JP4306817B2 - Metal base circuit board - Google Patents

Metal base circuit board Download PDF

Info

Publication number
JP4306817B2
JP4306817B2 JP17831697A JP17831697A JP4306817B2 JP 4306817 B2 JP4306817 B2 JP 4306817B2 JP 17831697 A JP17831697 A JP 17831697A JP 17831697 A JP17831697 A JP 17831697A JP 4306817 B2 JP4306817 B2 JP 4306817B2
Authority
JP
Japan
Prior art keywords
adhesive layer
insulating adhesive
metal base
circuit board
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17831697A
Other languages
Japanese (ja)
Other versions
JPH1126935A (en
Inventor
裕 田頭
辰夫 中野
武美 小熊
和男 加藤
直己 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP17831697A priority Critical patent/JP4306817B2/en
Publication of JPH1126935A publication Critical patent/JPH1126935A/en
Application granted granted Critical
Publication of JP4306817B2 publication Critical patent/JP4306817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性、放熱性に優れた金属ベース回路基板に関する。
【0002】
【従来の技術】
従来より、金属板上に無機フィラーを充填したエポキシ樹脂等からなる絶縁層を設け、その上に導電回路を配設した金属ベース回路基板が、熱放散性に優れることから高発熱性電子部品を実装する回路基板として用いられている。
【0003】
近年、電子機器の高機能化・高性能化が急速に進行しており、それに伴い使用される部品の高密度実装化やハイパワー化が助長され、一層、高温で長期間良好な耐電圧特性や接着力を保持する金属ベース回路基板が求められている。
【0004】
耐熱性の指標として米国の認定規格であるUL規格が知られているが、その規格試験のうちで特に電気的特性を確認する際には、回路基板の絶縁接着剤層を剥き出し、空気中で長期間高温下でエージングして該絶縁接着剤層の特性劣化を調べるという厳しい試験が実施されている。
【0005】
従来の金属ベース回路基板では、通常フィラーを含有するエポキシ硬化物が使用されているが、三次元架橋硬化物といえども空気中高温下では酸化熱分解が進行し、UL試験での10万時間保証する最高使用温度はせいぜい110℃前後であり、最高使用温度130℃レベルのものが要望されている現在の市場ニーズにかなうものでは無い。
【0006】
【発明が解決しようとする課題】
本発明は、上記の事情に鑑みてなされたものであり、耐熱性すなわち耐酸化熱分解性に優れ、高温で長期間良好な耐電圧特性や接着力を保持できる、熱放散性に優れる金属ベース回路基板を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、金属板上に絶縁接着剤層を形成し、その上に金属箔をプレス積層してなる金属ベース基板の前記金属箔をエッチングして回路を形成してなる金属ベース回路基板であって、絶縁接着剤層がビスフェノールA型エポキシ樹脂とフェノールノボラック樹脂、キシレン変性フェノール樹脂、又はo−クレゾールノボラック樹脂のいずれかとトリフェニルホスフィンとエポキシ変性シランカップリング剤と無機質充填剤とを必須成分としてなり、該基板を空気中で240℃200時間加熱したときの前記絶縁接着剤層の無機充填剤を除いた絶縁接着剤層の成分の重量減少率が14〜18重量%であり、しかも電気的最高使用温度が130〜150℃であることを特徴とする金属ベース回路基板である。
【0009】
又、本発明は、絶縁接着剤層に含まれる無機質充填剤が、電気絶縁性で、かつ熱伝導性の良い酸化アルミニウムであることを特徴とする前記の金属ベース回路基板である。
【0010】
【発明の実施の形態】
通常、回路基板の絶縁接着剤層の耐熱性を議論する場合は、絶縁接着剤層を構成する樹脂のガラス転移温度や熱変形温度がいかに高いかを問題にすることが多い。しかしながら、実際に高温雰囲気下で長期間曝されることを想定すると、樹脂の熱分解による劣化を考慮する必要があり、特に前述のUL試験におけるように絶縁接着剤層を剥き出して高温エージングする場合は空気雰囲気下での酸化熱分解を考慮しなければならない。
【0011】
本発明者らは、上記の事情に鑑みいろいろな検討を行い、絶縁接着剤層を構成する樹脂の重量減少率と耐電圧特性の保持性の間に密接な相関があること、特に、エポキシ樹脂の場合、無機充填剤の存在下で硬化剤の種類を特定することにより前記重量減少率を低減でき、耐酸化熱分解性に優れる金属ベース回路基板が得られるという知見を得て、本発明に至ったものである。
【0012】
すなわち、金属板上に絶縁接着剤層を介して回路導体となる金属箔を載置してなる金属ベース基板を用い、金属箔を全面エッチングして得られる(即ち、金属板上に絶縁接着剤層のみが載置されている)基板を、いくつかの温度条件下で長期間エージングを行ない、各温度で耐電圧が初期の値の1/2に低下する時間を求め、横軸に温度、縦軸に時間とするアレニウスプロットすることで、UL規格でいう10万時間保証する最高使用温度を求めるとき、該最高使用温度がその時の絶縁接着剤層中の無機充填剤以外の絶縁接着剤層の成分の重量減少率と高い相関があることを見い出したものである。
【0013】
更に、本発明者らは、前記重量減少率が絶縁接着剤層中の無機充填剤以外の絶縁接着剤層の成分の空気による酸化分解が関与していること、また、表面から酸化分解が進むので絶縁接着剤層の厚みの影響を受け、厚みが大きいほど前記重量減少率が小さくなること、そしてその関係を実験式として導き出し、本発明に至ったものである。
【0014】
本発明の絶縁接着剤層に用いられる樹脂としては、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、フッ素系樹脂等の樹脂があげられるが、常温または加熱下で比較的低粘度で取扱い易いこと、金属箔との接着性に優れることなど総合的に物性のバランスが優れるエポキシ樹脂が好ましい。本発明では、後述する実施例に示す通りに、ビスフェノールA型エポキシ樹脂が選択される。
【0015】
前記エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能型エポキシ樹脂などの汎用のエポキシ樹脂が用いられるが、エポキシ樹脂を主成分としてフェノール樹脂やポリイミド樹脂等の耐熱性樹脂を併用したものでも構わない。
【0016】
エポキシ樹脂の特性はその硬化剤により大きく依存しているが、本発明の硬化剤としては、フェノール系硬化剤が好ましい。前記フェノール系硬化剤として最も基本的なものは、フェノール性水酸基を有する芳香族炭化水素とアルデヒド類を縮合または付加させて得られるノボラック型またはレゾール型の初期反応物であり、硬化物の耐湿性や不純物の点からノボラック型が望ましい。
【0017】
フェノール性水酸基を有する芳香族炭化水素としては、特に限定されるものではないが、例えばフェノール、クレゾール、キシレノール等のアルキル置換フェノール、クロロフェノール、ブロモフェノール等のハロゲノフェノール、レゾルシン、カテコール、ハイドロキノン等のフェノール性水酸基を2個以上有する芳香族化合物、ビスフェノールA、ビスフェノールF、ビスフェノールAF、ビスフェノールS等のビスフェノール類、1−ナフトール、2−ナフトール、1,6ージヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のナフトール類、ヒドロキシアントラセン等が挙げられる。また、それらの変性品として、フェノール性水酸基を有する芳香族炭化水素とアルデヒド類にトリアジン環を有する化合物やジビニルベンゼンのようなエチレン性不飽和結合を少なくとも2個以上有する化合物を組み合わせて反応させたものでも良い。また、パラキシリレン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂等の変性フェノール樹脂でも良い。なお、フェノール性水酸基を2個以上有する芳香族化合物の場合は、そのまま硬化剤として用いることができる。本発明においては、実施例に示される通りに、フェノールノボラック樹脂、キシレン変性フェノール樹脂、又はo−クレゾールノボラック樹脂が好適であり、選択される。
【0018】
また、フェノール系硬化剤は加熱硬化型であっても通常の温度ではエポキシ樹脂との硬化反応速度が遅いことが多いので、硬化促進剤を併用するが望ましい。硬化促進剤としては、たとえば1,8−ジアザビシクロウンデセン、トリフェニルホスフィン、ベンジルジメチルアミン、2,4,6−トリジメチルアミノメチルフェノールや2−エチル−4−メチルイミダゾール等が挙げられ、単独もしくは2種類以上混合して用いられる。
【0019】
本発明の絶縁接着剤層に用いられる無機質充填剤としては、電気絶縁性が良好で、しかも高熱伝導率のものが用いられる。このようなものとして酸化ケイ素、酸化アルミニウム、窒化アルミニウム、窒化ケイ素、窒化ホウ素等があり、単独系でも混合系でも用いることができる。これらのうち、酸化ケイ素、酸化アルミニウムは粒子形状が球状で高充填可能なものが安価に、容易に入手できることから、窒化ホウ素は誘電率の低いという理由で好ましい。
【0020】
又、前記無機質充填剤の添加量は絶縁接着剤層を構成する樹脂組成物中50〜85体積%が好ましい。50体積%未満では放熱性の効果が低下し実用上用途が制限されることがあるので、又、85体積%を超えると樹脂組成物中での分散が難しくなるし、また絶縁接着層の接着性の低下やボイド残存による耐電圧の低下をきたすことがあるためである。特に、高品質で安定した金属ベース回路基板を歩留まり高く生産できることから、60〜80体積%が一層好適な範囲として選択される。
【0021】
本発明において、絶縁接着剤層の厚みは10〜350μm程度あれば良いが、絶縁接着剤層の厚みが増すとき熱放散性が低下し用途面で制限されるので、一般的には10〜120μmが好ましい。20〜80μmとするときは金属ベース回路基板を生産性高く製造できることから一層好ましい。
【0022】
本発明においては、絶縁接着剤層を形成する配合物中に予めエポキシシラン、アミノシラン等のシランカップリング剤を配合することで、金属箔との接着性を向上するのが望ましい。本発明においては、実施例に示される通りに、エポキシ変性シランカップリング剤が選択される。
【0023】
金属箔としては、銅、アルミニウム、ニッケル、鉄、錫、銀、チタニウムのいずれか、これらの金属を2種類以上含む合金、或いは前記金属又は合金を使用したクラッド箔等を用いることができる。尚、前記箔の製造方法は電解法でも圧延法で作製したものでもよく、箔上にはNiメッキ、Ni−Auメッキ、半田メッキなどの金属メッキがほどこされていてもかまわないが、絶縁接着剤層との接着性の点から絶縁接着剤層に接する側の表面はエッチングやメッキ等により予め粗化処理されていることが一層好ましい。尚、金属箔上には、更に樹脂基板等の回路基板を載置することもできる。
【0024】
本発明に用いられる金属板は、アルミニウム、鉄、銅およびそれらのの合金、もしくはこれらのクラッド材等からなり、その厚みは特に規定するものではないが、熱放散性に富みしかも経済的であることから、厚み0.5〜5.0mmのアルミニウムが一般的に選択される。
【0025】
尚、本発明の金属ベース回路基板の製造方法に関しては、無機質充填剤を含有する樹脂に適宜硬化剤等の添加剤を添加した絶縁材料を準備し、金属板及び/又は導体箔上に塗布しながら、必要に応じて加熱処理等を施して、硬化させ、その後金属箔より回路形成する方法、或いは予め絶縁材料からなるシートを作製しておき、前記シートを介して金属板や金属箔を張り合わせ回路形成する方法、或いは前記方法に於いて金属箔に変えて予め回路形成されている導体回路を直接に用いる方法等の従来公知の方法で得ることができる。
【0026】
以下、実施例に基づき、本発明を更に詳細に説明する。
【0027】
【実施例】
〔実施例1〕
重量を測定した厚さ1.5mmのアルミニウム板に、樹脂組成物A(表1に示す)により、硬化後の厚さが100μmになるように絶縁接着剤層を形成し、150℃で10分加熱した。その上に厚さが35μmの銅箔をプレス積層した後、180℃で5時間の条件で樹脂組成物を硬化させて金属ベース基板を作製した。
前記金属ベース基板を用いて200℃で4000Hr保存後の銅箔ピール強度を測定した。また、前記金属ベース回路基板を用い銅箔を全面エッチングして得た基板について加熱時の重量減少率と高温エージング後の絶縁破壊電圧を測定し、絶縁破壊電圧の測定結果からULで規定するところの電気的最高使用温度を求めた。結果を表2に示す。
【0028】
<銅箔ピール強度測定方法>
テンシロン(オリエンテック社製;型式UCT−1T)を用い、室温下1cm幅で90度方向に50mm/分の速度で剥離した時の強度を求めた。
【0029】
<加熱時の重量減少率測定方法>
銅箔を全面エッチングした基板を240℃ギヤーオーブン中空気雰囲気下で200Hrエージングし、エージング前後の絶縁接着剤層重量から重量減少率を求め、予め求めたアルミニウム板の重量と無機質充填剤の配合割合を基に、樹脂組成物中の無機質充填剤を除く有機物に対する換算値で表現した。
【0030】
<絶縁破壊電圧測定方法と電気的最高使用温度の求め方>
銅箔を全面エッチングした基板を200、220、240℃ギヤーオーブン中空気雰囲気下でそれぞれ長期エージングし、随時取り出してAC耐電圧を測定し初期の特性値が1/2に低下する時間を求め、横軸に温度、縦軸に時間とするアレニウスプロットを行い、10万時間保証する電気的最高使用温度を求めた。
AC耐電圧は銀ペーストを用いスクリーン印刷で15mmφ円形パターンを作成し、パターンとアルミニウム板にリード線を接続し高圧絶縁油中にて500V/秒の昇電圧速度で荷電し、絶縁破壊により1mA以上の電流が流れた時の電圧値を求めた。
【0031】
【表1】

Figure 0004306817
【0032】
【表2】
Figure 0004306817
【0033】
〔実施例2、3〕
実施例1で樹脂組成物Aを樹脂組成物B、C(表1に示す)に変えた以外は、実施例1と同じ操作でそれぞれの金属ベース基板と基板を作製し、実施例1と同じ方法で物性測定した。これらの結果を表2に示した。
【0034】
〔比較例1〜3〕
実施例1で樹脂組成物Aを樹脂組成物D〜F(表1に示す)に変えた以外は、実施例1と同じ操作でいろいろな金属ベース基板と基板を作製し、実施例1と同じ方法で物性測定した。これらの結果を表2に示した。
【0035】
【発明の効果】
本発明の金属ベース回路基板は、無機充填剤の存在下でエポキシ樹脂に特定の硬化剤を組み合わせていることで絶縁接着剤層を得ているので、該絶縁接着剤層が耐酸化熱分解性に優れ、その結果、高温で長期に渡って耐電圧特性や接着力が良好であると共に放熱性にも優れるので、近年の電子機器の小型化、高集積化、ハイパワー化の要求に応えることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal base circuit board excellent in heat resistance and heat dissipation.
[0002]
[Prior art]
Conventionally, a metal base circuit board with an insulating layer made of an epoxy resin filled with an inorganic filler on a metal plate and a conductive circuit disposed on the insulating layer has excellent heat dissipation, so that a highly heat-generating electronic component is used. Used as a circuit board for mounting.
[0003]
In recent years, electronic devices have advanced rapidly in functionality and performance, and as a result, the use of high-density mounting and high-powered components has been promoted, and the withstand voltage characteristics have been improved for a long time at higher temperatures. There is a need for a metal-based circuit board that retains adhesive strength.
[0004]
The UL standard, which is a US certified standard, is known as an index of heat resistance, but when checking the electrical characteristics of the standard test, the insulation adhesive layer of the circuit board is stripped and exposed to air. A rigorous test has been conducted in which the deterioration of the properties of the insulating adhesive layer is examined by aging at high temperatures for a long period of time.
[0005]
In conventional metal base circuit boards, epoxy cured products containing fillers are usually used, but even three-dimensional cross-linked cured products undergo oxidation thermal decomposition at high temperatures in the air, resulting in 100,000 hours in the UL test. The guaranteed maximum operating temperature is at most around 110 ° C., which does not meet the current market needs where a maximum operating temperature of 130 ° C. is desired.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and is a metal base that is excellent in heat resistance, that is, oxidation and thermal decomposition resistance, can maintain good withstand voltage characteristics and adhesive strength at high temperatures for a long period of time, and is excellent in heat dissipation. The object is to provide a circuit board.
[0007]
[Means for Solving the Problems]
The present invention is a metal base circuit board obtained by forming a circuit by forming an insulating adhesive layer on a metal plate and etching the metal foil on the metal base board formed by press laminating the metal foil thereon. The insulating adhesive layer is composed of bisphenol A type epoxy resin, phenol novolac resin, xylene modified phenol resin, or o-cresol novolac resin, triphenylphosphine, epoxy modified silane coupling agent, and inorganic filler as essential components. When the substrate is heated in air at 240 ° C. for 200 hours, the weight reduction rate of the components of the insulating adhesive layer excluding the inorganic filler in the insulating adhesive layer is 14 to 18% by weight, and The metal base circuit board is characterized in that the maximum use temperature is 130 to 150 ° C.
[0009]
The present invention is also the above metal base circuit board, wherein the inorganic filler contained in the insulating adhesive layer is aluminum oxide having electrical insulation and good thermal conductivity .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Usually, when discussing the heat resistance of the insulating adhesive layer of the circuit board, it is often a problem how high the glass transition temperature and the heat distortion temperature of the resin constituting the insulating adhesive layer are. However, assuming that it is actually exposed for a long period of time in a high temperature atmosphere, it is necessary to consider degradation due to thermal decomposition of the resin, especially when the insulating adhesive layer is stripped and subjected to high temperature aging as in the UL test described above. Must take into account oxidative pyrolysis under air atmosphere.
[0011]
The present inventors have conducted various studies in view of the above circumstances, and that there is a close correlation between the weight reduction rate of the resin constituting the insulating adhesive layer and the retention of the withstand voltage characteristics, in particular, the epoxy resin In the case of the present invention, the weight reduction rate can be reduced by specifying the type of the curing agent in the presence of the inorganic filler, and the present inventors have obtained the knowledge that a metal base circuit board having excellent oxidation and thermal decomposition resistance can be obtained. It has come.
[0012]
That is, it is obtained by etching the entire surface of the metal foil using a metal base substrate in which a metal foil serving as a circuit conductor is placed on the metal plate via an insulating adhesive layer (that is, an insulating adhesive on the metal plate). The substrate on which only the layer is mounted) is aged for a long time under several temperature conditions, and the time for the withstand voltage to drop to half of the initial value at each temperature is obtained. When determining the maximum operating temperature guaranteed by the UL standard for 100,000 hours by plotting time on the vertical axis, the insulating adhesive layer other than the inorganic filler in the insulating adhesive layer at that time is the maximum operating temperature. It has been found that there is a high correlation with the weight loss rate of the components.
[0013]
Further, the present inventors have found that the weight reduction rate involves the oxidative decomposition of the components of the insulating adhesive layer other than the inorganic filler in the insulating adhesive layer by air, and the oxidative decomposition proceeds from the surface. Therefore, under the influence of the thickness of the insulating adhesive layer, the weight reduction rate decreases as the thickness increases, and the relationship is derived as an empirical formula to arrive at the present invention.
[0014]
Examples of the resin used for the insulating adhesive layer of the present invention include resins such as epoxy resins, polyimide resins, phenol resins, and fluorine resins, but they are relatively low viscosity at room temperature or under heating and are easy to handle. An epoxy resin having an excellent overall balance of physical properties, such as excellent adhesiveness, is preferred. In the present invention, a bisphenol A type epoxy resin is selected as shown in Examples described later.
[0015]
Examples of the epoxy resin include general-purpose epoxy resins such as a bisphenol A type epoxy resin, a phenol novolac type epoxy resin, a cresol novolak type epoxy resin, and a polyfunctional type epoxy resin. A combination of a heat resistant resin such as a polyimide resin may be used.
[0016]
Although the characteristics of the epoxy resin largely depend on the curing agent, a phenolic curing agent is preferable as the curing agent of the present invention. The most basic phenolic curing agent is a novolak-type or resol-type initial reaction product obtained by condensation or addition of an aromatic hydrocarbon having a phenolic hydroxyl group and an aldehyde, and the moisture resistance of the cured product. The novolak type is desirable from the viewpoint of impurities.
[0017]
The aromatic hydrocarbon having a phenolic hydroxyl group is not particularly limited, and examples thereof include alkyl-substituted phenols such as phenol, cresol and xylenol, halogenophenols such as chlorophenol and bromophenol, resorcin, catechol, hydroquinone and the like. Aromatic compounds having two or more phenolic hydroxyl groups, bisphenols such as bisphenol A, bisphenol F, bisphenol AF, bisphenol S, 1-naphthol, 2-naphthol, 1,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, etc. Naphthols, hydroxyanthracene and the like. In addition, as modified products thereof, aromatic hydrocarbons having phenolic hydroxyl groups and compounds having a triazine ring in aldehydes and compounds having at least two ethylenically unsaturated bonds such as divinylbenzene were reacted. Things can be used. Moreover, modified phenol resins, such as paraxylylene modified phenol resin, dicyclopentadiene modified phenol resin, terpene modified phenol resin, may be used. In the case of an aromatic compound having two or more phenolic hydroxyl groups, it can be used as a curing agent as it is. In the present invention, as shown in the examples, a phenol novolac resin, a xylene-modified phenol resin, or an o-cresol novolac resin is suitable and selected.
[0018]
Further, even if the phenol-based curing agent is a heat-curing type, the curing reaction rate with the epoxy resin is often slow at a normal temperature, so it is desirable to use a curing accelerator in combination. Examples of the curing accelerator include 1,8-diazabicycloundecene, triphenylphosphine, benzyldimethylamine, 2,4,6-tridimethylaminomethylphenol and 2-ethyl-4-methylimidazole. It is used alone or in combination of two or more.
[0019]
As the inorganic filler used in the insulating adhesive layer of the present invention, those having good electrical insulation and high thermal conductivity are used. Such materials include silicon oxide, aluminum oxide, aluminum nitride, silicon nitride, boron nitride, and the like, which can be used alone or in a mixed system. Of these, boron oxide is preferable because silicon oxide and aluminum oxide have a spherical particle shape and can be highly filled, and can be easily obtained at low cost.
[0020]
The amount of the inorganic filler added is preferably 50 to 85% by volume in the resin composition constituting the insulating adhesive layer. If it is less than 50% by volume, the effect of heat dissipation may be reduced, and the practical use may be limited. If it exceeds 85% by volume, dispersion in the resin composition becomes difficult, and adhesion of the insulating adhesive layer is difficult. This is because the withstand voltage and the withstand voltage may decrease due to the remaining voids. In particular, since a high-quality and stable metal base circuit board can be produced with a high yield, 60 to 80% by volume is selected as a more suitable range.
[0021]
In the present invention, the thickness of the insulating adhesive layer may be about 10 to 350 μm. However, when the thickness of the insulating adhesive layer is increased, the heat dissipating property is lowered and limited in terms of use. Is preferred. A thickness of 20 to 80 μm is more preferable because the metal base circuit board can be manufactured with high productivity.
[0022]
In the present invention, it is desirable to improve the adhesion to the metal foil by blending a silane coupling agent such as epoxy silane or amino silane in advance in the blend forming the insulating adhesive layer. In the present invention, an epoxy-modified silane coupling agent is selected as shown in the examples.
[0023]
As the metal foil, copper, aluminum, nickel, iron, tin, silver, titanium, an alloy containing two or more of these metals, or a clad foil using the metal or alloy can be used. The foil manufacturing method may be an electrolytic method or a rolling method, and the foil may be plated with a metal such as Ni plating, Ni-Au plating, or solder plating. From the viewpoint of adhesiveness with the agent layer, it is more preferable that the surface in contact with the insulating adhesive layer is roughened in advance by etching, plating or the like. Note that a circuit board such as a resin board can be further placed on the metal foil.
[0024]
The metal plate used in the present invention is made of aluminum, iron, copper and alloys thereof, or cladding materials thereof, and the thickness thereof is not particularly specified, but is rich in heat dissipation and economical. Therefore, aluminum having a thickness of 0.5 to 5.0 mm is generally selected.
[0025]
In addition, regarding the manufacturing method of the metal base circuit board of this invention, the insulating material which added additives, such as a hardening | curing agent suitably, to the resin containing an inorganic filler is prepared, and it apply | coats on a metal plate and / or conductor foil. However, if necessary, heat treatment or the like is performed and cured, and then a circuit is formed from the metal foil, or a sheet made of an insulating material is prepared in advance, and the metal plate or the metal foil is laminated through the sheet. It can be obtained by a conventionally known method such as a method of forming a circuit, or a method of directly using a conductor circuit formed in advance in place of the metal foil in the above method.
[0026]
Hereinafter, based on an Example, this invention is demonstrated still in detail.
[0027]
【Example】
[Example 1]
An insulating adhesive layer was formed on an aluminum plate having a thickness of 1.5 mm, which was measured for weight, with a resin composition A (shown in Table 1) so that the thickness after curing was 100 μm. Heated. A copper foil having a thickness of 35 μm was press laminated thereon, and then the resin composition was cured at 180 ° C. for 5 hours to prepare a metal base substrate.
The copper foil peel strength after storage for 4000 hours at 200 ° C. was measured using the metal base substrate. In addition, the weight loss rate during heating and the dielectric breakdown voltage after high-temperature aging are measured on a substrate obtained by etching the entire surface of the copper foil using the metal base circuit board, and the UL is defined from the measurement result of the dielectric breakdown voltage The maximum electrical use temperature was determined. The results are shown in Table 2.
[0028]
<Method for measuring copper foil peel strength>
Tensilon (Orientec Co., Ltd .; model UCT-1T) was used, and the strength when peeled at a speed of 50 mm / min in a 90-degree direction at 1 cm width at room temperature was determined.
[0029]
<Method for measuring weight loss during heating>
The substrate after etching the entire surface of the copper foil was aged in a 240 ° C. gear oven in an air atmosphere for 200 hours, and the weight reduction rate was determined from the weight of the insulating adhesive layer before and after aging. Based on the above, it was expressed as a conversion value with respect to organic matter excluding the inorganic filler in the resin composition.
[0030]
<Dielectric breakdown voltage measurement method and how to determine the maximum electrical operating temperature>
The substrate with the entire copper foil etched was aged for a long period of time in an air atmosphere in a gear oven at 200, 220, and 240 ° C., taken out at any time, measured for AC withstand voltage, and found the time for the initial characteristic value to drop to 1/2, An Arrhenius plot with temperature on the horizontal axis and time on the vertical axis was performed to determine the maximum electrical use temperature guaranteed for 100,000 hours.
The AC withstand voltage is a 15mmφ circular pattern created by screen printing using silver paste, and a lead wire is connected to the pattern and an aluminum plate and charged in a high-pressure insulating oil at a rising voltage rate of 500V / sec. The voltage value when the current of was flowing was obtained.
[0031]
[Table 1]
Figure 0004306817
[0032]
[Table 2]
Figure 0004306817
[0033]
[Examples 2 and 3]
Except that the resin composition A was changed to resin compositions B and C (shown in Table 1) in Example 1, the same metal base substrate and substrate were prepared as in Example 1, and the same as in Example 1. The physical properties were measured by the method. These results are shown in Table 2.
[0034]
[Comparative Examples 1-3]
Except that the resin composition A was changed to resin compositions D to F (shown in Table 1) in Example 1, various metal base substrates and substrates were prepared by the same operation as in Example 1, and the same as in Example 1. The physical properties were measured by the method. These results are shown in Table 2.
[0035]
【The invention's effect】
Since the metal-based circuit board of the present invention obtains an insulating adhesive layer by combining a specific curing agent with an epoxy resin in the presence of an inorganic filler, the insulating adhesive layer is resistant to oxidation and thermal decomposition. As a result, it has excellent withstand voltage characteristics and adhesive strength over a long period of time at high temperatures, and it also has excellent heat dissipation, meeting the recent demands for downsizing, higher integration, and higher power of electronic devices. Can do.

Claims (2)

金属板上に絶縁接着剤層を形成し、その上に金属箔をプレス積層してなる金属ベース基板の前記金属箔をエッチングして回路を形成してなる金属ベース回路基板であって、絶縁接着剤層がビスフェノールA型エポキシ樹脂とフェノールノボラック樹脂、キシレン変性フェノール樹脂、又はo−クレゾールノボラック樹脂のいずれかとトリフェニルホスフィンとエポキシ変性シランカップリング剤と無機質充填剤とを必須成分としてなり、該基板を空気中で240℃200時間加熱したときの前記絶縁接着剤層の無機充填剤を除いた絶縁接着剤層の成分の重量減少率が14〜18重量%であり、しかも電気的最高使用温度が130〜150℃であることを特徴とする金属ベース回路基板 A metal base circuit board formed by forming a circuit by forming an insulating adhesive layer on a metal plate and etching the metal foil on the metal base board formed by press laminating a metal foil on the metal board. The agent layer comprises any of bisphenol A type epoxy resin and phenol novolak resin, xylene-modified phenol resin, or o-cresol novolak resin, triphenylphosphine, epoxy-modified silane coupling agent, and inorganic filler, and the substrate The weight reduction rate of the components of the insulating adhesive layer excluding the inorganic filler of the insulating adhesive layer when heated at 240 ° C. for 200 hours in the air is 14 to 18% by weight, and the maximum electrical use temperature is metal base circuit board, which is a 130 to 150 ° C.. 絶縁接着剤層に含まれる無機質充填剤が酸化アルミニウムであることを特徴とする請求項1記載の金属ベース回路基板。2. The metal base circuit board according to claim 1, wherein the inorganic filler contained in the insulating adhesive layer is aluminum oxide .
JP17831697A 1997-07-03 1997-07-03 Metal base circuit board Expired - Lifetime JP4306817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17831697A JP4306817B2 (en) 1997-07-03 1997-07-03 Metal base circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17831697A JP4306817B2 (en) 1997-07-03 1997-07-03 Metal base circuit board

Publications (2)

Publication Number Publication Date
JPH1126935A JPH1126935A (en) 1999-01-29
JP4306817B2 true JP4306817B2 (en) 2009-08-05

Family

ID=16046357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17831697A Expired - Lifetime JP4306817B2 (en) 1997-07-03 1997-07-03 Metal base circuit board

Country Status (1)

Country Link
JP (1) JP4306817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5027592B2 (en) * 2007-08-20 2012-09-19 パナソニック株式会社 Electrostatic atomizer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693005B2 (en) * 1990-02-16 1997-12-17 三菱電機株式会社 Metal core substrate and manufacturing method thereof
JP2842037B2 (en) * 1992-04-14 1998-12-24 日立化成工業株式会社 Printed wiring board with metal core
JPH05291714A (en) * 1992-04-14 1993-11-05 Hitachi Chem Co Ltd Metal core-containing board for printed wiring use
JP2707940B2 (en) * 1993-01-22 1998-02-04 住友金属工業株式会社 Insulating board for printed wiring board
JPH07135380A (en) * 1993-11-10 1995-05-23 Hitachi Chem Co Ltd Metal base board

Also Published As

Publication number Publication date
JPH1126935A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
JP5761639B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
TWI553055B (en) Resin composition, resin composition sheet, method of producing resin composition sheet, resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, led optical source member and power semiconductor device
KR100610649B1 (en) Resin composition, prepreg, laminate sheet and printed wiring board using the same
JP4890063B2 (en) Resin composition, varnish obtained using this resin composition, film adhesive and copper foil with film adhesive
TWI780176B (en) Copper clad laminate and print circuit board comprising the same
KR20140011391A (en) Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
WO2009092064A2 (en) Electrically conductive adhesive
JP6276498B2 (en) Thermosetting resin composition, heat conductive sheet, and semiconductor module
KR101766552B1 (en) Laminate for circuit boards, metal-based circuit board, and power module
WO2018173945A1 (en) Resin composition for circuit board, and metal-base circuit board in which same is used
JP2007012876A (en) Laminated material for circuit board and manufacturing method thereof
JPWO2008078409A1 (en) Conductive paste
JP5622267B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
JP4536240B2 (en) Curable resin composition and metal base circuit board using the same
JP4306817B2 (en) Metal base circuit board
JP2017022033A (en) Silver paste and manufacturing method of cured body of silver paste
JP7383971B2 (en) Resin compositions, cured resin products and composite molded bodies
WO2022176448A1 (en) Thermosetting resin composition, susbstrate for power modules, and power module
WO2018056205A1 (en) Method for producing heat dissipation structure
JP2007194405A (en) Epoxy resin composition for heat conduction
JP4872166B2 (en) Electrical circuit using conductive paste, method for manufacturing the same, and method for manufacturing conductive paste
JP2005281509A (en) Curable resin composition and metal-based circuit substrate by using the same
CN107851624A (en) Power module substrate, power model circuit substrate and power model
JP3683506B2 (en) Process for producing conductive paste composition for via filling
JP4187062B2 (en) Metal base circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070308

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

EXPY Cancellation because of completion of term