JP4304448B2 - Method for installing rotor blades in non-contact stirrer and non-contact stirrer using the method - Google Patents

Method for installing rotor blades in non-contact stirrer and non-contact stirrer using the method Download PDF

Info

Publication number
JP4304448B2
JP4304448B2 JP2003306552A JP2003306552A JP4304448B2 JP 4304448 B2 JP4304448 B2 JP 4304448B2 JP 2003306552 A JP2003306552 A JP 2003306552A JP 2003306552 A JP2003306552 A JP 2003306552A JP 4304448 B2 JP4304448 B2 JP 4304448B2
Authority
JP
Japan
Prior art keywords
container
magnetic field
permanent magnet
superconducting bulk
bulk body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003306552A
Other languages
Japanese (ja)
Other versions
JP2005074287A (en
Inventor
徹雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2003306552A priority Critical patent/JP4304448B2/en
Publication of JP2005074287A publication Critical patent/JP2005074287A/en
Application granted granted Critical
Publication of JP4304448B2 publication Critical patent/JP4304448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、攪拌に供される被処理液体を収納する容器内で被処理液体を攪拌する回転部分が容器内壁に接触することなく回転する非接触攪拌装置に関するものである。    The present invention relates to a non-contact stirrer in which a rotating portion that stirs a liquid to be treated in a container that accommodates the liquid to be agitated rotates without contacting the inner wall of the container.

超電導を利用して被処理液体中に磁気浮上させた回転翼を回転させ、被処理液体を攪拌する非接触攪拌装置が特許文献1に記載されている。図3において、41は被処理液体を入れた非磁性体よりなる容器で、冷凍機42により超電導遷移温度以下に冷却されると超電導状態となる超電導バルク体43が、容器41の底部の下方に近接して設置されている。容器41内には永久磁石44を包囲して複数の攪拌翼40が設けられた回転翼45が容器41の底面を挟んで超電導バルク体43に対向して配置され、この永久磁石44の磁場を超電導バルク体43が捕捉し、超電導バルク体43のピン止め力により永久磁石44が超電導バルク体43と所定間隙を保持して被処理液体中に支持される。永久磁石44の上方には垂直に延在する支持軸46が設けられ、この支持軸46の先端に受動永久磁石47が取り付けられている。受動永久磁石47を回転させるための能動永久磁石48が容器41の外部に受動永久磁石47と対向して設置され、この能動永久磁石48がモータ等の回転機構49により回転駆動される。受動永久磁石47と能動永久磁石48により磁気カップリング50が構成され、回転機構49により能動永久磁石48が回転されると受動永久磁石47が非接触で回転される。   Patent Document 1 discloses a non-contact stirring device that rotates a rotor blade magnetically levitated in a liquid to be processed using superconductivity to stir the liquid to be processed. In FIG. 3, reference numeral 41 denotes a container made of a non-magnetic material containing a liquid to be treated. It is installed in close proximity. A rotating blade 45 that surrounds the permanent magnet 44 and is provided with a plurality of stirring blades 40 is disposed in the container 41 so as to face the superconducting bulk body 43 with the bottom surface of the container 41 interposed therebetween. The superconducting bulk body 43 is captured, and the permanent magnet 44 is supported in the liquid to be treated while maintaining a predetermined gap with the superconducting bulk body 43 by the pinning force of the superconducting bulk body 43. A support shaft 46 extending vertically is provided above the permanent magnet 44, and a passive permanent magnet 47 is attached to the tip of the support shaft 46. An active permanent magnet 48 for rotating the passive permanent magnet 47 is disposed outside the container 41 so as to face the passive permanent magnet 47, and the active permanent magnet 48 is rotationally driven by a rotating mechanism 49 such as a motor. A magnetic coupling 50 is constituted by the passive permanent magnet 47 and the active permanent magnet 48. When the active permanent magnet 48 is rotated by the rotation mechanism 49, the passive permanent magnet 47 is rotated in a non-contact manner.

超電導バルク体43のピン止め力により永久磁石44は容器41内で容器の内壁に触れることなく垂直方向に保持されるので、磁気カップリング50の受動永久磁石48も能動永久磁石49と所定間隙をもって保持される。回転機構49の回転力が磁気カップリング50を介して支持軸46に伝えられ、回転翼45が容器41の内壁と非接触で回転駆動される。このように、回転翼45は被処理液体中で他の構成部品と非接触に支持されて回転されるので、接触部分でおこる摩擦磨耗による不純物などの混入が全くない状態で被処理液体を攪拌することができる。
特開2000−124030号公報(第〔0015〕乃至〔0017〕欄、図1)
Since the permanent magnet 44 is held in the vertical direction in the container 41 without touching the inner wall of the container by the pinning force of the superconducting bulk body 43, the passive permanent magnet 48 of the magnetic coupling 50 also has a predetermined gap from the active permanent magnet 49. Retained. The rotational force of the rotation mechanism 49 is transmitted to the support shaft 46 via the magnetic coupling 50, and the rotary blade 45 is rotationally driven without contact with the inner wall of the container 41. In this way, since the rotor blade 45 is supported and rotated in a non-contact manner with other components in the liquid to be processed, the liquid to be processed is agitated in a state where there is no mixing of impurities due to frictional wear occurring at the contact portion. can do.
JP 2000-124030 A (columns [0015] to [0017], FIG. 1)

上記特許文献1における非接触攪拌装置を機能させるには、攪拌を行なうのに先立って、超電導バルク体43を冷凍機42で冷却して超電導状態にする期間、永久磁石44を容器41の底面から離れた所定位置に維持する必要がある。このため、永久磁石44をスペーサ52を介在して容器41の底面に載置し、永久磁石44の発生する磁場を超電導バルク体43に印加し、超電導バルク体43を冷却して超電導状態にした後に、スペーサ52を除去する必要がある。    In order for the non-contact stirrer in Patent Document 1 to function, the permanent magnet 44 is removed from the bottom surface of the container 41 during the period in which the superconducting bulk body 43 is cooled by the refrigerator 42 and kept in a superconducting state prior to stirring. It is necessary to maintain a predetermined position apart. For this reason, the permanent magnet 44 is placed on the bottom surface of the container 41 with the spacer 52 interposed therebetween, the magnetic field generated by the permanent magnet 44 is applied to the superconducting bulk body 43, and the superconducting bulk body 43 is cooled to a superconducting state. It is necessary to remove the spacer 52 later.

しかしながら、容器41の内部は平滑にする場合が多く、スペーサ52を容器41の底面に設置する目印となる突起やへこみなどを付けにくい。また、目印なしでスペーサ52を設置すると、内部から超電導バルク体43の位置を把握することができず、スペーサ52延いては永久磁石44を超電導バルク体43と正確に位置を合わせることが困難である。また、超電導バルク体43の冷却が終了したのちスペーサ52を容器41の底面から取り出す間に、不純物が容器41内に侵入る虞があり、特に、被処理液体が容器41にすでに充填されている場合は、被処理液体に不純物が混入し、あるいは外気が混入して汚染する虞があった。    However, the inside of the container 41 is often smooth, and it is difficult to attach a protrusion or a dent that serves as a mark for installing the spacer 52 on the bottom surface of the container 41. If the spacer 52 is installed without a mark, the position of the superconducting bulk body 43 cannot be grasped from the inside, and it is difficult to accurately align the spacer 52 and the permanent magnet 44 with the superconducting bulk body 43. is there. Further, after the cooling of the superconducting bulk body 43 is completed, there is a possibility that impurities may enter the container 41 while the spacer 52 is taken out from the bottom surface of the container 41. In particular, the liquid to be processed is already filled in the container 41. In such a case, there is a possibility that the liquid to be treated is contaminated with impurities or outside air.

本発明は係る従来の不具合を解消するためになされたもので、超電導バルク体を冷却して回転翼の永久磁石と対応する磁場捕捉用磁石の磁場を捕捉させるときに、被処理液体に汚染や不純物混入が生じることなく、且つ永久磁石延いては回転翼を簡便な方法で超電導バルク体から所定間隙を保って設置することである。    The present invention has been made to solve the conventional problems, and when the superconducting bulk body is cooled to capture the magnetic field of the magnetic field capturing magnet corresponding to the permanent magnet of the rotor blade, the liquid to be treated is contaminated. It is to install a permanent magnet and a rotor blade while keeping a predetermined gap from the superconducting bulk body by a simple method without mixing impurities.

前記課題を解決するため、請求項1に係る発明の構成上の特徴は、攪拌に供される被処理液体を収納する非磁性体の容器と、超電導バルク体を冷凍機で冷却する構造の磁極構成物と、永久磁石を有し前記容器内で前記被処理液体を攪拌するための回転翼と、該回転翼を容器外より回転させるための回転力を伝達する磁気カップリングと、を備え、前記容器の外表面に対して接近した攪拌位置に位置する前記超電導バルク体と、前記永久磁石との間をピン止め力により所定間隙に保持し、全ての回転部分が容器内壁に接触することなく前記磁気カップリングで前記回転翼を回転させるようにした非接触攪拌装置における回転翼の設置方法において、前記磁極構成物を前記容器から離間した磁場捕捉位置に相対的に移動し、前記回転翼の永久磁石又は前記回転翼の永久磁石と同程度の磁場を発する磁石を磁場捕捉用磁石として前記超電導バルク体と接触させずに前記所定間隙を保って対向させて配置し、前記超電導バルク体を前記冷凍機により超電導遷移温度以下に冷却して前記磁場捕捉用磁石の磁場を前記超電導バルク体に捕捉した後に、前記超電導バルク体を前記容器に対して相対的に移動して前記攪拌位置に位置し、前記回転翼を前記永久磁石が前記磁極構成物と対向するように前記容器内に入れることにより前記回転翼を前記永久磁石と前記超電導バルク体との磁場の作用により支持することである。 In order to solve the above-mentioned problems, the constitutional feature of the invention according to claim 1 is that a non-magnetic container for storing a liquid to be treated for stirring and a magnetic pole having a structure in which a superconducting bulk body is cooled by a refrigerator. A component, a rotating blade having a permanent magnet for stirring the liquid to be treated in the container, and a magnetic coupling for transmitting a rotational force for rotating the rotating blade from outside the container, The superconducting bulk body located at a stirring position close to the outer surface of the container and the permanent magnet are held in a predetermined gap by a pinning force, and all rotating parts do not contact the inner wall of the container. In the non-contact stirring apparatus in which the rotor blade is rotated by the magnetic coupling, the magnetic pole component is relatively moved to a magnetic field capturing position separated from the container, and the rotor blade is moved. permanent magnet Wherein the magnet emits a magnetic field comparable to the permanent magnet of the rotor blades to face while maintaining a predetermined gap without contact with the bulk superconductor as the magnetic field capture magnet positioned, the superconducting bulk the refrigerator the was cooled to below the superconducting transition temperature field of the magnetic field trapped magnet after captured in the superconducting bulk body, and positioning the superconducting bulk body to the stirring position moving relative to said container, said The rotor is supported by the action of a magnetic field between the permanent magnet and the superconducting bulk body by placing the rotor in the container so that the permanent magnet faces the magnetic pole component .

請求項2に係る発明の構成上の特徴は、請求項1に記載の非接触攪拌装置における回転翼の設置方法において、前記磁場捕捉用磁石の磁場を前記超電導バルク体に捕捉させるとき、前記磁極構成物の超電導バルク体と前記磁場捕捉用磁石との間に所定厚さの非磁性材料からなるスペーサを介在させ、前記磁場捕捉用磁石及び前記超電導バルク体を安定して前記所定間隙を保った状態で前記冷凍機の運転により前記超電導バルク体を前記超電導遷移温度以下に冷却することである。   The structural feature of the invention according to claim 2 is that, in the non-contact stirrer installation method according to claim 1, when the magnetic field of the magnetic field capturing magnet is captured by the superconducting bulk body, the magnetic pole A spacer made of a nonmagnetic material having a predetermined thickness is interposed between the superconducting bulk body of the component and the magnetic field capturing magnet, and the predetermined gap is stably maintained between the magnetic field capturing magnet and the superconducting bulk body. The superconducting bulk body is cooled to the superconducting transition temperature or lower by operating the refrigerator in a state.

請求項に係る発明の構成上の特徴は、攪拌に供される被処理液体を収納する非磁性体の容器と、超電導バルク体を冷凍機で冷却する構造の磁極構成物と、永久磁石を有し前記容器内で前記被処理液体を攪拌するための回転翼と、該回転翼を容器外より回転させるための回転力を伝達する磁気カップリングと、を備え、前記容器の外表面に対して接近した攪拌位置に位置する前記超電導バルク体と、前記永久磁石との間をピン止め力により所定間隙に保持し、全ての回転部分が容器内壁に接触することなく前記磁気カップリングで前記回転翼を回転させるようにした非接触攪拌装置において、前記磁極構成物を前記容器から離間した磁場捕捉位置と前記攪拌位置との間で前記容器に対して相対的に移動させる移動装置を設け、前記回転翼の永久磁石又は前記回転翼の永久磁石と同程度の磁場を発する磁石を磁場捕捉用磁石として前記磁場捕捉位置において前記超電導バルク体上に非磁性体のスペーサにより前記所定間隙を保って配置し前記超電導バルク体を前記冷凍機により超電導遷移温度以下に冷却して前記磁場捕捉用磁石の磁場を前記超電導バルク体に捕捉した後に、前記超電導バルク体を前記移動装置により前記容器に対して相対的に移動して前記攪拌位置に位置し、前記永久磁石が前記磁極構成物と対向するように前記容器内に入れられた前記回転翼を前記永久磁石と前記超電導バルク体との磁場の作用により支持することである。 The structural features of the invention according to claim 3 are: a non-magnetic container for storing a liquid to be treated for stirring; a magnetic pole structure having a structure in which a superconducting bulk body is cooled by a refrigerator; and a permanent magnet. A rotating blade for stirring the liquid to be treated in the container, and a magnetic coupling for transmitting a rotational force for rotating the rotating blade from the outside of the container, with respect to the outer surface of the container The superconducting bulk body located at the agitating position close to each other and the permanent magnet are held in a predetermined gap by a pinning force, and all the rotating parts are rotated by the magnetic coupling without contacting the inner wall of the container. In the non-contact stirrer configured to rotate the wing, a moving device is provided that moves the magnetic pole component relative to the container between the magnetic field capturing position spaced from the container and the stirring position. Eternity of rotor Wherein on the bulk superconductors in the magnetic field catch position magnets or magnet emits a magnetic field comparable to the permanent magnet of the rotor blade as a magnetic field capture magnet by a spacer of non-magnetic material with a predetermined gap disposed the superconducting bulk After the body is cooled to the superconducting transition temperature or lower by the refrigerator and the magnetic field of the magnetic field capturing magnet is captured by the superconducting bulk body, the superconducting bulk body is moved relative to the container by the moving device. By supporting the rotating blades placed in the container so that the permanent magnet faces the magnetic pole component by the action of a magnetic field between the permanent magnet and the superconducting bulk body. is there.

請求項5に係る発明の構成上の特徴は、請求項4に記載の非接触攪拌装置において、前記移動装置は、前記磁極構成物を前記攪拌位置と前記磁場捕捉位置との間で移動するものであることを特徴とする非接触攪拌装置。   The structural feature of the invention according to claim 5 is the non-contact stirrer according to claim 4, wherein the moving device moves the magnetic pole component between the stirring position and the magnetic field capturing position. A non-contact stirrer characterized by the above.

上記のように構成した請求項1に係る発明においては、磁極構成物の超電導バルク体を被処理液体を収納する容器から離間した磁場捕捉位置に相対的に移動する。回転翼の永久磁石又は前記回転翼の永久磁石と同程度の磁場を発する磁石を磁場捕捉用磁石として超電導バルク体と接触させずに所定間隙を保って対向させて配置する。超電導バルク体を冷凍機により超電導遷移温度以下に冷却して磁場捕捉用磁石の磁場を超電導バルク体に捕捉する。超電導バルク体を容器に対して相対的に移動して容器の外表面に接近した攪拌位置に移動する。回転翼を永久磁石が磁極構成物と対向するように容器内に入れることにより回転翼を永久磁石と超電導バルク体との磁場の作用により支持する。 In the invention according to claim 1 configured as described above, the superconducting bulk body of the magnetic pole component is relatively moved to the magnetic field capturing position separated from the container for storing the liquid to be processed. A permanent magnet of the rotor blade or a magnet that generates a magnetic field of the same level as the permanent magnet of the rotor blade is arranged as a magnetic field capturing magnet so as to face each other with a predetermined gap without contacting the superconducting bulk body. The superconducting bulk body is cooled to below the superconducting transition temperature by a refrigerator, and the magnetic field of the magnetic field capturing magnet is captured by the superconducting bulk body. The superconducting bulk body is moved relative to the container and moved to a stirring position close to the outer surface of the container. The rotor blade is supported by the action of the magnetic field between the permanent magnet and the superconducting bulk body by placing the rotor blade in the container so that the permanent magnet faces the magnetic pole component .

これにより、超電導バルク体を冷却して回転翼の永久磁石と対応する磁場捕捉用磁石、すなわち回転翼の永久磁石自身又は前記回転翼の永久磁石と同程度の磁場を発する磁石の磁場を捕捉させるときに、被処理液体に汚染や不純物混入が生じることがなく、且つ永久磁石延いては回転翼を簡便な方法で超電導バルク体に対して所定間隙を保ち正確に対向して設置することができる。また、回転翼を容器底面などの容器壁面から所望間隙を保って支持することができるので、容器壁面の変形量が許容範囲内であれば、永久磁石の磁場を超電導バルク体に捕捉するときの両者の間隙を変形量に合わせて設定することにより、回転翼を容器壁面の変形部分から離して支持することができ、超電導バルク体の位置を調整することにより磁気カップリング部も含めて回転翼全体を容器内部の所望位置に容器内面に接触することなく安定して支持することができる。 As a result, the superconducting bulk body is cooled and the magnetic field capturing magnet corresponding to the permanent magnet of the rotor blade, that is, the magnetic field of the magnet that generates the same magnetic field as the permanent magnet of the rotor blade or the permanent magnet of the rotor blade is captured. In some cases, the liquid to be treated is not contaminated or mixed with impurities, and the permanent magnet and the rotor blade can be installed in a simple manner with a predetermined gap with respect to the superconducting bulk body and accurately facing each other. . In addition, since the rotor blade can be supported from the container wall surface such as the container bottom surface while maintaining a desired gap, if the deformation amount of the container wall surface is within an allowable range, the magnetic field of the permanent magnet can be captured in the superconducting bulk body. By setting the gap between them according to the amount of deformation, the rotor blade can be supported away from the deformed portion of the vessel wall surface, and the rotor blade including the magnetic coupling part can be adjusted by adjusting the position of the superconducting bulk body. The whole can be stably supported at a desired position inside the container without contacting the inner surface of the container.

上記のように構成した請求項2に係る発明においては、磁極構成物の超電導バルク体と回転翼の永久磁石と対応する磁場捕捉用磁石との間に所定厚さの非磁性材料からなるスペーサを介在させることにより、磁場捕捉用磁石及び前記超電導バルク体が安定して所定間隙を保った状態で、冷凍機の運転により超電導バルク体を超電導遷移温度以下に冷却して磁場捕捉用磁石の磁場を超電導バルク体に捕捉させることができる。   In the invention according to claim 2 configured as described above, a spacer made of a nonmagnetic material having a predetermined thickness is provided between the superconducting bulk body of the magnetic pole component, the permanent magnet of the rotor blade, and the corresponding magnetic field capturing magnet. By interposing, with the magnetic field capturing magnet and the superconducting bulk body stably maintaining a predetermined gap, the superconducting bulk body is cooled below the superconducting transition temperature by operating the refrigerator, and the magnetic field capturing magnet magnetic field is reduced. It can be trapped in a superconducting bulk body.

上記のように構成した請求項3に係る発明においては、磁極構成物の超電導バルク体を移動装置により磁場捕捉位置に相対的に移動する。回転翼の永久磁石又は回転翼の永久磁石と同程度の磁場を発する磁石を磁場捕捉用磁石として磁場捕捉位置で超電導バルク体上に非磁性体のスペーサにより所定間隙を保って配置する。超電導バルク体を冷凍機により超電導遷移温度以下に冷却して磁場捕捉用磁石の磁場を超電導バルク体に捕捉する。超電導バルク体を移動装置により容器に対して相対的に移動して容器の外表面に接近した攪拌位置に相対的に移動する。永久磁石が磁極構成物と対向するように容器内に入れられた回転翼を永久磁石と超電導バルク体との磁場の作用により支持する。 In the invention according to claim 3 configured as described above, the superconducting bulk body of the magnetic pole component is relatively moved to the magnetic field capturing position by the moving device. A permanent magnet of the rotor blade or a magnet that generates a magnetic field of the same level as the permanent magnet of the rotor blade is disposed as a magnetic field capturing magnet on the superconducting bulk body at a magnetic field capturing position with a predetermined gap by a non-magnetic spacer. The superconducting bulk body is cooled to below the superconducting transition temperature by a refrigerator, and the magnetic field of the magnetic field capturing magnet is captured by the superconducting bulk body. The superconducting bulk body is moved relative to the container by the moving device and is moved relatively to the stirring position close to the outer surface of the container. A rotor blade placed in a container is supported by the action of a magnetic field between the permanent magnet and the superconducting bulk body so that the permanent magnet faces the magnetic pole component .

これにより、超電導バルク体を冷却して回転翼の永久磁石と対応する磁場捕捉用磁石の磁場を捕捉させるときに、被処理液体に汚染や不純物混入が生じることがなく、且つ永久磁石延いては回転翼を簡便な方法で超電導バルク体に対して所定間隙を保ち正確に対向して設置することができる攪拌装置を提供することができる。また、回転翼を超電導バルク体から所定間隙を保って支持する設定の自由度が増大するので、容器の形状に応じて所定間隙を調節し、例えば、緩やかな曲面の底面をもった容器に利用可能であり、底面に段差や溝があってもよい。   As a result, when the superconducting bulk body is cooled to capture the magnetic field of the magnetic field capturing magnet corresponding to the permanent magnet of the rotor blade, the liquid to be treated is not contaminated or mixed with impurities, and the permanent magnet is extended. It is possible to provide a stirrer capable of installing the rotor blades in a simple manner so as to be accurately opposed to the superconducting bulk body while maintaining a predetermined gap. In addition, since the degree of freedom of setting to support the rotor blades from the superconducting bulk body with a predetermined gap is increased, the predetermined gap is adjusted according to the shape of the container, for example, for a container having a gently curved bottom surface. Yes, there may be a step or a groove on the bottom.

上記のように構成した請求項5に係る発明においては、移動装置が磁極構成物を攪拌位置と磁場捕捉位置との間で移動するので、磁極構成物の超電導バルク体を容器の外表面に接近した攪拌位置と超電導バルク体が攪拌翼の永久磁石と対応する磁場捕捉用磁石の磁場を捕捉する磁場捕捉位置との間で容易に移動させることができる。   In the invention according to claim 5 configured as described above, since the moving device moves the magnetic pole component between the stirring position and the magnetic field capturing position, the superconducting bulk body of the magnetic pole component approaches the outer surface of the container. The stirring position and the superconducting bulk body can be easily moved between the permanent magnet of the stirring blade and the magnetic field capturing position for capturing the magnetic field of the corresponding magnetic field capturing magnet.

本発明に係る非接触攪拌装置の回転翼の設置方法およびその方法を使用した非接触攪拌装置の第1実施形態を図面に基づいて説明する。図1において、11は磁極構成物で、磁極構成物11は主として超電導バルク体12と、冷凍機13より構成され、冷凍機13は超電導バルク体12の周囲を真空断熱するための真空容器14を備え、この真空容器14内に超電導バルク体12が収納されている。真空容器14には真空減圧口15が設けられ、図示省略した真空ポンプに接続されている。冷凍機13はヘリウムガスの配管16,17によって圧縮機に接続され、超電導バルク体12を30K程度の低温に冷却する。冷凍機13は、公知のGM式のほか、パルス管冷凍機、ソルべー式、スターリング式、あるいはこれらを複数組み合わせた構成のものが用いられる。   DESCRIPTION OF EMBODIMENTS A first embodiment of a non-contact stirring device installation method and a non-contact stirring device using the method according to the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 11 denotes a magnetic pole component, and the magnetic pole component 11 is mainly composed of a superconducting bulk body 12 and a refrigerator 13. The superconducting bulk body 12 is accommodated in the vacuum vessel 14. The vacuum vessel 14 is provided with a vacuum pressure reducing port 15 and is connected to a vacuum pump (not shown). The refrigerator 13 is connected to the compressor by pipes 16 and 17 of helium gas, and cools the superconducting bulk body 12 to a low temperature of about 30K. The refrigerator 13 may be a known GM type, a pulse tube refrigerator, a solver type, a Stirling type, or a combination of these.

磁極構成物11は旋回移動装置18により磁場捕捉位置Aと攪拌位置Bの間で移動される。旋回移動装置18は、軸台19に垂直軸線回りに回転可能に軸承された回転軸20、回転軸20に一端が固定され水平方向に延在する旋回軸21等で構成され、この旋回軸21の他端に磁極構成物11が連結されている。攪拌位置Bには、非磁性体からなる容器22が固定されている。容器22は容器本体22aと開閉可能な蓋22bとから構成されている。容器本体22aの底部外表面には攪拌位置Bに位置する磁極構成物11の超電導バルク体12が対向して配置され、容器本体22a内部には超電導バルク体12によりピン止め力により支持された円盤状の永久磁石23を備えた回転翼24が配置されている。永久磁石23は、容器本体22a内部において、超電導バルク体12により下方から支持されて浮上する浮上永久磁石23である。回転翼24は、複数の攪拌翼25が浮上永久磁石23の周りに取り付けられ、浮上永久磁石23の上面中心に支持軸26が垂直に突設され、支持軸26の上端に受動永久磁石27が調整ねじ28により位置調整可能に取り付けられて構成されている。浮上永久磁石23は上面と下面で夫々異なる極性の磁石であって、例えば上面がS極であれば、下面はN極とされている。受動永久磁石27は円盤状であり、S,Nの磁極が円周方向に交互に複数の磁石を組み合わせて形成されている。受動永久磁石27の上方には蓋22bを挟んで能動永久磁石29が取り付けられている。能動永久磁石29も受動永久磁石27と同様な構造であり、連結されたモータ等による回転機構30によって回転される。これら受動永久磁石27、能動永久磁石29によって磁気カップリング31が構成される。   The magnetic pole component 11 is moved between the magnetic field capturing position A and the stirring position B by the swivel moving device 18. The swivel moving device 18 includes a rotating shaft 20 that is supported by a shaft base 19 so as to be rotatable about a vertical axis, a swiveling shaft 21 that has one end fixed to the rotating shaft 20 and extends in the horizontal direction, and the like. A magnetic pole component 11 is connected to the other end. In the stirring position B, a container 22 made of a non-magnetic material is fixed. The container 22 includes a container body 22a and an openable / closable lid 22b. The superconducting bulk body 12 of the magnetic pole component 11 located at the stirring position B is disposed opposite to the bottom outer surface of the container body 22a, and the disk supported by the superconducting bulk body 12 by the pinning force inside the container body 22a. A rotor blade 24 having a permanent magnet 23 is disposed. The permanent magnet 23 is a floating permanent magnet 23 that floats while being supported from below by the superconducting bulk body 12 inside the container body 22a. In the rotary blade 24, a plurality of stirring blades 25 are attached around the floating permanent magnet 23, a support shaft 26 projects vertically from the center of the upper surface of the floating permanent magnet 23, and a passive permanent magnet 27 is formed at the upper end of the support shaft 26. The adjustment screw 28 is attached so that the position can be adjusted. The levitation permanent magnet 23 is a magnet having different polarities on the upper surface and the lower surface. For example, if the upper surface is an S pole, the lower surface is an N pole. The passive permanent magnet 27 has a disk shape, and S and N magnetic poles are formed by alternately combining a plurality of magnets in the circumferential direction. An active permanent magnet 29 is attached above the passive permanent magnet 27 with a lid 22b interposed therebetween. The active permanent magnet 29 has the same structure as the passive permanent magnet 27 and is rotated by a rotating mechanism 30 such as a connected motor. These passive permanent magnet 27 and active permanent magnet 29 constitute a magnetic coupling 31.

磁極構成物11が旋回移動装置18により磁場捕捉位置Aに移動されたときは、磁極構成物11の超電導バルク体12の上面が近接する真空容器14の上面14a上に非磁性体のスペーサ32が載置され、スペーサ32上に回転翼24の浮上永久磁石23が磁場捕捉用磁石として載置される。これにより、冷凍機13の運転により超電導バルク体12が超電導遷移温度以下に冷却されて浮上永久磁石23の磁場を捕捉するとき、浮上永久磁石23は超電導バルク体12との間に所定隙間を保って安定して保持される。   When the magnetic pole component 11 is moved to the magnetic field capture position A by the swivel moving device 18, the nonmagnetic spacer 32 is placed on the upper surface 14 a of the vacuum vessel 14 where the upper surface of the superconducting bulk body 12 of the magnetic pole component 11 is close. The floating permanent magnet 23 of the rotor blade 24 is placed on the spacer 32 as a magnetic field capturing magnet. As a result, when the superconducting bulk body 12 is cooled below the superconducting transition temperature by the operation of the refrigerator 13 and captures the magnetic field of the levitating permanent magnet 23, the levitating permanent magnet 23 maintains a predetermined gap with the superconducting bulk body 12. And stable.

次に上記実施形態の作動について説明する。まず、磁極構成物11を旋回移動装置18により容器22から離間した磁場捕捉位置Aに移動する。次に磁極構成物11上に所定厚さの非磁性体からなるスペーサ32を載置し、スペーサ32上に回転翼24の浮上永久磁石23自身を磁場捕捉用磁石として載置する。これにより、浮上永久磁石23が磁極構成物11上に超電導バルク体12との間にスペーサ25により所定間隙を保って安定して保持され、浮上永久磁石23が発生する磁場が超電導バルク体12に印加される。冷凍機13が運転され超電導バルク体12が超電導遷移温度以下に冷却されて浮上永久磁石23の磁場を捕捉する。次に回転翼24およびスペーサ32を磁極構成物11上から取り外し、磁極構成物11を被処理液体が収納された容器22の底部外表面と対向する攪拌位置Bに旋回移動装置18により移動する。   Next, the operation of the above embodiment will be described. First, the magnetic pole component 11 is moved to the magnetic field capturing position A separated from the container 22 by the swivel moving device 18. Next, a spacer 32 made of a non-magnetic material having a predetermined thickness is placed on the magnetic pole component 11, and the floating permanent magnet 23 itself of the rotor blade 24 is placed on the spacer 32 as a magnetic field capturing magnet. As a result, the levitating permanent magnet 23 is stably held on the magnetic pole component 11 with the spacer 25 by maintaining a predetermined gap between the levitating permanent magnet 23 and the magnetic field generated by the levitating permanent magnet 23 is applied to the superconducting bulk body 12. Applied. The refrigerator 13 is operated and the superconducting bulk body 12 is cooled below the superconducting transition temperature to capture the magnetic field of the floating permanent magnet 23. Next, the rotor blade 24 and the spacer 32 are removed from the magnetic pole component 11, and the magnetic pole component 11 is moved by the swivel moving device 18 to the stirring position B facing the bottom outer surface of the container 22 in which the liquid to be processed is stored.

容器22の蓋22bを開き、浮上永久磁石23を下にし受動永久磁石27を上にして回転翼24を容器本体22a内に磁極構成物11と対向する位置に入れる。このときに磁場がすでに容器外側から内側に向かって侵入しているため、回転翼24は容器22底面に向かって強力に吸引されるが、超電導バルク12は、超電導バルク12が浮上永久磁石23の磁場を捕捉したときにスペーサ32により設定された間隙を保って浮上永久磁石23をピン止め力によって支持する。この状態で、蓋22bを閉めると、受動永久磁石27の上面が蓋22bの下面に触れることなく対向する。これにより回転翼24はいずれの部位も容器22の内壁に触れることなく容器22内に回転可能に支持される。受動永久磁石27の上面と蓋22bの下面との隙間寸法は、支持軸26に対する受動永久磁石27の上下位置を調整ねじ28により調整して設定する。このように調整ねじ28により回転翼24の両端長さ、即ち、受動永久磁石27の上面と浮上永久磁石23の下面間の距離を調整することができるので、さまざまな寸法、容量の容器22に対して回転翼24を利用することができる。   The lid 22b of the container 22 is opened, and the rotor blade 24 is placed in the container body 22a at a position facing the magnetic pole component 11 with the floating permanent magnet 23 facing down and the passive permanent magnet 27 facing up. At this time, since the magnetic field has already entered from the outside of the container to the inside, the rotor blades 24 are strongly attracted toward the bottom surface of the container 22, but the superconducting bulk 12 has the superconducting bulk 12 of the floating permanent magnet 23. When the magnetic field is captured, the floating permanent magnet 23 is supported by the pinning force while maintaining the gap set by the spacer 32. When the lid 22b is closed in this state, the upper surface of the passive permanent magnet 27 faces the lower surface of the lid 22b without touching it. As a result, the rotor blade 24 is supported in the container 22 so as to be rotatable without touching the inner wall of the container 22 at any part. The clearance dimension between the upper surface of the passive permanent magnet 27 and the lower surface of the lid 22 b is set by adjusting the vertical position of the passive permanent magnet 27 with respect to the support shaft 26 using the adjusting screw 28. In this way, the adjustment screw 28 can adjust the length of both ends of the rotor blade 24, that is, the distance between the upper surface of the passive permanent magnet 27 and the lower surface of the floating permanent magnet 23. On the other hand, the rotary blade 24 can be used.

回転機構30に連結された能動永久磁石29を蓋22bの上面に触れることなく受動永久磁石27と対向させて図略の架台に固定する。回転機構30により能動永久磁石29を回転駆動すると、能動永久磁石29と磁気カップリング31を構成する受動永久磁石27が蓋22bを透過する磁場により吸着呼応して回転され、回転翼22を回転させて容器22に収納された被処理液体を複数の攪拌翼25により攪拌する。回転翼24が回転中で、攪拌作業が実行されている間も超電導バルク体12は浮上永久磁石23をピン止め力によって支持するので、回転翼24は容器22の内壁に触れることなく完全に非接触の状態にある。   The active permanent magnet 29 connected to the rotating mechanism 30 is fixed to a frame (not shown) so as to face the passive permanent magnet 27 without touching the upper surface of the lid 22b. When the active permanent magnet 29 is rotationally driven by the rotation mechanism 30, the passive permanent magnet 27 constituting the active permanent magnet 29 and the magnetic coupling 31 is rotated in response to the magnetic field transmitted through the lid 22 b to rotate the rotor blade 22. Then, the liquid to be treated stored in the container 22 is stirred by the plurality of stirring blades 25. Since the superconducting bulk body 12 supports the floating permanent magnet 23 by the pinning force even while the rotating blade 24 is rotating and the agitation operation is being performed, the rotating blade 24 does not touch the inner wall of the container 22 completely. In contact.

なお、スペーサ32によって設定され超電導バルク体12の磁場捕捉により決定される超電導バルク体12と浮上永久磁石23との間隙は、磁気カップリング31による能動永久磁石29と受動永久磁石27との間に生じる吸引力によって多少増減するため、必ずしもスペーサ32の厚さに超電導バルク体12の上面と真空容器14の上面との間隔を加算した距離に厳密には一致しないが、回転翼24による攪拌動作には何ら影響を与えない。   Note that the gap between the superconducting bulk body 12 and the levitation permanent magnet 23 set by the spacer 32 and determined by capturing the magnetic field of the superconducting bulk body 12 is between the active permanent magnet 29 and the passive permanent magnet 27 by the magnetic coupling 31. Since it slightly increases or decreases depending on the generated suction force, it does not necessarily exactly match the distance obtained by adding the distance between the upper surface of the superconducting bulk body 12 and the upper surface of the vacuum vessel 14 to the thickness of the spacer 32. Has no effect.

図2に基づいて第2実施形態について説明する。第1実施形態では磁極構成物11は旋回移動装置18により磁場捕捉位置Aと攪拌位置Bとの間を旋回移動されるのに対し、第2実施形態では磁極構成物11は直線移動装置35により磁場捕捉位置Aと攪拌位置Bとの間で移動される。第2実施形態は、この点のみが第1実施形態と異なるので、以下、直線移動装置35について説明する。直線移動装置35は、直線台座33と磁極構成物11が取り付けられた直線移動体34とから構成されている。直線移動体34は直線台座33に直線移動可能に装架され、磁極構成物11を磁場捕捉位置Aと攪拌位置Bの間で直線移動させる。   A second embodiment will be described with reference to FIG. In the first embodiment, the magnetic pole component 11 is swung between the magnetic field capturing position A and the stirring position B by the swivel moving device 18, whereas in the second embodiment, the magnetic pole component 11 is moved by the linear moving device 35. It is moved between the magnetic field capturing position A and the stirring position B. Since the second embodiment is different from the first embodiment only in this point, the linear moving device 35 will be described below. The linear moving device 35 includes a linear pedestal 33 and a linear moving body 34 to which the magnetic pole component 11 is attached. The linear moving body 34 is mounted on the linear base 33 so as to be linearly movable, and moves the magnetic pole component 11 linearly between the magnetic field capturing position A and the stirring position B.

図1、図2に示した実施形態において、旋回移動装置18、直線移動装置35は、回転軸11、直線移動体34を手動により旋回または直動させているが、電気モータ、油圧シリンダ等の動力駆動装置により旋回、直動させるようにしてもよい。   In the embodiment shown in FIG. 1 and FIG. 2, the swivel moving device 18 and the linear moving device 35 manually swivel or linearly move the rotary shaft 11 and the linear moving body 34. You may make it turn and linearly move by a power drive device.

容器本体22aの底面は必ずしも水平な平面である必要はなく、回転翼24の下面と容器本体22aの底面との間の間隙が許容すれば、傾斜していてもよく、緩やかな曲面であってもよいし、段差や溝等があってもよい。   The bottom surface of the container body 22a does not necessarily have to be a horizontal plane, and may be inclined if the gap between the lower surface of the rotary blade 24 and the bottom surface of the container body 22a allows, Alternatively, there may be a step or a groove.

上記実施形態では、磁極構成物を磁場捕捉位置と攪拌位置との間で移動しているが、磁極構成物を固定し、容器を磁極構成物上の攪拌位置と磁極構成物から離間した待機位置との間で移動させるようにしてもよい。   In the above embodiment, the magnetic pole component is moved between the magnetic field capturing position and the stirring position, but the magnetic pole component is fixed, and the standby position where the container is separated from the stirring position and the magnetic pole component on the magnetic pole structure. You may make it move between.

なお、上記実施形態においては、磁極構成物11は、容器22の底部外表面に対して接近する攪拌位置に位置するようになっているが、磁極構成物11の攪拌位置は、容器22の底部外表面側に位置する必要はない。上記実施例とは逆に、磁極構成物11の攪拌位置を容器22の上部外表面側に位置するようにすることも可能である。この場合、磁気カップリング31を容器22の底部外表面側に配置するようにする。   In the above embodiment, the magnetic pole component 11 is positioned at a stirring position that approaches the outer surface of the bottom of the container 22, but the stirring position of the magnetic pole component 11 is at the bottom of the container 22. It need not be located on the outer surface side. Contrary to the above embodiment, the stirring position of the magnetic pole component 11 can be positioned on the upper outer surface side of the container 22. In this case, the magnetic coupling 31 is disposed on the bottom outer surface side of the container 22.

上記実施形態では、磁場捕捉位置において磁極構成物上にスペーサを介して回転翼の永久磁石自身を磁場捕捉用磁石として載置しているが、回転翼の永久磁石と同程度の磁場を発する磁石を、回転翼の永久磁石と対応する磁場捕捉用磁石として磁極構成物上に超電導バルク体と接触させずに所定間隔を保って対向させて載置し、この状態で超電導バルク体を冷凍機により超電導遷移温度以下に冷却して磁場捕捉用磁石の磁場を超電導バルク体に捕捉させるようにしてもよい。   In the above embodiment, the permanent magnet of the rotor blade itself is placed on the magnetic pole structure via the spacer at the magnetic field capturing position as the magnetic field capturing magnet. Is placed on the magnetic pole component so as to be opposed to the superconducting bulk body without contacting the superconducting bulk body as a magnetic field capturing magnet corresponding to the permanent magnet of the rotor blade, and in this state, the superconducting bulk body is placed by a refrigerator. The superconducting bulk body may capture the magnetic field of the magnetic field capturing magnet by cooling to a superconducting transition temperature or lower.

本発明に係る非接触攪拌装置の第1実施形態を示す図。The figure which shows 1st Embodiment of the non-contact stirring apparatus which concerns on this invention. 本発明に係る非接触攪拌装置の第2実施形態を示す図。The figure which shows 2nd Embodiment of the non-contact stirring apparatus which concerns on this invention. 従来の非接触攪拌装置を示す図。The figure which shows the conventional non-contact stirring apparatus.

符号の説明Explanation of symbols

11…磁極構成物、12…超電導バルク体、13…冷凍機、14…真空容器、18…旋回移動装置、20…支持軸、22…容器、22a…容器本体、22b…蓋、23…永久磁石(磁場捕捉用磁石)、24…回転翼、25…攪拌翼、26…支持軸、27…受動永久磁石、28…調整ねじ、29…能動永久磁石、30…回転機構、31…磁気カップリング、32…スペーサ、35…直動移動装置、A…磁場捕捉位置、B…攪拌位置。
DESCRIPTION OF SYMBOLS 11 ... Magnetic pole composition, 12 ... Superconducting bulk body, 13 ... Refrigerator, 14 ... Vacuum container, 18 ... Swing movement apparatus, 20 ... Support shaft, 22 ... Container, 22a ... Container main body, 22b ... Cover, 23 ... Permanent magnet (Magnetic for capturing magnetic field) 24 ... rotary blade 25 ... stirring blade 26 ... support shaft 27 ... passive permanent magnet 28 ... adjusting screw 29 ... active permanent magnet 30 ... rotating mechanism 31 ... magnetic coupling, 32 ... Spacer, 35 ... Linear motion moving device, A ... Magnetic field capturing position, B ... Stirring position.

Claims (4)

攪拌に供される被処理液体を収納する非磁性体の容器と、
超電導バルク体を冷凍機で冷却する構造の磁極構成物と、
永久磁石を有し前記容器内で前記被処理液体を攪拌するための回転翼と、
該回転翼を容器外より回転させるための回転力を伝達する磁気カップリングと、を備え、
前記容器の外表面に対して接近した攪拌位置に位置する前記超電導バルク体と、前記永久磁石との間をピン止め力により所定間隙に保持し、全ての回転部分が容器内壁に接触することなく前記磁気カップリングで前記回転翼を回転させるようにした非接触攪拌装置における回転翼の設置方法において、
前記磁極構成物を前記容器から離間した磁場捕捉位置に相対的に移動し、前記回転翼の永久磁石又は前記回転翼の永久磁石と同程度の磁場を発する磁石を磁場捕捉用磁石として前記超電導バルク体と接触させずに前記所定間隙を保って対向させて配置し、前記超電導バルク体を前記冷凍機により超電導遷移温度以下に冷却して前記磁場捕捉用磁石の磁場を前記超電導バルク体に捕捉した後に、前記超電導バルク体を前記容器に対して相対的に移動して前記攪拌位置に位置し、前記回転翼を前記永久磁石が前記磁極構成物と対向するように前記容器内に入れることにより前記回転翼を前記永久磁石と前記超電導バルク体との磁場の作用により支持することを特徴とする非接触攪拌装置における回転翼の設置方法。
A non-magnetic container for storing the liquid to be treated for stirring;
A magnetic pole structure having a structure in which a superconducting bulk body is cooled by a refrigerator; and
A rotating blade for stirring the liquid to be treated in the container having a permanent magnet;
A magnetic coupling for transmitting a rotational force for rotating the rotor blade from outside the container,
The superconducting bulk body located at a stirring position close to the outer surface of the container and the permanent magnet are held in a predetermined gap by a pinning force, and all rotating parts do not contact the inner wall of the container. In the installation method of the rotor blades in the non-contact stirrer in which the rotor blades are rotated by the magnetic coupling,
The superconducting bulk is configured such that the magnetic pole component is relatively moved to a magnetic field capturing position separated from the container and a permanent magnet of the rotor blade or a magnet that generates a magnetic field similar to the permanent magnet of the rotor blade is used as a magnetic field capturing magnet. The superconducting bulk body is placed below the superconducting transition temperature by the refrigerator to capture the magnetic field of the magnetic field capturing magnet in the superconducting bulk body. Later, the superconducting bulk body is moved relative to the container and positioned at the stirring position, and the rotor blade is placed in the container so that the permanent magnet faces the magnetic pole component. A method of installing a rotating blade in a non-contact stirring apparatus, wherein the rotating blade is supported by the action of a magnetic field between the permanent magnet and the superconducting bulk body.
請求項1に記載の非接触攪拌装置における回転翼の設置方法において、前記磁場捕捉用磁石の磁場を前記超電導バルク体に捕捉させるとき、前記磁極構成物の超電導バルク体と前記磁場捕捉用磁石との間に所定厚さの非磁性材料からなるスペーサを介在させ、前記磁場捕捉用磁石及び前記超電導バルク体を安定して前記所定間隙を保った状態で前記冷凍機の運転により前記超電導バルク体を前記超電導遷移温度以下に冷却することを特徴とする非接触攪拌装置における回転翼の設置方法。 The method of installing a rotating blade in a non-contact stirrer according to claim 1, wherein when the superconducting bulk body captures the magnetic field of the magnetic field capturing magnet, the superconducting bulk body of the magnetic pole component, the magnetic field capturing magnet, A spacer made of a nonmagnetic material having a predetermined thickness is interposed between the magnetic field capturing magnet and the superconducting bulk body in a state where the predetermined gap is stably maintained and the superconducting bulk body is operated by operating the refrigerator. A method of installing a rotor blade in a non-contact stirrer characterized by cooling to the superconducting transition temperature or lower. 攪拌に供される被処理液体を収納する非磁性体の容器と、
超電導バルク体を冷凍機で冷却する構造の磁極構成物と、
永久磁石を有し前記容器内で前記被処理液体を攪拌するための回転翼と、
該回転翼を容器外より回転させるための回転力を伝達する磁気カップリングと、を備え、
前記容器の外表面に対して接近した攪拌位置に位置する前記超電導バルク体と、
前記永久磁石との間をピン止め力により所定間隙に保持し、全ての回転部分が容器内壁に接触することなく前記磁気カップリングで前記回転翼を回転させるようにした非接触攪拌装置において、
前記磁極構成物を前記容器から離間した磁場捕捉位置と前記攪拌位置との間で前記容器に対して相対的に移動させる移動装置を設け、前記回転翼の永久磁石又は前記回転翼の永久磁石と同程度の磁場を発する磁石を磁場捕捉用磁石として前記磁場捕捉位置において前記超電導バルク体上に非磁性体のスペーサにより前記所定間隙を保って配置し前記超電導バルク体を前記冷凍機により超電導遷移温度以下に冷却して前記磁場捕捉用磁石の磁場を前記超電導バルク体に捕捉した後に、前記超電導バルク体を前記移動装置により前記容器に対して相対的に移動して前記攪拌位置に位置し、前記永久磁石が前記磁極構成物と対向するように前記容器内に入れられた前記回転翼を前記永久磁石と前記超電導バルク体との磁場の作用により支持することを特徴とする非接触攪拌装置。
A non-magnetic container for storing the liquid to be treated for stirring;
A magnetic pole structure having a structure in which a superconducting bulk body is cooled by a refrigerator; and
A rotating blade for stirring the liquid to be treated in the container having a permanent magnet;
A magnetic coupling for transmitting a rotational force for rotating the rotor blade from outside the container,
The superconducting bulk body located at a stirring position close to the outer surface of the container;
In the non-contact stirrer that holds the gap between the permanent magnets in a predetermined gap by a pinning force and rotates the rotating blades with the magnetic coupling without contacting all the rotating parts with the inner wall of the container.
A moving device for moving the magnetic pole component relative to the container between a magnetic field capturing position separated from the container and the stirring position; and a permanent magnet of the rotor blade or a permanent magnet of the rotor blade superconducting transition temperature by the refrigerator said by spacers of a non-magnetic material on the bulk superconductors arranged keeping a predetermined gap the bulk superconductor in the magnetic field catch position a magnet that emits the same degree of magnetic field as a magnetic field trapping magnet After cooling to below and capturing the magnetic field of the magnetic field capturing magnet in the superconducting bulk body, the superconducting bulk body is moved relative to the container by the moving device and located at the stirring position, the permanent magnet is supported by the effect of the magnetic field of the permanent magnet the rotor blades placed in the container so as to be opposed to the magnetic pole arrangement and the bulk superconductor Non-contact stirring apparatus characterized.
請求項に記載の非接触攪拌装置において、前記移動装置は、前記磁極構成物を前記攪拌位置と前記磁場捕捉位置との間で移動するものであることを特徴とする非接触攪拌装置。 The non-contact stirring apparatus according to claim 3 , wherein the moving device moves the magnetic pole component between the stirring position and the magnetic field capturing position.
JP2003306552A 2003-08-29 2003-08-29 Method for installing rotor blades in non-contact stirrer and non-contact stirrer using the method Expired - Fee Related JP4304448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306552A JP4304448B2 (en) 2003-08-29 2003-08-29 Method for installing rotor blades in non-contact stirrer and non-contact stirrer using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306552A JP4304448B2 (en) 2003-08-29 2003-08-29 Method for installing rotor blades in non-contact stirrer and non-contact stirrer using the method

Publications (2)

Publication Number Publication Date
JP2005074287A JP2005074287A (en) 2005-03-24
JP4304448B2 true JP4304448B2 (en) 2009-07-29

Family

ID=34409600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306552A Expired - Fee Related JP4304448B2 (en) 2003-08-29 2003-08-29 Method for installing rotor blades in non-contact stirrer and non-contact stirrer using the method

Country Status (1)

Country Link
JP (1) JP4304448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156182B1 (en) * 2010-12-20 2012-06-18 주식회사 나래나노텍 A non-contact type stirring apparatus and method of liquid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790557B1 (en) 2006-06-23 2008-01-02 세메스 주식회사 Buffer system adjusting fist-in first-out
CN101800464B (en) * 2010-01-28 2011-11-09 清华大学 Sealing and driving device in high-temperature gas-cooled reactor helium gas space and driving device thereof
TWI619547B (en) * 2017-07-10 2018-04-01 Chen Xue Zong Feeding device with digital control panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156182B1 (en) * 2010-12-20 2012-06-18 주식회사 나래나노텍 A non-contact type stirring apparatus and method of liquid

Also Published As

Publication number Publication date
JP2005074287A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
EP1332299B1 (en) Pumping or mixing system using a levitating bearing
US4939120A (en) Superconducting rotating assembly
US7959139B2 (en) Noncontact rotating processor
JP4671292B2 (en) Magnetic levitation rotation processing equipment
JP2999607B2 (en) Superconducting bearing device and its operation method
JP2007020387A (en) Superconductive non-contact rotation device
JP4304448B2 (en) Method for installing rotor blades in non-contact stirrer and non-contact stirrer using the method
JP2006122785A (en) Non-contact stirring machine
JP3206044B2 (en) Composite superconducting bearing device
JP4930906B2 (en) Magnetic levitation rotation device
JP3665878B2 (en) Bearing device and starting method thereof
JP3551537B2 (en) Flywheel equipment
US20190151811A1 (en) Wine Decanter and Wine Decanting Device
JP2006035098A (en) Non-contact agitator
JP5263820B2 (en) Pump device
JP3084132B2 (en) Magnetic levitation device
JPH08296645A (en) Magnetic bearing device
JP4644766B2 (en) Non-contact type workpiece processing equipment
JPS6331528A (en) Stirring apparatus
JP2003004041A (en) Fly wheel type super conductivity magnetic bearing and its system
JP3735742B2 (en) Superconducting bearing rotation loss measurement device
JPH03234341A (en) Superconducting centrifugal casting machine
JP2933665B2 (en) Stirrer and stirrer
JP3577559B2 (en) Flywheel equipment
JPH0418928A (en) Non-contact agitator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees