である。図7においても、測定値100、回帰関数200、残差300として示してある。先の例と比較すると、非常によく合っていることがわかる。 From the above, it was found that the excitation coil current I 1 is well expressed. FIG. 7 is a diagram in which the example of the previous ferrite is fitted with the elapsed time of 20 to 52 according to Equation 15. Also in FIG. 7, the measured value 100, the regression function 200, and the residual 300 are shown. Compared with the previous example, it can be seen that it matches very well.

このようにして、励磁コイル電流と試料全体の渦電流を表現する関数として、以下のものを用いるとよいことがわかった。   In this way, it has been found that the following may be used as a function expressing the exciting coil current and the eddy current of the entire sample.

Figure 0004312104
Figure 0004312104

先の式と比較すると、先の式ではλA(t)はλA・tであったのが、この式では、λA・t+λA2・t2とt2に比例する補正項が付加されている。なお、渦電流は急速に減少するので、渦電流による項については時間に比例するλB・tのみの項で表現される。 Compared to the previous equation, λ A (t) was λ A · t in the previous equation, but in this equation, a correction term proportional to λ A · t + λ A2 · t 2 and t 2 is added. ing. Since the eddy current rapidly decreases, the term due to the eddy current is expressed only by the term λ B · t proportional to time.

ここで、実際の鋼板の溶接部について測定した1例を、図8に示す。これは、スポット溶接部を計測して式16により励磁コイル電流の減衰の様子をフィットした結果である。回帰関数200に、定常項である電流減衰項400のほかに、過渡項として渦電流項500が現れている。この項は、測定中磁束の流れる全領域が磁束の変化に対し渦電流を発生させて応答し、これが励磁回路と結合した結果現れたものと解釈できる。   Here, FIG. 8 shows an example measured for the welded portion of an actual steel plate. This is a result of fitting a state of attenuation of the exciting coil current by Equation 16 by measuring the spot weld. In the regression function 200, an eddy current term 500 appears as a transient term in addition to the current decay term 400 which is a steady term. This term can be interpreted as appearing as a result of the entire region in which the magnetic flux flows during the measurement responding by generating an eddy current to the change in the magnetic flux, which is combined with the excitation circuit.

次に、連立方程式(7)(8)の解として与えられるピックアップコイル電流I3 iを記述する式を求める。ピックアップコイル電流は、試料全体の渦電流と結合した励磁コイル電流によって駆動され、同時にピックアップコイル直下(同じ微小な磁気回路上にある)の渦電流とのみ結合していると解釈される。従って、ピックアップコイル電流I3 iは、インダクタンスの時間依存性は無視して、以下の連立方程式により記述される。 Next, an equation describing the pickup coil current I 3 i given as a solution to the simultaneous equations (7) and (8) is obtained. The pickup coil current is driven by the exciting coil current combined with the eddy current of the entire sample, and at the same time, it is interpreted as being combined only with the eddy current immediately below the pickup coil (on the same minute magnetic circuit). Accordingly, the pickup coil current I 3 i is described by the following simultaneous equations while ignoring the time dependence of the inductance.

Figure 0004312104
Figure 0004312104

以下、式の導出過程は省略して概略を説明する。まず、上式を満足するピックアップコイル電流I3 iは、I1が無い場合の一般解である過度応答項と、特解であるIi(t)の2つの指数関数入力に独立に応答する項の和で表現される。すなわち減衰定数λciのピックアップコイル自体の電流に起因する項、減衰定数λA(t)の励磁コイル電流に起因する項及び減衰定数λBの渦電流全体に起因する項の線形和として表されるとし、次式により与えられるものと仮定する。 Hereinafter, the derivation process of the equation will be omitted and the outline will be described. First, the pickup coil current I 3 i that satisfies the above equation responds independently to two exponential function inputs of a transient response term that is a general solution when I 1 is not present and a special solution I i (t). Expressed as a sum of terms. That is, it is expressed as a linear sum of a term due to the current of the pickup coil itself having the damping constant λc i , a term due to the exciting coil current having the damping constant λ A (t) and a term due to the entire eddy current having the damping constant λ B. Suppose that it is given by the following equation.

Figure 0004312104
Figure 0004312104

そして、一般解と特解とを求め、減衰係数λ及び各係数A〜Cを決定する。ここで、係数A3 iについては、時間tに依存することを考慮して微分を行うことに注意する。さらに初期条件をI2 i=I3 i=0および、L2 idI2 i/dt+M23 idI3 i/dt+M12 idI1/dt=0、L3 idI3 i/dt+M23 idI2 i/dt+M13 idI1/dt=0として、計算すると、ピックアップコイル電流I3 iは、以下のように表される。 Then, the general solution and the special solution are obtained, and the attenuation coefficient λ and the coefficients A to C are determined. Here, it should be noted that the coefficient A 3 i is differentiated in consideration of the dependence on the time t. Furthermore, the initial conditions are I 2 i = I 3 i = 0, L 2 i dI 2 i / dt + M 23 i dI 3 i / dt + M 12 i dI 1 / dt = 0, L 3 i dI 3 i / dt + M 23 i dI When calculation is performed assuming 2 i / dt + M 13 i dI 1 / dt = 0, the pickup coil current I 3 i is expressed as follows.

Figure 0004312104
Figure 0004312104

ここで、各係数は、 Where each coefficient is

Figure 0004312104
Figure 0004312104

であり、各減衰定数は、 And each attenuation constant is

Figure 0004312104
Figure 0004312104

となる。
以上のとおり、添え字iの付いた諸量は、ピックアップコイルを貫通する局所的な磁気抵抗を反映するので、添え字iの付いた減衰定数λc及び係数A〜Cなどが非破壊検査に用いることができる。たとえば、溶接部の非破壊検査では、従来の特許第3098193号公報と記載と同様に、λc1 iの分布の急変化点を求めることにより、ナゲット部の形状・寸法を求めることができ、λc2 iの分布の急変化点を求めることにより、接合部の形状・寸法を求めることができる。
It becomes.
As described above, the quantities with the subscript i reflect the local magnetic resistance penetrating the pickup coil, so the attenuation constant λc and the coefficients A to C with the subscript i are used for nondestructive inspection. be able to. For example, in the non-destructive inspection of a welded portion, the shape and dimensions of the nugget portion can be obtained by obtaining a sudden change point of the distribution of λc 1 i as described in Japanese Patent No. 3098193. By determining the sudden change point of the distribution of 2 i , the shape and dimensions of the joint can be determined.

本実施形態では、励磁コイル電流I1の減衰を得て、次にピックアップコイル信号I3 iを得るようにしたので、ピックアップコイル信号I3 iをさらに正確に求めることができる。さらに、励磁コイル電流I1を直接計測すれば、ピックアップコイル信号I3 iを処理する上で便利である。すなわち、励磁コイル電流I1の回帰により、減衰定数λA、λBを決めることができるからである。また、減衰定数λA、λBは、試料と励磁コイルで囲まれた全体の磁気抵抗を反映するので。センサが試料に正しく接しているか否かの判断に使うこともできる。 In the present embodiment, with the attenuation of the exciting coil current I 1, then since to obtain a pick-up coil signal I 3 i, can be determined more accurately pickup coil signal I 3 i. Further, if the exciting coil current I 1 is directly measured, it is convenient for processing the pickup coil signal I 3 i . That is, the attenuation constants λ A and λ B can be determined by regression of the exciting coil current I 1 . Also, the attenuation constants λ A and λ B reflect the total magnetoresistance surrounded by the sample and the excitation coil. It can also be used to determine whether the sensor is correctly in contact with the sample.

また、例えば溶接部と母材とでは、B−Hカーブの立ち上がりが異なる、すなわち溶接部では凹みができ、溶接部の溶融とあいまって磁気抵抗が高くなる。したがって、溶接部と母材とでは、励磁条件を変えて測定を行なうと、その変化分が相違することになる。したがって、励磁条件を変えて2回測定を行ない、係数又は減衰定数の差をみることによって溶接部と母材部を区別することができる。このように励磁条件を変えて複数回測定を行い、得られる係数又は減衰定数又はその両方を比較することによっても、試料の内部構造を推定することができる。   In addition, for example, the rise of the BH curve is different between the welded portion and the base material, that is, a dent is formed at the welded portion, and the magnetic resistance increases with the melting of the welded portion. Therefore, if the welding part and the base material are measured under different excitation conditions, the amount of change will be different. Therefore, it is possible to distinguish between the welded portion and the base material portion by performing the measurement twice while changing the excitation condition and looking at the difference in the coefficient or the attenuation constant. Thus, the internal structure of the sample can also be estimated by performing measurement a plurality of times under different excitation conditions and comparing the obtained coefficient and / or attenuation constant.

さらに、ピックアップコイルに直列にインダクタを挿入し、ピックアップコイル電流自体の減衰定数を、励磁コイルの減衰定数の10倍程度に固定するようにすると、これにより、減衰定数λc1、λc2の1つを強制的に固定できる。このようにすると、回帰式を決める過程が容易になる。 Further, when an inductor is inserted in series with the pickup coil, and the attenuation constant of the pickup coil current itself is fixed to about 10 times the attenuation constant of the excitation coil, one of the attenuation constants λc 1 and λc 2 is thereby obtained. Can be forcibly fixed. This facilitates the process of determining the regression equation.

最後に、本実施形態の測定方法は、次のようにまとめることができる。
(1)励磁コイル電流を測定する。
(2)励磁コイル電流I1A(t)の減衰を、次式を回帰関数としてフィットする。
Finally, the measurement method of the present embodiment can be summarized as follows.
(1) Measure exciting coil current.
(2) Fit the attenuation of the exciting coil current I 1A (t) using the following equation as a regression function.

Figure 0004312104
Figure 0004312104

(3)渦電流成分I1B(t)を、励磁コイル電流の減衰の残差より、次式を回帰関数として、フィットする。 (3) Fit the eddy current component I 1B (t) from the residual of the attenuation of the exciting coil current using the following equation as a regression function.

Figure 0004312104
Figure 0004312104

(4)i番目のピックアップ信号I3 i(t)中の、励磁コイル電流(及び渦電流成分)の変化に起因する部分I1 i(t)として、次式を回帰関数としてフィットし、係数A3 i、B3 iを決定する。 (4) The following equation is fitted as a regression function as a portion I 1 i (t) due to the change of the exciting coil current (and eddy current component) in the i-th pickup signal I 3 i (t), and the coefficient A 3 i and B 3 i are determined.

Figure 0004312104
Figure 0004312104

(5)i番目のピックアップ信号I3 i(t)を、次式を回帰関数としてフィットする。 (5) Fit the i-th pickup signal I 3 i (t) using the following equation as a regression function.

Figure 0004312104
Figure 0004312104

(6)以上のように決定されたピックアップ信号I3 i(t)の係数と減衰定数により、内部構造を推定する。 (6) The internal structure is estimated from the coefficient of the pickup signal I 3 i (t) determined as described above and the attenuation constant.

ここで、本実施形態は、本発明を実施する一例であり、回帰関数の形態や係数及び減衰定数の時間依存性は適宜選択されるものである。例えば、本実施形態では、励磁コイル電流をフィットするために、時間tの2乗の項を挿入したが、空芯コイルを使用する場合など必要性を考慮して、この項を除いた通常の指数関数を用いてもよい。また、係数Aiについても、時間tに依存させない場合も考えられる。更に、便宜的には、減衰定数の近いC31 ixp(−λc1t)とB3 iexp(−λBt)を一つの関数としてフィットすることも有効である。 Here, this embodiment is an example for carrying out the present invention, and the form of the regression function, the coefficient, and the time dependence of the attenuation constant are appropriately selected. For example, in this embodiment, the term of the square of time t is inserted in order to fit the exciting coil current. However, in consideration of necessity such as when using an air-core coil, a normal term excluding this term is used. An exponential function may be used. Further, the coefficient A i may not be dependent on the time t. Further, for convenience, it is also effective to fit C 31 i xp (−λ c1 t) and B 3 i exp (−λ B t) having close attenuation constants as one function.

(実施例1)
軟鋼(板厚1.2mm、TS270MPa級)板のスポット重ね溶接において、ナゲット直径が十分大きい溶接(4√t、t:板厚mm)継ぎ手と、ほとんど溶融していない圧接状態の継ぎ手とを製作し、本発明を適用して非破壊検査を試みた。
Example 1
For spot lap welding of mild steel (plate thickness 1.2mm, TS270MPa class) plates, we produce welded joints with a sufficiently large nugget diameter (4√t, t: plate thickness mm) and joints in a pressure-welded state with almost no melting Then, non-destructive inspection was attempted by applying the present invention.

励磁コイル電流に約0.33Aを流し、遮断した後の励磁コイル抵抗r1(図1)の電圧を計測し、また、ピックアップコイル個々について、負荷抵抗r3 iの電圧を計測し、ピックアップコイルの信号を得た。図9に、ピックアップコイル信号を計測した結果の一例を示す。 About 0.33 A is applied to the exciting coil current, and the voltage of the exciting coil resistance r 1 (FIG. 1) after being cut off is measured. The voltage of the load resistance r 3 i is measured for each pickup coil, and the pickup coil is measured. Got the signal. FIG. 9 shows an example of the result of measuring the pickup coil signal.

励磁コイル電流による信号は、式(16)に従って回帰を行い、各ピックアップコイル(この場合、コイルNo.0〜15)についてのピイクアップコイル信号は、式(23)に従って回帰を行った。   The signal based on the exciting coil current was regressed according to equation (16), and the pick-up coil signal for each pickup coil (in this case, coil Nos. 0 to 15) was regressed according to equation (23).

図10(a)、(b)は、それぞれ圧接状態の継ぎ手と溶接されたナゲット直径4√tの継ぎ手とで、係数A3 iを求め、両端の値(コイルNo.0と15)の相対値として図示したものである。図の横軸は、コイル番号で、縦軸がA3 iの相対値である。図10(a)に示す、圧接状態の係数A3 iが示す凹みに比較し、図10(b)に示す、ナゲット直径4√tの溶接部の係数A3 iの示す凹みが深くなっている。これにより、圧接状態と溶融状態の区別ができることがわかる。この図をもとに、たとえば、図の凹みの深さあるいは面積を求めてパラメータにして、溶融状態の尺度とすることが可能である。 10 (a) and 10 (b) show the coefficient A 3 i for the joint in pressure contact and the welded nugget diameter 4√t, and the relative values of the values at both ends (coils No. 0 and 15). It is shown as a value. The horizontal axis in the figure is the coil number, and the vertical axis is the relative value of A 3 i . Compared with the dent indicated by the coefficient A 3 i of the pressure contact state shown in FIG. 10A, the dent indicated by the coefficient A 3 i of the welded portion having a nugget diameter of 4√t shown in FIG. 10B becomes deeper. Yes. Thereby, it turns out that a press-contact state and a molten state can be distinguished. Based on this figure, for example, the depth or area of the dent in the figure can be obtained and used as a parameter to be a measure of the molten state.

なお、この場合、式(23)に従って4つの関数の全てをフィットする必要はなく、励磁コイル電流計測値の回帰からλA(t)を決めてしまえば、計測の後半データ、図9の場合では、時刻25以降の計測値とexp(−λA(t))の比から、係数A3 iを決めることができる。更に、こうした測定を異なった励磁条件で複数回行い、それらの相互の値(凹みの深さや面積など)から溶融状態を決めることもできる。 In this case, it is not necessary to fit all four functions according to the equation (23). If λ A (t) is determined from the regression of the excitation coil current measurement value, the latter half of the measurement data, the case of FIG. Then, the coefficient A 3 i can be determined from the ratio of the measured value after time 25 and exp (−λ A (t)). Furthermore, such a measurement can be performed a plurality of times under different excitation conditions, and the melting state can be determined from their mutual values (such as the depth and area of the dent).

(実施例2)
係数A3 iの他に、他の回帰結果を計測に用いることもできる。ここでは、係数C31 iおよび指数λc1 iを用いた方法を説明する。図11に、実施例1のピックアップコイル信号の1つに対して、係数A3 iを用い、また簡単のために単純な指数関数A3 iexp(−λAt)用いて、回帰した結果を示す。ここで、図中の斜線部の面積は、渦電流成分に対応し、係数C31 iの値を反映している。
(Example 2)
In addition to the coefficient A 3 i , other regression results can be used for measurement. Here, a method using the coefficient C 31 i and the exponent λ c1 i will be described. FIG. 11 shows the result of regression using one of the pickup coil signals of the first embodiment using the coefficient A 3 i and, for simplicity, a simple exponential function A 3 i exp (−λ A t). Indicates. Here, the area of the shaded portion in the figure corresponds to the eddy current component and reflects the value of the coefficient C 31 i .

図12(a)、(b)は、それぞれ圧接状態と溶接状態における個々のピックアップコイルについて、図11の斜線部の面積を測定し、両端(コイルNo.0と15)の測定値との相対値として図示したものである。図の横軸は、コイル番号で、縦軸は、渦電流成分に対応する図11の斜線部の面積相対値である。この場合の励磁電流は、約0.48Aである。図12(a)に示す圧接状態の図に比較し、図12(b)に示すナゲット直径4√tの溶接部の図では、大きく上に凸になっており、圧接状態と溶融状態の区別ができることがわかる。この凸部の面積は、励磁条件に対する挙動がA3 iとは異なり、A3 iの補助パラメータとして用いることができる。 12 (a) and 12 (b) show the area of the hatched portion in FIG. 11 for each pickup coil in the pressure-welded state and the welded state, respectively, and the relative values to the measured values at both ends (coils No. 0 and 15) It is shown as a value. The horizontal axis of the figure is the coil number, and the vertical axis is the area relative value of the shaded portion in FIG. 11 corresponding to the eddy current component. In this case, the excitation current is about 0.48A. Compared to the pressure contact state shown in FIG. 12 (a), the weld portion with a nugget diameter of 4√t shown in FIG. 12 (b) has a large convex shape, and distinguishes between the pressure contact state and the molten state. You can see that The area of this convex portion can be used as an auxiliary parameter of A 3 i , unlike A 3 i in behavior with respect to the excitation condition.

本発明の測定装置の概略を示す図である。It is a figure which shows the outline of the measuring apparatus of this invention. 本発明の測定装置の磁気回路を説明する図である。It is a figure explaining the magnetic circuit of the measuring apparatus of this invention. 本発明の測定装置のピックアップコイルに囲まれた磁気回路を説明する図である。It is a figure explaining the magnetic circuit enclosed by the pick-up coil of the measuring apparatus of this invention. 本発明の測定装置の励磁電流を遮断後の磁束の変化を説明する図である。It is a figure explaining the change of the magnetic flux after interrupting the exciting current of the measuring apparatus of this invention. 本発明の測定回路の一例を示す図である。It is a figure which shows an example of the measuring circuit of this invention. フェライト試料に静磁場を印加した励磁コイル電流を本発明に従って回帰した一例を示す図である。It is a figure which shows an example which regressed the exciting coil current which applied the static magnetic field to the ferrite sample according to this invention. フェライト試料に静磁場を印加した励磁コイル電流を本発明に従って回帰した他の例を示す図である。It is a figure which shows the other example which regressed the exciting coil current which applied the static magnetic field to the ferrite sample according to this invention. 鋼板の溶接部に静磁場を印加した励磁コイル電流を本発明に従って回帰した一例を示す図である。It is a figure which shows an example which regressed the exciting coil current which applied the static magnetic field to the welding part of the steel plate according to this invention. ピックアップコイル信号の一例を示す図である。It is a figure which shows an example of a pickup coil signal. (a)、(b)はそれぞれ、圧接状態と溶接状態の係数A3 iの相対値を示す図である。(A), (b) are diagrams showing the relative values of the coefficients A 3 i of pressure contact with the welding state. ピックアップコイル電流の回帰結果の一例を示す図である。It is a figure which shows an example of the regression result of a pickup coil current. (a)、(b)はそれぞれ、圧接状態と溶接状態との図11の斜線部の面積の相対値を示す図である。(A), (b) is a figure which shows the relative value of the area of the shaded part of FIG. 11 of a press-contact state and a welding state, respectively. 一般的なスポット溶接部の断面構造を示す図である。It is a figure which shows the cross-section of a general spot weld part.

符号の説明Explanation of symbols

1…鉄心
2…試料(鋼板)
3…アレーセンサ
4…励磁コイル
5…励磁コイル駆動回路
1…励磁コイルの負荷抵抗
2 i…試料(鋼板)の抵抗
3 i…ピックアップコイルの抵抗
1 ... Iron core 2 ... Sample (steel plate)
3 ... the array sensor 4 ... exciting coil 5 ... resistance of resistor r 3 i ... pickup coils of the load resistor r 2 i ... sample of the exciting coil drive circuit r 1 ... exciting coil (steel plate)

Claims (17)

磁性体の測定部に静磁場を印加する工程と、
前記静磁場を遮断する工程と、
前記静磁場の遮断後の前記被測定部全体に生起する磁束の変化を測定する工程と、
前記静磁場の遮断後の前記被測定部近傍の複数位置に生起する局所的な磁束の変化を測定する工程と、
前記被測定部全体に生起する磁束の変化の測定値を回帰し、次いで前記被測定部近傍の複数位置に生起する局所的な磁束の変化を回帰して、前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める工程と、
前記回帰関数の係数と減衰定数の少なくとも1つに基づいて磁性体の内部構造に関する特性値を求める工程と
を備える磁性体内部構造測定方法。
Applying a static magnetic field to the part to be measured of the magnetic material;
Cutting off the static magnetic field;
Measuring a change in magnetic flux generated in the entire measured part after the static magnetic field is interrupted;
Measuring a change in local magnetic flux generated at a plurality of positions near the portion to be measured after the static magnetic field is interrupted;
The measured value of the change in magnetic flux generated in the entire measured part is regressed, and then the local change in magnetic flux generated in a plurality of positions in the vicinity of the measured part is regressed to the plurality of positions in the vicinity of the measured part. Obtaining a regression function representing the local magnetic flux change that occurs,
A method for measuring the internal structure of a magnetic body, comprising: obtaining a characteristic value related to the internal structure of the magnetic body based on at least one of a coefficient of the regression function and an attenuation constant.
前記静磁場遮断後の前記被測定部全体に生起する磁束の変化を測定する工程は、前記静磁場を生成する励磁電流の大きさとその変化を測定する工程を含む請求項1に記載の磁性体内部構造測定方法。   2. The magnetic body according to claim 1, wherein the step of measuring a change in magnetic flux generated in the entire portion to be measured after the static magnetic field is interrupted includes a step of measuring the magnitude of the excitation current that generates the static magnetic field and the change thereof. Internal structure measurement method. 前記前記被測定部全体に生起する磁束の変化の測定値を回帰する工程は、前記被測定部全体に生起する磁束の変化を、励磁電流とこれに対応する被測定部全体の渦電流に起因するとして回帰する工程を含む請求項1に記載の磁性体内部構造測定方法。   The step of regressing the measured value of the change in the magnetic flux generated in the entire measured part is caused by the excitation current and the corresponding eddy current in the entire measured part corresponding to the change in the magnetic flux generated in the entire measured part. The method for measuring the internal structure of a magnetic body according to claim 1, comprising a step of returning as if it were. 前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める工程は、
前記静磁場の遮断により誘導された局所的な磁束の変化と、
前記静磁場の遮断により被測定部全体に誘導される渦電流により生起される磁束の変化と、
前記静磁場の遮断により測定位置に誘導される局所的な渦電流により生起される磁束の変化と、
前記局所的な磁束の変化を測定する手段の過渡応答と、
を合成して前記回帰関数を求める工程を含む請求項1又は2に記載の磁性体内部構造測定方法。
A step of obtaining a regression function representing a local magnetic flux change occurring at a plurality of positions in the vicinity of the measured part,
A change in local magnetic flux induced by the interruption of the static magnetic field;
A change in magnetic flux caused by an eddy current induced in the entire measured part by the interruption of the static magnetic field;
A change in magnetic flux caused by a local eddy current induced in the measurement position by the interruption of the static magnetic field;
A transient response of the means for measuring the local flux change;
The method for measuring the internal structure of a magnetic body according to claim 1, further comprising the step of obtaining the regression function by combining
前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める工程はさらに、
前記静磁場の遮断により誘導された局所的な磁束の前記静磁場遮断時の大きさと遮断後の減衰定数と、前記局所的な渦電流により生起される磁束の前記静磁場遮断時の大きさと遮断後の変化の時定数と、前記局所的な磁束の変化を測定する手段の過渡応答の前記静磁場遮断時の大きさと遮断後の減衰定数との少なくとも一つを求める工程を含む請求項4に記載の磁性体内部構造測定方法。
The step of obtaining a regression function representing a local magnetic flux change occurring at a plurality of positions in the vicinity of the measured part further includes
The magnitude of the local magnetic flux induced by the interruption of the static magnetic field when the static magnetic field is interrupted and the damping constant after the interruption, and the magnitude and interruption of the magnetic flux generated by the local eddy current when the static magnetic field is interrupted 5. The method according to claim 4, further comprising: determining at least one of a time constant of a later change, a magnitude of the transient response of the means for measuring the change of the local magnetic flux when the static magnetic field is interrupted, and an attenuation constant after the interrupt. The magnetic body internal structure measuring method as described.
前記静磁場を生成する励磁電流の変化を測定する工程は、前記静磁場を励磁コイルにより生成し、前記静磁場遮断後の励磁コイル電流を直接測定する工程を含む請求項2に記載の磁性体内部構造測定方法。   3. The magnetic body according to claim 2, wherein the step of measuring the change in the excitation current that generates the static magnetic field includes the step of generating the static magnetic field by an excitation coil and directly measuring the excitation coil current after the static magnetic field is cut off. Internal structure measurement method. 前記静磁場を生成する励磁電流の変化を測定する工程は、前記静磁場遮断後の励磁コイル電流の変化を、励磁コイル電流の定常応答と被測定部全体に誘導される渦電流により生起される励磁コイル電流の過渡応答の合成とみなして2つの指数関数で回帰してそれぞれの減衰定数を求め、前記被測定部近傍の複数位置における局所的な磁束の変化より、前記2つの指数関数の係数を求める工程を含む請求項6に記載の磁性体内部構造測定方法。   The step of measuring the change in the excitation current that generates the static magnetic field is caused by the change in the excitation coil current after the static magnetic field is interrupted by the steady response of the excitation coil current and the eddy current induced in the entire measured part. Recognizing as a composite of transient response of exciting coil current, regression is performed with two exponential functions to obtain respective attenuation constants, and coefficients of the two exponential functions are obtained from local magnetic flux changes at a plurality of positions in the vicinity of the measured part. The method for measuring the internal structure of a magnetic body according to claim 6, further comprising a step of obtaining. 前記静磁場の遮断後の前記被測定部近傍の複数位置に生起する局所的な磁束の変化を測定する工程は、前記局所的な磁束を測定する手段として直列にインダクタを接続したコイルを用い、前記コイル自身の過渡応答の減衰定数を強制的に決定して測定する工程を含む請求項1〜7のいずれか1項に記載の磁性体内部構造測定方法。   The step of measuring a change in local magnetic flux that occurs at a plurality of positions near the portion to be measured after the static magnetic field is cut off uses a coil in which an inductor is connected in series as a means for measuring the local magnetic flux, The magnetic body internal structure measuring method according to any one of claims 1 to 7, further comprising a step of forcibly determining and measuring a decay constant of a transient response of the coil itself. 前記静磁場の条件を変えて2回測定を行い、各回の測定値の差を求める工程さらに備える請求項1〜8のいずれか1項に記載の磁性体内部構造測定方法。   The method for measuring the internal structure of a magnetic body according to any one of claims 1 to 8, further comprising a step of performing measurement twice while changing the conditions of the static magnetic field and obtaining a difference between measurement values of each time. 磁性体の測定部に静磁場を印加する手段と、
前記被測定部全体に生起する磁束の変化を測定する手段と、
前記被測定部近傍の複数位置に生起する局所的な磁束の変化を測定する手段とを備え、
前記静磁場の遮断後の前記被測定部全体に生起する磁束の測定値と前記被測定部近傍の複数位置に生起する局所的な磁束の測定値に基づいて、前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める手段と、
前記回帰関数に基づいて磁性体の内部構造に関する特性値を求める手段と
を備える磁性体内部構造測定装置。
Means for applying a static magnetic field to the part to be measured of the magnetic material;
Means for measuring a change in magnetic flux generated in the entire measured part;
Means for measuring a local magnetic flux change occurring at a plurality of positions in the vicinity of the portion to be measured,
A plurality of positions in the vicinity of the measured part based on a measured value of the magnetic flux generated in the entire measured part after the static magnetic field is interrupted and a measured value of a local magnetic flux generated in a plurality of positions in the vicinity of the measured part. A means for obtaining a regression function representing a local magnetic flux change occurring in
Means for determining a characteristic value related to the internal structure of the magnetic body based on the regression function.
静磁場を印加する手段は、励磁コイルである請求項10に記載の磁性体内部構造測定装置。   The magnetic body internal structure measuring device according to claim 10, wherein the means for applying a static magnetic field is an exciting coil. 前記被測定部全体に生起する磁束の変化を測定する手段は、励磁コイル電流を測定する手段を含む請求項11に記載の磁性体内部構造測定装置。   The magnetic body internal structure measuring device according to claim 11, wherein the means for measuring a change in magnetic flux generated in the entire measured part includes a means for measuring an exciting coil current. 前記静磁場の遮断後の前記被測定部近傍の複数位置に生起する局所的な磁束の変化を測定する手段は、直列にインダクタを接続したコイルであり、前記コイル自身の過渡応答の減衰定数を強制的に決定して測定することを特徴とする請求項10〜12のいずれか1項に記載の磁性体内部構造測定装置。   Means for measuring changes in local magnetic flux generated at a plurality of positions near the portion to be measured after interruption of the static magnetic field is a coil in which an inductor is connected in series, and the attenuation constant of the transient response of the coil itself is set. The apparatus for measuring an internal structure of a magnetic body according to any one of claims 10 to 12, wherein the measurement is forcibly determined. 前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める手段は、前記静磁場の遮断直後の前記複数位置における局所的な磁束の大きさと遮断後の前記複数位置における局所的な磁束の減衰定数を求めることを特徴とする請求項10〜13のいずれか1項に記載の磁性体内部構造測定装置。   Means for obtaining a regression function representing a local magnetic flux change occurring at a plurality of positions in the vicinity of the part to be measured includes a local magnetic flux magnitude at the plurality of positions immediately after the static magnetic field is interrupted and the plurality of positions after the interruption. 14. The magnetic body internal structure measuring apparatus according to claim 10, wherein a local magnetic flux attenuation constant is obtained. 前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める手段は、
前記静磁場の遮断により誘導された局所的な磁束の変化と、
前記静磁場の遮断により被測定部全体に誘導される渦電流により生起される磁束の変化と、
前記静磁場の遮断により測定位置に誘導される局所的な渦電流により生起される磁束の変化と、
前記局所的な磁束の変化を測定する手段の過渡応答と、
を合成して前記回帰関数を求めることを特徴とする請求項14に記載の磁性体内部構造測定装置。
Means for obtaining a regression function representing a local magnetic flux change occurring at a plurality of positions in the vicinity of the measured part,
A change in local magnetic flux induced by the interruption of the static magnetic field;
A change in magnetic flux caused by an eddy current induced in the entire measured part by the interruption of the static magnetic field;
A change in magnetic flux caused by a local eddy current induced in the measurement position by the interruption of the static magnetic field;
A transient response of the means for measuring the local flux change;
The apparatus for measuring the internal structure of a magnetic body according to claim 14, wherein the regression function is obtained by combining.
前記被測定部近傍の複数位置に生起する局所的な磁束の変化を表す回帰関数を求める手段はさらに、
前記静磁場の遮断により誘導された局所的な磁束の前記静磁場遮断時の大きさと遮断後の減衰定数と、前記局所的な渦電流により生起される磁束の前記静磁場遮断時の大きさと遮断後の変化の時定数と、前記局所的な磁束の変化を測定する手段の過渡応答の前記静磁場遮断時の大きさと遮断後の減衰定数との少なくとも一つを求めることを特徴とする請求項15に記載の磁性体内部構造測定装置。
Means for obtaining a regression function representing a local magnetic flux change occurring at a plurality of positions in the vicinity of the portion to be measured,
The magnitude of the local magnetic flux induced by the interruption of the static magnetic field when the static magnetic field is interrupted and the damping constant after the interruption, and the magnitude and interruption of the magnetic flux generated by the local eddy current when the static magnetic field is interrupted The at least one of a time constant of a subsequent change, a magnitude of a transient response of the means for measuring the local magnetic flux change when the static magnetic field is interrupted, and an attenuation constant after the interruption is obtained. 15. The magnetic body internal structure measuring device according to 15.
前記静磁場を生成する励磁電流の変化を測定する手段は、前記静磁場遮断後の励磁コイル電流の変化を、励磁コイル電流の定常応答と被測定部全体に誘導される渦電流により生起される励磁コイル電流の過渡応答の合成とみなして2つの指数関数で回帰してそれぞれの減衰定数を求め、前記被測定部近傍の複数位置における局所的な磁束の変化より、前記2つの指数関数の係数を求めることを特徴とする請求項16に記載の磁性体内部構造測定装置。   The means for measuring a change in the excitation current that generates the static magnetic field is caused by a change in the excitation coil current after the static magnetic field is cut off by a steady response of the excitation coil current and an eddy current induced in the entire measured part. Recognizing the combination of the transient responses of the exciting coil currents, regression is performed with two exponential functions to obtain respective attenuation constants, and the coefficients of the two exponential functions are determined from changes in local magnetic flux at a plurality of positions near the measured portion. The apparatus for measuring an internal structure of a magnetic body according to claim 16, wherein:
JP2004165673A 2004-06-03 2004-06-03 Magnetic body internal structure measuring method and apparatus Active JP4312104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165673A JP4312104B2 (en) 2004-06-03 2004-06-03 Magnetic body internal structure measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165673A JP4312104B2 (en) 2004-06-03 2004-06-03 Magnetic body internal structure measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2005345282A JP2005345282A (en) 2005-12-15
JP4312104B2 true JP4312104B2 (en) 2009-08-12

Family

ID=35497808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165673A Active JP4312104B2 (en) 2004-06-03 2004-06-03 Magnetic body internal structure measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4312104B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072707A1 (en) 2006-12-15 2008-06-19 Asahi Glass Company, Limited Articles having water-repellent surfaces
JP5186837B2 (en) * 2007-08-23 2013-04-24 Jfeスチール株式会社 Method and apparatus for detecting minute irregular surface defects
JP5138770B2 (en) * 2009-10-13 2013-02-06 東洋ガラス株式会社 Silicon purity measuring instrument, silicon sorting apparatus, and silicon purity measuring method
CN111678976B (en) * 2020-06-22 2021-01-26 胡舟逸 Electromagnetic nondestructive quality detection method and detection circuit and system thereof

Also Published As

Publication number Publication date
JP2005345282A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4184963B2 (en) Nondestructive inspection method
Tsukada et al. A magnetic flux leakage method using a magnetoresistive sensor for nondestructive evaluation of spot welds
JP4184962B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP5607822B2 (en) Nondestructive inspection equipment
JP2003240761A (en) Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen
JP4312104B2 (en) Magnetic body internal structure measuring method and apparatus
JP3223596B2 (en) Method and apparatus for detecting deformation behavior in metal material
JP4411569B2 (en) Nondestructive measurement of spot welds
McNab et al. An eddy current array instrument for application on ferritic welds
WO2010146939A1 (en) Nondestructive testing device
JP5450225B2 (en) Nondestructive inspection equipment
JP4756224B1 (en) Spot welding inspection equipment
JP5001049B2 (en) Spot welding strength evaluation method and apparatus
JP5149569B2 (en) Apparatus and method for measuring internal structure of magnetic material
JP2006029882A (en) Spot welding part inspection device
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
JP2005345307A (en) Sectional shape measuring method for spot weld zone
JP5450175B2 (en) Nondestructive inspection equipment
JP2023134976A (en) Monitoring method of spot weld and monitoring system
JPH01119756A (en) Inspecting apparatus for deterioration of metal material
JP2006000894A (en) Apparatus and method for judging quality of spot welded portion, and spot welding apparatus
Cheng et al. Finite element simulation of magneto inductive evaluation of PWHT temperature of Cr-Mo steel welded joints
Sebestyen et al. Flaw detection using dc magnetic field measurement
JP2022111003A (en) Magnetic nondestructive inspection device of metal junction
KR100954777B1 (en) Multi-probe of a defect detection includes nondestructive thin film sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4312104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250